

CHEMISTRY

BOOKS - VK JAISWAL CHEMISTRY (HINGLISH)

METALLURGY

Level 1

- **1.** Highly electropositive metal(s) can not be commercially extracted by carbon reduction process at high temperature because these:
 - A. matals combine with carbon to form covalent carbide
 - B. metals combine with carbon to form ionic carbide
 - C. ΔG_f of highly electropositive metal oxide is having low negative value
 - D. metal oxides are not reduced by carbon

Answer: B

View Text Solution

2. Consider the following reactions at $1000^{\circ} C$.

(A)
$$Zn_{\left(s
ight)}+rac{1}{2}O_{2\left(g
ight)}
ightarrow ZnO_{\left(s
ight)}, \Delta G^{\circ}=\,-\,360\,$$
 kJ/mol

(B)
$$C_{
m (gra)}+rac{1}{2}O_{2\left(g
ight)}
ightarrow CO_{\left(g
ight)}, \Delta G^{\circ}=\,-\,460$$
 kJ/mol

correct statement at $1000\,^{\circ}\,C$ is

A. ZnO is more stable than CO

B. ZnO can be reduced to Zn by C

C. ZnO and CO are formed at equal rate

D. ZnO can not be reduced to Zn by C

Answer: B

3. Which of the following pair of ores can not be converted into corresponding metals by pyrometallurgy?

A. Ag_2S , ZnS

B. Cu_2S , HgS

 $C. MnO_2, SnO_2$

D. None of these

Answer: A

- 4. Ellingham diagram represents:
 - A. change of ΔG with temperature
 - B. change of ΔH with temperature
 - C. change of ΔG with pressure
 - D. change of $(\Delta G T\Delta S)$ with temperature

Answer: A

Watch Video Solution

- **5.** The process of the isolation of a metal by dissolving the ora in a suitable chemical regent followed by precipitaiton of the matal by a more electropositive metal is called:
 - A. hydrometallurgy
 - B. electrometallurgy
 - C. zone refining
 - D. electrorefining

Answer: A

6. The process of the isolation of a metal by dissolving the ora in a
suitable chemical regent followed by precipitaiton of the matal by a more
electropositive metal is called:

- A. hydrometallurgy
- B. electrometallurgy
- C. zone refining
- D. electrorefining

Answer: A

- 7. In the alumino-thermite process, Al acts as:
 - A. an oxidising agent
 - B. a flux
 - C. solder

D. a reducing agent

Answer: D

Watch Video Solution

8. Which of the following reactions forms the basis of goldschmidt aluminothermite process ?

A.
$$2Al+N_2
ightarrow 2AlN$$

$$\texttt{B.}\ 2Al + 3Cl_2 \rightarrow 2AlCl_3$$

$$extsf{C.}\ 2Al+6HCl
ightarrow2AlCl_3+3H_2$$

D.
$$2Al+Fe_2O_3
ightarrow Al_2O_3+2Fe$$

Answer: D

9. Extraction of zinc from zinc blende is achieved by:		
A. electrolytic reduction		
B. roasting followed by reduction with carbon		
b. Toasting followed by reduction with carbon		
C. roasting followed by reduction with another metal		
D. roasting followed by self-reduction		
Anguer P		
Answer: B		
Answer: B Watch Video Solution		
Watch Video Solution		
Watch Video Solution		
Watch Video Solution 10. Thermite is a mixture of :		

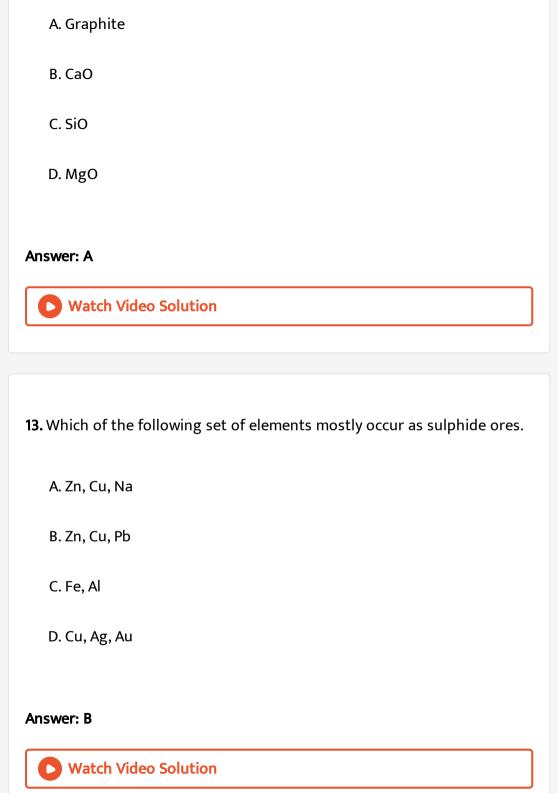
C. Cu powder and Fe_2O_3

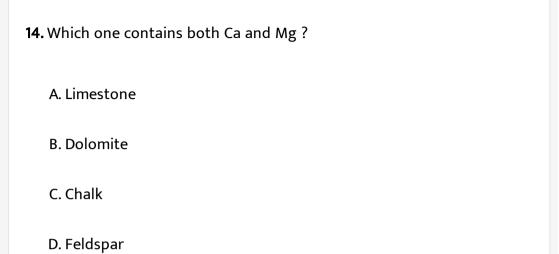
D. Zn powder and Cr_2O_3

Answer: B

Watch Video Solution

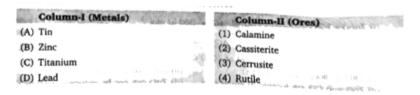
11. If a metal has low oxygen affinity then the purification of metal may be carried out by:

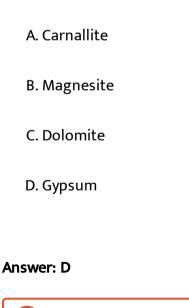

- A. liquation
- B. distillation
- C. zone refining
- D. cupellation

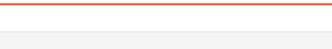

Answer: D

Watch Video Solution

12. Which substance is used as basic refractory material in furnace






Answer: B

15. Match Column-I with Column-I and select the correct answer using the codes given below:

16. Which of the following is not an ore of magnesium?

Watch Video Solution

 \boldsymbol{A}

B C

A B C D

c. A B C D 4 3 2 1

D. $egin{array}{ccccc} A & B & C & D \\ 2 & 1 & 3 & 4 \end{array}$

Answer: B

D

4 3

17. Which one of the following is not an ore of aluminium?			
A. Bauxite			
B. Corundum			
C. Epsomite			
D. Cryolite			
Answer: C			
Watch Video Solution			
18. Cinnabar is an ore of			
io. chimagar is an ore or			
A. Zn			
A. Zn			

Answer: C
Watch Video Solution
19. Which of the following minerals does not contain iron ?
A. Magnetite
B. Magnesite
C. Haematite
D. Limonite

D. Ag

Answer: B

20. Which one of the following types of metals is expected to occur in the native state? A. The alkali metals B. The alkaline earth metals C. The noble metals D. The rare earth metals **Answer: C Watch Video Solution** 21. The most abundant element in earth's crust is A. Aluminium B. Silicon C. Carbon D. Oxygen

Answer: D

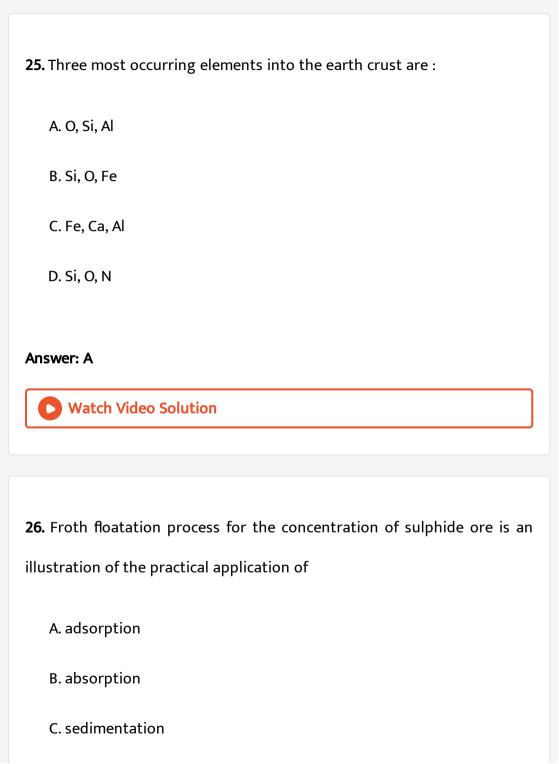
22. The two most abundant metals in the earth crust are

A. Al, Zn

B. Ag, Au

C. Fe, Cu

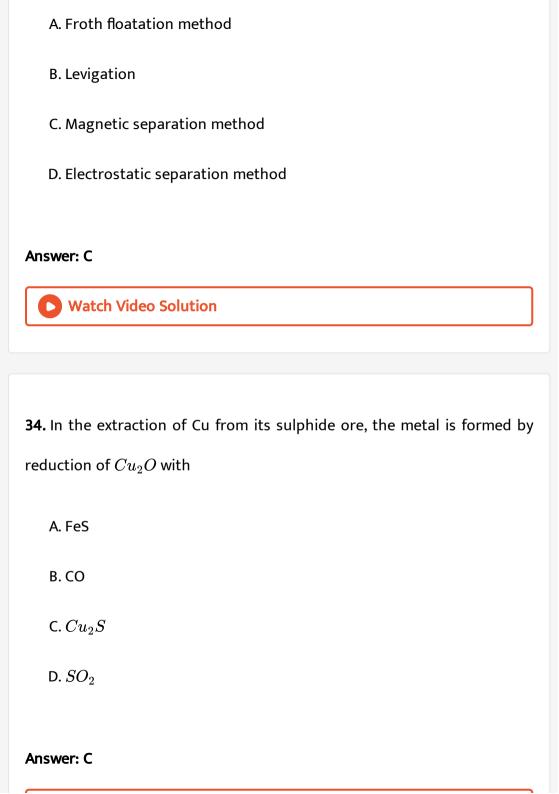
D. Fe, Al


Answer: D

Watch Video Solution

23. A mineral is usually associated with a large amount of unwanted material called :

A. Gangue
B. Flux
C. Slag
D. Ore
Answer: A
Watch Video Solution
24. The metal which mainly occurs as oxide ore in nature is:
A. Silver
B. Lead
C. Aluminium
D. Copper
Answer: C
Watch Video Solution


D. coagulation
Answer: A Watch Video Solution
27. Froth floatation process is used for the concentration of the ore of :
A. Fe
B. Al
C. Cr
D. Cu
Answer: D
Watch Video Solution
28. Haematite ore is conentrated by:

A. gravity separation method B. froth floatation process C. amalgamation D. hand picking Answer: A **Watch Video Solution** 29. Electromagnetic seperation is used in the concentration of A. Copper pyrite B. Bauxite C. Cassiterite D. Cinnabar Answer: C **Watch Video Solution**

30. Which one of the following is not a method of concentrain of ore?			
A. Electromagnetic separation			
B. Smelting			
C. Gravity separation			
D. Froth floatation process			
Answer: B			
Watch Video Solution			
Watch video Solution			
Watch video solution			
31. Chemical leaching is useful in the concentration of:			
31. Chemical leaching is useful in the concentration of:			
31. Chemical leaching is useful in the concentration of: A. Copper pyrite			

D. Galena
Answer: B
Watch Video Solution
32. The ore which is concentrated wetting by oil is :
A. oxide ore
B. sulphate ore
C. carbonate ore
D. sulphide ore
Answer: D
Watch Video Solution

33. Rutile is separated from chlorapatite by :

Watch Video Solution	
----------------------	--

35. Which of the following pair is incorrectly matched

A. van Arkel method-Zirconium

B. Kroll's process-Titanium

C. Froth Floatation -Cerussite

D. Distillation -Zine

Answer: C

36. The most abundant metal in earth's crust is _____.

A. Al

B.O

C. Fe

D. Si

Answer: A

Watch Video Solution

37. Consider the following reactions :

$$2XS + 3O_2 \stackrel{\Delta}{\longrightarrow} 2XO + 2SO_2$$

$$2XO + XS \stackrel{\Delta}{\longrightarrow} 3'X' + SO_2$$

Then 'X' can not be:

A. Hg

B. Pb

C. Zn

D. None

Answer: C

38. In the alumino-thermite process, Al metal acts as :		
A. Oxidising agent		
B. Reducing agent		
C. Catalyst		
D. Flux		
Answer: B		
Watch Video Solution		
39. Extraction of aluminium from bauxite ore, reduction is carried out by :		
A. carbon		
B. magnesium		
C. electrolysis		

Watch Video Solution 40. Chromium is obtained by reducing connentrated chromite ore with: A. red hot coke B. gaseous hydrogen C. aluminium powder D. carbon monoxide **Answer: C Watch Video Solution 41.** The element which is recovered from electrolyte process is : A. iron

Answer: C

C. aluminium D. zinc **Answer: C Watch Video Solution** 42. Magnesium is extracted electrolysing fused magnesium chloride containing NaC1 and $CaC1_2$ using: A. a nickel cathode and a graphite anode B. the iron container as anode and a nickel cathode C. the iron container as cathode and a graphite anode D. the nickel container as cathode and iron anode Answer: C **Watch Video Solution**

B. lead

43. Copper is extracted from sulphide ore using the method :

A. carbon reduction

B. carbon monoxide reduction

C. auto reduction

D. None of these

Answer: C

Watch Video Solution

44. In the extraction of copper, metal is formed in the Bessemer converter due to reaction

A.
$$Cu_2S + 2Cu_2O
ightarrow 6Cu + SO_2$$

B.
$$Cu_2S o 2Cu + S$$

$$\mathsf{C.}\, Fe + Cu_2O \rightarrow 2Cu + FeO$$

D.
$$2Cu_2O o 4Cu + O_2$$

Answer: A

Watch Video Solution

- **45.** Silica is added to roasted copper during extraction in order to remove:
 - A. cuprous sulphide
 - B. ferrous oxide
 - C. ferrous sulphide
 - D. cuprous oxide

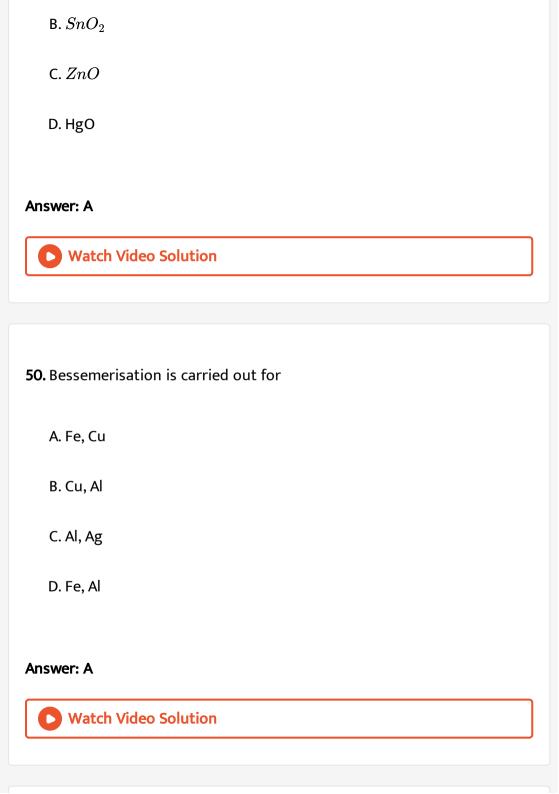
Answer: B

- A. Fused mixture of $CaCl_2$ and CaF_2
- B. $CaCl_2$ fused salt solution
- C. Used mixture of $CaCl_2$ and NaF
- D. $Ca_2(PO_4)_2$ fused salt solution

Answer: A

- **47.** Lead is mainly extracted by :
 - A. Carbon reduction method
 - B. Self-reduction method
 - C. Electrolytic reduction
 - D. Leaching with aqueous solution of NaCN followed by reduction

Answer: B


Watch Video Solution

- 48. In which of the following isolation no reducing agent is required
 - A. Mercury from cinnabar
 - B. Zinc from zinc blende
 - C. Iron from haematite
 - D. Aluminium from Bauxite

Answer: A

- 49. Aluminium is used as a reducing agent in the reduction of:
 - A. Cr_2O_3

51. Silver can be separated form lead by: A. fractional crystallisation B. amalgamation C. cupellation D. addition of zinc (Parke's method) **Answer: D Watch Video Solution** 52. A solution of sodium sulphate in gater is electrolysed using inert electrodes, The products at the cathode and anode are respectively. A. O_2 : H_2 $B.O_2, Na$ $C. H_2, O_2$ $D.O_2,SO_2$

Answer: C

Watch Video Solution

53. The metal A is prepared by the electrolysis of fused chloride. It reacts with hydrogen to form a colourless solid from which hydrogen is released on treatment with water the metal is

- A. Al
- B. Ca
- C. Cu
- D. Zn

Answer: B

54. The function of fluorspar in the electrolytic reduction of alumnia dissolved in fused cryotile (Na_3AlF_6) is:

A. as a catalyst

B. to lower the temperature of the melt and to make the fused

C. to decrease the rate of oxidation of carbon at the anode

D. none of the above

mixture very conducting

Answer: B

Watch Video Solution

55. In the extraction of copper from copper pyrites, iron is removed as :

A. $FeSO_4$

B. $FeSiO_3$

 $\mathsf{C.}\, Fe_3O_4$

D. <i>I</i>	Fe_2O_3
-------------	-----------

Answer: B

Watch Video Solution

56. The material mixed before ore is subjected for smelting in the extraction of iron are :

A. coke and silica

B. coke and limestone

C. limestone and silica

D. coke, limestone and silica

Answer: B

57. The maximum temperature $1550^{\circ} C$ is obtained in the region of the blast furnace used in the the extraction of iron. A. reduction B. fusion C. combustion D. slag formation **Answer: C Watch Video Solution** 58. The iron obtained from the blast furnace is called: A. pig iron B. cast iron C. wrought iron D. steel

Answer: A Watch Video Solution 59. Which metal can not obtained by electrolysis of their aqueous salt solution? A. Silver B. Magnesium C. Copper D. Platinum **Answer: B** Watch Video Solution 60. Impure aluminium is purified by:

- A. Baeyer's process
- B. Hall's process
- C. Hoop's process
- D. Serpeck's process

Answer: C

Watch Video Solution

- **61.** Which is not correctly matched:
 - A. Spiegleisan :Mn+Fe+C
 - B. Dow's sea water process : $Ca(OH)_2$
 - C. Parke's process :Ag
 - D. Liquation : spelter (Impure Zn)

Answer: D

62	Incorrect	match	16 .
vz.	1110011001	HIGUCII	

- A. Purification of Al metal: Baeyer's method
- B. Polling : Reduction of Cu_2O
- C. $FeCr_2O_4$ (chromite ore) : $NaOH/Na_2CO_3$
- D. Ag: Mac Arthur cyanide process

Answer: A

- **63.** Refining of tin cannot be done by:
 - A. cupellation
 - B. liquation
 - C. poling

D. electrorefining
Answer: A
Watch Video Solution
64. Which method is not correct given for refining of crude metals ?
A. Distillation : zinc and mercury
B. Liquation : tin
C. van Arkel : Zirconium
D. Mond process : lead
Answer: D
Watch Video Solution
65. Aluminium metal is purified by :

A. Hoope's process B. Hall's process C. Serpeck's process D. Baeyer's process Answer: A **Watch Video Solution** 66. High purity copper metal is obtained by A. Carbon reduction B. hydrogen reduction C. electrolytic reduction D. thermite reduction Answer: C **Watch Video Solution**

67. poling process is used for

- A. The removal of Cu_2O from Cu
- B. The removal of Al_2O_3 from Al
- C. The removal of Fe_2O_3 from Fe
- D. All of these

Answer: A

- 68. In zone-refining methode the molten zone
 - A. consists of impurities only
 - B. contains more impurity than the original metal
 - C. contains the purified metals only

Answer: B
Watch Video Solution
69. Which of the following pair is correctly matched ?
A. Copper-Oxidative refining
B. Nickel-Kroll's process
C. Mercury-Distillation
D. Lead-van Arkel method

D. moves to either side

Answer: C

70. Formation of volatile $Ni(CO)_4$ and then its subsquent decomposition into Ni and CO makes basis of Mond's process:

$$Ni + 4CO \stackrel{T_1}{\longrightarrow} Ni(CO)_4 \stackrel{T_2}{\longrightarrow} Ni4CO_3$$

 T_1 and T_2 are:

- A. $100^{\circ}C$, $50^{\circ}C$
- B. $50^{\circ} C$, $100^{\circ} C$
- $\mathsf{C}.\,50^{\,\circ}\,C,\,230^{\,\circ}\,C$
- D. 230° , $50^\circ C$

Answer: C

Watch Video Solution

71. In the elctrolysis refinin of copper, Ag and Au are found:

A. on anode

B. in electrolyte solution

C. in anode mud

D. in cathode mud

Answer: C

Watch Video Solution

72. Electrolyte solution in electrolytic refining of lead contains:

A. H_2SiF_6 only

B. $PbSiF_6$ only

C. H_2SiF_6 in presence of gelatin

D. $H_2SiF_6 \ {
m and} \ PbSiF_6$ in presence of geltatin

Answer: D

73. Blister copper is

- A. pure copper
- B. ore of copper
- C. alloy of copper
- D. impure copper

Answer: D

Watch Video Solution

74. Percentage of silver in German silver is

- A. 2.5~%
- B. 1.5~%
- C. 10~%
- D. $0\,\%$

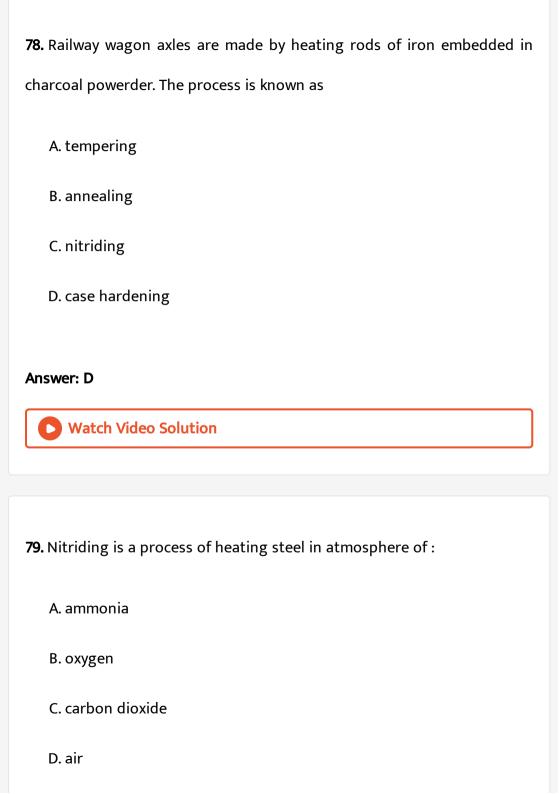
Answer: D

Watch Video Solution

75. AgCl on fusion with sodium carbonate, gives :

- A. Ag_2CO_3
- B. Ag_2O
- $\mathsf{C}.\,Ag$
- D. Ag_2C_2

Answer: C



Watch Video Solution

76. An alloy which does not contain copper is :

A. bronze

B. magnalium
C. brass
D. bell metal
Answer: B
Watch Video Solution
77. Stainless steel contains iron and :
A. Zn
B. Cu
C. Al
D. Cr
Answer: D
Watch Video Solution

Answer: A

80. Bassemer converter is used in the refining of :

- A. pig iron
- B. steel
- C. wrought iron
- D. cast iron

Answer: B

Watch Video Solution

81. Which of the following elements contitutes a major impurity in pig iron ?

A. Carbon
B. oxygen
C. Sulphur
D. Silicon
Answer: A
Watch Video Solution
82. Highly electropositive metal(s) can not be commercially extracted by carbon reduction process at high temperature because these:
A. metals combine with carbon to form covalent carbide
B. metals combine with carbon to form ionic carbide
C. ΔG_f of highly electropositive metal oxide is having low negative
value
D. metal oxides are not reduced by carbon

Answer: B

Watch Video Solution

83. Consider the following reactions at $1000^{\circ}\,C$

(I)
$$Zn(s)+1/2O_2(g)\stackrel{\Delta}{\longrightarrow} ZnO(g), \Delta G^\circ=-360~{
m kJ~mol}^{-1}$$

(II)
$$C(s) + 1/2O_2(g) \stackrel{\Delta}{\longrightarrow} CO(g), \Delta G^\circ = -460~{
m kJ~mol}^{-1}$$

and choose the correct statement at $1000^{\circ}\,C$

A. ZnO is more stable than CO

B. ZnO can be reduced to Zn by C

C. ZnO and CO are formed at equal rate

D. ZnO can not be reduced to Zn by C

Answer: B

View Text Solution

84. Which of the following pair of ores can not be converted into corresponding metals by pyrometallurgy?

A. Ag_2S , ZnS

B. Cu_2S , HgS

 $C. MnO_2, SnO_2$

D. None of these

Answer: A

Watch Video Solution

85. Ellingham diagram represents:

A. change of ΔG with temperature

B. change of ΔH with temperature

C. change of ΔG with pressure

D. change of $(\Delta G - T\Delta S)$ with temperature

Answer: A

Watch Video Solution

86. The process of the isolation of a metal by dissolving the ora in a suitable chemical regent followed by precipitaiton of the matal by a more electropositive metal is called:

- A. hydrometallurgy
- B. electrometallurgy
- C. zone refining
- D. electrorefining

Answer: A

87. The process of the isolation of a metal by dissolving the ora in a suitable chemical regent followed by precipitaiton of the matal by a more electropositive metal is called:

- A. hydrometallurgy
- B. electrometallurgy
- C. zone refining
- D. electrorefining

Answer: A

- **88.** In the alumino-thermite process, Al acts as:
 - A. an oxidising agent
 - B. a flux
 - C. solder

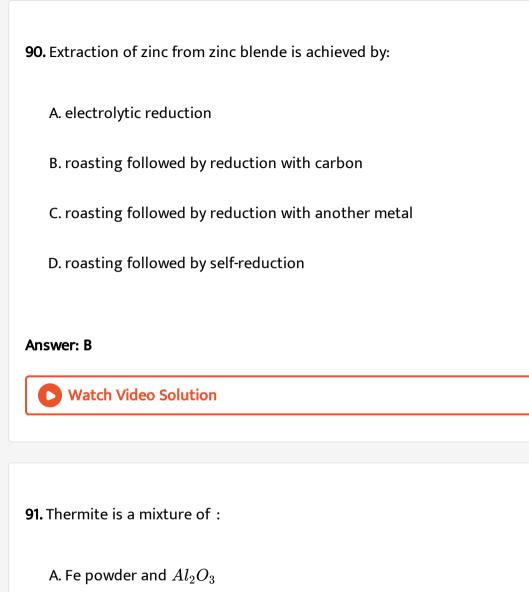
D. a reducing agent

Answer: D

Watch Video Solution

89. Which of the following reactions forms the basis of goldschmidt aluminothermite process ?

A.
$$2Al+N_2
ightarrow 2AlN$$


$$\mathsf{B.}\, 2Al + 3Cl_2 \to 2AlCl_3$$

C.
$$2Al+6HCl
ightarrow 2AlCl_3 + 3H_2$$

D.
$$2Al+Fe_2O_3
ightarrow Al_2O_3+2Fe$$

Answer: D

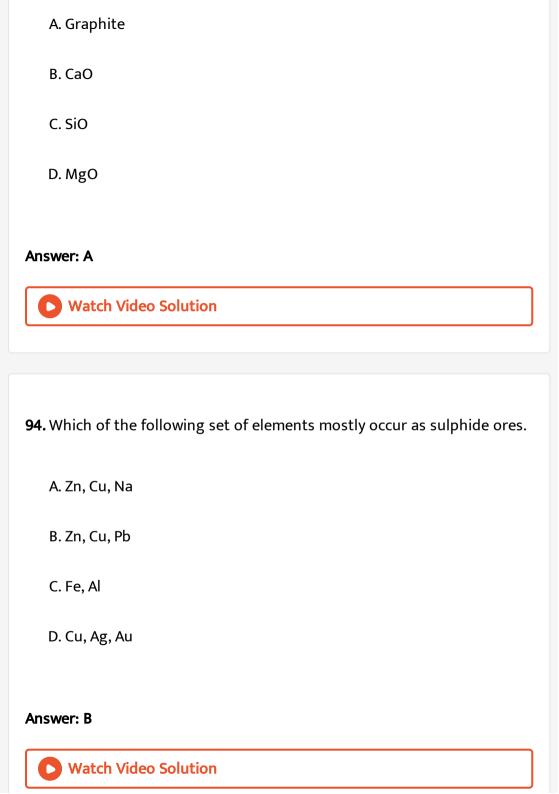
B. Al powsder and Fe_2O_3

C. Cu powder and Fe_2O_3

D. Zn powder and Cr_2O_3

Answer: B

92. If a metal has low oxygen affinity then the purification of metal may be carried out by:

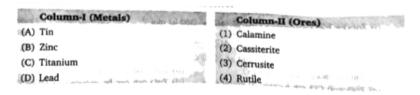

- A. liquation
- B. distillation
- C. zone refining
- D. cupellation

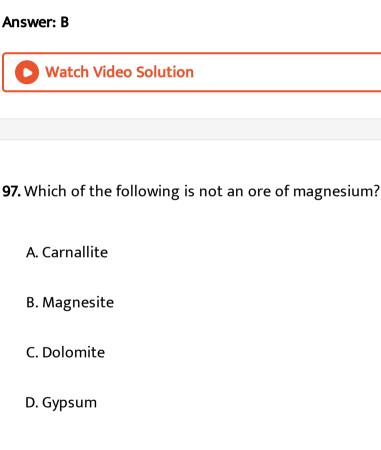
Answer: D

Watch Video Solution

93. Neutral refractory material used in furnaces is:

95. Which one contains both Ca and Mg? A. Limestone B. Dolomite


D. Feldspar


C. Chalk

Answer: B

96. Match Column-I with Column-I and select the correct answer using the codes given below:

Watch Video Solution

Answer: D

 \boldsymbol{A}

B C

 $\begin{array}{ccccccc}
A & B & C & D \\
2 & 1 & 4 & 3
\end{array}$

c. $\begin{pmatrix} A & B & C & D \\ 4 & 3 & 2 & 1 \end{pmatrix}$

D. $egin{array}{ccccc} A & B & C & D \\ 2 & 1 & 3 & 4 \end{array}$

D

98. Which one of the following is not an ore of aluminium ?	
A. Bauxite	
B. Corundum	
C. Epsomite	
D. Cryolite	
Answer: C Watch Video Solution	
99. Cinnabar is an ore of	
A. Zn	
B. Cd	
C. Hg	

Answer: C		
Watch Video Solution		
100. Which of the following minerals does not contain iron ?		
A. Magnetite		
B. Magnesite		
C. Haematite		
D. Limonite		

D. Ag

Answer: B

101. Which one of the following types of metals is expected to occur in the native state ?

A. The alkali metals

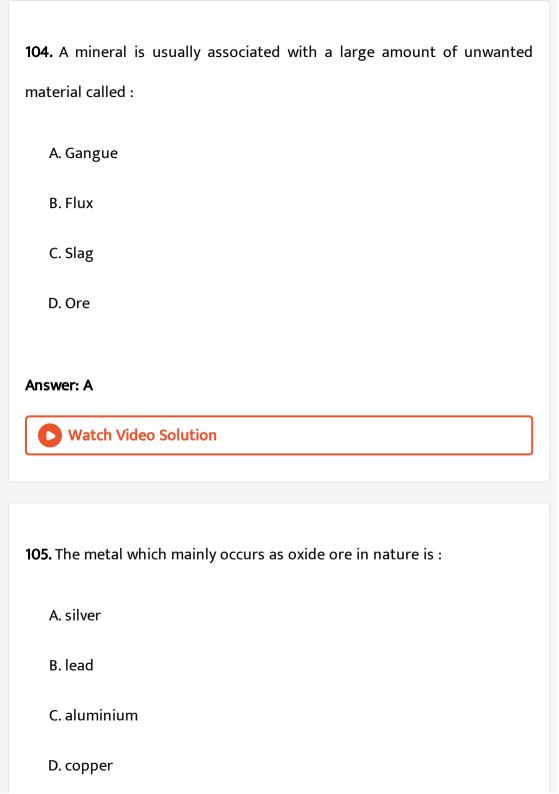
B. The alkaline earth metals

C. The noble metals

D. The rare earth metals

Answer: C

102. Which one of the following elements is most abundant in earth crust


?

A. Aluminium

B. Silicon

C. Carbon

D. Oxygen
Answer: D
View Text Solution
03. The two most abundant metals in the earth crust are
A. Al, Zn
B. Ag, Au
C. Fe, Cu
D. Fe, Al
Answer: D

Answer: C

Watch Video Solution

106. Three most occurring elements into the earth crust are:

A. O, Si, Al

B. Si, O, Fe

C. Fe, Ca, Al

D. Si, O, N

Answer: A

Watch Video Solution

107. Froth floatation process for the concentration of sulphide ore is an illustration of the practical application of

A. adsorption
B. absorption
C. sedimentation
D. coagulation
Answer: A
Watch Video Solution
108. Froth floatation process is used for the concentration of the ore of :
A. Fe
B. Al
C. Cr
D. Cu
Answer: D
Watch Video Solution

109. Haematite ore is conentrated by:
A. gravity separation method
B. froth floatation process
C. amalgamation
D. hand picking
Answer: A Watch Video Solution
Answer: A Watch Video Solution
Watch Video Solution

C. Cassiterite

D. Cinnabar
nswer: C
Watch Video Solution
11. Which one of the following is not a method of concentrain of ore?
A. Electromagnetic separation
B. Smelting
C. Gravity separation
D. Froth floatation process
nswer: B
Watch Video Solution

112. Chemical leaching is useful in the concentration of:

A. Copper pyrite	
B. Bauxite	
C. Cassiterite	
D. Galena	
Answer: B	
Watch Video Solution	
113. The ore which is concentrated wetting by oil is :	
A. oxide ore	
B. sulphate ore	
C. carbonate ore	
D. sulphide ore	
Answer: D	
Watch Video Solution	

114. Rutile is separated from chlorapatite by :

A. Froth floatation method

B. Levigation

C. Magnetic separation method

D. Electrostatic separation method

Answer: C

Watch Video Solution

115. In the extraction of Cu from its sulphide ore, the metal is formed by reduction of Cu_2O with

A. FeS

B. CO

 $\mathsf{C.}\, Cu_2S$

Answer: C

Watch Video Solution

- 116. Which of the following pair is incorrectly matched?
 - A. van Arkel method-Zirconium
 - B. Kroll's process-Titanium
 - C. Froth Floatation -Cerussite
 - D. Distillation -Zine

Answer: C

View Text Solution

117. The most abundant metal in earth's crust is ____.

- A. Al
- B.O
- C. Fe
- D. Si

Answer: A

Watch Video Solution

118. Consider the following reactions:

$$2XS + 3O_2 \xrightarrow{\Delta} 2XO + 2SO_2$$
 $2XO + XS \xrightarrow{\Delta} 3'X' + SO_2$

Then 'X' can not be:

- A. Hg
- B. Pb
- C. Zn
 - D. None

Answer: C
Watch Video Solution
119. In the alumino-thermite process, Al metal acts as :
A. Oxidising agent
B. Reducing agent
C. Catalyst
D. Flux
Answer: B
Watch Video Solution
120. In extraction of aluminium from bauxite ore, reduction is carried out
by:

A. carbon B. magnesium C. electrolysis D. hydrogen **Answer: C Watch Video Solution** 121. Chromium is obtained by reducing connentrated chromite ore with: A. red hot coke B. gaseous hydrogen C. aluminium powder D. carbon monoxide Answer: C **Watch Video Solution**

122. The element which is recovered from electrolyte process is :			
A. iron			
B. lead			
C. aluminium			
D. zinc			
Answer: C Watch Video Solution			
123. Magnesium is manufactured by electrolysing fused magnesium chloride using :			
A. a nickel cathode and a graphite anode			
B. the iron container as anode and a nickel cathode			
C. the iron container as cathode and a graphite anode			

D. the nickel container as cathode and iron anode			
nswer: C			
View Text Solution			
24. Copper is extracted from sulphide ore using the method :			
A. carbon reduction			
B. carbon monoxide reduction			
C. auto reduction			
D. None of these			
nswer: C			
Watch Video Solution			

125. In the extraction of copper, metal is formed in the Bessemer converter due to reaction

A.
$$Cu_2S + 2Cu_2O
ightarrow 6Cu + SO_2$$

B.
$$Cu_2S o 2Cu + S$$

C.
$$Fe + Cu_2O
ightarrow 2Cu + FeO$$

D.
$$2Cu_2O
ightarrow 4Cu + O_2$$

Answer: A

Watch Video Solution

126. Silica is added to roasted copper during extraction in order to remove:

A. cuprous sulphide

B. ferrous oxide

C. ferrous sulphide

D. cuprous oxide
Answer: B
Watch Video Solution
127. Calcium is extracted by the electrolysis of :
A. Fused mixture of $CaCl_2 \ \ { m and} \ \ CaF_2$
B. $CaCl_2$ fused salt solution
C. Used mixture of $CaCl_2$ and NaF
D. $Ca_2(PO_4)_2$ fused salt solution
Answer: A
Watch Video Solution
128. Lead is mainly extracted by :

A. Carbon reduction method B. Self-reduction method C. Electrolytic reduction D. Leaching with aqueous solution of NaCN followed by reduction **Answer: B Watch Video Solution**

- 129. In which of the following metallurgy, no reducing agent is required from out side?
 - A. Mercury from cinnabar
 - B. Zinc from zinc blende
 - C. Iron from haematite
 - D. Aluminium from Bauxite

Answer: A

130. Aluminium is used as a reducing agent in the reduction of:

A. Cr_2O_3

B. SnO_2

 $\mathsf{C}.\,ZnO$

D. HgO

Answer: A

Watch Video Solution

131. Bessemerisation is carried out for:

A. Fe, Cu

B. Cu, Al

C. Al, Ag

D.	Fe,	Αl

Answer: A

View Text Solution

- **132.** Silver can be separated form lead by:
 - A. fractional crystallisation
 - B. amalgamation
 - C. cupellation
 - D. addition of zinc (Parke's method)

Answer: D

133. A solution of sodium sulphate in qater is electrolysed using inert electrodes, The products at the cathode and anode are respectively.

- A. O_2 : H_2
- B. O_2 , Na
- $C. H_2, O_2$
- $D.O_2,SO_2$

Answer: C

Watch Video Solution

134. The metal X is prepared by the electrolysis of fused chloride. It reacts with hydrogen to form a colourless solid from which hydrogen gas is released on treatment with water. The metal is:

- A. Al
- B. Ca

C. Cu

D. Zn

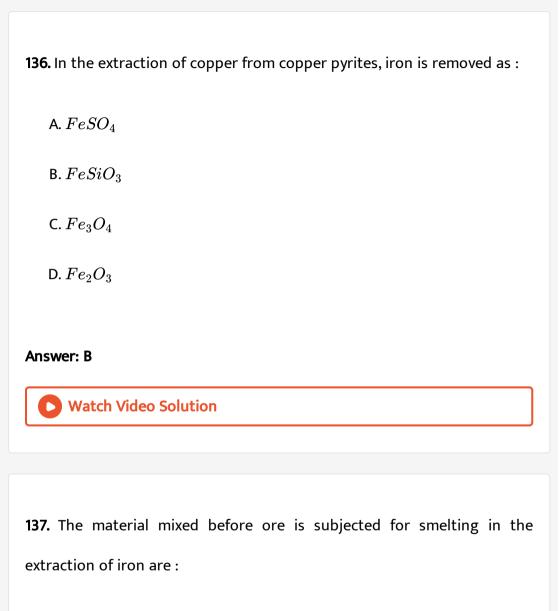
Answer: B

View Text Solution

135. The function of fluorspar in the electrolytic reduction of alumnia dissolved in fused cryotile (Na_3AlF_6) is:

A. as a catalyst

B. to lower the temperature of the melt and to make the fused


mixture very conducting

C. to decrease the rate of oxidation of carbon at the anode

D. none of the above

Answer: B

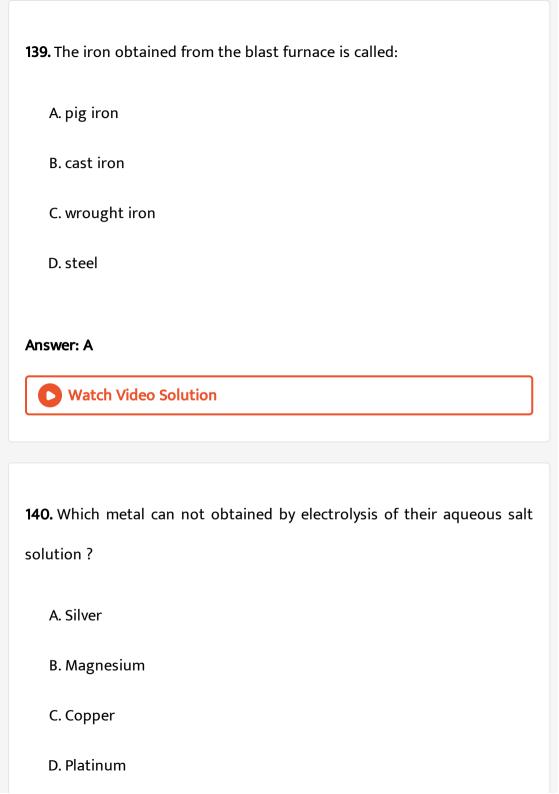
B. coke and limestone

A. coke and silica

C. limestone and silica

D. coke, limestone and silica		
Answer: B		
View Text Solution		
138. The maximum temperature $1550^{\circ}C$ is obtained in the region of		
the blast furnace used in the the extraction of iron.		

A. reduction


C. combustion

D. slag formation

Watch Video Solution

B. fusion

Answer: C

Answer: B **Watch Video Solution** 141. Impure aluminium is purified by: A. Baeyer's process B. Hall's process C. Hoop's process D. Serpeck's process **Answer: C**

Watch Video Solution

142. Which is not correctly matched:

A. Spiegleisan :Mn+Fe+C

B. Dow's sea water process $:Ca(OH)_2$

C. Parke's process :Ag

D. Liquation : spelter (Impure Zn)

Answer: D

Watch Video Solution

143. Incorrect match is:

A. Purification of Al metal : Baeyer's method

B. Polling : Reduction of ${\it Cu}_2{\it O}$

C. $FeCr_2O_4$ (chromite ore) : $NaOH/Na_2CO_3$

D. Ag: Mac Arthur cyanide process

Answer: A

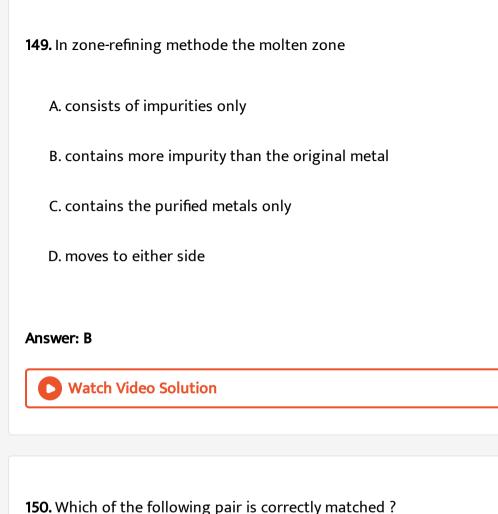
144. Refining of tin cannot be done by :
A. cupellation
B. liquation
C. poling
D. electrorefining
Answer: A
Watch Video Solution
145. Which method is not correct given for refining of crude metals?
A. Distillation : zinc and mercury
B. Liquation : tin
C. van Arkel : Zirconium
D. Mond process : lead

Watch Video Solution 146. Aluminium metal is purified by: A. Hoope's process B. Hall's process C. Serpeck's process D. Baeyer's process Answer: A **Watch Video Solution** 147. High purity copper metal is obtained by A. Carbon reduction

Answer: D

- B. hydrogen reduction
- C. electrolytic reduction
- D. thermite reduction

Answer: C



Watch Video Solution

- 148. poling process is used for
 - A. The removal of ${\it Cu}_2{\it O}$ from Cu
 - B. The removal of Al_2O_3 from Al
 - C. The removal of Fe_2O_3 from Fe
 - D. All of these

Answer: A

A. Copper-Oxidative refining

B. Nickel-Kroll's process

C. Mercury-Distillation

D. Lead-van Arkel method

Answer: C

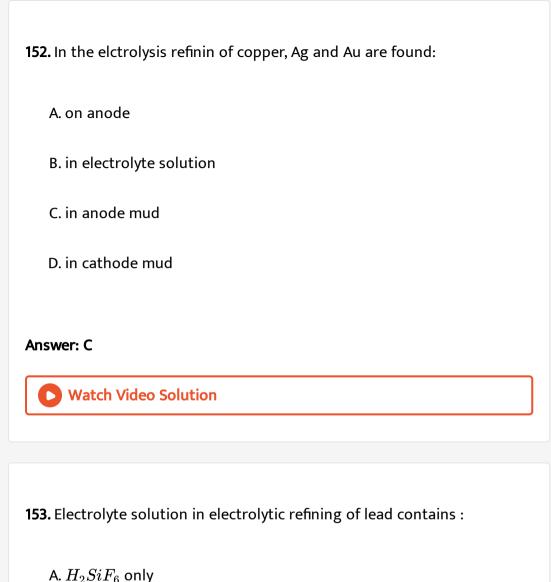
Watch Video Solution

151. Formation of volatile $Ni(CO)_4$ and then its subsquent decomposition into Ni and CO makes basis of Mond's process:

$$Ni + 4CO \stackrel{T_1}{\longrightarrow} Ni(CO)_4 \stackrel{T_2}{\longrightarrow} Ni4CO_3$$

 T_1 and T_2 are:

A.
$$100^{\circ} C$$
, $50^{\circ} C$


B.
$$50^{\circ} C$$
, $100^{\circ} C$

$$C.50^{\circ}C, 230^{\circ}C$$

D.
$$230^\circ$$
 , $50^\circ C$

Answer: C

B. $PbSiF_6$ only

C. H_2SiF_6 in presence of gelatin

D. H_2SiF_6 and $PbSiF_6$ in presence of geltatin

Answer: D

Watch Video Solution

154. Blister copper is

A. pure copper

B. ore of copper

C. alloy of copper

D. impure copper


Answer: D

Watch Video Solution

155. Percentage of silver in the alloy german silver is :

A. $2.5\,\%$

Answer: D

Watch Video Solution

156. AgCl on fusion with sodium carbonate, gives :

A. Ag_2CO_3

B. Ag_2O

 $\mathsf{C}.\,Ag$

D. Ag_2C_2

Answer: C

157. An alloy which does not contain copper is :
A. bronze
B. magnalium
C. brass
D. bell metal
Answer: B
Watch Video Solution
158. Stainless steel contains iron and :
A. Zn
B. Cu
C. Al
D. Cr

Answer: D

Watch Video Solution

159. Axles are made by heating rods of iron embedded in charcoal powder.

The process is known as:

- A. tempering
- B. annealing
- C. nitriding
- D. case hardening

Answer: D

Watch Video Solution

160. Nitriding is a process of heating steel in atmosphere of:

A. ammonia
B. oxygen
C. carbon dioxide
D. air
Answer: A
Watch Video Solution
161. Bassemer converter is used in the refining of:
A. pig iron
B. steel
C. wrought iron
D. cast iron
Answer: B
Watch Video Solution

162. Which of the following elements contitutes a major impurity in pig iron ?

A. Carbon

B. oxygen

C. Sulphur

D. Silicon

Answer: A

Watch Video Solution

Level 2

1. Which of the following pair of ores can not be converted into corresponding metals by pyrometallurgy?

A. Ag_2S , ZnS

B. Cu_2S , HgS

 $\mathsf{C}.\,MnO_2,\,SnO_2$

D. None

A. Siderite

B. Cinnabar

C. Malachite

D. Hornsilver

Answer: B

Answer: A

Watch Video Solution

2. $XCl_2(ext{excess}) + Ycl_2 o XCl_4 + Y \downarrow$,

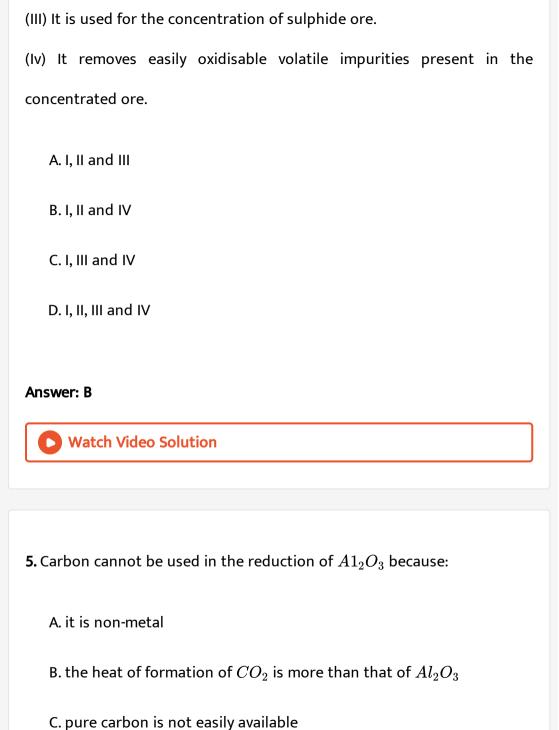
 $YO \xrightarrow{\Delta} \frac{1}{2}O_2 + Y$, Ore of Y would be :

3. A sulphide ore is first converted into its oxide before reduction. This is done because:

A. a sulphide ore cannot be reduced to metal at all

B. no reducing agent is found suitable for reducing a sulphide ore

C. the enthalpy of formation of CO_2 is more than that of CS_2


D. a metal oxide is generally less stable than the metal sulphide

Answer: D

- **4.** Choose the correct option the code regarding roasting process.
- (I) It is the process of heating the ore in air in a reverberatory furnace to
- (II) It is an exothermic process.

obtain the oxide.

D. the heat of formation of Al_2O_3 is too high	
nswer: D	

Watch Video Solution

- 6. On heating quicktime with coke in an electric furnace, we get
 - A. Ca and CO_2
 - $\mathsf{B.}\, CaCO_3$
 - $\mathsf{C}.\,CaO$
 - D. CaC_2

Answer: D

7. Boron can be obtained by various methods but not by:

A. thermal decomposition of $B_2 H_6$

B. pyrolysis of BI_3 (van Arkel)

C. reducing BCl_3 with H_2

D. electrolysis of fused BCl_3

Answer: D

Watch Video Solution

8. Select correct statement :

A. The decomposition of an oxide into oxygen and metal vapour entropy increases

B. Decomposition of an oxide is an endothermic change

C. The make ΔG° negative, temperature should be high enough so that $T\Delta S^\circ > \Delta H^\circ$

D. All are correct statements

Answer: D

Watch Video Solution

9. The oxide of a metal (R) can be reduced by the metal (P) and metal (R) can reduce the oxide of metal (Q). Then the decreasing order of the reactivity of metal (P), (Q) and (R) with oxygen is:

A.
$$P>Q>R$$

$$\operatorname{B.} P > R > Q$$

$$\mathsf{C}.\,R>P>Q$$

$$\operatorname{D}.Q > P > R$$

Answer: B

10. Consider the following metallurgical processes:

(I) Heating impure metal with CO and distilling the resulting volatile carbonyl $(b.~p.~43^{\circ}\,C)$ and finally decomposition at $150^{\circ}-200^{\circ}C$ to get the pure metal.

(II) Heating the sulphide ore in air until a part is converted to oxide and then further heating in the absence of air to let the oxide react with unchanged metal sulphide.

(III) Electrolysis of the molten electrolyte containing approximately equal amounts of the metal chloride and NaCl to obtain the metal.

The processes used for obtaining magnesium, nickel and copper are respectively.

A. (I),(II) and (III)

B. (II), (III) and (I)

C. (III), (I) and (II)

D. (II), (I) and (III)

11. When alumina is heated with carbon in the atmosphere of nitrogen then product formed are

$$B.Al + CO_2$$

$$\mathsf{C}.\,Al + CO + CO_2$$

D.
$$AlN + CO$$

Answer: D

Watch Video Solution

12. MgO can be used as a refractory material because

A. It has high melting point

B. It is a good conductor of heat

D. All of these
Answer: D
Watch Video Solution
I3. Amoung the following statements, the incorrect statement is :
A. calamine and cerrusite are carbonate ores
B. rutile and cuprite are oxide ores
C. zinc blende and pyrites are sulphide ores
D. malachite and azurite are sulphate ores of Cu
Answer: D
Watch Video Solution

C. It is a good electrical insulator

14. Give the correct order of initials T or F for following statements. Use T if statement is true and F if it is false.

- (i) Every mineral is an ore but every ore is not a mineral
- (ii) Slag is product formed during extraction of metal by combination of flux and impuritites.
- (iii) Highly pure metals can be obtained by zone refining.
- (iv) Carnallite is an ore of magnesium and sodium.

A. TTTF

B. FT TF

C. FT T T

D. TFTF

Answer: B

Watch Video Solution

15. Find the incorrectly matched pair?

16. Froth floatation process used for the concentration of sulphide ore:

Sylvine

Column-I(ores)

Column-I(ores) Column-II(metals)

Column-II(metals)

(1)Potassium

- Malachite (2) Magnesium
- Column-II(metals) Column-I(ores) C. Cinnabar (3)Mercury
- Column-II(metals) Column-I(ores) Fluorite (Flourspar) (4) Calcium

Answer: B

Watch Video Solution

A. is based on the difference in wettability of different minerls

C. uses NaCN as depressant in the mixture of ZnS and PbS when ZnS

- B. uses sodium ethyl xanthate, $C_2H_5OCS_2Na$ as collector
- forms soluble complex and PbS forms froth
- D. All are correct statements

Answer: D

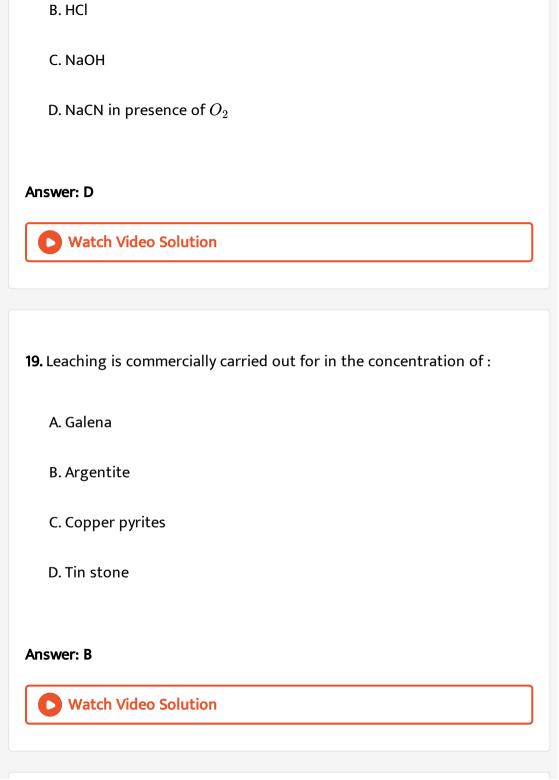
17. When ZnS and PbS minearls are present together, then NaCN is added to separate them in the froth floatation process as a depressant, because :

A. $Pb(CN)_2$ is precipitated while no effect on ZnS

B. ZnS forms soluble complex $Na_2ig[Zn(CN)_4ig]$

C. PbS forms soluble complex $Na_2igl[Pb(CN)_4igr]$

D. They cannot be separated by adding NaCN


Answer: B

Watch Video Solution

18. Leaching of Ag_2S is carried out by heating it with a dilute solution of:

A. NaCN only

20. NaCN is sometimes added in the froth flotation process as a depressant when ZnS and PbS minerals are expected because :

- A. $Pb(CN)_2$ is precipitated while no effect on ZnS
- B. ZnS forms soluble complex $Na_{2}ig[Zn(CN)_{4}ig]$ while PbS forms froth
- C. PbS forms soluble complex $Na_2igl[Pb(CN)_4igr]$ while ZnS forms froth
- D. NaCN is never added in froth floatation process

Answer: B

Watch Video Solution

21. Which of the following substance acts as collector in froth floatation method ?

- A. Sodium xenate
- B. Sodium pyrophosphate
- C. Sodium nitroprusside

D. Sodium ethyl xanthate

Answer: D

Watch Video Solution

- **22.** In which of the following pair of metals, both are commercially extracted from their respective ores by carbon reduction method?
 - A. Zn, Cu
 - B. Fe, Cu
 - C. Sn, Zn
 - D. Al, Ag

Answer: C

23. Formation of metallic copper from sulphide ore in te normal thermometallurgical process essentially involves which of the following reactions

A.
$$Cu_2S+rac{3}{2}O_2 o Cu_2O+SO_2, ~~ Cu_2O+C o 2Cu+CO$$

B.

$$Cu_2S+rac{3}{2}O_2
ightarrow Cu_2O+SO_2, \qquad 2Cu_2O+Cu_2S
ightarrow 6Cu+SO_2$$

D.

$$Cu_2S+rac{3}{2}O_2
ightarrow Cu_2O+SO_2, \qquad Cu_2O+CO
ightarrow 2Cu+CO_2$$

C. $Cu_2S+2O_2 o CuSO_4$, $CuSO_4+Cu_2S o 3Cu+2SO_2$

Answer: B

Watch Video Solution

24. There are following extraction process of silver but not:

A. as a side product in electrolytic refining of copper

B. Parke's process in which Zn is used to extract silver by solvent

extraction from molten lead

C. by reaction of silver sulphide with KCN and then reaction of soluble

D. by heating $Naigl[Ag(CN)_2igr]$

complex with Zn

Answer: D

25. In the extraction of aluminium

Process X: employed for red bauxite to remove iron oxide (main impurity)

Process $Y\colon$ (Serpeck's process): used for while bauxite to remove Z (main impurity) then,

Select correct option for the process X and impurity Z.

A. X=Hall and Heroult's process and $Y=SiO_2$

- B. X=Baeyer's process and $Y=SiO_2$
- C. `X=Serpeck's process and Y= iron oxide
- D. X=Baeyer's process and Y = iron oxide

Answer: B

Watch Video Solution

if statements is true and F if it is false.

- **26.** Give the correct order of initials T or F for following statements. Use T
- (i) In gold schmidt thermite process aluminium acts as a reducing agent.
- (ii)Mg is extracted by electrolysis of aq. solution of $MgCl_2$.
- $\left(iii
 ight)$ Extraction of Pb is possible by carbon reduction method
- $\left(iv\right)$ Red Bauxite is purified by Serpeck's process.
 - A. TTTF
 - B. TF FT
 - C. FTTT

Answer: D

Watch Video Solution

27. $FeCr_2O_4($ chromite) is converted to Cr by following steps :

Chromite
$$\stackrel{I}{\longrightarrow} Na_2CrO_4 \stackrel{II}{\longrightarrow} Cr_2O_3 \stackrel{III}{\longrightarrow} Cr$$

Reagents in I, II, and III step might be :

A. $rac{ ext{I-Step}}{Na_2CO_3/ ext{air},\Delta}$ $rac{ ext{II-Step}}{C}$

B. $\frac{\mbox{I-Step}}{NaOH/\mbox{air},\Delta}$ $\frac{\mbox{II-Step}}{C\Delta}$ $\frac{\mbox{III-Step}}{Al\Delta}$

I-Step III-Step

C. $Na_2CO_3/{
m air},\Delta$ $C\Delta$ $C\Delta$

I-Step III-Step $conc.\ H_2SO_4\Delta \qquad NH_4Cl\Delta \qquad C\Delta$

Answer: B

28. The electrolysis of pure alumina is not feasible because :

A. it is bad conductor of electricity and its fusion temperature is high

B. it is volatile in nature

C. it is decomposed when fused

D. it is amphoteric

Answer: A

29. Which of the following reaction does not occur in Bessemer's converter?

A.
$$2Cu_2S+5O_2
ightarrow 2CuSO_4+2CuO$$

$${\rm B.}\ 2Cu_2S+3O_2\rightarrow 2Cu_2O+2SO_2\uparrow$$

$$\mathsf{C.}\ 2CuFeS_2 + O_2 \rightarrow Cu_2S + 2FeS + SO_2$$

D.
$$FeO + SiO_2
ightarrow FeSiO_3$$

Answer: C

Watch Video Solution

30. What products are formed during the electrolysis of a of a concentrated aqueous solution of sodium chloride?

 $\text{I.}\ Cl_2(g),\qquad \text{II.}\ NaOH(aq),\qquad \text{III.}\ H_2(g).$

A. I only

B. I and II only

C. I and III only

D. I, II and III

Answer: D

31. During the electrolysis of carnallite, $MgCl_2$ is decomposed and not

KCl. This is because of :

A. lower decomposition voltage of $MgCl_2$ than that of KCl

B. reverse reaction $MgCl_2 + 2K
ightarrow Mg + 2KCl$ if KCl is

decomposed under other experimental condition

C. both (a) and (b)

D. none of the above

Answer: C

Watch Video Solution

32. The reduction of an oxide by aluminium is called

A. Beeyer's process

B. Goldschmidt's aluminothermite process

C. Hall's process

D. van Arkel process

Answer: B

:

Watch Video Solution

33. Incorrect statement in electrolysis of Al_2O_3 by Hall-Heroult process is

A. Cryolite $N_3[AlF_5]$ lowers the m.pt. of Al_2O_3 and increases its electrical conductivity

- B. Al is obtained at cathode and CO_2 at anode
- C. Li_2CO_3 can be used in place of cryolite (Na_3AlF_6)
- D. MgF_2 can be used in place of flourspare (CaF_2)

Answer: D

34. In the leaching of Ag_2S with NaCN, a stream air is also passed. It is

because of

A. reversible nature of eaction between Ag_2S and NaCN

B. to oxide Na_2S formed into Na_2SO_4 and sulphur

C. both (a) and (b)

D. none of the above

Answer: C

Watch Video Solution

35. In van Arkel method, if I_2 is introduced at 1700 K over impure metal, the product will be:

A. lodide of the metal

B. No reaction takes place

C. Impurities react with iodine

D. None of these

Answer: A

Watch Video Solution

- **36.** The method of zone refining of metals is based on the principle of :
 - A. Greater mobility of the pure metal than that of impurity
 - B. Higher melting point of the impurity than that of the pure metal
 - C. Greater noble character of the solid metal than that of the impurity
 - D. Greater solubility of the impurity in the molten state than in the solid

Answer: D

37. Blister copper is refined by stirring moltem impure metal with green logs of wood because such a wood liberated hydrocarbon gases like (CH_4) . The process X is called ____ and the Metal contains impurity of Y is :

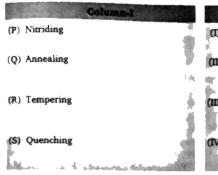
A. X=cupellation,
$$Y=CuO_2$$

B. X=polling,
$$Y=Cu_2O$$

D. X=cupellation, Y=CuO

Answer: B

Watch Video Solution


38. The anode mud in the electrolytic refining of silver contains :

A. Zn, Cu, Ag, Au

B. Zn, Ag, Au

C. Cu, Ag, Au
D. Au only
Answer: D
Watch Video Solution
39. The method of electrolytic refining is not suitable in the extraction of
A. Aluminium
B. Copper
C. Mercury
D. Silver
Answer: C
Watch Video Solution

40. Match Column-I with Column-II

(I) Process of heating steel to redness and then cooling it very slowly

Column-II

- Process of heating steel in presence of NH₃ and producing hard coating of Iron Nitride on the surface of steel
- (III) Process of heating steel to redness and then cooling it suddenly by plunging it into water or oil
- (IV) Process of heating quenched steel to a temperature well below redness and then cooling it slowly

A.
$$P = Q = R = S$$
 $II = I = III = IV$

B. $P = Q = R = S$
 $II = I = IV = III$

C. $P = Q = R = S$
 $I = II = IV = III$
 $I = P = Q = R = S$

Answer: B

Watch Video Solution

41. Softening of lead means:

A. conversion of lead to PbO

B. conversion of lead to Pb_3O_4

C. removal of impurities (metallic) from lead

D. washing lead with HNO_3 followed by alkali solution

Answer: C

- **42.** In the purification of impure Ni by Mong's process, metal is purified by
 - A. electrolytic reduction
 - B. Vapour phase thermal decomposition
 - C. Thermite reduction
 - D. Carbon reduction

Answer: B

A. Bayer's method $-Na_{2}CO_{3}$

B. Matte $-98\,\%\,\,Cu_2S + 2\,\%\,\,FeS$

C. van Arkel method - AgI

D. Thomas slag - Raw material for cement industry

Answer: B

44. Which of the following pair of ores can not be converted into corresponding metals by pyrometallurgy?

A. $Ag_2S,\,ZnS$

B. Cu_2S, HgS

 $\mathsf{C}.\,MnO_2,\,SnO_2$

D. None

Answer: A

Watch Video Solution

45. $XCl_2(ext{excess}) + Ycl_2 o XCl_4 + Y \downarrow$,

 $YO \xrightarrow[>400^{\circ}]{\Delta} rac{1}{2}O_2 + Y$, Ore of Y would be :

- A. Siderite
- B. Cinnabar
- C. Malachite
- D. Hornsilver

Answer: B

46. A sulphide ore is first converted into its oxide before reduction. This is done because :

A. a sulphide ore cannot be reduced to metal at all

B. no reducing agent is found suitable for reducing a sulphide ore

C. the enthalpy of formation of CO_2 is more than that of CS_2

D. a metal oxide is generally less stable than the metal sulphide

Answer: D

- **47.** Choose the correct code regarding Roasting process.
- (I) It is the process of heating ore in air to obtain the oxide
- (II) It is an exothermic process
- (III) It is used for hydrated oxide and oxysalt ore
- (IV) It is used after the concentration of ore

A. I, II and III

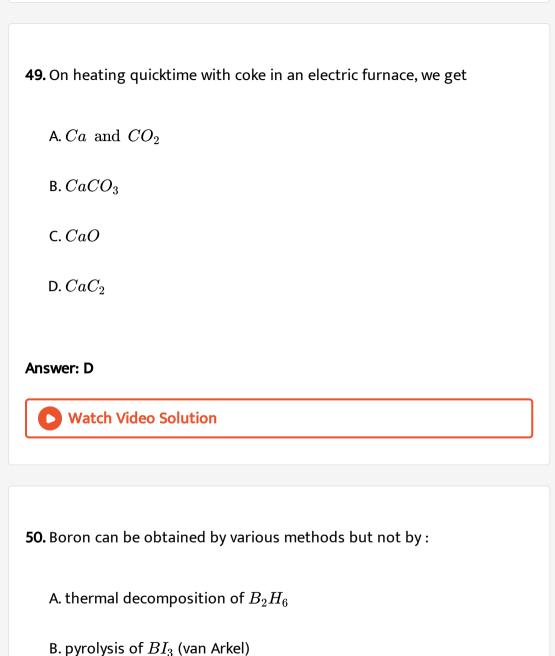
B. I, II and IV

C. I, III and IV

D. I, II, III and IV

Answer: B

View Text Solution


- - A. it is non-metal
 - C. pure carbon is not easily available
 - D. the heat of formation of Al_2O_3 is too high

48. Carbon cannot be used in the reduction of $A1_2O_3$ because:

B. the heat of formation of CO_2 is more than that of Al_2O_3

Answer: D

C. reducing BCl_3 with H_2

D. electrolysis of fused BCl_3

Answer: D

Watch Video Solution

51. Select correct statement :

A. The decomposition of an oxide into oxygen and metal vapour entropy increases

B. Decomposition of an oxide is an endothermic change

C. The make ΔG° negative, temperature should be high enough so

that $T\Delta S^{\,\circ}\,>\Delta H^{\,\circ}$

D. All are correct statements

Answer: D

View Text Solution

52. The oxide of a metal (R) can be reduced by the metal (P) and metal (R) can reduce the oxide of metal (Q). Then the decreasing order of the reactivity of metal (P), (Q) and (R) with oxygen is:

A.
$$P>Q>R$$

$$\mathsf{B}.\, P > R > Q$$

$$\mathsf{C}.\,R > P > Q$$

$$\mathsf{D}.\, Q > P > R$$

Answer: B

Watch Video Solution

53. Consider the following metallurgical processes:

- (I) Heating impure metal with CO and distilling the resulting volatile carbonyl $(b.~p.~43^{\circ}C)$ and finally decomposition at $150^{\circ}-200^{\circ}C$ to get the pure metal.
- $\left(II\right)$ Heating the sulphide ore in air until a part is converted to oxide and

then further heating in the absence of air to let the oxide react with unchanged metal sulphide.

(III) Electrolysis of the molten electrolyte containing approximately equal amounts of the metal chloride and NaCl to obtain the metal.

The processes used for obtaining magnesium , nickel and copper are respectively.

- A. (I),(II) and (III)
- B. (II), (III) and (I)
- C. (III), (I) and (II)
- D. (II), (I) and (III)

Answer: C

Watch Video Solution

54. When alumina is heated with carbon in the atmosphere of nitrogen then product formed are

A. Al +CO

 $B.Al + CO_2$

 $C. Al + CO + CO_2$

D. AlN + CO

Answer: D

Watch Video Solution

A. It has high melting point

B. It is a good conductor of heat

55. MgO can be used as a refractory material because

C. It is a good electrical insulator

D. All of these

Answer: D

56. Amoung the following statements, the incorrect statement is:

A. calamine and cerrusite are carbonate ores

B. rutile and cuprite are oxide ores

C. zinc blende and pyrites are sulphide ores

D. malachite and azurite are sulphate ores of Cu

Answer: D

Watch Video Solution

57. Give the correct order of initials T or F for following statements. Use T if statement is true and F if it is false.

- (i) Every mineral is an ore but every ore is not a mineral
- (ii) Slag is product formed during extraction of metal by combination of flux and impuritites.

- (iii) Highly pure metals can be obtained by zone refining.
- (iv) Carnallite is an ore of magnesium and sodium.
 - A.TTTF
 - B. FT TF
 - C. FT T T
 - D. TFTF

Answer: B

Watch Video Solution

58. Find the incorrectly matched pair ?

Column-I (ores)		Column-II	(metals)	Same of
(a) Sylvine	(4)	Potassium	3	Sec
(b) Malachite	(2)	Magnesium		
(c) Cinnabar	(3)	Mercury		
(d) Fluorite (Flourspar)	(4)	Calcium		

- Column-I(ores) Column-II(metals)
 - Sylvine (1)Potassium
- B. Column-II(metals)
 - Malachite (2)Magnesium

Column-II(ores) Column-II(metals) Cinnabar (3)Mercury Column-II(metals) Column-I(ores)

Fluorite (Flourspar) (4) Calcium

Answer: R

View Text Solution

59. Froth floatation process used for the concentration of sulphide ore:

A. is based on the difference in wettability of different minerls

B. uses sodium ethyl xanthate, $C_2H_5OCS_2Na$ as collector

C. uses NaCN as depressant in the mixture of ZnS and PbS when ZnS

forms soluble complex and PbS forms froth

D. All are correct statements

Answer: D

60. When ZnS and PbS minearls are present together, then NaCN is added to separate them in the froth floatation process as a depressant, because :

- A. $Pb(CN)_2$ is precipitated while no effect on ZnS
- B. ZnS forms soluble complex $Na_{2}ig[Zn(CN)_{4}ig]$
- C. PbS forms soluble complex $Na_2igl[Pb(CN)_4igr]$
- D. They cannot be separated by adding NaCN

Answer: B

- **61.** Leaching of Ag_2S is carried out by heating it with a dilute solution of:
 - A. NaCN only
 - B. HCl
 - C. NaOH

2

Answer: D

Watch Video Solution

- **62.** Leaching is commercially carried out for in the concentration of:
 - A. Galena
 - B. Argentite
 - C. Copper pyrites
 - D. Tin stone

Answer: B

View Text Solution

63. NaCN is sometimes added in the froth flotation process as a depressant when ZnS and PbS minerals are expected because :

A. $Pb(CN)_2$ is precipitated while no effect on ZnS

B. ZnS forms soluble complex $Na_{2}ig[Zn(CN)_{4}ig]$ while PbS forms froth

C. PbS forms soluble complex $Na_{2}igl[Pb(CN)_{4}igr]$ while ZnS forms froth

D. NaCN is never added in froth floatation process

Answer: B

64. Which of the following substance acts as collector in froth floatation method ?

A. Sodium xenate

B. Sodium pyrophosphate

C. Sodium nitroprusside

D. Sodium eth	yl xanthate
---------------	-------------

Answer: D

Watch Video Solution

65. In which of the following pair of metals, both are commercially extracted from their respective ores by carbon reduction method?

- A. Zn, Cu
- B. Fe, Cu
- C. Sn, Zn
- D. Al, Ag

Answer: C

66. Formation of metallic copper from the sulphide ore in the commercial metallurgical process involves.

A.
$$Cu_2S+rac{3}{2}O_2 o Cu_2O+SO_2, ~~ Cu_2O+C o 2Cu+CO$$

B.

$$Cu_2S+rac{3}{2}O_2
ightarrow Cu_2O+SO_2, \qquad 2Cu_2O+Cu_2S
ightarrow 6Cu+SO_2$$

C.
$$Cu_2S+2O_2 o CuSO_4, \qquad CuSO_4+Cu_2S o 3Cu+2SO_2$$

D.

$$Cu_2S+rac{3}{2}O_2
ightarrow Cu_2O+SO_2, \qquad Cu_2O+CO
ightarrow 2Cu+CO_2$$

Answer: B

Watch Video Solution

67. There are following extraction process of silver but not:

A. as a side product in electrolytic refining of copper

B. Parke's process in which Zn is used to extract silver by solvent

extraction from molten lead

C. by reaction of silver sulphide with KCN and then reaction of soluble

D. by heating $Na[Ag(CN)_2]$

complex with Zn

Answer: D

68. In the extraction of aluminium

Process X: employed for red bauxite to remove iron oxide (main impurity)

Process $Y\colon$ (Serpeck's process): used for while bauxite to remove Z (main impurity) then,

Select correct option for the process X and impurity Z.

A. X=Hall and Heroult's process and $Y=SiO_2$

- B. X=Baeyer's process and $Y=SiO_2$
- C. `X=Serpeck's process and Y= iron oxide
- D. X=Baeyer's process and Y = iron oxide

Answer: B

- **69.** Give the correct order of initials T or F for following statements. Use T if statements is true and F if it is false.
- $\left(i\right)$ In gold schmidt thermite process aluminium acts as a reducing agent.
- (ii)Mg is extracted by electrolysis of aq. solution of $MgCl_2.$
- $\left(iii
 ight)$ Extraction of Pb is possible by carbon reduction method
- $\left(iv\right)$ Red Bauxite is purified by Serpeck's process.
 - A.TTTF
 - B. TF FT
 - C. FTTT

Answer: D

Watch Video Solution

70. $FeCr_2O_4$ (chromite) is converted to Cr by following steps:

Chromite
$$\stackrel{I}{\longrightarrow} Na_2CrO_4 \stackrel{II}{\longrightarrow} Cr_2O_3 \stackrel{III}{\longrightarrow} Cr$$

Reagents in I, II, and III step might be :

A. $rac{ ext{I-Step}}{Na_2CO_3/ ext{air},\Delta}$ $rac{ ext{II-Step}}{C}$

B. $\frac{\mbox{I-Step}}{NaOH/\mbox{air},\Delta}$ $\frac{\mbox{II-Step}}{C\Delta}$ $\frac{\mbox{III-Step}}{Al\Delta}$

I-Step III-Step C. $Na_2CO_3/{
m air},\Delta$ $C\Delta$ $C\Delta$

I-Step III-Step

 $conc.\ H_2SO_4\Delta \qquad NH_4Cl\Delta \qquad C\Delta$

Answer: B

71. The electrolysis of pure alumina is not feasible because :

A. it is bad conductor of electricity and its fusion temperature is high

B. it is volatile in nature

C. it is decomposed when fused

D. it is amphoteric

Answer: A

Watch Video Solution

72. Which of the following reaction does not occur in Bessemer's converter?

A.
$$2Cu_2S+5O_2
ightarrow 2CuSO_4+2CuO$$

$${\rm B.}\ 2Cu_2S+3O_2\rightarrow 2Cu_2O+2SO_2\uparrow$$

$$\mathsf{C.}\ 2CuFeS_2 + O_2 \rightarrow Cu_2S + 2FeS + SO_2$$

D.
$$FeO + SiO_2
ightarrow FeSiO_3$$

Answer: C

Watch Video Solution

73. What products are formed during the electrolysis of a of a concentrated aqueous solution of sodium chloride ?

 $\text{I.}\ Cl_2(g),\qquad \text{II.}\ NaOH(aq),\qquad \text{III.}\ H_2(g).$

A. I only

B. I and II only

C. I and III only

D. I, II and III

Answer: D

74. During the electrolysis of carnallite, $MgCl_2$ is decomposed and not

KCl. This is because of:

A. lower decomposition voltage of $MgCl_2$ than that of KCl

B. reverse reaction $MgCl_2 + 2K o Mg + 2KCl$ if KCl is

decomposed under other experimental condition

C. both (a) and (b)

D. none of the above

Answer: C

Watch Video Solution

75. The reduction of an oxide by aluminium is called

A. Beeyer's process

 $B.\ Goldschmidt's\ aluminothermite\ process$

C. Hall's process

D. van Arkel process

Answer: B

:

Watch Video Solution

76. Incorrect statement in electrolysis of Al_2O_3 by Hall-Heroult process is

A. Cryolite $\,N_3[AlF_5]\,$ lowers the m.pt. of $\,Al_2O_3\,$ and increases its electrical conductivity

- B. Al is obtained at cathode and CO_2 at anode
- C. Li_2CO_3 can be used in place of cryolite (Na_3AlF_6)
- D. MgF_2 can be used in place of flourspare (CaF_2)

Answer: D

77. In the leaching of Ag_2S with NaCN, a stream air is also passed. It is because of

A. reversible nature of eaction between Ag_2S and NaCN

B. to oxide Na_2S formed into Na_2SO_4 and sulphur

C. both (a) and (b)

D. none of the above

Answer: C

Watch Video Solution

78. In van Arkel method, if I_2 is introduced at 1700 K over impure metal, the product will be :

A. Iodide of the metal

B. No reaction takes place

C. Impurities react with iodine

D. None of these

Answer: A

Watch Video Solution

79. The method of zone refining of metals is based on the principle of :

- A. Greater mobility of the pure metal than that of impurity
- B. Higher melting point of the impurity than that of the pure metal
- C. Greater noble character of the solid metal than that of the impurity
- D. Greater solubility of the impurity in the molten state than in the solid

Answer: D

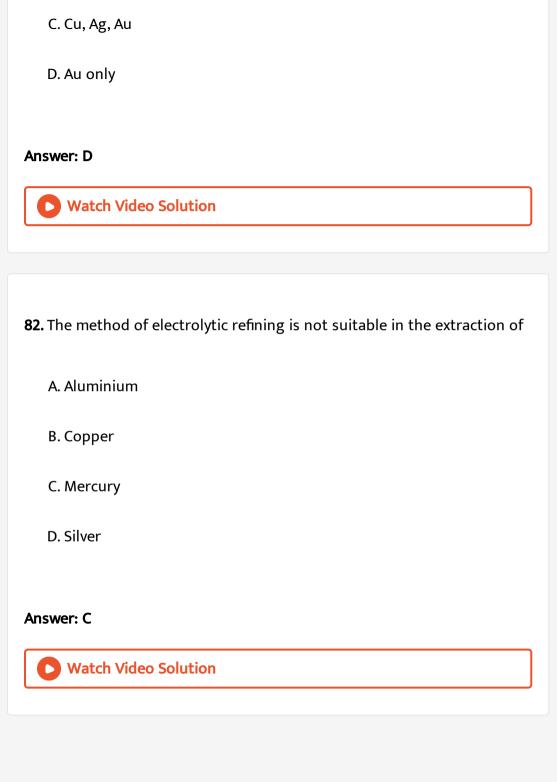
80. Blister copper is refined by stirring molten impure metal with green logs of wood because such a wood liberates hydrocarbon gases (like CH_4). This process X is called _____ and the metal contains impurities of Y is

A. X=cupellation,
$$Y=CuO_2$$

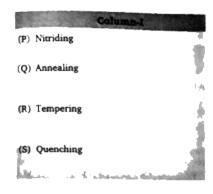
B. X=polling,
$$Y=Cu_2O$$

D. X=cupellation, Y=CuO

Answer: B



Watch Video Solution


81. The anode mud in the electrolytic refining of silver contains :

A. Zn, Cu, Ag, Au

B. Zn, Ag, Au

83. Match Column-I with Column-II

(I) Process of heating steel to redness and then cooling it very slowly

Column-II

- NH₃ and producing hard coating of Iron
 Nitride on the surface of steel
- (III) Process of heating steel to redness and then cooling it suddenly by plunging it into water or oil
- (IV) Process of heating quenched steel to a temperature well below redness and then cooling it slowly

A.
$$P = Q = R = S$$
 $II = I = III = IV$

B. $P = Q = R = S$
 $II = I = IV = III$

C. $P = Q = R = S$
 $I = II = IV = III$

D. $P = Q = R = S$

Answer: B

Watch Video Solution

84. Softening of lead means:

A. conversion of lead to PbO

B. conversion of lead to Pb_3O_4

C. removal of impurities (metallic) from lead

D. washing lead with HNO_3 followed by alkali solution

Answer: C

85. In the purification of impure Ni by Mong's process, metal is purified by

A. electrolytic reduction

B. Vapour phase thermal decomposition

C. Thermite reduction

D. Carbon reduction

Answer: B

86. Correct match is:

A. Bayer's method $-Na_{2}CO_{3}$

B. Matte $-98\,\%\,\,Cu_2S + 2\,\%\,\,FeS$

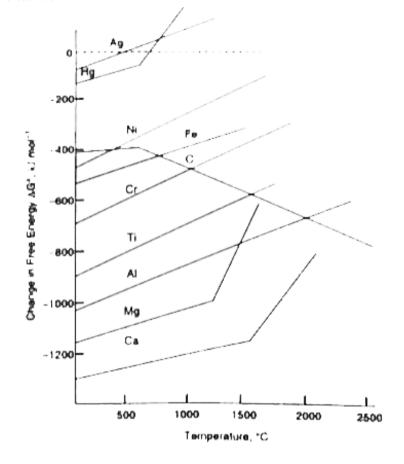
C. van Arkel method - AgI

D. Thomas slag - Raw material for cement industry

Answer: B

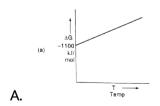
View Text Solution

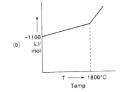
Level 3 Passive 1

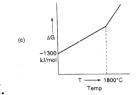

1. For a sponaneous reaction, the free energy change must be negative, $\Delta G=\Delta H-T\Delta S, \Delta H$ is the enthalpy change during the reaction. T is

the absolute temperature, and ΔS is the change in entropy during the

reaction. Consider a reaction such as the formation of an oxide


Dioxygen is used up in the course of this reaction. Gases have a more random structure (less ordered) than liquid or solids. Consequently gases have a higher entropy than liquids and solids. In this reaction S (entropy or randomness) decreases, hence ΔS is negative. Thus, if the temperature is raised then $T\Delta S$ becomes more negative, Since, $T\Delta S$ is substracted in the equation, then ΔG becomes less negative. Thus, the free energy change increases with the increase in temperature.


The free energy changes that occur when one mole of common reactant (in this case dioxygen) is used may be plotted graphically aginst temperature for a number of reactions of metals to their oxides. The following plot is called an Ellingham diagram for metal oxide. Understanding of Ellingham diagram is extremely important for the efficient extraction of metals.


For the conversion of Ca(s) to Ca(s) which of the following represent the

ΔG vs. T ?

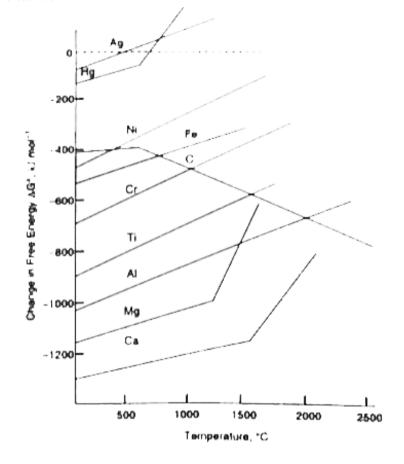


В.

C.

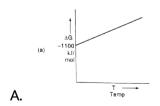
Answer: C

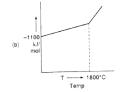
D.

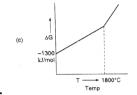

Watch Video Solution

2. For a sponaneous reaction, the free energy change must be negative, $\Delta G=\Delta H-T\Delta S, \Delta H \text{ is the enthalpy change during the reaction. T is}$ the absolute temperature, and ΔS is the change in entropy during the reaction. Consider a reaction such as the formation of an oxide

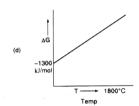
$$M+O_2 o MO$$


Dioxygen is used up in the course of this reaction. Gases have a more random structure (less ordered) than liquid or solids. Consequently gases have a higher entropy than liquids and solids. In this reaction S (entropy or randomness) decreases, hence ΔS is negative. Thus, if the temperature is raised then $T\Delta S$ becomes more negative,Since, $T\Delta S$ is substracted in the equation, then ΔG becomes less negative. Thus, the free energy change increases with the increase in temperature.


The free energy changes that occur when one mole of common reactant (in this case dioxygen) is used may be plotted graphically aginst temperature for a number of reactions of metals to their oxides. The following plot is called an Ellingham diagram for metal oxide. Understanding of Ellingham diagram is extremely important for the efficient extraction of metals.


For the conversion of Ca(s) to Ca(s) which of the following represent the

ΔG vs. T ?

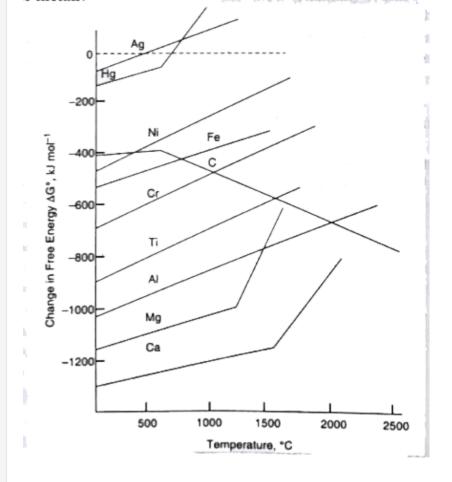


В.

C.

Answer: C

D.


Watch Video Solution

3. For a sponaneous reaction, the free energy change must be negative, $\Delta G=\Delta H-T\Delta S, \Delta H \text{ is the enthalpy change during the reaction. T is}$ the absolute temperature, and ΔS is the change in entropy during the reaction. Consider a reaction such as the formation of an oxide

$$M+O_2 o MO$$

Dioxygen is used up in the course of this reaction. Gases have a more random structure (less ordered) than liquid or solids. Consequently gases have a higher entropy than liquids and solids. In this reaction S (entropy or randomness) decreases, hence ΔS is negative. Thus, if the temperature is raised then $T\Delta S$ becomes more negative,Since, $T\Delta S$ is substracted in the equation, then ΔG becomes less negative. Thus, the free energy change increases with the increase in temperature.

The free energy changes that occur when one mole of common reactant (in this case dioxygen) is used may be plotted graphically aginst temperature for a number of reactions of metals to their oxides. The following plot is called an Ellingham diagram for metal oxide. Understanding of Ellingham diagram is extremely important for the efficient extraction of metals.

Free energy change of Hg and Mg for the convertion to oxides the slpe of ΔG vsT has been changed above the boiling points of the given metal because :

A. above the boiling point of the metal entropy is increased

B. above the boiling point of the metal the entropy is decreased

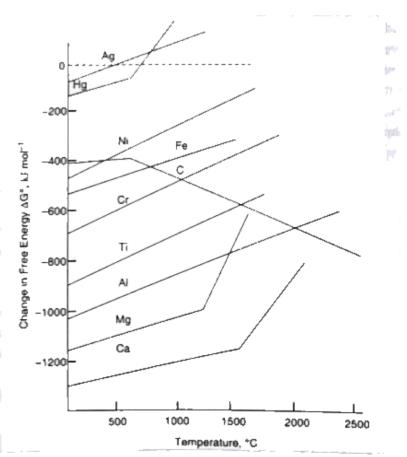
C. above the boiling point of the metal the entropy change is equal to

zero

D. All of these

Answer: A

View Text Solution


4. For a sponaneous reaction, the free energy change must be negative, $\Delta G=\Delta H-T\Delta S, \Delta H \text{ is the enthalpy change during the reaction. T is }$ the absolute temperature, and ΔS is the change in entropy during the reaction. Consider a reaction such as the formation of an oxide

$$M+O_2 o MO$$

Dioxygen is used up in the course of this reaction. Gases have a more random structure (less ordered) than liquid or solids. Consequently gases have a higher entropy than liquids and solids. In this reaction S (entropy or randomness) decreases, hence ΔS is negative. Thus, if the temperature is raised then $T\Delta S$ becomes more negative,Since, $T\Delta S$ is

substracted in the equation, then ΔG becomes less negative. Thus, the free energy change increases with the increase in temperature.

The free energy changes that occur when one mole of common reactant (in this case dioxygen) is used may be plotted graphically aginst temperature for a number of reactions of metals to their oxides. The following plot is called an Ellingham diagram for metal oxide. Understanding of Ellingham diagram is extremely important for the efficient extraction of metals.

Which of the following elements can be prepared by heating the oxide above $400\,^{\circ}\,C$?

A. Hg

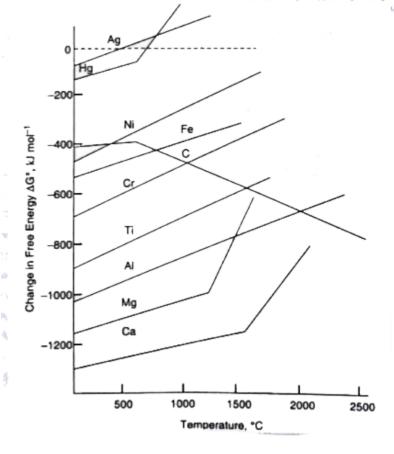
B. Mg

C. Fe

D. Al

Answer: A

View Text Solution


5. For a sponaneous reaction, the free energy change must be negative, $\Delta G=\Delta H-T\Delta S, \Delta H \text{ is the enthalpy change during the reaction. T is }$ the absolute temperature, and ΔS is the change in entropy during the reaction. Consider a reaction such as the formation of an oxide

$$M+O_2 o MO$$

Dioxygen is used up in the course of this reaction. Gases have a more random structure (less ordered) than liquid or solids. Consequently gases

have a higher entropy than liquids and solids. In this reaction S (entropy or randomness) decreases, hence ΔS is negative. Thus, if the temperature is raised then $T\Delta S$ becomes more negative,Since, $T\Delta S$ is substracted in the equation, then ΔG becomes less negative. Thus, the free energy change increases with the increase in temperature.

The free energy changes that occur when one mole of common reactant (in this case dioxygen) is used may be plotted graphically aginst temperature for a number of reactions of metals to their oxides. The following plot is called an Ellingham diagram for metal oxide. Understanding of Ellingham diagram is extremely important for the efficient extraction of metals.

As per the Ellingham diagram of oxides which of the following conclusion is true ?

A. Al reduces Fe_2O_3 , whereas MgO cannot be reduced by Al at $1500\,^{\circ}\,C$

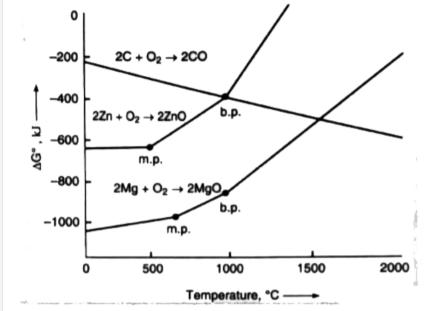
B. Fe reduces Al_2O_3 , whereas MgO cannot be reduced by Al at $1500\,^{\circ}\,C$

C. Al reduces Fe_2O_3 , whereas MgO cannot be reduced by Ca at

 $1500^{\circ}C$

 $1500^{\circ}C$

D. Al can reduce both Fe_2O_3 and MgO to the corresponding metal at


Answer: A

View Text Solution

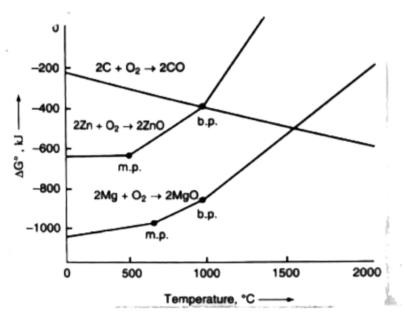
Level 3 Passive 2

1. The ellingham diagram for zinc, magnesium and carbon coverting into corresponding oxides is shown below.

At what temperature, zinc and carbon have equal affinity for oxygen?

A. $1000\,^{\circ}\,C$

B. $1500^{\circ}C$


C. $500^{\circ}C$

D. $1200^{\,\circ}\,C$

Answer: A

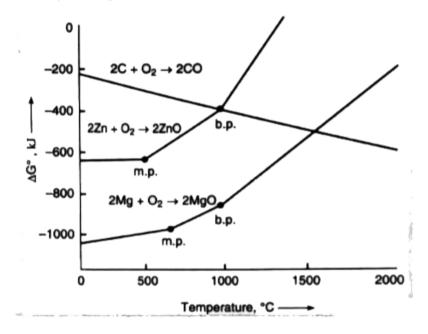
2. The ellingham diagram for zinc, magnesium and carbon coverting into correspondingoxides is shown below.

To make the following reduction process spontaneous, temperature should be:

$$ZnO+C
ightarrow Zn+CO$$

A. $1000\,^{\circ}\,C$

B. $> 1100^{\circ}C$


C. $< 500^{\circ}C$

D. $< 1000^{\circ} C$

Watch Video Solution

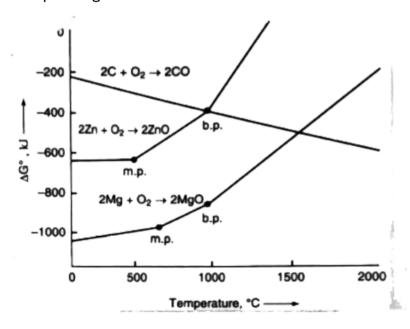
3. The ellingham diagram for zinc, magnesium and carbon coverting into correspondingoxides is shown below.

At what temperature, zinc and carbon have equal affinity for oxygen?

A. $1000\,^{\circ}\,C$

B. $1500^{\circ}C$

C. $500^{\circ}C$


D. $1200\,^{\circ}\,C$

Answer: A

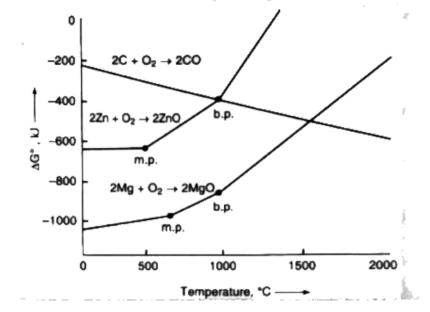
Watch Video Solution

4. The ellingham diagram for zinc, magnesium and carbon coverting into corresponding oxides is shown below.

To make the following reduction process spontaneous, temperature

should be :

$$ZnO+C o Zn+CO$$


- A. $1000^{\circ}C$
- B. $> 1100^{\circ}C$
- C. $< 500^{\circ}C$
- D. $< 1000^{\circ} C$

Answer: B

View Text Solution

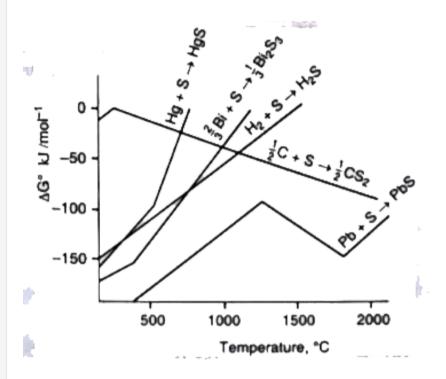
5. The ellingham diagram for zinc, magnesium and carbon coverting into correspondingoxides is shown below.

At 1100° C, which reaction is spontaneous to a maximum extent ?

A.
$$MgO + C
ightarrow Mg + CO$$

B.
$$ZnO + C \rightarrow Zn + CO$$

C.
$$MgO + Zn
ightarrow Mg + ZnO$$


D.
$$ZnO + MgO + Zn$$

Answer: D

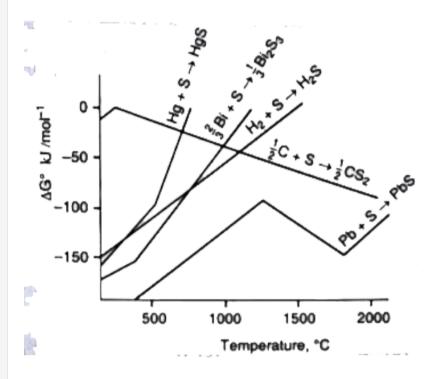
View Text Solution

1. The Ellingham diagram for a number of metallic sulphides is shown below.

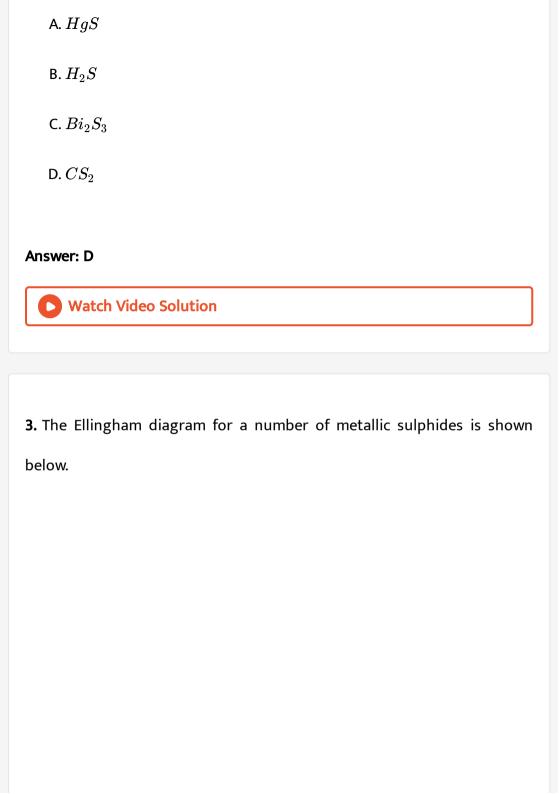
Formation of which of the sulphides is most spontaneous?

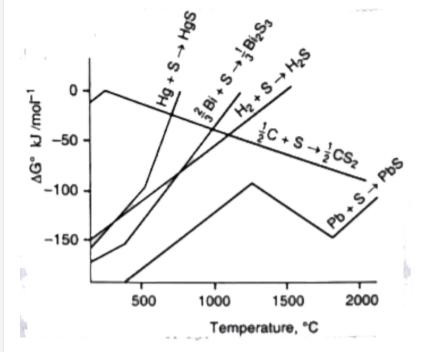
A. HgS

 $\operatorname{B.}Bi_2S_3$


 $\mathsf{C}.\,PbS$

Answer: C




Watch Video Solution

2. The Ellingham diagram for a number of metallic sulphides is shown below.

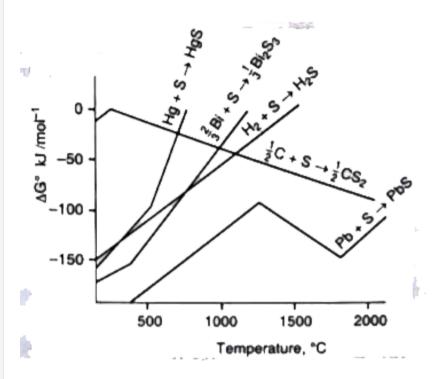
Which sulphide occurs to minimum extent in nature?

Which of the following sulphides can not be reduced to metal by H_2 at about $1000^{\circ}\,C$?

A. HgS

B. PbS

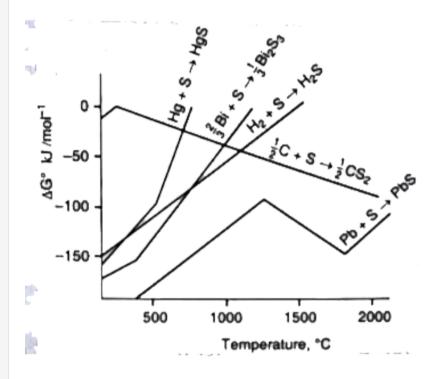
 $\mathsf{C}.\,Bi_2S_3$


D. All of these

Answer: B

Watch Video Solution

4. The Ellingham diagram for a number of metallic sulphides is shown below.


Formation of which of the sulphides is most spontaneous?

- A. HgS
- B. Bi_2S_3
- $\mathsf{C}.\,PbS$
- D. CS_2

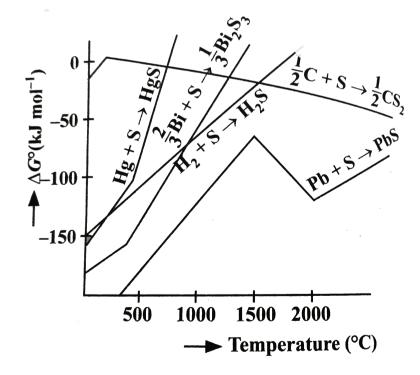
Answer: C

5. The Ellingham diagram for a number of metallic sulphides is shown below.

Which sulphide occurs to minimum extent in nature?

A. HgS

B. H_2S


- $\mathsf{C}.\,Bi_2S_3$
- D. CS_2

Answer: D

View Text Solution

6. The Ellingham diagram for a number of metallic sulphides is reproduced below.

Answer the questions given below:

(iii) Which of the following sulphides can be reducted to metal by H_2 at about 1000K ? A. ${
m HgS}$

C. Bi_2S_3

D. All of these

Answer: B

Level 3 Passive 4

1. Magnesium is a valuable, light weight metal used as a structural material as well as in alloys, batteries, and in chemical synthesis. Although magnesium is plentiful in Earth's crust, it is mainly found in the sea water (after sodium). There is about 1.3 g of magnesium in every kilogram of sea water. The process for obtaining magnesium from sea water employs all

three types of reactions, i.e., precipitation, acid-base, and redox-reactions.

Precipitation reaction involves formation of :

A. insoluble $MgCO_3$ by adding Na_2CO_3

B. insoluble $Mg(OH)_2$ by adding $Ca(OH)_2$

C. insoluble in $MgSO_4$ by adding Na_2SO_4

D. insoluble $MgCl_2$ by adding NaCl

Answer: B

Watch Video Solution

2. Magnesium is a valuable, light weight metal used as a structural material as well as in alloys, batteries, and in chemical synthesis. Although magnesium is plentiful in Earth's crust, it is mainly found in the sea water (after sodium). There is about 1.3 g of magnesium in every kilogram of sea water. The process for obtaining magnesium from sea water employs all three types of reactions, i.e., precipitation, acid-base, and redox-reactions. Acid-base reaction involves reaction between:

A. $MgCO_3$ and HCl

 $B. Mg(OH)_2$ and H_2SO_4

 $C. Mg(OH)_2$ and HCl

 $D. MgCO_3$ and H_2SO_4

Answer: C

Watch Video Solution

3. Magnesium is a valuable, light weight metal used as a structural material as well as in alloys, batteries, and in chemical synthesis. Although magnesium is plentiful in Earth's crust, it is mainly found in the sea water (after sodium). There is about 1.3 g of magnesium in every kilogram of sea water. The process for obtaining magnesium from sea water employs all three types of reactions, i.e., precipitation, acid-base, and redox-reactions. Redox reaction takes place (in the extraction of Mg):

A. in the electrolytic cell when fused $MgCl_2$ is subjected to

electrolysis

B. when fused $MgCO_3$ is heated

C. When fused $MgCO_3$ is strongly heated

D. none of the above

Answer: A

Watch Video Solution

4. Magnesium is a valuable, light weight metal used as a structural material as well as in alloys, batteries, and in chemical synthesis. Although magnesium is plentiful in Earth's crust, it is mainly found in the sea water (after sodium). There is about 1.3 g of magnesium in every kilogram of sea water. The process for obtaining magnesium from sea water employs all three types of reactions, i.e., precipitation, acid-base, and redox-reactions. Precipitation reaction involves formation of:

A. insoluble $MgCO_3$ by adding Na_2CO_3

B. insoluble $Mg(OH)_2$ by adding $Ca(OH)_2$

C. insoluble in $MgSO_4$ by adding Na_2SO_4

D. insoluble $MgCl_2$ by adding NaCl

Answer: B

Watch Video Solution

5. Magnesium is a valuable, light weight metal used as a structural material as well as in alloys, batteries, and in chemical synthesis. Although magnesium is plentiful in Earth's crust, it is mainly found in the sea water (after sodium). There is about 1.3 g of magnesium in every kilogram of sea water. The process for obtaining magnesium from sea water employs all three types of reactions, i.e., precipitation, acid-base, and redox-reactions. Acid-base reaction involves reaction between:

A. $MgCO_3$ and HCl

- $B.Mg(OH)_2$ and H_2SO_4
- $C. Mg(OH)_2$ and HCl
- D. $MgCO_3$ and H_2SO_4

Answer: C

Watch Video Solution

- 6. Magnesium is a valuable, light weight metal used as a structural material as well as in alloys, batteries, and in chemical synthesis. Although magnesium is plentiful in Earth's crust, it is mainly found in the sea water (after sodium). There is about 1.3 g of magnesium in every kilogram of sea water. The process for obtaining magnesium from sea water employs all three types of reactions, i.e., precipitation, acid-base, and redox-reactions. Redox reaction takes place (in the extraction of Mg):
 - A. in the electrolytic cell when fused $MgCl_2$ is subjected to electrolysis

B. when fused $MgCO_3$ is heated

C. When fused $MgCO_3$ is strongly heated

D. none of the above

Answer: A

Watch Video Solution

Level 3 Passive 5

1. Dow's process of extraction of Mg involves extraction of Mg from sea water. Sea water is concentrated in sun-light and is then treated with slaked lime. Magnesium hydroxide is heated in a stream of HCl to give $MgCl_2$ which is electrolysed to discharge Mg. The mixture is in the ratio $35\%\ MgCl_2 + 50\ \%\ NaCl + 15\ \%\ CaCl_2$. NaCl and $CaCl_2$ are added to lower the fusion temperature and to increases the conductance.

$$Mg(OH)_2 + 2HCl
ightarrow MgCl_2 + 2H_2O(l)$$

 $Mg^{2+} + Ca(OH)_2 \to Mg(OH)_2 + Ca^{2+}$

Electrolysis of fused $MgCl_2 \Leftrightarrow Mg^{2+} + 2Cl$

 $Mg^{2+} + 2e^-
ightarrow Mg$ (At Cathode)

 $2Cl^ightarrow Cl_2 + 2e^-$ (At Anode)

Mg electrolysed is protected from atmospheric oxidation by a blanket of inert gases.

In the hydrated chloride of Mg the value of x is:

A. 6

B. 4

C. 8

D. 10

Answer: A

Watch Video Solution

2. Dow's process of extraction of Mg involves extraction of Mg from sea water. Sea water is concentrated in sun-light and is then treated with slaked lime. Magnesium hydroxide is heated in a stream of HCl to give $MgCl_2$ which is electrolysed to discharge Mg. The mixture is in the ratio

35% $MgCl_2+50\,\%\,NaCl+15\,\%\,CaCl_2.$ NaCl and $CaCl_2$ are added to

lower the fusion temperature and to increases the conductance.

$$Mg^{2+} + Ca(OH)_2 \rightarrow Mg(OH)_2 + Ca^{2+}$$

$$Mg(OH)_2 + 2HCl
ightarrow MgCl_2 + 2H_2O(l)$$

Electrolysis of fused $MgCl_2 \Leftrightarrow Mg^{2+} + 2Cl$

$$Mg^{2\,+}\,+2e^{\,-}\, o Mg$$
(At Cathode)

$$2Cl^-
ightarrow Cl_2+2e^-$$
 (At Anode)

Mg electrolysed is protected from atmospheric oxidation by a blanket of inert gases.

Molten mixture contains Mg^{2+}, Na^+ and Ca^{2+} but at cathode only Mq^{2+} is discharged because :

A. Standar reduction potential of $Mg^{2\,+}$ is least among the three

B. Standard oxidation potential of MG is the least among the three

C. Discharge potential of $Mg^{2\,+}$ is highest

D. None of these

Answer: B

3. Dow's process of extraction of Mg involves extraction of Mg from sea water. Sea water is concentrated in sun-light and is then treated with slaked lime. Magnesium hydroxide is heated in a stream of HCl to give $MgCl_2$ which is electrolysed to discharge Mg. The mixture is in the ratio 35% $MgCl_2+50\%$ NaCl+15% $CaCl_2$. NaCl and $CaCl_2$ are added to lower the fusion temperature and to increases the conductance.

$$Mg^{2+} + Ca(OH)_2 \to Mg(OH)_2 + Ca^{2+}$$

$$Mg(OH)_2 + 2HCl \rightarrow MgCl_2 + 2H_2O(l)$$

Electrolysis of fused $MgCl_2 \Leftrightarrow Mg^{2+} + 2Cl$

$$Mq^{2+} + 2e^-
ightarrow Mq$$
(At Cathode)

$$2Cl^-
ightarrow Cl_2 + 2e^-$$
 (At Anode)

Mg electrolysed is protected from atmospheric oxidation by a blanket of inert gases.

Molten mixutre of NaCl and $CaCl_2$ is added to the heated $MgCl_2$ because :

A. $MgCl_2.\ xH_2O+\ \mathrm{dry}\ \ HCl \xrightarrow{973-1223K}$ Partially dehydrated

 $MgCl_2$ and molten mixture $(NaCl + CaCl_2)$ makes it fully

D. None of these

Answer: C

 $Mg^{2+} + Ca(OH)_2 \to Mg(OH)_2 + Ca^{2+}$

C. $(CaCl_2 + NaCl)$ lowers the melting point of $MgCl_2$

View Text Solution

dehydrated

B. $CaCl_2$ is dehydrating agent

4. Dow's process of extraction of Mg involves extraction of Mg from sea water. Sea water is concentrated in sun-light and is then treated with slaked lime. Magnesium hydroxide is heated in a stream of HCl to give $MgCl_2$ which is electrolysed to discharge Mg. The mixture is in the ratio 35% $MgCl_2+50$ % NaCl+15% $CaCl_2$. NaCl and $CaCl_2$ are added to lower the fusion temperature and to increases the conductance.

$$Mg(OH)_2 + 2HCl
ightarrow MgCl_2 + 2H_2O(l)$$

Electrolysis of fused $MgCl_2 \Leftrightarrow Mg^{2+} + 2Cl$

$$Mg^{2+} + 2e^-
ightarrow Mg$$
(At Cathode) $2Cl^-
ightarrow Cl_2 + 2e^-$ (At Anode)

Mg electrolysed is protected from atmospheric oxidation by a blanket of inert gases.

In the hydrated chloride of Mg the value of x is:

- A. 6
 - B. 4
 - C. 8
 - D. 10

Answer: A

Watch Video Solution

5. Dow's process of extraction of Mg involves extraction of Mg from sea water. Sea water is concentrated in sun-light and is then treated with slaked lime. Magnesium hydroxide is heated in a stream of HCl to give

 $MgCl_2$ which is electrolysed to discharge Mg. The mixture is in the ratio

35% $MgCl_2+50$ % NaCl+15 % $CaCl_2.$ NaCl and $CaCl_2$ are added to

lower the fusion temperature and to increases the conductance.

 $Mq^{2+} + Ca(OH)_2 \rightarrow Mq(OH)_2 + Ca^{2+}$

 $Mg(OH)_2 + 2HCl
ightarrow MgCl_2 + 2H_2O(l)$

Electrolysis of fused $MgCl_2 \Leftrightarrow Mg^{2+} + 2Cl$

 $Mg^{2\,+}\,+2e^{\,-}\, o Mg$ (At Cathode)

 $2Cl^ightarrow Cl_2+2e^-$ (At Anode)

Mg electrolysed is protected from atmospheric oxidation by a blanket of inert gases.

Molten mixture contains $Mg^{2+}, Na^+ \ {
m and} \ Ca^{2+}$ but at cathode only Mg^{2+} is discharged because :

A. Standarard reduction potential of $Mg^{2\,+}$ is least among the three

 $\ensuremath{\mathsf{B}}.$ Standard oxidation potential of Mg is the least among the three

C. Discharge potential of Mg^{2+} is highest

D. None of these

Answer: B

6. Dow's process of extraction of Mg involves extraction of Mg from sea water. Sea water is concentrated in sun-light and is then treated with slaked lime. Magnesium hydroxide is heated in a stream of HCl to give $MgCl_2$ which is electrolysed to discharge Mg. The mixture is in the ratio 35% $MgCl_2+50$ % NaCl+15% $CaCl_2$. NaCl and $CaCl_2$ are added to lower the fusion temperature and to increases the conductance.

$$Mg^{2+} + Ca(OH)_2 \rightarrow Mg(OH)_2 + Ca^{2+}$$

$$Mg(OH)_2 + 2HCl \rightarrow MgCl_2 + 2H_2O(l)$$

Electrolysis of fused $MgCl_2 \Leftrightarrow Mg^{2+} + 2Cl$

$$Mg^{2\,+} + 2e^-
ightarrow Mg$$
(At Cathode)

$$2Cl^-
ightarrow Cl_2 + 2e^-$$
 (At Anode)

because:

Mg electrolysed is protected from atmospheric oxidation by a blanket of inert gases.

Molten mixutre of NaCl and $CaCl_2$ is added to the heated $MgCl_2$

A. $MgCl_2.~xH_2O+~{
m dry}~HCl \stackrel{973-1223K}{\longrightarrow}~$ Partially dehydrated $MgCl_2$ and molten mixture $(NaCl + CaCl_2)$ makes it fully

dehydrated

B. $CaCl_2$ is dehydrating agent

C. $(CaCl_2 + NaCl)$ lowers the melting point of $MgCl_2$

D. None of these

Answer: C

Level 3 Passive 6

1.
$$FeCr_2O_4 + NaOH + \mathrm{air}
ightarrow (A) + Fe_2O_3$$

$$(A)+(B)
ightarrow Na_2Cr_2O_7$$

$$a_2 C r_2 O_7$$

$$Na_{2}Cr_{2}O_{7}+X\stackrel{\Delta}{\longrightarrow}Cr_{2}O_{3}$$

Compound (A) and (B) are:

 $Cr_2O_3 + Y \stackrel{\Delta}{\longrightarrow} Cr$

A. $Na_2CrO_4,\,H_2SO_4$

B. $Na_2Cr_2O_7$, HCl

C. Na_2CrO_5, H_2SO_4

D. $Na_4[Fe(OH)_6], H_2SO_4$

Answer: A

Watch Video Solution

2.
$$FeCr_2O_4 + NaOH + \mathrm{air}
ightarrow (A) + Fe_2O_3$$

$$(A)+(B)
ightarrow Na_2Cr_2O_7$$

$$Na_{2}Cr_{2}O_{7} + X \stackrel{\Delta}{\longrightarrow} Cr_{2}O_{3}$$

$$Cr_2O_3 + Y \xrightarrow{\Delta} Cr$$

B. Al and C

C. C in both

D. Al in both

Answer: A

Watch Video Solution

3. $FeCr_2O_4 + NaOH + \mathrm{air} ightarrow (A) + Fe_2O_3$

$$(A)+(B)
ightarrow Na_{2}Cr_{2}O_{7}$$

$$Na_{2}Cr_{2}O_{7} + X \stackrel{\Delta}{\longrightarrow} Cr_{2}O_{3}$$

$$Cr_2O_3 + Y \stackrel{\Delta}{\longrightarrow} Cr$$

 Na_2CrO_4 and Fe_2O_3 are separated by:

A. dissolving in conc. H_2SO_4

B. dissolving in NH_3

C. dissolving in ${\cal H}_2{\cal O}$

D. dissolving in dil. HCl

Answer: C

View Text Solution

4. $FeCr_2O_4 + NaOH + air ightarrow (A) + Fe_2O_3$

$$(A)+(B)
ightarrow Na_{2}Cr_{2}O_{7}$$

$$Na_{2}Cr_{2}O_{7} + X \stackrel{\Delta}{\longrightarrow} Cr_{2}O_{3}$$

$$Cr_2O_3 + Y \stackrel{\Delta}{\longrightarrow} Cr$$

Compound (A) and (B) are:

- A. Na_2CrO_4 , H_2SO_4
- B. $Na_2Cr_2O_7$, HCl
- C. Na_2CrO_5, H_2SO_4
- D. $Na_4[Fe(OH)_6], H_2SO_4$

Answer: A

Watch Video Solution

5.
$$FeCr_2O_4 + NaOH + air
ightarrow (A) + Fe_2O_3$$

$$(A)+(B)
ightarrow Na_2Cr_2O_7$$

 $Na_2Cr_2O_7 + X \xrightarrow{\Delta} Cr_2O_3$

 $Cr_2O_3 + Y \stackrel{\Delta}{\longrightarrow} Cr$

(X) and (Y) are:

A. C and Al

B. Al and C

C. C in both

D. Al in both

Answer: A

Watch Video Solution

6.
$$FeCr_2O_4 + NaOH + \mathrm{air}
ightarrow (A) + Fe_2O_3$$
 $(A) + (B)
ightarrow Na_2Cr_2O_7$

 $Na_2Cr_2O_7 + X \xrightarrow{\Delta} Cr_2O_3$

A. dissolving in conc.
$$H_2SO_4$$

B. dissolving in NH_3

D. dissolving in dil. HCl

C. dissolving in H_2O

 $Cr_2O_3 + Y \stackrel{\Delta}{\longrightarrow} Cr$

 Na_2CrO_4 and Fe_2O_3 are separated by:

Level 3 Passive 7

Answer: C

ion of the solution needs a minimum voltage to get discharged and this value is expressed in terms of discharge potential. For some metal ions

1. Electrolysis is an important technique for extraction of metals, and each

the discharge potentials follow the order given below : $Li^+>K^+>Ca^{2+}>Na^+>Mq^{2+}>Al^{3+}>Zn^{2+}>Fe^{2+}>Ni^{2+}$

$$SO_4^{2-} > NO_3^- > OH^- > Br^- > I^-$$

When aqueous solution of cupric bromide is electrolyzed the product obtained at cathode will be:

- A. Cu

 $B.H_2$

- C. Br_2
- D. O_2

Answer: A

each ion of the solution needs a minimum voltage to get discharged and this value is expressed in terms of discharge potential. For some metal ions the discharge potentials follow the order given below:

$$Li^+ > K^+ > Ca^{2+} > Na^+ > Mg^{2+} > Al^{3+} > Zn^{2+} > Fe^{2+} > Ni^{2+}$$

$$SO_4^{2\,-} > NO_3^{\,-} > OH^{\,-} > Br^{\,-} > I^{\,-}$$

The product formed at anode and cathode, when dilute H_2SO_4 is electrolysed are :

A.
$$SO_2$$
, H_2

B. SO_3, H_2

 $\mathsf{C.}\,H_2S_2O_8,H_2$

D. $O_2,\,H_2$

Answer: D

each ion of the solution needs a minimum voltage to get discharged and this value is expressed in terms of discharge potential. For some metal ions the discharge potentials follow the order given below:

$$Li^+ > K^+ > Ca^{2+} > Na^+ > Mg^{2+} > Al^{3+} > Zn^{2+} > Fe^{2+} > Ni^{2+}$$

$$SO_4^{2\,-} > NO_3^- > OH^- > Br^- > I^-$$

A mixture containing chlorides of sodium, calcium and zinc is electrolysed in presence f wate. The product obtained at cathode will be:

A. Na

 $B.H_2$

 $\mathsf{C}.\,Ca$

D. Cl_2

Answer: B

each ion of the solution needs a minimum voltage to get discharged and this value is expressed in terms of discharge potential. For some metal ions the discharge potentials follow the order given below:

 $Li^+ > K^+ > Ca^{2+} > Na^+ > Mg^{2+} > Al^{3+} > Zn^{2+} > Fe^{2+} > Ni^{2+}$

$$SO_4^{2-} > NO_3^- > OH^- > Br^- > I^-$$

When conc. H_2SO_4 is electrolysed with high current using Pt electrodes, the product obtained at anode is :

- A. SO_2
 - - 2
- $\mathsf{C}.\,O_2$

 $B. SO_3$

D. $H_2S_2O_8$

Answer: D

5. Electrolysis is an important technique for extraction of metals, and each ion of the solution needs a minimum voltage to get discharged and this value is expressed in terms of discharge potential. For some metal ions the discharge potentials follow the order given below:

$$Li^+ > K^+ > Ca^{2+} > Na^+ > Mg^{2+} > Al^{3+} > Zn^{2+} > Fe^{2+} > Ni^{2+}$$

$$SO_4^{2\,-} > NO_3^- > OH^- > Br^- > I^-$$

When aqueous solution of cupric bromide is electrolyzed the product obtained at cathode will be:

- A. Cu
- B. H_2
- C. Br_2
- D. O_2

Answer: A

6. Electrolysis is an important technique for extraction of metals, and each ion of the solution needs a minimum voltage to get discharged and this value is expressed in terms of discharge potential. For some metal ions the discharge potentials follow the order given below:

 $Li^+ > K^+ > Ca^{2+} > Na^+ > Mg^{2+} > Al^{3+} > Zn^{2+} > Fe^{2+} > Ni^{2+}$

$$SO_4^{2-} > NO_3^- > OH^- > Br^- > I^-$$

The product formed at anode and cathode, when dilute H_2SO_4 is electrolysed are :

- A. SO_2 , H_2
- B. $SO_3,\,H_2$
- $\mathsf{C.}\,H_2S_2O_8,H_2$
- D. $O_2,\,H_2$

Answer: D

each ion of the solution needs a minimum voltage to get discharged and this value is expressed in terms of discharge potential. For some metal ions the discharge potentials follow the order given below:

$$Li^+ > K^+ > Ca^{2+} > Na^+ > Mg^{2+} > Al^{3+} > Zn^{2+} > Fe^{2+} > Ni^{2+}$$

For some anions the discharge potentials are in the order:

$$SO_4^{2\,-} > NO_3^{\,-} > OH^{\,-} > Br^{\,-} > I^{\,-}$$

A mixture containing chlorides of sodium, calcium and zinc is electrolysed in presence f wate. The product obtained at cathode will be:

- A. Na
- B. H_2
- $\mathsf{C}.\,Ca$
- D. Cl_2

Answer: B

8. Electrolysis is an important technique for extraction of metals, and each ion of the solution needs a minimum voltage to get discharged and this value is expressed in terms of discharge potential. For some metal ions the discharge potentials follow the order given below:

 $Li^+ > K^+ > Ca^{2+} > Na^+ > Mg^{2+} > Al^{3+} > Zn^{2+} > Fe^{2+} > Ni^{2+}$

For some anions the discharge potentials are in the order:

$$SO_4^{2-} > NO_3^- > OH^- > Br^- > I^-$$

When conc. H_2SO_4 is electrolysed with high current using Pt electrodes, the product obtained at anode is :

- A. SO_2
- B. SO_3
- $\mathsf{C}.\,O_2$
- D. $H_2SO_2O_8$

Answer: D

One Or More Answers Is Are Correct

1. Which of the following metal (s) is /are commercially extracted by self reduction method from their correspondign ore ?

A. Cu
B. Fe
C. Pb
D. Hg
Answer: A::C::D
Watch Video Solution
2. Which of the following process makes the ore porous?
A. Roasting
B. Calcination
C. Reduction
D. Distillation
Answer: A::B
Watch Video Solution

3. Which of the following ores is / are oxide ore (s)?
A. Tinstone
B. Bauxite
C. Cryolite
D. Carnallite
Answer: A::B
Watch Video Solution
4. Roasting of copper pyrites is done :
A. to remove moisture
B. to oxidise free sulphur
C. to decompose pyrite into Cu_2S and FeS

D. to remove volatile organic impurities
Answer: A::B::C::D
Watch Video Solution
5. Which of the following is a correct statement ?
A. Calamine is the ore of zinc
B. Pyrolusite is the ore of manganese
C. Cassiterite is the ore of tin
D. Calcite is the ore of calcium
Answer: A::B::C::D
Watch Video Solution

6. In which of the following pairs, both the minerals are oxides?

A. Sylvine, saltpetre
B. Casseterite, litharge
C. Siderite, corundum
D. Cuprite, tinstone
Answer: B::D
Watch Video Solution
7. Which of the following mineral does not contain sodium?
A. Trona
B. Borax
C. Epsomite
D. Cerrusite
Answer: C::D

8. Which of the following pair consists of ore of the same metal?
A. Bauxite, Limonite
B. Haematite,Siderite
C. Cinnabar, Cassiterite
D. Galena, Cerrusite
Answer: B::D Watch Video Solution
9. The process by which ligher earthly particles are made free from heavier particles by washing with water is called
A. gravity separation method
B. Levigation
C. Hydraulic washing

Answer: A::B::C	
Watch Video Solution	
10. Roasting is carried out to :	
A. convert sulphide to oxide and sulphate	

D. Leaching

B. remove water of hydration

Watch Video Solution

D. remove arsenic and sulphur impurities

C. melt the ore

Answer: A::B::D

11. The chemical treatment of the ore for concentration is done in the case of :

A. aluminium

B. silver

C. copper

D. gold

Answer: A::B::D

12. Froth floatation:

A. is a physical method of separating mineral from the gangue

B. is a method to concentrate the ore depending on the difference in

wetability of gangue and the ore

C. is used for the sulphide ores

D. is a method in which impurities sink to the bottom

Answer: A::B::C::D

Watch Video Solution

13. Which of the following reactions occurs during calcination?

A.
$$CaCO_3
ightarrow CaO + CO_2$$

B. $4FeS_2+11O_2
ightarrow2Fe_2O_3+8SO_2$

 $\mathsf{C.}\, 2Al(OH)_3 \to Al_2O_3 + 3H_2O$

D. $CuS + CuSO_4
ightarrow 2Cu + 2SO_2$

Answer: A::C

14. Amphoteric nature of aluminium is employed in which of the following
process for extraction of aluminium ?
A. Baeyer's process
B. Hall's process
C. Serpeck's process
D. Dow's process

Answer: A::B

- 15. Which of the following is true for calcination of a metal ore?
 - A. It makes the ore more porous
 - B. The ore is heated to a temperature when fusion just begins
 - C. Hydrated salts lose their water of crystallisation

D. Impurities of S, As and Sb are removed in the form of their volatile oxides

Answer: A::C

16. The difference (s) between roasting and calcination is / are :

A. roasting is highly endothermic while calcination is not

B. partial fusion occurs in calcination but not in roasting

C. calcination is performed in limited amount of air but roasting

employs excess air

D. combustion reaction occur in roasting but not in calcination

Answer: C::D

17. The etraction of metals from oxide ores involves
A. Reduction with carbon
B. Reduction with aluminium
C. Electrolyte reduction
D. Reduction with CO
Answer: A::B::C::D
Watch Video Solution
18. Metals which can be extracted by smelting process are :
18. Metals which can be extracted by smelting process are : A. Pb
A. Pb
A. Pb B. Fe

Answer: A::B::C

Watch Video Solution

19. Of the following reduction processes, correct processes are:

A.
$$Fe_2O_3+C o Fe$$

B.
$$ZnO+C o Zn$$

$$\mathsf{C.}\, Ca_3(PO_4)_2 + C o P$$

D.
$$PbO + C o Pb$$

Answer: A::B::C::D

Watch Video Solution

20. During the production of iron and steel.

A. The oxide ore is primarily reduced to iron by solid coke according to

the reaction

$$2Fe_2O+3C
ightarrow 4Fe+3CO_2$$

B. The oxide ore is reduced by the carbon monoxide according to the

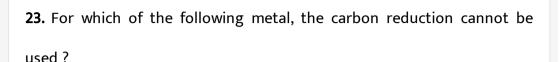
reaction

$$Fe_2O_3 + 3CO
ightarrow 2Fe + 3CO_2$$

C. Major silica impurities are removed as calcium silicate slag by addition of a fluxing agent limestone

D. The silicate slag is used in manufacturing cement

Answer: B::C::D



Watch Video Solution

21. The smelting of iron in a blast furnace involves, which of the following process(es)?

A. combustion B. reduction C. slag formation D. sublimation Answer: A::B::C Watch Video Solution 22. Which one of the following metals can be extracted by aluminothermic process? A. Manganese B. Iron C. Chromium D. Magnesium Answer: A::B::C

A. Lead

B. Manganese

C. Tungsten

D. Iron

Answer: B::C

Watch Video Solution

24. The advantage(s) of using carbon to reduce a number of oxides and other compounds are :

A. easy availability of coke

B. low cost of carbon

C. tendency of carbon to show catenation

D. pressence of carbon lowers the melting point of the oxides

Answer: A::B

Watch Video Solution

25. The disadvantage of carbon reduction method are:

A. high temperature needed which is expensive and requires the use

of a blast furnace

B. many metals combine with carbon forming carbides

C. carbon combines with oxgen to form poisonous CO

D. carbon cannot be used with highly electropositive metals

Answer: A::B

26. Which of the following metals are extracted from its ore by using selfreduction method? A. Copper B. Mercury C. Lead D. Silver Answer: A::B::C **Watch Video Solution 27.** Which of the following is / are correctly matched? Column-I(Metals) Calumn-II(Process used for extraction) Titanium Kroll process Column-I(Metals) Calumn-II(Process used for extraction) Aluminium Baeyer process Column-I(Metals) Calumn-II(Process used for extraction) Chromium Thermite process

Column-I(Metals) Calumn-II(Process used for extraction) Silver Mac-Arthur cyanide process

Answer: A::C::D

28. The funciton of adding cryolite in the electrolytic reduction of alumina

A. dissolve alumina

by Hall-Heroult process is to:

B. lower the melting point of alumina

C. lower the fuel bill

D. increase the elctrical conductivity of alumina

Answer: A::B::C::D

29. Which of the following reduction reactions are actually employed in commercial extraction of metals ?

A.
$$Fe_2O_3+2Al o Al_2O_3+2Fe$$

B.
$$Cr_2O_3+2Al o Al_2O_3+2Cr$$

$$\mathsf{C.}\,2Naig[Au(CN)_2ig] + Zn
ightarrow Na_2ig[Zn(CN)_4ig] + 2Au$$

D.
$$Cu_2S+PB o Cu+PbS\downarrow$$

Answer: B::C

Watch Video Solution

30. The main reaction occurring in blast furnace during the extraction of iron form haematite is

A.
$$Fe_2O_3 + 3CO
ightarrow 2Fe + 3CO_2$$

B.
$$FeO + SiO_2
ightarrow FeSiO_3$$

C.
$$Fe_2O_3+C o 2Fe+3CO$$

D. $CaO + SiO_2
ightarrow CaSiO_3$

Answer: A::D

Watch Video Solution

31. Which of the following are true for electrolytic extraction of aluminimum?

A. Cathode material contains graphite

B. Anode material contains graphite

C. Cathode reacts away forming CO_2

D. Anode reacts away forming CO_2

Answer: A::B::D

32. Select correct statement regrading silver extraction//purification process.

A. When the lead-silver alloy is rich in silver, lead is removed by the curpellation process

B. When the lead-silver alloy is ich in lead, lead is removed by parke's or pattinson's process

C. Zinc forms an alloy with lead, from which lead is separated by distillation

D. Zinc forms an alloy with silver, from which zinc is separated by distillation

Answer: A::B::D

33. Aluminothermy used for on the spot welding of large iron structures is based upon the fact that

- A. As compared to iron, aluminium has greater affinity for oxygen
- B. As compared to aluminium, iron has greater affinity for oxygen
- C. Reaction between aluminium and oxygen is endothermic
- D. Reaction between iron oxide and aluminium is exothermic

Answer: A::D

34. Highly electropositive metals can not be extracted by carbon reduction process because these :

- A. Metals combine with carbon to form carbides
- B. Metals do not react with carbon
- C. Metal oxides are not reduced by carbon

D. Loss of metal is more by vaporisation

Answer: A::D

Watch Video Solution

35. Which of the following reaction in the blast furnace is / are endothermic?

A.
$$C(s) + O_2(g) \Leftrightarrow CO_2(g)$$

$$\mathsf{B.}\, CO_2(g) + C(s) \Leftrightarrow 2CO(g)$$

$$\mathsf{C.}\, CaCO_3(s) \Leftrightarrow CaO(s) + CO_2(g)$$

$$\operatorname{D.}Fe_2O_3(s) + 3CO(g) \Leftrightarrow 2Fe(l) + 3CO_2(g)$$

Answer: B::C

36. The funace lining in steel manufacture consists of :
A. CaO
В. SiO_2
C. MgO
D. $CaCO_3$
Answer: A::C
Watch Video Solution
37. Pick up the correct statement(s) :
A. All minerals are ores
B. All minerals cannot be an ore
C. All ores are minerals

D. The minerals from which metals can be extracted profitably are called ores

Answer: B::C::D

38. Which of the following metal (s) is /are commercially extracted by self reduction method from their correspoindign ore?

- A. Cu
- B. Fe
- C. Pb
- D. Hg

Answer: A::C::D

39. Which of the following process makes the ore porous ?
A. Roasting
B. Calcination
C. Reduction
D. Distillation
Answer: A::B
Watch Video Solution
Water video solution
Water video Solution
40. Which of the following ores is / are oxide ore (s) ?
40. Which of the following ores is / are oxide ore (s) ?
40. Which of the following ores is / are oxide ore (s)? A. Tinstone
40. Which of the following ores is / are oxide ore (s)? A. Tinstone B. Bauxite

Answer: A::B

41. Roasting of copper pyrites is done:

- A. to remove moisture
- B. to oxidise free sulphur
- C. to decompose pyrite into Cu_2S and FeS
- D. to remove volatile organic impurities

Answer: A::B::C::D

Watch Video Solution

42. Which of the following is a correct statement?

A. Calamine is the ore of zinc

B. Pyrolusite is the ore of manganese
C. Cassiterite is the ore of tin
D. Calcite is the ore of calcium
Answer: A::B::C::D
Watch Video Solution
43. In which of the following pairs, both the minerals are oxides?
A. Sylvine, saltpetre
B. Casseterite, litharge
C. Siderite, corundum
D. Cuprite, tinstone
Answer: B::D
Watch Video Solution

44. Which of the following mineral does not contain sodium?
A. Trona
B. Borax
C. Epsomite
D. Cerrusite
Amouston C. D
Answer: C::D
Watch Video Solution
45. Which of the following pair consists of ore of the same metal?
A. Bauxite, Limonite
B. Haematite,Siderite
C. Cinnabar, Cassiterite
D. Galena, Cerrusite

Answer: B::D Watch Video Solution 46. The process (es) by which lighter earthy particles are freed from the heavier particles using water is / are : A. gravity separation method B. Levigation C. Hydraulic washing D. Leaching

47. Roasting is carried out to:

A. convert sulphide to oxide and sulphate B. remove water of hydration C. melt the ore D. remove arsenic and sulphur impurities Answer: A::B::D **Watch Video Solution** 48. The chemical treatment of the ore for concentration is done in the case of: A. aluminium B. silver C. copper D. gold Answer: A::B::D

49. Froth floatation:

A. is a physical method of separating mineral from the gangue

B. is a method to concentrate the ore depending on the difference in wetability of gangue and the ore

C. is used for the sulphide ores

D. is a method in which impurities sink to the bottom

Answer: A::B::C::D

Watch Video Solution

50. Which of the following reaction(s) occurs during calcination?

A.
$$CaCO_3
ightarrow CaO + CO_2$$

B.
$$4FeS_2+11O_2
ightarrow2Fe_2O_3+8SO_2$$

C.
$$2Al(OH)_3
ightarrow Al_2O_3 + 3H_2O$$

D.
$$CuS + CuSO_4
ightarrow 2Cu + 2SO_2$$

Answer: A::C

Watch Video Solution

51. Amphoteric nature of aluminium is employed in which of the following process for extraction of aluminium ?

A. Baeyer's process

B. Hall's process

C. Serpeck's process

D. Dow's process

Answer: A::B

- **52.** Which of the following is true for calcination of a metal ore?
 - A. It makes the ore more porous
 - B. The ore is heated to a temperature when fusion just begins
 - C. Hydrated salts lose their water of crystallisation
 - D. Impurities of S, As and Sb are removed in the form of their volatile oxides

Answer: A::C

employs excess air

- **53.** The difference (s) between roasting and calcination is / are :
 - A. roasting is highly endothermic while calcination is not
 - B. partial fusion occurs in calcination but not in roasting
 - C. calcination is performed in limited amount of air but roasting

D. combustion reaction occur in roasting but not in calcination			
Answer: C::D			
Watch Video Solution			
54. The etraction of metals from oxide ores involves			
A. Reduction with carbon			
B. Reduction with aluminium			
C. Electrolyte reduction			
D. Reduction with CO			
Answer: A::B::C::D			
Watch Video Solution			
55. Metals which can be extracted by smelting process are :			

A. Pb

B. Fe

C. Zn

D. Al

Answer: A::B::C

Watch Video Solution

A.
$$Fe_2O_3+C o Fe$$

B.
$$ZnO+C o Zn$$

56. Of the following reduction processes, correct processes are:

C.
$$Ca_3(PO_4)_2+C o P$$

D.
$$PbO + C o Pb$$

Answer: A::B::C::D

Watch Video Solution

57. In the extraction of aluminium metal, one of the process is summarised as follows :

Answer: D

58. During the production of iron and steel.

A. The oxide ore is primarily reduced to iron by solid coke according to

the reaction

$$2Fe_2O+3C\rightarrow 4Fe+3CO_2$$

B. The oxide ore is reduced by the carbon monoxide according to the reaction

$$Fe_2O_3 + 3CO
ightarrow 2Fe + 3CO_2$$

- C. Major silica impurities are removed as calcium silicate slag by addition of a fluxing agent limestone
- D. The silicate slag is used in manufacturing cement

Answer: B::C::D

Watch Video Solution

59. The smelting of iron in a blast furnace involves the following processes:

A. combustion B. reduction C. slag formation D. sublimation Answer: A::B::C **Watch Video Solution** 60. Which one of the following metals can be extracted by aluminothermic process? A. Manganese B. Iron C. Chromium D. Magnesium Answer: A::B::C

61. For which of the following metal, the carbon reduction cannot be used

A. Lead

?

B. Manganese

C. Tungsten

D. Iron

Answer: B::C

Watch Video Solution

62. The advantage(s) of using carbon to reduce a number of oxides and other compounds are :

A. easy availability of coke

B. low cost of carbon

C. tendency of carbon to show catenation

D. pressence of carbon lowers the melting point of the oxides

Answer: A::B

Watch Video Solution

63. The disadvantage of carbon reduction method are :

A. high temperature needed which is expensive and requires the use

of a blast furnace

B. many metals combine with carbon forming carbides

C. carbon combines with oxgen to form poisonous CO

D. carbon cannot be used with highly electropositive metals

Answer: A::B

Watch Video Solution

64. Which of the following metals are extracted from its ore by using selfreduction method? A. Copper B. Mercury C. Lead D. Silver Answer: A::B::C **Watch Video Solution 65.** Which of the following is / are correctly matched? Column-I(Metals) Calumn-II(Process used for extraction) Titanium Kroll process Column-I(Metals) Calumn-II(Process used for extraction) Aluminium Baeyer process Column-I(Metals) Calumn-II(Process used for extraction) Chromium Thermite process

D. $\frac{\text{Column-I(Metals})}{\text{Silver}}$ $\frac{\text{Calumn-II(Process used for extraction})}{\text{Mac-Arthur cyanide process}}$

Answer: A::C::D

66. The funciton of adding cryolite in the electrolytic reduction of alumina by Hall-Heroult process is to :

A. dissolve alumina

B. lower the melting point of alumina

C. lower the fuel bill

D. increase the elctrical conductivity of alumina

Answer: A::B::C::D

67. Which of the following reduction reactions are actually employed in commercial extraction of metals ?

A.
$$Fe_2O_3+2Al o Al_2O_3+2Fe$$

B.
$$Cr_2O_3+2Al o Al_2O_3+2Cr$$

$$\mathsf{C.}\,2Naig[Au(CN)_2ig] + Zn
ightarrow Na_2ig[Zn(CN)_4ig] + 2Au$$

D.
$$Cu_2S+PB o Cu+PbS\downarrow$$

Answer: B::C

View Text Solution

68. The chief reaction(s) occurring in blast furnace during extraction of iron from haematite is / are :

A.
$$Fe_2O_3+3CO o 2Fe+3CO_2$$

B.
$$FeO + SiO_2
ightarrow FeSiO_3$$

C.
$$Fe_2O_3+C o 2Fe+3CO$$

D. $CaO + SiO_2
ightarrow CaSiO_3$

Answer: A::D

View Text Solution

69. Which of the following are true for electrolytic extraction of aluminium?

A. Cathode material contains graphite

B. Anode material contains graphite

C. Cathode reacts away forming CO_2

D. Anode reacts away forming CO_2

Answer: A::B::D

View Text Solution

 $\textbf{70.} \ \textbf{Select correct statement regarding silver extraction process} \ .$

A. When the lead-silver alloy is rich in silver, lead is removed by the curpellation process

B. When the lead-silver alloy is ich in lead, lead is removed by parke's or pattinson's process

C. Zinc forms an alloy with lead, from which lead is separated by

D. Zinc forms an alloy with silver, from which zinc is separated by

Answer: A::B::D

View Text Solution

71. Aluminothermy used for the spot welding of large iron structures is based upon the fact that :

- A. As compared to iron, aluminium has greater affinity for oxygen
- B. As compared to aluminium, iron has greater affinity for oxygen
- C. Reaction between aluminium and oxygen is endothermic
- D. Reaction between iron oxide and aluminium is exothermic

Answer: A::D

View Text Solution

- **72.** Highly electropositive metals can not be extracted by carbon reduction process because these:
 - A. Metals combine with carbon to form carbides
 - B. Metals do not react with carbon
 - C. Metal oxides are not reduced by carbon
 - D. Loss of metal is more by vaporisation

Answer: A::D

73. Which of the following reaction in the blast furnace is / are endothermic?

A.
$$C(s) + O_2(g) \Leftrightarrow CO_2(g)$$

$$\mathsf{B.}\, CO_2(g) + C(s) \Leftrightarrow 2CO(g)$$

$$\mathsf{C.}\,CaCO_3(s) \Leftrightarrow CaO(s) + CO_2(g)$$

$$\operatorname{D.}Fe_2O_3(s) + 3CO(g) \Leftrightarrow 2Fe(l) + 3CO_2(g)$$

Answer: B::C

View Text Solution

74. The funace lining in steel manufacture consists of:

A. CaO

B. SiO_2

C.	MgO
D.	$CaCO_3$

Answer: A::C

View Text Solution

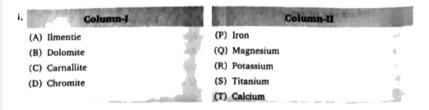
$\textbf{75.} \ \mathsf{Pick} \ \mathsf{up} \ \mathsf{the} \ \mathsf{correct} \ \mathsf{statement}(\mathsf{s}):$

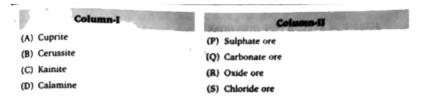
A. All minerals are ores

B. All minerals cannot be an ore

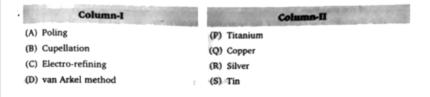
C. All ores are minerals

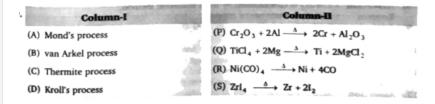
D. The minerals from which metals can be extracted profitably are called ores

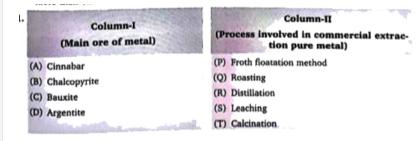

Answer: B::C::D


Watch Video Solution

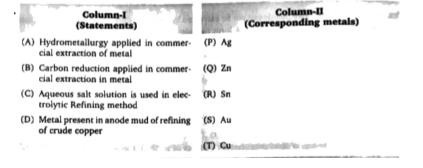
20 961	Column-I	Column-II
(A) Ca		(P) Found as its native state
(B) Zn		(Q) Found as its sulphide
(C) Cr	10	(R) Found as its carbonate
(D) Ag		(S) Found as its oxide

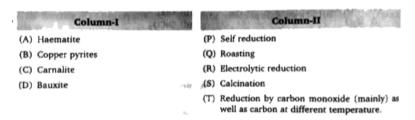


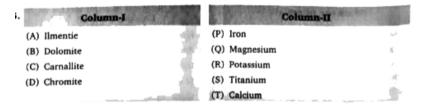


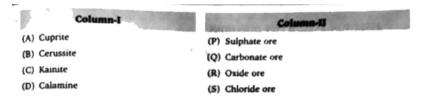


Column-I	Mel. 13	Colume-II
(A) Metal which occur in the native state in nature is	(P)	Hg
(B) The oxides of metal that can be commercially reduced by Aluminothermic reduction process is	(Q)	Ti
(C) van Arkel method is used for preparing ultrapure metal of	(R)	Cr
(D) Auto reduction process is employed for the sul- phide ore of	(S)	Ag

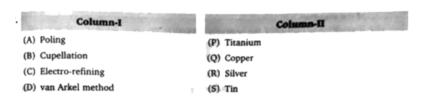


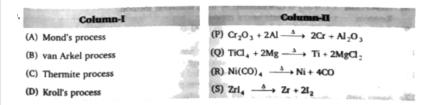


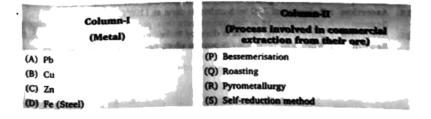




36 961	Column-I	Column-II
(A) Ca		(P) Found as its native state
(B) Zn		(Q) Found as its sulphide
(C) Cr	10	(R) Found as its carbonate
(D) Ag	T	(S) Found as its oxide







Column-J	2	Colume-II
(A) Metal which occur in the native state in nature	is (P)	Hg
(B) The oxides of metal that can be commercially reduced by Aluminothermic reduction process is		Ti
(C) van Arkel method is used for preparin ultrapure metal of	g (R)	Cr
(D) Auto reduction process is employed for the su phide ore of	l- (S)	Ag

Assertion Reason Type Questions

1. Assertion : $PbSiF_6 + H_2SiF_6 +$ gelatine is taken as electrolyte in electrolytic refining of lead.

Reason : Discharge potential of Pb^{2+} is less than H^+ .

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: C

Watch Video Solution

2. Assertion : Nitriding is the process of heating steel in presence of N_2 to form iron nitrides

Reason: The surface of steel becomes hard after nitriding process.

A. If both assetion and reason are CORRECT, and reason is the

B. If both assertion and reason are CORRECT, but reason is NOT the

C. If assertion is CORRECT but reason is INCORRECT

CORRECT explanation of the assertion

CORRECT explanation of the assertion

D. If assertion is INCORRECT but reason is CORRECT

Answer: D

Watch Video Solution

3. Assertion : Ores are generally converted into oxides, prior to reduction.

Reason: Metal oxides can be easily reduced.

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: C

Watch Video Solution

4. Assertion : In the extraction of Ag, complex $Naig[Ag(CN)_2ig]$ is reacted with Zn.

Reason: Zn is d-block transition metal.

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT.

Answer: C

Watch Video Solution

5. Statement-I : Thermite mixture Fe_2O_3+Al (powder) is used in the welding.

Statement-II: Al is a good reductant.

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: B

Watch Video Solution

6. Assertion: In froth floatation process sodium ethyl xanthate is used as collector.

Reason: Sulphide ores are water soluble.

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: C

7. Assertion: Cryolite is used in electrolytic extraction of Al from alumina.

It dissolves alumina.

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: A

Watch Video Solution

8. Statement-I : $CuFeS_2$ is concentrated by froath floatation method

Statement-II : $CuFeS_2$ is main ore of copper.

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: B

Watch Video Solution

9. Assertion : In the electrolytic reduction of Al_2O_3 , cryolite is used.

Reason: Cryolite is an ore of aluminium.

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: B

Watch Video Solution

10. Assertion: Wrought iron is more malleable and ductile than steel.

Reason: It contains slightly less percentage of carbon.

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: A

Watch Video Solution

11. Assertion: Lead, tin and bismuth are purified by liquation method.

Reason: Lead, tin and bismuth have low m.p. as compared to impurities.

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: A

Watch Video Solution

12. Assertion : Al_2O_3 is converted into Al by reduction with carbon at high temp.

Reason: Carbon has greater affinity for oxygen than aluminium.

A. If both assetion and reason are CORRECT, and reason is the

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: C

Watch Video Solution

13. Assertion : Reduction of ZnO with carbon is done at $1100^{\circ}\,C$.

Reason : At this temperature, ΔG° is negative and the process is

spontaneous.

A. If both assetion and reason are CORRECT, and reason is the CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: A

Watch Video Solution

14. Assertion : Desilverisation of lead is done by Parke's method ΔG .

Reason: When lead-silver alloy is poor in silver, zinc is added to molten ore.

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: A

Watch Video Solution

15. Statement-I: All the ores are mineral

Statement-II: Most of the ores contains metals in combined state

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: C

Watch Video Solution

16. Assertion : $PbSiF_6 + H_2SiF_6 +$ gelatine is taken as electrolyte in electrolytic refining of lead.

Reason : Discharge potential of $Pb^{2\,+}$ is less than $H^{\,+}.$

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: C

View Text Solution

17. Assertion : Nitriding is the process of heating steel in presence of N_2 to form iron nitrides.

Reason: The surface of steel becomes hard after nitriding process.

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: D

18. Assertion : Ores are generally converted into oxides, prior to reduction.

Reason: Metal oxides can be easily reduced.

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: C

View Text Solution

19. Assertion : In the extraction of Ag, complex $Naig[Ag(CN)_2ig]$ is reacted with Zn.

Reason: Zn is d-block transition metal.

A. If both assetion and reason are CORRECT, and reason is the CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

C. If assertion is CORRECT but reason is INCORRECT

CORRECT explanation of the assertion

D. If assertion is INCORRECT but reason is CORRECT

Answer: C

Watch Video Solution

20. Assertion : Thermite mixture Fe_2O_3+Al (powder) is used in the welding.

Reason: Al is a good reductant.

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: B

21. Assertion: In froth floatation process sodium ethyl xanthate is used as collector.

Reason: Sulphide ores are water soluble.

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: C

22. Assertion: Cryolite is used in electrolytic extraction of Al from alumina.

It dissolves alumina.

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: A

View Text Solution

23. Assertion : $CuFeS_2$ is concentrated by froth floatation method.

 ${\sf Reason}: CuFeS_2 \text{ is main ore of copper.}$

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: B

View Text Solution

24. Assertion : In the electrolytic reduction of Al_2O_3 , cryolite is used.

Reason: Cryolite is an ore of aluminium.

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: B

View Text Solution

25. Assertion: Wrought iron is more malleable and ductile than steel.

Reason: It contains slightly less percentage of carbon.

A. If both assetion and reason are CORRECT, and reason is the CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

C. If assertion is CORRECT but reason is INCORRECT

CORRECT explanation of the assertion

D. If assertion is INCORRECT but reason is CORRECT

Answer: A

View Text Solution

26. Assertion: Lead, tin and bismuth are purified by liquation method.

 $\label{lem:Reason:Lead} \textbf{Reason:Lead, tin and bismuth have low m.p. as compared to impurities.}$

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: A

27. Assertion : Al_2O_3 is converted into Al by reduction with carbon at high temp.

Reason: Carbon has greater affinity for oxygen than aluminium.

A. If both assetion and reason are CORRECT, and reason is the CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: C

View Text Solution

28. Reduction of ZnO with carbon is done at $1100\,^{\circ}\,C$.

Reason : ΔG° is negative at this temperature thus, process is spontaneous.

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: A

View Text Solution

29. Assertion: Desilverisation of lead is done by Parke's method.

Reason: When lead-silver alloy is poor in silver, zinc is added to molten ore.

A. If both assetion and reason are CORRECT, and reason is the

CORRECT explanation of the assertion

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: A

30. Assertion: All the ores are mineral.

A. If both assetion and reason are CORRECT, and reason is the

B. If both assertion and reason are CORRECT, but reason is NOT the

CORRECT explanation of the assertion

CORRECT explanation of the assertion

C. If assertion is CORRECT but reason is INCORRECT

D. If assertion is INCORRECT but reason is CORRECT

Answer: C

View Text Solution