©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - VK JAISWAL CHEMISTRY (HINGLISH)

p-BLOCK ELEMENTS

Level 1

1. Anhydrous aluminium chloride $\left(A l_{2} C l_{6}\right)$ is covalent compound and soluble in water giving:
A. $A l^{3+}$ and $C l^{-}$ions.
B. $\left[\mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ and Cl^{-}ions
C. $\left[\mathrm{AlCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ and $\left[\mathrm{AlCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-}$ions
D. none of the above
2. $A l_{4} C_{3}$ is a ionic carbide, named as:
A. Acetylide
B. Methanide
C. Allylide
D. Alloy

Answer: B

- Watch Video Solution

3. On the addition of mineral acid to an aqueous solution of borax, the compound formed is:
A. Boron oxide
B. Orthoboric acid
C. Metaboric acid
D. Pyroboric acid

Answer: B

- Watch Video Solution

4. AlCl_{3} on hydrolysis gives
A. $\mathrm{Al}_{2} \mathrm{O}_{3} \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{Al}(\mathrm{OH})_{3}$
C. $\mathrm{Al}_{2} \mathrm{O}_{3}$
D. $\mathrm{AlCl}_{3} 6 \mathrm{H}_{2} \mathrm{O}$

Answer: B

5. Alumina is insoluble in water because:
A. It is a covalent compound
B. It has high lattice energy ad low heat of hydration
C. It has low lattice energy and high heat of hydration
D. $A l^{3+}$ and O^{2-} ions are not excessively hydrated

Answer: B

- Watch Video Solution

6. Which of the following is an electron deficient molecule?
A. LiH
B. $B_{2} H_{6}$
C. LiBH_{4}
D. $B_{3} N_{3} H_{6}$

D Watch Video Solution

7. Anhydrous aluminium chloride fumes in moist air owing to the formation of:
A. Gaseous aluminium chloride
B. chlorine
C. chlorine dioxide
D. hydrogen chloride

Answer: D

- Watch Video Solution

8. Colour of the bead in borax bead test mainly due to the formation of
A. metal oxides
B. boron oxide
C. metal metaborates
D. elemental boron

Answer: C

D Watch Video Solution

9. The possible oxidation stata Tl are:
A. +1 and +2
B. +2 and +3
C. +1 and -1
D. +1 and +3

Answer: D

10. Which of the following sublimes on heating ?
A. $\mathrm{Al}_{2} \mathrm{O}_{3}$
B. $\mathrm{Al}(\mathrm{OH})_{3}$
C. $\left(\mathrm{AlH}_{3}\right)_{\pi}$
D. $\left(\mathrm{AlCl}_{3}\right)_{\pi}$

Answer: D

- Watch Video Solution

11. The gaseous product(s) expected at room temperature by reaction of sodium borohydride and boron trifluoride under anhydrous conditions is/are:
A. H_{2}
B. $B_{2} H_{6}$ and H_{2}
C. $B_{2} H_{6}$
D. $\mathrm{BH}_{2} \mathrm{~F}$ and H_{2}

Answer: C

- Watch Video Solution

12. Silicate having one monovalent corner oxygen atom in each tetrahedron unit is
A. sheet silicate
B. cyclic silicate
C. single chain silicate
D. double chain silicate

Answer: A

13. PbI_{4} does not exist because:
A. iodine is not a reactive
B. $\mathrm{Pb}(I V)$ is oxidizing and I^{-}is storng reducing agent
C. $\mathrm{Pb}(\mathrm{IV})$ is less table than $\mathrm{Pb}(\mathrm{II})$
D. Pb^{4+} is not easily formed

Answer: B

- Watch Video Solution

14. The silicate anion in the mineral kinoite is a chain of three SiO_{4} tetrahedra, that share corners with adjacent tetrahedra. The charge pof silicate anion is
A. -4
B. -8
C. -6
D. -2

Answer: B

- Watch Video Solution

15. The gaseous product of the reaction betweenn S ad conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is:
A. H_{2}
B. SO_{2}
C. SnH_{4}
D. SO_{3}

Answer: B

- Watch Video Solution

16. The dehydration of malonic acid $\mathrm{CH}_{2}(\mathrm{COOH})_{2}$ with $\mathrm{P}_{4} \mathrm{O}_{10}$ and heat give
A. carbon monoxide
B. carbon suboxide
C. carbon dioxide
D. all three

Answer: B

- Watch Video Solution

17. Which of the following structural features of graphite best accounts for its use as a lubricant?
A. Delocalized electrons
B. Strong covalent bonds between carbons atoms
C. van der waals' forces between layers
D. limited three covalency of carbon

Answer: C

- Watch Video Solution

18. Which of the following is sparingly soluble in cold water and fairly soluble in hot water?
A. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
B. PbCl_{2}
C. PbSO_{4}
D. PbCrO_{4}

Answer: B

- Watch Video Solution

19. The structural of silicon(IV) oxide belongs to the type:
A. ionic lattice
B. macromolecular with a layer structure
C. molecular lattice, with van der Waals' forces among the molecules
D. macromolecular, with a non-layer structure

Answer: D

- Watch Video Solution

20. Silicon dissolves in excess of HF due to formation of
A. SiF_{4}
B. SiH_{4}
C. $\mathrm{H}_{2} \mathrm{SiF}_{6}$
D. $\mathrm{H}_{2} \mathrm{SiF}_{4}$

Answer: C

- Watch Video Solution

21. Which of the following halides does not hydrolyse at room temperature?
A. PbCl_{4}
B. SiCl_{4}
C. $C C l_{4}$
D. $S n C l_{4}$

Answer: C

- Watch Video Solution

22. SiCl_{4} on hydrolysis gives:
A. silica
B. silicic acid
C. silicone
D. silicate

Answer: B

- Watch Video Solution

23. Which substance is having molecular solid:
A. graphite
B. C_{60}
C. gold
D. $C a_{3}\left(\mathrm{PO}_{4}\right)_{2}$

Answer: B

24. Identify the cyclic silicate ion given in the figure below

A. $\mathrm{Si}_{2} \mathrm{O}_{7}^{4-}$
B. $\mathrm{Si}_{2} \mathrm{O}_{3}^{2-}$
C. SiO_{3}^{2-}
D. SiO_{4}^{4-}

Answer: C

- Watch Video Solution

25. Which of the following is an organo silicon polymer?
A. Silica
B. Silicone
C. Silicon carbide
D. Silicic acid

Answer: B

D Watch Video Solution

26. $S n C l^{2}$ acts as a reducing agent because
A. $S n C l_{2}$ can accept electrons readily
B. $S n^{2+}$ is more stable than $S n^{4+}$
C. $S n^{4+}$ is more stable than $S n^{2+}$
D. Sn^{2+} can be easily converted to metallic tin

Answer: C

27. The correct order of decreasing ionic nature of lead dihalides is:
A. $\mathrm{PbF}_{2}>\mathrm{PbCl}_{2}>\mathrm{PbBr}>\mathrm{PbI}_{2}$
B. $\mathrm{PbF} F_{2}>P B B r_{2}>\mathrm{PbCl}_{2}>\mathrm{PbI}_{2}$
C. $\mathrm{PbF}_{2}<\mathrm{PbCl}_{2}>\mathrm{PbBr}_{2}<\mathrm{PbI}_{2}$
D. $\mathrm{PbI}_{2}<\mathrm{PbBr}_{2}<\mathrm{PbCl}_{2}<\mathrm{PbF}_{2}$

Answer: A

- Watch Video Solution

28. Carborundum is a
A. molecular solid
B. covalent solid
C. ionic solid
D. amrphous solid

Answer: B

- Watch Video Solution

29. The plague OR tin pest or tin disease refers to .
A. conversion of stannous to stannic
B. conversion to white tin to grey tin
C. emmision of sound while bending a tin rod
D. atmospheric oxidation of tin

Answer: B

- Watch Video Solution

30. Butter of tin is
A. $\mathrm{SnCl}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
B. SnCl_{2}
C. SnCl_{4}
D. $\mathrm{SnCl}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

Answer: D

- Watch Video Solution

31. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \xrightarrow{\triangle} \operatorname{gas}(A)+\operatorname{gas}(B)+\operatorname{liquid}(C)$. Gas(A) burns with a blue flame and is oxidised to gas(B).
$\operatorname{Gas}(A)+C l_{2} \rightarrow D \rightarrow \xrightarrow{N H_{3}, \Delta} E$
$\mathrm{A}, \mathrm{B}, \mathrm{C}$ and E are
A. $\mathrm{CO}_{2}, \mathrm{Co}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HCONH}_{2}$
B. $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{CoCl}_{2}, \mathrm{HCONH}_{2}$
C. $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{2} \mathrm{CONH}_{2}$
D. $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{H}_{20 \mathrm{O}, \mathrm{COCl}_{2}}$

Answer: C

- Watch Video Solution

32. $\mathrm{Si}_{2} \mathrm{O}_{7}^{6-}$ anion is obtained when:
A. no oxygen of a SiO_{4} tetrahedron is shared with another SiO_{4}
tetrahedron
B. one oxygen of a SiO_{4} tetrahedron is shared with another SiO_{4}
tetrahedron
C. two oxytgen of a SiO_{4} tetrahedron are shared with another SiO_{4}
tetrahedron
D. three or all four oxygen of oxygen of a tetrahedron are shared with other SiO_{4} tetrahedron

Answer: B

33. Trisilyamine $\left(\mathrm{SiH}_{3}\right)_{3} \mathrm{~N}$ is
A. trigonal pyramidal and acidic
B. trigonal pyramidal and basic
C. trigonal pyramidal and neutral
D. trigonal planar and weakly basic

Answer: D

Watch Video Solution

34. The mixed anhydride of nitrogen is:
A. $\mathrm{N}_{2} \mathrm{O}_{2}(2 \mathrm{NO})$
B. $\mathrm{N}_{2} \mathrm{O}_{4}\left(2 \mathrm{NO}_{2}\right)$
C. $\mathrm{N}_{2} \mathrm{O}_{5}$
D. $\mathrm{N}_{2} \mathrm{O}_{3}$

D Watch Video Solution

35. Among $\mathrm{NH}_{3}, \mathrm{PH}_{30}, \mathrm{AsH}_{3}$ and SbH_{3} which one is a stronger reducing agent?
A. NH_{3}
B. PH_{3}
C. AsH_{3}
D. SbH_{3}

Answer: D

- Watch Video Solution

36. When zinc reacts with very dilute HNO_{3}, the oxidation state of nitrogen changes from:
A. +5 to +1
B. +5 to -3
C. +5 to +4
D. +5 to +3

Answer: B

- Watch Video Solution

37. The correct order of thermal stability of hydrides of group 15 is
A. $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}$
B. $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{As} \mathrm{H}_{3}$
C. $\mathrm{NH}_{3}>\mathrm{PH}_{3}<\mathrm{AsH}_{3}$
D. $\mathrm{NH}_{3}<\mathrm{PH}_{3}>\mathrm{AsH}_{3}$

Answer: A

38. The products formed by complete hydrolysis of PCl_{3} are:
A. $\mathrm{H}_{3} \mathrm{PO}_{3}$ and HCl
B. POCl_{3} and HCl
C. $\mathrm{H}_{3} \mathrm{PO}_{4}$ and HCl
D. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ and HCl

Answer: A

- Watch Video Solution

39. When a sample of NO_{2} is placed in a container, this equilibrium is rapidly estabilished.
$2 \mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{4}(\mathrm{~g})$
Iff this equilibrium mixture is a darker colour at high temperatures annd at low pressure, which of these statements about the reaction is true?
A. The reaction is exothermic and NO_{2} is darker in colour than $\mathrm{N}_{2} \mathrm{O}_{4}$
B. The reaction is exothermic and $\mathrm{N}_{2} \mathrm{O}_{4}$ is darker in colour than NO_{2}
C. The reaction is endothermic and NO_{2} is darker in colour than $\mathrm{N}_{2} \mathrm{O}_{4}$
D. The reaction is endothermic and $\mathrm{N}_{2} \mathrm{O}_{4}$ is darker in colour than NO_{2}

Answer: A

- Watch Video Solution

40. Thermal decompostion of ammonium dichromate produces gas and steam.
A. $\mathrm{NH}_{3}, \mathrm{Cr}_{2} \mathrm{O}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{N}_{2}, \mathrm{Cr}_{2} \mathrm{O}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{NO}, \mathrm{CrO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{N}_{2} \mathrm{O}, \mathrm{CrO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$

Answer: B

- Watch Video Solution

41. Which of the following halide undergoes in hydrolysis via $S_{N^{1}}$ reaction?
A. BCl_{3}
B. $N F_{3}$
C. NCl_{3}
D. AsCl_{3}

Answer: B

42. Which of the following compound does not give oxyacid of central atom on hydrolysis?
A. SlCl_{4}
B. NCl_{3}
C. PCl_{3}
D. PCl_{5}

Answer: B

- Watch Video Solution

43. In which process does the nitrogen undergo oxidation?
A. $\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}$
B. $\mathrm{N}_{2} \mathrm{O}_{4} \mathrm{ot} 2 \mathrm{NO}_{2}$
C. $\mathrm{NO}_{3}^{-} \rightarrow \mathrm{N}_{2} \mathrm{O}_{5}$
D. $\mathrm{NO}_{2}^{-} \rightarrow \mathrm{NO}_{3}^{-}$

Answer: D

D Watch Video Solution

44. For which element would XH_{3} be a stable species:
A. C
B. Si
C. P
D. S

Answer: C

45. $S-O$ bond length is maximum in:
A. $S O B r_{2}$
B. SOCl_{2}
C. SOF_{2}
D. $\mathrm{SO}\left(\mathrm{CH}_{3}\right)_{2}$

Answer: D

- Watch Video Solution

46. In case of hydride of oxyge family, which of the following physical property change regularly on moving down the group
A. Melting point
B. Thermal stability
C. Boiling point
D. Critical temperature

Answer: B

47. When KHSO_{4} is added into a concentrated solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ the acidity of the solution.
A. Increases
B. decreases
C. remains constant
D. can't be predicted

Answer: B

- Watch Video Solution

48. Hydrolysis of one mole of peroxodisulphuric acid produces
A. two moles of sulphuric acid
B. two moles of peroxomono-sulphuric acid
C. one mole of sulphuric acid, one mole of peroxomono-sulphuric acid
D. one mole of sulphuric acid, one mole of peroxomono-sulphuric acid and one mole of hydrogen peroxide

Answer: C

- Watch Video Solution

49. In trimer form of sulphurc trioxide, each sulphur atom s bonded with:
A. four oxygen atoms
B. three oxygenn atoms
C. two oxygen atoms
D. two sulphur atoms

Answer: A

50. Sodium thiosulphate is formed when:
A. $S O_{2}$ is boiied into $N a_{2} S$
B. $N a_{2} \mathrm{SO}_{3}$ is boiled withh elemental sulphur
C. $\mathrm{H}_{2} \mathrm{H}_{2} \mathrm{O}_{3}$ is neutralised by NaOH
D. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is reduced by zinc dust

Answer: B::C

(Watch Video Solution

51. $K_{4}\left[F e(C N)_{6}\right]$ reacts with ozone is give:
A. $\mathrm{Fe}_{2} \mathrm{O}_{3}$
B. $\mathrm{Fe}(\mathrm{OH})_{2}$
C. $K_{3}\left[F e(C N)_{6}\right]$
D. KNO_{3}

Answer: C

- Watch Video Solution

52. The dipole moment of $\mathrm{H}_{2} \mathrm{O}_{2}$ is more than that of $\mathrm{H}_{2} \mathrm{O}$ but $\mathrm{H}_{2} \mathrm{O}_{2}$ is not a good solvent because :
A. It has a very high dielectric constant so that ionic compounds
cannot be dissolved in it
B. it does not act as an oxidising agent
C. it acts as a reducing agennt
D. it dissociates easily ad acts as an oxidising agent in chemical reactions

Answer: D

- Watch Video Solution

53. The correct increasing order of acidity is:
A. $\mathrm{CO}_{2}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{O}_{2}<\mathrm{CO}_{2}$
C. $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{CO}_{2}$
D. $\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{CO}_{2}>\mathrm{H}_{2} \mathrm{O}$

Answer: B

- Watch Video Solution

54. In which cases, the order of acidic strength is not correct ?
A. $\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}$
B. $\mathrm{HIO}_{4}>\mathrm{HBrO}_{4}>\mathrm{HClO}_{4}$
C. $\mathrm{HCIO}_{4}>\mathrm{HClO}_{3}>\mathrm{HClO}_{2}$
D. $\mathrm{HF}_{2}>\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}$
55. Concentrated HNO_{3} reacts with iodine to give:
A. HOI
B. HI
C. HOIO_{2}
D. HOlO_{3}

Answer: C

- Watch Video Solution

56. Thermally most stable compound is:
A. HOClO_{3}
B. HOClO_{2}
c. HOCl
D. HOClO

Answer: A

- Watch Video Solution

57. Which of the following halogen oxide is used for estimation of carbon monoxide in automobile exhaust gases?
A. $\mathrm{Cl}_{2} \mathrm{O}_{7}$
B. $I_{2} O_{5}$
C. ClO_{2}
D. BrO_{3}

Answer: B

- Watch Video Solution

58. The intergalogen which does not exist is:
A. $I F_{5}$
B. ClF_{3}
C. BrCl
D. ICl_{4}

Answer: D

- Watch Video Solution

59. Which of the following halogen disproportionates in water?
A. F_{2}
B. $C l_{2}$
C. I_{2}
D. all three

Answer: B

- Watch Video Solution

60. Which of the following is correct statement?
A. F_{2} has higher dissociation energy than $C l_{2}$
B. F has higher electron affinity than Cl
C. HF is stronger acid than HCl
D. Boiling point increases down the group in halogens

Answer: D

- Watch Video Solution

61. Only iodine forms hepta-fluroide $I F_{7}$, but chlorine and bromine give penta-flurorides. The reason for this is:
A. low electron affinity of iodine
B. unusual pentagonal bypyramidal structure of $I F_{7}$
C. that the larger iodine atom ca accommodate more number of smaller fluroine atom around it
D. Iwo chemical ractivity of $I F_{7}$

Answer: C

- Watch Video Solution

62. Acid used for making permanent markings on the glass surface is.
A. HNO_{3}
B. $H F$
C. HIO_{3}
D. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: D

63. The unfavourable electrochemical reaction among the following is:
A. $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2}$
B. $\mathrm{KKI}+\mathrm{Cl}_{2} \rightarrow \mathrm{KCl}+\mathrm{I}_{2}$
C. $\mathrm{KCl}+\mathrm{I}_{2} \rightarrow \mathrm{KI}+\mathrm{ICl}$
D. $\mathrm{Al}+3 \mathrm{HCl} \rightarrow \mathrm{AlCl}_{3}+\frac{3}{2} \mathrm{H}_{2}$

Answer: C

- Watch Video Solution

64. Which anion can undergo both oxidation and reduction?
A. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
B. NO_{3}^{-}
C. OCl^{-}
D. S^{2-}

Answer: C

- Watch Video Solution

65. In the series $\mathrm{HCl}, \mathrm{HBr}$ and HI , the boiling point increases in the order $\mathrm{HCl}<\mathrm{HBr}<H I$. Thiis is due to:
A. HI is the strongest acid among the series
B. HI is the strongest reducing agent among the series
C. higherr van der waals' forces of attraction in HI
D. intermolecular H -bonding in HI

Answer: C

- Watch Video Solution

66. Which factor is most responsible for the increase in boiling points of noble gases from He to Xe ?
A. Decrease in I.E.
B. Monoatomic nature
C. Decrease in polarisability
D. Increase in polarisability

Answer: D

- Watch Video Solution

67. The compound that cannot be formed by xenon is:
A. XeO_{3}
B. $X e F_{4}$
C. XeCl_{4}
D. $\mathrm{XeO}_{2} \mathrm{~F}_{2}$

Answer: C

- Watch Video Solution

68. Noble gases can be separated by:
A. passing them through suitable solution
B. electrolysis of their fluorides
C. adsorption and desorption on charcoal
D. adsorption annd desorption on activated hydrogen

Answer: C

- Watch Video Solution

69. Which of the following xenon compound has the same number of lone pairs as in I_{3}^{-}? (near central atom)
A. XeO_{4}
B. XeF_{4}
C. XeF_{2}
D. XeO_{3}

Answer: C

- Watch Video Solution

70. Incorrectly matched characteristic is:
A. S_{8} : Covalent lattice
B. P_{4} : Tetrahedron
C. S_{4}^{2-} : Zig-Zig
D. SiO_{2} : Covalent lattice

Answer: A

71. Which is wrong statement?
A. The decreasing order of thermal stability is $C s O H>R b O H>K O H>N a O H$
B. The decreasing order of bond angle is $B F_{3}>P F_{3}>C l F_{3}$
C. The decreasing order of bond dissociation energy is $C l_{2}>B r_{2}>F_{2}>I_{2}$
D. The decreasing order of melting point is

$$
\mathrm{NH}_{3}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}>\mathrm{CH}_{3} \mathrm{NH}_{2}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}
$$

Answer: D

- View Text Solution

72. Which of the following has been arranged in orderr of decreasing bond dissociation energy:
A. $\mathrm{P}-\mathrm{O}>\mathrm{Cl}-\mathrm{O}>\mathrm{S}-\mathrm{O}$
B. $\mathrm{P}-\mathrm{O}>\mathrm{S}-\mathrm{O}>\mathrm{Cl}-\mathrm{O}$
C. $\mathrm{S}-\mathrm{O}>\mathrm{Cl}-\mathrm{O}>\mathrm{P}-\mathrm{O}$
D. $\mathrm{Cl}-\mathrm{O}>\mathrm{S}-\mathrm{O}>\mathrm{P}-\mathrm{O}$

Answer: D

- Watch Video Solution

Level 2

1. $\mathrm{BX}_{3}+\mathrm{NH}_{3} \xrightarrow{\text { B.T. }} \mathrm{BX}_{3} \cdot \mathrm{NH}_{3}+$ Heat of adduct formation (ΔH)

The numberical value of ΔH is found to be maximum for:
A. $B F_{3}$
B. BCl_{3}
C. BBr_{3}
D. $B I_{3}$

Answer: D

- Watch Video Solution

2. Which is the following properties describes the diagonal relationship boron and silicon?
A. $B C l_{3}$ is not hydrolysed while $S i C l_{4}$ can be hydrolysed
B. Both form oxides $\mathrm{B}_{2} \mathrm{O}_{3}$ is amphoteric and SiO_{2} is acidic
C. Both metals dissolve in cold and dilute nitric acid
D. Silicide and boride salts are hydrolysed by water

Answer: D

D View Text Solution

3. Anhydrous $A l C l_{3}$ is covalent however, when it is dissolved in water hydrated ionic species are formed. This transformation is owing to:
A. the trivalent state of Al
B. the large hydration energy of $A l^{3-}$
C. the low hydration enegy of $A l^{3+}$
D. the polar nature of water

Answer: B

D Watch Video Solution

4. Borax in its crystal posses:
A. 3 tetrahedral unit
B. 2 tetrahedral and 2 planar triangular units
C. 3 tetrahedral and 2 planar triangular units
D. all tetrahedral units

Answer: B

5. The molecular shapes of diborane is shown below :

Consider the following statements for diborane :
(i) Boron is approximately $s p^{3}$ hybridised.
(ii) $B-H-B$ angle is 180°
(iii) There are two terminal $B-H$ bonds for each boron atom.
(iv) There are only 12 bonding electrons available of These statements :
A. 1,3 and 4 are correct
B. 1,2 nd 3 are correct
C. 2,3 and 4 are correct
D. 1,2 and 4 are correct

D Watch Video Solution

6. Alumiium vessels should not be washed with materials containing washing soda because:
A. washing soda reacts with aluminium to form soluble aluminate
B. washing soda is expensive
C. washing soda is easily decomposed
D. washing soda reacts with aluminium to form insoluble aluminium oxide

Answer: A

- Watch Video Solution

7. Which of the following statements about anhydrous aluminium chloride is correct?
A. It can exist as AlCl_{3} molecule in vapour
B. it is a strong Lewis base
C. It sublimes at $180^{\circ} \mathrm{C}$ under vacuum
D. it is not easily hydrolysed

Answer: A:C

- Watch Video Solution

8.

$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { Heat }} \mathrm{X}+\mathrm{NaBO}_{2}+\mathrm{H}_{2} \mathrm{O}, \mathrm{X}+\mathrm{Cr}_{2} \mathrm{O}_{3} \xrightarrow{\text { Heat }} \underset{\text { (Green coloured }}{Y}$ X and Y are :
A. $\mathrm{Na}_{3} \mathrm{BO}_{30}$ and $\mathrm{Cr}\left(\mathrm{BO}_{2}\right)_{3}$
B. $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ and $\mathrm{Cr}\left(\mathrm{BO}_{2}\right)_{3}$
C. $\mathrm{B}_{2} \mathrm{O}_{3}$ and $\mathrm{Cr}\left(\mathrm{BO}_{2}\right)_{3}$
D. $\mathrm{B}_{2} \mathrm{O}_{3}$ and $\mathrm{CrBO} \mathrm{C}_{3}$

Answer: C

- Watch Video Solution

9. Borax is converted into amorphous Boron by following steps

Borax $\xrightarrow{X} H_{3} B_{3} \xrightarrow{\Delta} B_{2} O_{3} \xrightarrow[\Delta]{Y} B$
X and Y are respectively
A. $\mathrm{HCl}, \mathrm{Mg}$
B. HCl, C
C. $C, A l$
D. $\mathrm{HCl}, \mathrm{Al}$

Answer: D

10. The dissolution of $\mathrm{Al}(\mathrm{OH})_{3}$ by a solution of NaOH results in the formation of
A. $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]^{+}$
B. $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]$
C. $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}\right]^{-}$
D. $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}(\mathrm{OH})_{3}\right]$

Answer: C

- Watch Video Solution

11. Choose the correct sequence for the geometry of the given molecules Borazon, Borazole, $B_{3} O_{6}^{3-}$, trimer of FCN.
['P' stands for planer and 'NP' standes for non-planer]

A. NP,NP,NP,P,P

B. P,P,NP,NP,P
C. NP,NP,NP,P,NP
D. NP,P,P,NP,P

Answer: D

D Watch Video Solution

12. What is not true about borax?
A. It is a useful primary standard for titrating against acids
B. one mole of borax contains 4B-O-B bonds
C. Aqueous solution of borax can be used as buffer
D. it is made up of two triangular BO_{3} units and two tetrahedral BO_{4} units

Answer: B

13. How can the following reaction be made to proceed in forward direction?
$B(O H)_{3}+N a O H \Leftrightarrow N a\left[B(O H)_{4}\right]$.
A. Addition of cis 1,2 diol
B. addition of borax
C. addition of trans 1,2 diol
D. addition of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$

Answer: A

- Watch Video Solution

14. Which of the following catio can not give bead test?
A. $C r^{3+}$
B. Co^{2+}
C. Ag^{+}
D. $M n^{2+}$

Answer: C

- Watch Video Solution

15.

The incorrect statement regarding above reactions is:
A. Al shows amphoteric character
B. Gas ' P ' and ' Q ' are different
C. Both X and Y are water soluble
D. Gas Q is inflammable
16. The incorrect statement regarding ' X ' in given reaction is:
$B F_{3}+\mathrm{LiAlH}_{4} \rightarrow \xrightarrow{\text { Ether }}(X)+\mathrm{LiF}+\mathrm{AlF}_{3}$
A. Twelve electrons are involved in bonding
B. Four, two centre-two electron bonds
C. Two, three centre-two electron bonds
D. X does not react with NH_{3}

Answer: D

- Watch Video Solution

17. The incorrect stability order of +3 and +1 states of 13th group elements (boron family) is:
A. $G a^{3+}<\mathrm{In}^{3+}<T l^{3+}$
B. $T l^{+}>T l^{3+}$
C. $G a^{+}<$In $^{+}<T l^{+}$
D. $G a^{3+}>G a^{+}$

Answer: A

- Watch Video Solution

18. Consider the following route of reaction:
$R_{2} \mathrm{SiCl}_{2}+$ water $\rightarrow(A) \xrightarrow{\text { Polymerisation }}(B)$
Compound(B) in above reaction is:
A. Dimer silicone
B. Linear silicone
C. Cross linked silicon
D. Polymerisation of (A) does not occur

Answer: B

19. The most basic oxide of elements group 14 of the periodic table is:
A. SiO_{2}
B. GeO_{2}
C. SnO_{2}
D. PbO

Answer: D

- Watch Video Solution

20. $\left(\mathrm{Si}_{2} \mathrm{O}_{5}\right)_{n}^{2 n-}$ anion is obtained when:
A. no oxygen of a SiO_{4}^{4-} tetrahedron is shared with another SiO_{4}^{4-} tetrahedron
B. one oxygen of a SiO_{4}^{4-} tetrahedron is shared with another SiO_{4}^{4-} tetrahedron
C. two oxygen of a SiO_{4}^{4-} tetrahedron are shared with another SiO_{4}^{4-} tetrahedron
D. Three oxygen of a SiO_{4}^{4-} tetrahedron are shared with another SiO_{4}^{4-} tetrahedron

Answer: D

- Watch Video Solution

21. Amphilbole silicate structure has ' x ' number of corner shared per tetrahedron. The value of x is :
A. 2
B. $2 \frac{1}{2}$
C. 3
D. 4

Answer: B

- Watch Video Solution

22. The silicate ion in the mineral kinoite is a chain of three SiO_{4}^{4-} tetrahedral that share corners with adjacent tetrahedral. The mineral also contains $C a^{2+}$ ions, $C u^{2+}$ ions and water molecules in $1: 1: 1$ ratio. The mineral is represented as
A. $\mathrm{CaCuSi} i_{3} \mathrm{O}_{10} \cdot \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{CaCuSi}{ }_{3} \mathrm{O}_{10} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{Ca}_{2} \mathrm{Cu}_{2} \mathrm{Si}_{3} \mathrm{O}_{10} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
D. none of these

Answer: C

23. Choose the correct order of C-C bond length in the given compounds:
A. Acetylene $<$ ethylene $<$ graphite $<$ benzene $<$ ethane
B. acetylene $<$ ethylene $<$ benzene $<$ graphite $<$ ethane
C. acetylene $<$ graphite $<$ ethylene $<$ benzene $<$ ethane
D. acetylene $<$ benzene $<$ graphite $<$ entylene $<$ ethane

Answer: B

- Watch Video Solution

24. Silicate having one monovalent corner oxygen atom in each tetrahedron unit is
A. sheet silicate
B. cyclic silicate
C. single chain silicate
D. double chain silicate

D Watch Video Solution

25. In which of the following silicates, only two corners per tetrahedron are shared?
I. Pyrosilicate
II. Cyclic silicate

III Double chain silicate
IV Single chain silicate
V 3D Silicate
A. (i),(ii) and (iv)
B. (iv) and (vi) only
C. (i) and (vi) only
D. (ii) and (iv) only

Answer: D

26. The correct code for stability, of oxidation states for given cations is:
(i) $\mathrm{Pb}^{2+}>\mathrm{Pb}^{4+}, T l^{+}<T l^{3+}$
(ii) $\mathrm{Bi}^{3+}<\mathrm{Sb}^{3+}, \mathrm{Sn}^{3+}<\mathrm{Sn}^{4+}$
(iii) $\mathrm{Pb}^{3+}>\mathrm{Pb}^{4+}, \mathrm{Bi}^{3+}>\mathrm{Bi}^{3+}$
(iv) $\mathrm{Tl}^{3+}<\mathrm{ln}^{3+}, \mathrm{Sn}^{2+}>\mathrm{Sn}^{4+}$
(v) $\mathrm{Sn}^{2+}<\mathrm{Pb}^{2+}, \mathrm{Sn}^{4+}>\mathrm{Pb}^{4+}$
(vi) $\mathrm{Sn}^{2+}<\mathrm{Pb}^{2+}, \mathrm{Sn}^{4+}<\mathrm{Pb}^{4+}$
A. (v) and (vi)
B. (i), (iii) and (vi)
C. (iii) and (v)
D. (ii) and (iv)

Answer: C

27. Nitrogen gas is liberated by thermal decomposition of:
A. $\mathrm{NH}_{4} \mathrm{NO}_{2}$
B. NaN_{3}
C. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
D. all

Answer: D

- Watch Video Solution

28. Two oxides of Nitrogen, NO and NO_{2} reacts together at 253 K and form a compound Nitrogen X.X reacts with water to yield another compound of Nitrogen Y . The shape of the anion of Y molecule is
A. triangular planar
B. triangular pyramidal
C. tetrahedron
D. square planar

Answer: A

- Watch Video Solution

29. Consider the following sequence of reaction:
$N a+\mathrm{NH}_{3}(g) \rightarrow[X] \xrightarrow{\mathrm{N}_{2} \mathrm{O}}[Y] \xrightarrow{\text { Heat }} \underset{\text { Gas pure }}{[Z]}$
Identify [Z] gas:
A. N_{2}
B. NH_{3}
C. O_{2}
D. H_{2}

Answer: A

30. Which of the following oxyacid contains both P-H and P-P bond simultaneously?
A. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$
B. $\mathrm{H}_{4} \mathrm{O}_{2} \mathrm{O}_{7}$
C. $\mathrm{H}_{4} \mathrm{O}_{2} \mathrm{O}_{6}$
D. none

Answer: D

- Watch Video Solution

31. Among the following statement which one is true?
A. NH_{3} is less soluble than PH_{3} in water
B. NH_{3} is stronger base and stronger reducing agent than PH_{3}
C. NH_{3} has higher boiling point than $P H_{3}$ and has lower melting point than PH_{3}
D. PH_{3} is stronger reducing agent than NH_{3} and it has lower critical temperature than NH_{3}

Answer: D

- Watch Video Solution

32. Which of the following statements regarding $\mathrm{N}_{2} \mathrm{O}_{4}$ is/are correct?
A. It is a planar molecule
B. It is used as non-aqueous solvent
C. It involves $\mathrm{N}-\mathrm{N}$ bond which is larger than that $\mathrm{N}-\mathrm{N}$ bond in hydrazine
D. Ammonium nitrate in $N_{2} O_{4}$ acts as a base

Answer: C

33. Which of the following on heating produces NO_{2} ?
A. NaNO_{3}
B. AgNO_{3}
C. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
D. $\mathrm{NH}_{4} \mathrm{NO}_{2}$

Answer: B

- Watch Video Solution

34. Which of the following equation is incorrectly written?
A. $\mathrm{P}_{4}+20 \mathrm{HNO}_{3} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}+20 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{I}_{2}+10 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{HIO}_{4}+10 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{S}+6 \mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+6 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
D. none of the above

- Watch Video Solution

35. The cyclotrimetaphosphoric acid is:
A. $\left(\mathrm{HPO}_{3}\right)_{5}$ and contains 9σ-bonds
B. $H_{3} P_{3} O_{6}$ and contains 12σ - bonds
C. $\left(\mathrm{HPO}_{3}\right)_{3}$ and contains 15σ-bonds
D. $H_{3} P_{3} O_{9}$ and contains 18σ-bonds

Answer: C

- Watch Video Solution

36. $\mathrm{A}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{B}+\mathrm{HCl}$
$\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}+\mathrm{HCl}$

Compound (A), (B) and (C) will be respectively:
A. $\mathrm{PCl}_{5}, \mathrm{POCl}_{3}, \mathrm{H}_{3} \mathrm{PO}_{3}$
B. $\mathrm{PCl}_{5}, \mathrm{POCl}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}$
C. $\mathrm{SOCl}_{2}, \mathrm{POCl}_{3}, \mathrm{H}_{3} \mathrm{PO}_{3}$
D. $\mathrm{PCl}_{3}, \mathrm{POCl}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}$

Answer: B

- Watch Video Solution

37. It is recommended that ammonia bottles be opened after cooling in ice for sometime. This is because
A. brings tears in the eyes
B. is a corrosive liquid
C. is a mild explosive
D. generates high vapour pressure
38. Which of the following statements are correct about the reaction between the copper metal and dilute HNO_{3} ?
A. IIIIIIII
B. I,III
C. III,IV
D. All the above

Answer: A

- Watch Video Solution

39. In which of the following acids, P-P bonds is present?
A. Tetra poly phosphoric acid $\left(H_{6} P_{4} O_{13}\right)$
B. Pyrophosphoric acid $\left(\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}\right)$
C. Hypophosphoric acid $\left(H_{4} P_{2} O_{6}\right)$
D. Polymetaphosphoric acid $\left(\mathrm{HPO}_{3}\right)_{\pi}$

Answer: C

- Watch Video Solution

40. $\mathrm{NH}_{3}+\mathrm{O}_{2} \xrightarrow[\Delta]{\mathrm{Pt}} A+\mathrm{H}_{2} \mathrm{O}$
$A+O_{2} \rightarrow B$,
$B+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}$
A, B and C are:
A. $\mathrm{N}_{2} \mathrm{O}, \mathrm{NO}_{2}$ and HNO_{3}
B. $\mathrm{NO}, \mathrm{NO}_{2}$ and HNO_{3}
C. $\mathrm{NO}_{2}, \mathrm{NO}$ and HNO_{3}
D. $\mathrm{N}_{2} \mathrm{O}, \mathrm{NO}$ and HNO_{3}

Answer: B

41. The formation of PH_{4}^{+}is diffficult compaired to NH_{4}^{+}because:
A. Ione pair of phosphorus is optically inert
B. Ione pair of phosphorus resides in almost pure p-orbital
C. Ione pair of phosphorus resides at $s p^{3}$ orbital
D. Ione pair of phosphorus resides in almost pure s-orbitals

Answer: D

- Watch Video Solution

42. Nitrozen (i) oxide is produced by
A. thermal decomposition of sodium nitrite at low temperature
B. thermal decomposition of ammonium nitrite
C. disproportionation of $\mathrm{N}_{2} \mathrm{O}_{4}$
D. interaction of hydroxyl amine and nitrous acid

Answer: D

- Watch Video Solution

43. Amongst the following compounds
(I) $H_{5} P_{3} O_{10}$
(II) $H_{6} P_{4} O_{13}$
(III) $H_{5} P_{5} O_{15}$
(IV) $\mathrm{H}_{7} \mathrm{P}_{5} \mathrm{O}_{16}$
non-cyclic phosphates are:
A. I,III
B. I,IIIIII
C. I,II,IV
D. IIIIIIII,IV

Answer: C

Watch Video Solution

44. Match List-I with List-II and select the correct answer using the codes given below the lists:

List-I (Compounds)

(A) $\mathrm{BaSO}_{4}+\mathrm{ZnS}$
(B) NI_{3}
(C) $\mathrm{N}_{2} \mathrm{O}_{4}$
(D) KO_{2}

List-II (used in)

(1) Explosive
(2) Oxidiser in rocket propellants
(3) Space capsule
(4) Pigment
A. $A-3, B-1, C-4, D-2$
B. $A-4, B-1, C-2, D-3$
C. $A-3, B-4, C-1, D-2$
D. $A-4, B-3, C-2, D-1$

Answer: B
45. Which is the correct sequence in the following properties. For the correct order mark (T) and for the incorrect order mark (F) :
(a)Acidity order : $\mathrm{SiF}_{4}<\mathrm{SiCl}_{4}<\mathrm{SiBr}_{4}<\mathrm{Sil}$
(c)Boiling point : $\mathrm{NH}_{3}>\mathrm{SbH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}$
(b)Melting point: N
(d)Dipole moment o
A. FTFT
B. TFTF
C. FFTT
D. FFTF

Answer: A

- Watch Video Solution

46. An orange solid (X) on heating, gives a colourless gas (Y) and a only green residue (Z). Gas (Y) on treatment with Mg , produces a white solid substance......
A. $M g_{2} N_{2}$
B. $M g O$
C. $\mathrm{Mg}_{2} \mathrm{O}_{3}$
D. MgCl_{2}

Answer: A

- Watch Video Solution

47. Calcium imide on hydrolysis will give gas (B) which on oxidation by beaching powder gives gas (C) gas (C) on reaction with magnesium give compound $(D) \cdot(D)$ on hydrolysis gives gas $(B) \cdot(B),(C)$ and (D) are
A. $N H_{3}, N_{2}, M g_{3} N_{2}$
B. $\mathrm{N}_{2}, \mathrm{NH}_{3}, \mathrm{MgNH}$
C. $N_{2}, N_{2} O_{5}, M g\left(\mathrm{NO}_{3}\right)_{2}$
D. $\mathrm{NH}_{3}, \mathrm{NO}_{2}, \mathrm{Mg}\left(\mathrm{NO}_{2}\right)_{2}$

D Watch Video Solution

48. Among the following compounds, which on heating do not produce N_{2} ?
A. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
B. $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaNO} \mathrm{N}_{2}$
C. $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{CaO}$
D. $\mathrm{Ba}\left(\mathrm{N}_{3}\right)_{2}$

Answer: C

- Watch Video Solution

49. In which of the following compounds hydrolysis tkes plcae through $S_{N^{1}}$ and $S_{N^{2}}$ mechanism respectively?
A. $N F_{3}, N C l_{3}$
B. $P_{4} O_{10}, S i C l_{4}$
C. $S F_{4}, T e F_{6}$
D. $S i \mathrm{Sl}_{6}, S i F_{4}$

Answer: A

- Watch Video Solution

50. Incorrect statement about PH_{3} is:
A. it is produced by hydrolysis of $C a_{3} P_{2}$
B. It gives black ppt. $\left(\mathrm{Cu}_{3} \mathrm{P}_{2}\right)$ with CuSO_{4} solution
C. Spontaneously burnns in presence of $P_{2} H_{4}$
D. it does not react with $B_{2} H_{6}$

Answer: D

51. Which of the following compound does not give oxyacid of central atom on hydrolysis?
A. $B F_{3}$
B. NCl_{3}
C. $S F_{4}$
D. $P C l_{5}$

Answer: B

- Watch Video Solution

52. The incorrect statement regarding 15th group hyrides $\left(E H_{3}\right) \cdot[E=N, P, A s, S b, B i]$
A. $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{BiH}_{3}$:Thermal stability
B. $N-H>P-H>A s-H>S b-H>B i-H, E-H$ bond dissociation enthalpy
C. $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{BiH}_{3}$: Reducing character
D. $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{BiH}_{3}$: Basicity

Answer: C

- Watch Video Solution

53. Calculate $\mathrm{x}+\mathrm{y}+\mathrm{z}$ for $\mathrm{H}_{3} \mathrm{PO}_{3}$ acid, where x is number of lone pairs, y is number of σ-bonds and z is number of π-bonds
A. 5
B. 14
C. 13
D. 12
54. A non-metal M forms $\mathrm{MCl}_{3}, \mathrm{M}_{2} \mathrm{O}_{5}$ and $\mathrm{Mg}_{3} M_{2}$ but does not form $M I_{5}$, then incorrect statement regarding non-metal M is
A. M can form mutiple bond
B. M is of second period element
C. Atomicity of non-metal is 4
D. The range of oxidation number for M is -3 to +5

Answer: C

- Watch Video Solution

55. The incorrect order is:
A. Thermal stabilityy: $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}$
B. Lewis basic character $\mathrm{PF}_{3}<\mathrm{PCl}_{3}<\mathrm{PBr}_{3}$
c. \%p-character: $\mathrm{NO}_{2}^{+}>\mathrm{NO}_{3}^{-}>\mathrm{NH}_{3}^{+}$
D. Bond angle : $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}$

Answer: C

- Watch Video Solution

56. The correct order of S-S bond length in following oxyanions is: $S_{2} O_{4}^{2-}$
(II) $S_{2} O_{5}^{2-}$
(III) $S_{2} O_{6}^{2-}$
A. $I>I I>I I I$
B. $I>I I I>I I$
C. $I I I>I I>I$
D. $I I I>I>I I$

Answer: A

57. In which of the following reaction product does not contian 'peroxoy' linakge?
$\mathrm{A} .2 \mathrm{OF} \xrightarrow{\text { Dimerisation }}$
B. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{8} \xrightarrow{+\mathrm{H}_{2} \mathrm{O}}$
C. $2 N a \xrightarrow[\Delta]{\text { excess } O_{2}}$
D. none of these

Answer: A

- Watch Video Solution

58. Consider the following statements in respect of oxides of sulphur:
(1) in gas phase $S O_{2}$ molecule is V_{-}shape.
(2) In gas phase SO_{3} molecule is planar.
(3) $\gamma-\mathrm{SO}_{3}$ is cyclic trimer.

Which of the above statements are correct?
A. 1 and 2 only
B. 2 and 3 only
C. 1 and 3 only
D. 1,2 and 3

Answer: D

- Watch Video Solution

59. Gas that can not be collected over water is:
A. N_{2}
B. O_{2}
C. SO_{2}
D. PH_{3}

Answer: C

D Watch Video Solution

60. In thiosulphuric acid:
A. each sulphur atom is in identical oxidation state
B. there is a s=S linkage present
C. one S atom is in +2 and other sulphur atom is in +4 oxidation state
D. there is only one replaceable hydrogen atom

Answer: B

- Watch Video Solution

61. One gas bleaches the colour of flowers by reduction, while the other by oxidation, the two gases respectively are:
A. $C O$ and $C l_{2}$
B. $\mathrm{H}_{2} \mathrm{~S}$ and Br_{2}
C. NH_{3} and SO_{3}
D. SO_{2} and Cl_{2}

Answer: D

- Watch Video Solution

62. Which of the following halides cannot be hydrolysed at room temperature?
(I) $T e F_{6}$
(II) $S F_{6}$
(III) NCl_{3}
(IV) $N F_{3}$

Choose the correct code:
A. III and IV
B. I, II and III
C. I, II and IV
D. II and IV

Answer: D

- Watch Video Solution

63. By which of the following methods, $\mathrm{H}_{2} \mathrm{O}_{2}$ can't be synthesised?
A. Lewis addition of ice cold $\mathrm{H}_{2} \mathrm{SO}_{4}$ on BaO_{2}
B. Addition of ice cold $\mathrm{H}_{2} \mathrm{SO}_{4}$ on PbO_{2}
C. Aerial oxidation of 2-ethyl anthraquinol
D. Electrolysis of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ at a high current density

Answer: B

64. Give the correct order of initials T or F for following statements. Use T if statements is true and F if if false.
(I) Number of $S-S$ bond in $H_{2} S_{n} O_{6}$ are $(n+1)$
(II) When F_{2} reacts with water gives $\mathrm{HF}, \mathrm{O}_{2}$ and O_{3}
(III) LiNO_{3} and BaCl_{2} compounds are used in the fire works
(IV) Be and Mg hydrides are ionic and polymeric
A. FTTF
B. FTTT
C. TFTT
D. TTFF

Answer: A

- Watch Video Solution

65. Which of the following parent acid(s) does/do not have corresponding hypo-oxyacid?
A. $\mathrm{H}_{2} \mathrm{SO}_{2}$
B. HNO_{2}
C. $\mathrm{H}_{3} \mathrm{PO}_{3}$
D. HClO_{3}

Answer: D

- Watch Video Solution

66. Which pair of elements cann from multiple bond with itselff and oxygen?
A. F,N
B. N, Cl
C. N, Br
D. N,C
67. Consider the following reactions:
(i) $\mathrm{PCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}+3 \mathrm{HCl}$
(ii) $\mathrm{SF}_{4}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{SO}_{3}+4 \mathrm{HF}$
(iii) $\mathrm{BCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{BO}_{3}+3 \mathrm{HCl}$
(iv) $\mathrm{XeF}_{6}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{XeO}_{3}+6 \mathrm{HF}$

Then according to given information the incorrect statement is:
A. During the (i) reaction the hybridisation of 15th group element does not change
B. During the (ii) reaction the hybridisation of 16th group element does not change
C. During the (iii) reaction the hybridisation of 13th group element does not change
D. During the (iv) reaction the hybridisation of 18th group element does not change

Answer: D

- Watch Video Solution

68. Consider the oxy acids HClO_{n} series here value of n is 1 to 4. then incorrect statement regarding these oxyacids Is:
A. Acidic character of oxy acids increases with increasing value of n.
B. Oxidising power of oxy acids increases with decreasing value of n
C. thermal stability of oxy acids decreases with increasing value of n.
D. $\mathrm{Cl}-\mathrm{O}$ ' bond order decreases with decreasing value of n

Answer: C

D Watch Video Solution

69. The correct statement regarding ClO_{n}^{-}molecular ion is:
A. On decreasing value of ' n ', $\mathrm{Cl}-\mathrm{O}$ bond order increases
B. On increasing value of ' n ', $\mathrm{Cl}-\mathrm{O}$ bond length increases
C. On increasing value of n, oxidation number of central atom increases
D. On increasing value of n , hybrid orbitals on central atom increases

Answer: C

- View Text Solution

70. $\mathrm{In}, \mathrm{Cl}_{2} \mathrm{O}_{6}(\mathrm{l})+\mathrm{HF} \rightarrow \mathrm{P}+Q$

If H^{-}of acid HF attraches with Q , then correct option of hybridization of Cl -atom and $\angle O C l O$ in the P and Q ions:
A. $P: s p^{2},>120^{\circ}$
B. $Q: s p^{3}: 109^{\circ} 28^{\prime}$
C. $P: s p^{3},<109^{\circ} 28^{\prime}$
D. $Q: s p^{3},>109^{\circ} 28^{\prime}$

Answer: B

- Watch Video Solution

71. Bromine is commercially prepared from sea water by displacement reaction

$$
\mathrm{Cl}_{2}+2 \mathrm{Br}^{-}(a q) \rightarrow 2 \mathrm{Cl}^{-}(a q)+\mathrm{Br}_{2}
$$

Br_{2} gas thus formed is dissolved into solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and then pure $B r_{2}$ is obtained by treatment of the solution with:
A. $\mathrm{Ca}(\mathrm{OH})_{2}$
B. NaOH
C. $\mathrm{H}_{2} \mathrm{SO}_{4}$
D. $H I$

Answer: C

72. Which of the following properties of halogens increase with increasing atomic number?
(I) Ionization energy
(II) Ionic radius
(III) Bond energy of the X_{2} molecule
(IV) Enthalpy of vaporisation
A. IIIIIIII
B. I,III
C. IIIV
D. IV

Answer: C

- Watch Video Solution

73. Predict the correct product when $C l_{2}$ passed through
$H-\stackrel{18}{O}-{ }_{O}^{18}-H$ solution.
A. $\mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{O}_{2}$ (both oxygen having 18)
B. HOCl and HClO_{2} (all oxygen having 18)
C. HClO_{4} and HCl (all oxygen having 18)
D. $\mathrm{Cl}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ (all oxygen having 18)

Answer: A

- Watch Video Solution

74. $\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{X}(a q)+.\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
$X+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow Y+\mathrm{BaSO}_{4}$
$Y \underset{\Delta>365 \mathrm{~K}}{\stackrel{\Delta}{Z}}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
Y and Z are respectively:
A. $\mathrm{HClO}_{4}, \mathrm{ClO}_{2}$
B. $\mathrm{HClO}_{3}, \mathrm{ClO}_{2}$
C. $\mathrm{HClO}_{3}, \mathrm{ClO}_{6}$
D. $\mathrm{HClO}_{4}, \mathrm{Cl}_{2} \mathrm{O}_{7}$

D Watch Video Solution

75. Auto-oxidation of bleaching powder gives:
A. only calcium chlorate
B. only calcium chloride
C. only calcium hypochlorite
D. both (a) and (b)

Answer: D

- Watch Video Solution

76. Which is incorrectly matched?
A. $I_{4} O_{9} \Leftrightarrow I^{3+}+3 \mathrm{IO}_{3}^{-}$
B. $I_{2} O_{4} \Leftrightarrow I O^{+}+I O_{3}^{-}$
C. $\mathrm{CsBr}_{3} \Leftrightarrow \mathrm{Cs}^{+}+\mathrm{Br}_{3}^{-}$
D. none of these

Answer: D

- Watch Video Solution

77. The three elements X, Y and Z with electronic configuration shown below al form hydrides:

Element	Electronic configuration
X	$1 s^{2} 2 s^{2} 2 p^{2}$
Y	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
Z	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{5}$

Which set of properties match correctly with properties of the hydrides of these elements:
A. Hydride of X - Colourless gas insoluble in $\mathrm{H}_{2} \mathrm{O}$, Hydride of Y Silver/grey solid reacts with $\mathrm{H}_{2} \mathrm{O}$ to form an alkali Hydride of Z-Colourless gas forms a strong acid in $\mathrm{H}_{2} \mathrm{O}$
B. Hydride of X-Colourless liquid, no reaction with $\mathrm{H}_{2} \mathrm{O}$, Hydride of Y -

Silver/grey solid forms H_{2} and $\mathrm{H}_{2} \mathrm{O}$, Hydride of Z-lonic solid with formula ZH
C. Hydride of X-Non-polar compound reacts with Cl_{2} in light, Hydride of Y-Silver/grey ionic solid with formula $Y H_{2}$,Hydride of Z-Forms when water is added to phosphorus and elemental Z .
D. Hydride of X-Colourless gas which burns with air, Hydride of Y Silver/grey solid which reacts violently with acids, Hydride of ZColourless, corrosive liquid at STP

Answer: A

- Watch Video Solution

78. The incorrect order is:
A. $\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$: Acidic strength
B. $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI}$: Thermal stability
C. $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI}$: Boiling point
D. $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI}$: bond dissociation enthalpy

Answer: C

- Watch Video Solution

79. The correct statement regarding perxenate ion $\left(\mathrm{XeO}_{6}^{4-}\right)$ is:
A. it is polar species
B. it is a planar species
C. $\mathrm{Xe}-\mathrm{O}$ ' bond order is 1.33
D. Molecular ion has only one type of bond angle

Answer: C

80. XeF_{2} and $X e F_{6}$ are separately hydrolysed then:
A. both give out O_{2}
B. $X e F_{6}$ gives O_{2} and does not
C. XeF_{2} along gives O_{2}
D. Neither of them gives HF

Answer: C

- Watch Video Solution

81. $M f+X e F_{4} \rightarrow M^{+} A^{-}\left(M^{+}-\right.$alkali metal cation $)$The state of hybridisation of the central atom in A and sphere of the species are:
A. $s p^{3} d, T B P$
B. $s p^{3} d^{3}$, distorted octahedral
C. $s p^{3} d^{3}$, pentagonal planar
D. No compound formed at all

Answer: C

- Watch Video Solution

82. Xenon tetrafluoride, XeF_{4} is:
A. tetrahedral annd acts as a fluoride donor with $S b F_{5}$
B. square planar and acts as a fluoride donor with $P F_{5}$
C. square planar and acts as fluoride donor with $N a F$
D. see-saw shape and acts as a fluoride donor with $A s F_{5}$

Answer: B

- Watch Video Solution

83. XeF_{6} dissolves in anhydrous HF to give a good conducting solution which contains:
A. H^{+}and XeF_{7}^{-}ion
B. $H F_{2}^{-}$and XeF_{5}^{+}ions
C. $\mathrm{HXeF}{ }_{6}{ }^{+}$and F^{-}ions
D. none of these

Answer: B

- Watch Video Solution

84. Which of the following is not true about helium ?
A. it has the lowest boiling point
B. it has the highest first ionization energy
C. it can diffuse through rubber and plastic material
D. it can form clathrate compounds

Answer: D

85. $S b F_{5}$ reacts with $X e F_{4}$ to form an adduct. The shapes of cation and anion in the adduct are respectively:
A. square planar, trigonal bipyramidal
B. T-shaped, octahedral
C. square pyramidal, octahedral
D. square planar, octahedral

Answer: B

- Watch Video Solution

86. Consider the followingg transformations:
(I) $\mathrm{XeF}_{6}+\mathrm{NaF} \rightarrow \mathrm{Na}^{+}\left[\mathrm{XeF}_{7}\right]^{-}$
(II) $2 P^{2} l_{5}(s) \rightarrow\left[P C l_{4}\right]^{+}\left[P C l_{6}\right]^{-}$
(III) $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}+\mathrm{H}_{3} \mathrm{O}^{+}$

Possible transformations are:
A. IIIIIII
B. I,III
C. I,II
D. IIIIII

Answer: A

- Watch Video Solution

87. Which of the following is an uncommon hydrolysis product of $X e F_{2}$ and XeF_{4} ?
A. Xe
B. XeO_{3}
C. $H F$
D. O_{2}

Answer: B

88. Incorrect statement regarding following reaction is:

A. X ' is explosive
B. Y^{\prime} is an oxyacid of xenon
C. Both are example of non-redox reaction
D. XeF_{6} can underg partial hydrolysis

Answer: B

- Watch Video Solution

89. Which of the following noble gases does not form clatherates?
A. Kr
B. Ne
C. Xe
D. Ar

Answer: B

D Watch Video Solution

90. Correct order of bond angle in given species is:
A. $\mathrm{SiO}_{4}^{4-}>\mathrm{PCl}_{3}>\mathrm{NCl}_{3}>\mathrm{SbH}_{3}>\mathrm{H}_{2} \mathrm{Te}$
B. $\mathrm{SiO}_{4}^{4-}>\mathrm{NCl}_{3}>\mathrm{PCl}_{3}>\mathrm{SbH}_{3}>\mathrm{H}_{2} \mathrm{Te}$
C. $\mathrm{SiO}_{4}^{4-}>\mathrm{H}_{2} \mathrm{Te}>\mathrm{SbH}_{3}>\mathrm{PCl}_{3}>\mathrm{NCl}_{3}$
D. $\mathrm{NCl}_{3}>\mathrm{PCl}_{3}>\mathrm{SiO}_{4}^{4-}>\mathrm{SbH}_{3}>\mathrm{H}_{2} \mathrm{Te}$

Answer: B

91. The incorrect order is:
A. $N>P>A s$: strength of π-bond with oxygen atom
B. $S i F_{4}>S i C l_{4}>S i B r_{4}>S i I_{4}$: Thermal stability
C. $H_{2} S>H_{2} S e>H_{2} T e$: Arrhenious acid character
D. $C a B r_{2}>M g B r_{2}>B e B r_{2}$ Melting point

Answer: C

- View Text Solution

92. Among the following, cyclic species are:
(I) $H_{5} P_{3} O_{10}$
(II) $\left[B_{3} O_{3}(O H)_{5}\right]^{2-}$
(III) $H_{5} P_{5} O_{15}$
(IV) $P_{3} N_{3} C l_{6}$
A. IIII
B. IIIII,IV
C. IIIIII,IV
D. I,IIIIII,IV

Answer: C

- Watch Video Solution

93. The substance that has the lowest boililng point is:
A. HCl
B. $H_{2} S$
C. PH_{3}
D. SiH_{4}

Answer: D

94. Which of the following molecule can show Lewis acidity?
(I) CO_{2}
(II) $B r_{2}$
(III) SnCl_{2}
(IV) $H F$
A. III,IV
B. I,II,III
C. I,III,IV
D. II,III,IV

Answer: B

- Watch Video Solution

95. Molecule having non-pola as well as polar bonds but the molecule as a
whole is polar:
A. $(S C N)_{2}$
B. $\mathrm{Cl}_{2} \mathrm{O}_{8}$
C. $B_{2} C l_{4}$
D. $I_{2} C l_{6}$

Answer: A::B

- View Text Solution

96. Which of the following order is incorrect?
A. Lewis basic character: $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}$
B. Bond dissociation energy $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI}$
C. Thermal stability: $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$
D. Bond angle: $\mathrm{CH}_{4}>\mathrm{SiH}_{4}>\mathrm{GeH}_{4}>\mathrm{SnH}_{4}$

Answer: D

97. Which of the following does not under Lewis acid-basic reaction?
A. $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{AlCl}_{3}+\mathrm{Cl}^{-}$
C. $S F_{6}+B F_{3}$
D. $\mathrm{B}(\mathrm{OH})_{3}+\mathrm{H}_{2} \mathrm{O}$

Answer: C

- View Text Solution

Level 3 Passage Type

1. Each oxy-acid contains at least one $\mathrm{X}-\mathrm{OH}$ unit (X is non-metal). The H atom of $\mathrm{X}-\mathrm{OH}$ unit is ionisable and the number of - OH groups directly attach to non-metal decides the basicity of oxy-acid.
Q. Which of the following oxy-acid does not have its peroxy form having two central atoms?
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$
B. HNO_{3}
C. $H_{3} P O_{4}$
D. none

Answer: B

- Watch Video Solution

2. Each oxy-acid contains at least one $\mathrm{X}-\mathrm{OH}$ unit (X is non-metal). The H atom of $\mathrm{X}-\mathrm{OH}$ unit is ionisable and the number of - OH groups directly attach to non-metal decides the basicity of oxy-acid.
Q. Which of the following oxy-acid does not have its peroxy form having two central atoms?
A. $\mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
B. $H_{4} P_{2} O_{6}$
C. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$
D. $\mathrm{H}_{3} \mathrm{PO}_{3}$

Answer: A

- Watch Video Solution

3. Each oxy-acid contains at least one $\mathrm{X}-\mathrm{OH}$ unit (X is non-metal). The H atom of $\mathrm{X}-\mathrm{OH}$ unit is ionisable and the number of -OH groups directly attach to non-metal decides the basicity of oxy-acid.
Q. Which of the following oxy-acid does not have its peroxy form having two central atoms?
A. $S_{3} O_{6}^{2-}$
B. $\mathrm{Si}_{2} \mathrm{O}_{7}^{6-}$
C. $S_{2} O_{5}^{2-}$
D. none

Answer: C

D Watch Video Solution

4. Formation of a bridge bond is best explained by molecular orbital theory. According to which a bridge bond is formed by filling electrons into molecular orbital which spread over three nuclei hence such bonds are speciified as three centered bond.
Q. In which of the following dimer emtpy atomic orbit of central atom of monomer does not involve in hybridization:
A. $G a_{2} H_{6}$
B. $A l_{2} B r_{6}$
C. $B e_{2} H_{4}$
D. $\mathrm{Cl}_{2} \mathrm{O}_{6}$

Answer: D

5. Formation of a bridge bond is best explained by molecular orbital theory. According to which a bridge bond is formed by filling electrons into molecular orbital which spread over three nuclei hence such bonds are speciified as three centered bond.
Q. In which of the following compound hybridization of bridging atom is differennt from hybridisation of central atom:
A. $A l_{2}\left(\mathrm{NH}_{2}\right)_{6}$
B. $I_{2} C l_{6}$
C. Solid BeCl_{2}
D. $A l_{2}(\mathrm{OH})_{6}$

Answer: B

- View Text Solution

6. Formation of a bridge bond is best explained by molecular orbital theory. According to which a bridge bond is formed by filling electrons into molecular orbital which spread over three nuclei hence such bonds are speciified as three centered bond.
Q. Which of the following compound is having number of atoms in same plane?
A. $A l_{2} M e_{6}$
B. $B_{2} H_{6}$
C. $B e_{2} H_{4}$
D. $C_{3} H_{4}$

Answer: A

- View Text Solution

7. (i) $P+C$ (carbon) $+C l_{2} \rightarrow Q+C O$ uaarr
(ii) $\mathrm{Q}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{R}+\mathrm{HCl}$
(iii) $\mathrm{BN}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{R}+\mathrm{NH}_{3} \uparrow$
(iv) $Q+\mathrm{LiAlH}_{4} \rightarrow \mathrm{~S}+\mathrm{LiCl}+\mathrm{AlCl}_{3}$
(v) $S+H_{2} \rightarrow R+H_{2} \uparrow$
(vi) $S+\mathrm{NaH} \rightarrow T$
(P,Q,R,S annd T do not represent their chemical symbols)
Q. Compound Q has:
(I) zero dipole moment.
(II) a planar trigonal structure
(III) an electron deficient compound
(IV) a lewis base

Chose the correct code:
A. I,IV
B. IIII,IV
C. I,IIIIII
D. I,IIIIII,IV

Answer: C

8. (i) $P+C$ (carbon) $+C l_{2} \rightarrow Q+C O$ uaarr
(ii) $\mathrm{Q}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{R}+\mathrm{HCl}$
(iii) $\mathrm{BN}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{R}+\mathrm{NH}_{3} \uparrow$
(iv) $Q+\mathrm{LiAlH}_{4} \rightarrow \mathrm{~S}+\mathrm{LiCl}+\mathrm{AlCl}_{3}$
(v) $S+H_{2} \rightarrow R+H_{2} \uparrow$
(vi) $S+\mathrm{NaH} \rightarrow T$
(P,Q,R,S annd T do not represent their chemical symbols)
Q. Compound T is used as a/an:
A. oxidising agent
B. complexing agent
C. bleaching agent
D. reducing agent

Answer: D

9. (i) $P+C$ (carbon) $+C l_{2} \rightarrow Q+C O u a a r r$
(ii) $\mathrm{Q}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{R}+\mathrm{HCl}$
(iii) $\mathrm{BN}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{R}+\mathrm{NH}_{3} \uparrow$
(iv) $Q+\mathrm{LiAlH}_{4} \rightarrow \mathrm{~S}+\mathrm{LiCl}+\mathrm{AlCl}_{3}$
(v) $S+H_{2} \rightarrow R+H_{2} \uparrow$
(vi) $S+N a H \rightarrow T$
(P,Q,R,S annd T do not represent their chemical symbols)
Q. Compound S is:
(I) an odd e^{-}compound
(II) $\left(2 c-3 e^{-}\right)$compound
(III) a electron deficient compound
(IV) a $s p^{2}$ hybridized compound

Choose the correct code:
A. III
B. I,III
C. IIIIII,IV
D. IIII,IV

- Watch Video Solution

10.
Q. Compound (D) $+I^{-}+H^{-} \rightarrow$ Gas

Evolved gas is similar to:
A. Gas-B
B. Gas-G
C. Gas-H
D. None

Answer: C

11.

Q. Yellow ppt. of compound (I) is insoluble in:
A. NaOH
B. $\mathrm{CH}_{3} \mathrm{COOH}$
C. dil. HNO_{3}
D. none

Answer: B

12.
Q. type of hybridization of central atomo of gas (B) is:
A. $s p$
B. $s p^{2}$
C. $s p^{3}$
D. no hybridization

Answer: B

(D) View Text Solution

13. The following flow diagram represent the industrial preparation of nitric acid from ammonia:
$\mathrm{NH}_{3}+\underset{\text { (excess air) })}{\mathrm{O}_{2}} \stackrel{(\mathrm{X})}{\mathrm{N}} \mathrm{O}^{\circ} \mathrm{C}$ O $\mathrm{O} \xrightarrow[\text { air }]{(Y)}(Z) \xrightarrow{\text { water }} \mathrm{HNO}_{3}+\mathrm{NO}$
Q. Which line of entry describes the undefined reagents, products and reaction conditions?
A. X-Pt, Y-cool $\left(-25^{\circ} \mathrm{C}\right), \mathrm{Z}-\mathrm{NO}_{2}$
B. X-Ni, Y-cool ($\left.-25^{\circ} \mathrm{C}\right), \mathrm{Z}-\mathrm{N}_{2} \mathrm{O}$
C. X-Fe, Y-cool ($\left.-11^{\circ} \mathrm{C}\right)$, Z-NO2
D. X-Pd, Y-high pressure, $\mathrm{Z}-\mathrm{N}_{2} \mathrm{O}_{3}$

Answer: A

- Watch Video Solution

14. The following flow diagram represent the industrial preparation of nitric acid from ammonia:
$\mathrm{NH}_{3}+\underset{\text { (excess air) }}{\mathrm{O}_{2}} \stackrel{(\mathrm{X})}{\mathrm{N}} \mathrm{o}^{\circ} \mathrm{C}$ O $\mathrm{O} \xrightarrow[\text { air }]{(Y)}(Z) \xrightarrow{\text { water }} \mathrm{HNO}_{3}+\mathrm{NO}$
Q. When (Z) is dissolved in $\mathrm{H}_{2} \mathrm{O}$ then formation of HNO_{3} takes place through various reactions. select the reaction not observed in this step:
A. $\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{3}+\mathrm{HNO}_{2}$
B. $\mathrm{HNO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}+\mathrm{NO}_{2}$
C. $\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{3}+\mathrm{NO}$
D. none of these

Answer: D

- Watch Video Solution

15. Species having X-O-H linkage ($\mathrm{X}=$ =non-metal with positive oxidation state) are called oxy acids and parent acid of a non-metal may exist in two form (a)-ic form of parent oxy acid (b)-us form parent oxy acid.
Q. Number of P-O bond(s) having bond order=2, in $P_{2} \mathrm{O}_{6}^{4-}$ ions is:
A. 0
B. 2
C. 3
D. 6

Answer: A

- Watch Video Solution

16. Species having $\mathrm{X}-\mathrm{O}-\mathrm{H}$ linkage ($\mathrm{X}=$ =non-metal with positive oxidation state) are called oxy acids and parent acid of a non-metal may exist in two form (a)-ic form of parent oxy acid (b)-us form parent oxy acid.
Q. Which of the following parent oxy acid does not have its pyro-oxy acid?
A. $\mathrm{H}_{2} \mathrm{SO}_{3}$
B. HNO_{3}
C. $\mathrm{H}_{3} \mathrm{PO}_{3}$
D. $\mathrm{H}_{4} \mathrm{SiO}_{4}$

Answer: B

17. Species having X-O-H linkage ($\mathrm{X}=$ non-metal with positive oxidation state) are called oxy acids and parent acid of a non-metal may exist in two form (a)-ic form of parent oxy acid (b)-us form parent oxy acid.
Q. X -O-X bond (where $\mathrm{X}=$ central atom) is not present in species.
A. $\mathrm{Cl}_{2} \mathrm{O}_{7}$
B. $\mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{7}$
C. $\mathrm{N}_{2} \mathrm{O}_{5}$
D. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$

Answer: B

- Watch Video Solution

18. Consider the following sequence of reactions, if A is sulphuric acid, then give the answer of following questions

Q. Which of the following oxy acid does not have peroxy (-O-O-) linkage?
A. F
B. C
C. E
D. None of these

Answer: B

- View Text Solution

19. Consider the following sequence of reactions, if A is sulphuric acid, then give the answer of following questions

Q. In which of the following compound S -atom is $s p^{2}$ hybridised:
A. C
B. E
C. D
D. B

Answer: C

- View Text Solution

20. Consider the following sequence of reactions, if A is sulphuric acid, then give the answer of following questions

Q. Which of the following oxy acid is having S-O-S linakge?
A. B
B. C
C. F
D. None of these

Answer: A

One Or More Answers Is Are Correct

1. Consider the following reactions,
$A_{x}+y B_{2} \xrightarrow[\text { supply of air }]{\text { limited }}$ Compound $^{\prime} P^{\prime} \xrightarrow[\text { excess air }]{+z B_{2}}$ Compound ' Q^{\prime} If atomic number of elements A and B are 15 and 8 respectively, then according to the given information the correct statement(s) is/are:
A. (B-A-B) bond angle in compound 'Q'gt(B-A-B) bond angle in compound ' P '
B. (A-B) bond length in compound Q ' $<(A-B)$ bond length in compound ' P '
C. Value of $x+y+z$ is 9
D. Compound ' P ' is $P_{2} O_{5}$ and compound ' Q ' is $P_{4} O_{10}$

Answer: A::B::C

- Watch Video Solution

2. Which of the following is (are) V-shaped?
A. S_{3}^{2-}
B. I_{3}^{-}
C. N_{3}^{-}
D. I_{3}^{+}

Answer: A::D

- Watch Video Solution

3. ' $\mathrm{X}^{\prime}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow{ }^{\prime} Y^{\prime}+6 \mathrm{HF}$
$X+\mathrm{H}_{2} \mathrm{O} \rightarrow{ }^{\prime} Z^{\prime}+2 \mathrm{HF}$
If ' X ' is xenon hexafluoride than correct statement is:
A. Compound ' Y ' and 'Z' and same number of lone pair(s) at central atom
B. Both compound ' Y and 'Z' have same number of lone pair(s) at central atom
C. Z ' is a partially hydrolysed product of compound ' X '
D. X^{\prime} act as fluoride donor when it reacts with alkali metal fluoride.

Answer: A::B::C

- Watch Video Solution

4. Which of the following oxy anion(s) contain(s) P-O bond order equal to 1.5?
A. $\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{6}^{2-}$
B. $\mathrm{H}_{2} \mathrm{PO}_{3}^{-}$
C. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
D. $\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$

Answer: A::B::C::D

- Watch Video Solution

5. Which of the following order is correct?
A. $N_{2}>F_{2}>O_{2}$: Ionisation energy
B. $\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{O}$: reducing naturue
C. $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{~S}$: Boiling point
D. $\mathrm{HClO}_{4}>\mathrm{HClO}_{3}>\mathrm{HClO}_{2}>\mathrm{HClO}$: oxidising nature

Answer: B::C

D View Text Solution

6. Consider the following sequence of reaction

$+\mathrm{PCl}_{5}$

-'B'
the according to given information the correct statement(s) is/are:
A. Compound 'A' and $p \pi-p \pi$ bond
B. central atom of compound B is $s p^{3}$-hybridized
C. Compound 'B' has plane of symmetry
D. compound ' A ' is polarr and B is non-polar

Answer: B::C

- View Text Solution

7. Correct statement(s) about hydrolysis of $\mathrm{H}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$ is/are:
A. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$ can be formed by its partial hydrolysis
B. Hydrolysis is proceeded by $S N_{A E}$ mechanism
C. Complete hydrolysis produces $\mathrm{H}_{3} \mathrm{PO}_{4}$
D. $H_{5} P_{3} O_{10}$ is obtained by hydrolysis of $H_{3} P_{3} O_{9}$

Answer: B::C::D

View Text Solution

8. The species which react with silica/glass in presence of moisture:
A. HF
B. XeF_{2}
C. XeF_{4}
D. XeF_{6}

Answer: A::B::C::D

- Watch Video Solution

9. In which of the following compound(s) terminal $\left(2 C-2 e^{-}\right)$bond and bridge bonds are lying in same plane:
A. $I_{2} C l_{6}$
B. $\mathrm{Fe}_{2} \mathrm{Cl}_{4}$
C. Solid BeCl_{2}
D. $G a_{2} H_{6}$

Answer: A::B

- Watch Video Solution

10. The correct statement(s) regarding diborane $\left(B_{2} H_{6}\right)$ is/are:
A. Maximum six hydrogenn atoms can lie in a plane
B. Maximum six atoms cann lie in a plane
C. Bridging $H_{b}-B$ bond is stronger than terminal $\mathrm{B}-H_{t}$ bond
D. Terminal $H_{t}-B-H_{t}$ bond angle is greater than bridging

$$
H_{b}-B-H_{b} \text { bond angle }
$$

Answer: B::D

11. In which of the compounds oxygen does not exhibit oxidation state (-2) ?
A. CsO_{2}
B. $\mathrm{K}_{2} \mathrm{O}_{2}$
C. $O F_{2}$
D. $\mathrm{Cl}_{2} \mathrm{O}$

Answer: A::B::C

- Watch Video Solution

12. Aqueous solution of boric acid is treated with Salicylic acid. Which of the following statements is / are incorrect for the product formed in the above reaction
A. no product will be formed because both are acid
B. product is 4-coordinated complex and optically resolvable
C. product is 4-coordinated complex and optically non-resolvable
D. there are two ring only which are five membered

Answer: A::C::D

- Watch Video Solution

13. Borazine is called 'inorganic benzene' in view of its ring structure with alternate BH and NH groups. Which of the following statements is correct about borazine?
A. Each B and N atom is $s p^{2}$ hybridised
B. Borazine satisfied the $(4 n+2)$ Huckel's rule
C. Like organic benzene, borazine does not give addition product with HCl
D. Borazine contains dative $p \pi-p \pi$ bond
14. Identify the correct statement abouut orthoboric acid:
A. It has a layer structure in which planar BO_{3} units are joined by hydrogen bonds
B. Orthoboric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$ is a weak monobasic lewis acid
C. On heating ortho-boric acid form meta-boric acid and on further heating to red hot, forms boric oxide anhydride
D. it is obtained by reaction borax withh dilute HCl using phenolphthalein as an indicator

Answer: A::B::C

- Watch Video Solution

15. Which of the following methods can be used for the preparation of anhydrous aluminium chloride
A. heating $\mathrm{AlCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
B. Heating a mixture of alumina and coke in a currennt of dry chlorine
C. Passing dry HCl gas over heated aluminium powder
D. Passing dry chlorine over heated aluminium

Answer: B::C::D

- Watch Video Solution

16. Identify the correct statement regarding structure of diborane
A. There are two bridging hydrogen atoms
B. Each boron atom forms four bonds
C. The hydrogen atoms are not in the same plane
D. each boron atom is in $s p^{3}$ hybridized state

D Watch Video Solution

17. The major product obtained in the reaction of oxalic acid with conc, $\mathrm{H}_{2} \mathrm{SO}_{4}$ upon heating are
A. $C O$
B. SO_{2}
C. CO_{2}
D. SO_{3}

Answer: A: C

- Watch Video Solution

18. Which of the following is/are correct for group 14 elements?
A. The stability of dihalids are in the order

$$
C X_{2}+S i X_{2}<G e X_{2}<S n X_{2}<P b X_{2}
$$

B. The ability of formm $p \pi-p \pi$ multiple bonds among themselves
increases down the group
C. The tendency for catenation decreases down the group
D. they all form oxides with the formula MO_{2}

Answer: A::C::D

- Watch Video Solution

19. Select the correct statement about silicates ?
A. Cyclic silicate having three Si atoms contains six Si-O-Si linkages.
B. $2 \frac{1}{2}$ over oxygen atoms of per tetrahedron unit are shared in double chain silicate
C. $\left(S i_{2} O_{5}\right)_{n}^{2 n-}$ is formula of double chain silicate
D. SiO_{4}^{4-} units polymerize to form silicate because Si atom has less tendency to formm π-bond with oxygen

Answer: B::D

- Watch Video Solution

20. SiO_{2} reacts with:
A. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
B. CO_{2}
C. $H F$
D. HCl

Answer: A::C

21. Which of the following statement(s) is/are true?
A. The lattice structure of diamond ad graphite are different
B. Graphite is an impure form of carbon while diamond is a pure form
C. Graphite is harder than diamond
D. graphite is thermally more stable than diamond

Answer: A::D

- Watch Video Solution

22. On strong heating $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ gives:
A. PbO
B. NO_{2}
C. O_{2}
D. NO

D Watch Video Solution

23. PbO_{2} is:
A. acidic
B. basic
C. reducing agent
D. oxidising agent

Answer: A::B::D

- Watch Video Solution

24. Which of the following is true for allotropes of phosphorus?
A. Yellow phosphorus is soluble in $C S_{2}$ while red phosphorus is not
B. P-P-P bond angle is 60° in red phoshprus
C. On heating in air, white phophorus changes to red
D. White phosphorus slowly changes to red phosphorus at ordinar temperature

Answer: A::D

- Watch Video Solution

25. Which of the following statements are true about $P_{4} O_{6}$ and $P_{4} O_{10}$?
A. Both these oxides have a closed cage like structure
B. Each oxide requires 6 water molecules for complete hydrolysis to
form their respective oxoacids
C. both these oxides contain 12 equivalent P-O bonds
D. $P_{4} O_{6}$ and $P_{4} O_{10}$ both contains $p \pi-p \pi$ bonds
26. Which of the following, when dissolved in water, will liberated ammonia?
A. NaNO_{3}
B. NaNO_{2}
C. NaNH_{3}
D. $N a_{3} N$

Answer: C::D

- Watch Video Solution

27. PH_{3} can be obtained by:
A. heating hypophosphorus acid
B. heating orthophosphorus aciid
C. reacting white phoshporus with hot conc. NaOH
D. hydrolysis of calcium phophide

Answer: A::B::C::D

- Watch Video Solution

28. Which of the following are used as fertilizers?
A. $C a_{3}\left(\mathrm{PO}_{4}\right)_{2}$
B. $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$
C. $C a N C N$
D. CaC_{2}

Answer: B::C

- Watch Video Solution

29. Which of the following statement(s) regarding nitrogenn sesquioxide $\left(\mathrm{N}_{2} \mathrm{O}_{3}\right)$ is/are correct?
A. Nitrogen sesquioxide is stble only in the liquid state. It dissociates in the vapour state
B. Nitrogen sesquioxide is a neutral oxide
C. Nitrogen sesquioxide contains a weak N-N bond
D. Nitrogenn sesquioxide exists in two different forms

Answer: C::D

- Watch Video Solution

30. Photochemical decomposition off HNO_{3} produces:
A. N_{2}
B. $\mathrm{N}_{2} \mathrm{O}$
C. NO_{2}
D. O_{2}

Answer: C::D

- Watch Video Solution

31. Identify th correct statement(s):
A. $P_{4} O_{10}$ is used as a drying agent
B. $P_{4} O_{10}$ contains $p \pi-d \pi$ back bonding
C. In $P_{4} O_{10}$ each P atom is bonded to three oxygen atoms
D. $P_{4} O_{10}$ hydrolyse in water forming phosphorus acid

Answer: A: B

- Watch Video Solution

32. Which of the followinng will formed when HNO_{2} disproportionates in aqueous medium?
A. NH_{3}
B. N_{2}
C. NO
D. HNO_{3}

Answer: C::D

- Watch Video Solution

33. Which of the followinngg species is/are formed when conc. HNO_{3} is added to conc. Sulphuric acid?
A. NO_{3}^{-}
B. NO_{2}^{+}
C. NO^{+}
D. HSO_{4}^{-}

Answer: B::D

- Watch Video Solution

34. The correct order of reducing power off MH_{3} is:
A. $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{SbH}_{3}<\mathrm{BiH}_{3}$
B. $\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{BiH}_{3}<\mathrm{SbH}_{3}$
C. $\mathrm{BiH}_{3}<\mathrm{SbH}_{3}<\mathrm{PH}_{3}<\mathrm{NH}_{3}$
D. $\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}<\mathrm{BiH}_{3}$

Answer: A::D
(Watch Video Solution
35. Which of the following do not have tendency to act as ligands during complex formation?
A. BiH_{3}
B. PH_{3}
C. AsH_{3}
D. SbH_{3}

Answer: A::C::D

- View Text Solution

36. Metal() M in the following equation is/are $M+N_{2} \xrightarrow{\Delta}$ Metal nitride
A. Na
B. Li
C. Cs
D. Mg

D Watch Video Solution

37. Which of the following compound(s) is/are explosive(s)?
A. $N F_{3}$
B. NCl_{3}
C. NBr_{3}
D. NI_{3}

Answer: B::C::D

- Watch Video Solution

38. The compounds obtained by heatinng of orthophosphoric acid are:
A. metaphosphoric acid
B. pyrophosphoric acid
C. $P_{4} O_{6}$
D. $P_{4} O_{10}$

Answer: A::B::D

- Watch Video Solution

39. At high temperature, nitrogenn directly combines with
A. Zn
B. Mg
C. Al
D. Fe

Answer: B::C

40. Phosphine is obtained by the reaction when
A. White phophorus is heated with NaOH
B. $C a_{3} P_{2}$ reacts with water
C. red phosphorus is heated with NaOH
D. phosphorus is heated in currennt of hydrogen

Answer: A: B

- Watch Video Solution

41. Predict product(s) in the following reaction, $\mathrm{P}+\mathrm{OH}^{-} \rightarrow$ product(s)
A. PH_{3}
B. PO_{4}^{3-}
C. $\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$
D. PO_{2}^{-}

- Watch Video Solution

42. Which of the following statements is/are correct?
A. NO_{2} is a paramagnetic substance
B. NO 2 solid is brown in colour
C. NO_{2} dimerizes to $\mathrm{N}_{2} \mathrm{O}_{4}$
D. NO_{2} is a mixed anhydride

Answer: A::C::D

- Watch Video Solution

43. Which is true about $\mathrm{N}_{2} \mathrm{O}_{5}$?
A. It is anhydride of HNO_{3}
B. in solid state it exists as $\mathrm{NO}_{2}^{+} \mathrm{NO}_{3}^{-}$
C. it is structurally similar to $\mathrm{P}_{2} \mathrm{O}_{5}$
D. it can be prepared by heating HNO_{3} over $\mathrm{P}_{2} \mathrm{O}_{5}$

Answer: A::B::D

- Watch Video Solution

44. White phosphorus can be separeted from red phosphorus by:
A. sublimation
B. dissolving in CS_{2}
C. distillation
D. none of these

Answer: B

45. Orthophosphoric acid $\xrightarrow[220^{\circ} \mathrm{C}]{\text { gentle heat }} X$
what is/are correct about X ?
A. It is a tetrabasic acid
B. It contains one P-O-P bond
C. it is a dibasic acid
D. On hydrolysis it produces metaphosphoric aciid

Answer: A::B

D Watch Video Solution

46. Which of the following act as an oxidizing as well as a reducing agent?
A. HNO_{2}
B. $\mathrm{H}_{2} \mathrm{O}_{2}$
C. $H_{2} S$
D. SO_{2}

D Watch Video Solution

47. Which of the following statements are correct about $S F_{4}$?
A. It is prepared by reacting sulphur directly with flurine
B. sulphur tetrafluoride hydrolysed by water to give SO_{2} and HF
C. $S F_{4}$ has a square planar shape with S having two lone pair of electrons
D. S-atom has a expanded octet

Answer: A::D

- Watch Video Solution

48. Nitrating mixture is obtained by mixing conc. HNO_{3} and conc
$\mathrm{H}_{2} \mathrm{SO}_{4}$. Role of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in nitration is
A. to force HNO_{3} to behave as a base
B. to supress the dissociation of HNO_{3}
C. to produce NO_{2}^{+}ions
D. to remove the colour NO_{2} produced during nitration

Answer: A:C

- Watch Video Solution

49. Drops of nitric acid reacts with $P_{2} O_{10}$ to gives:
A. $N O$
B. NO_{2}
C. $\mathrm{N}_{2} \mathrm{O}_{5}$
D. HPO_{3}

Answer: C::D

50. Which of the following statement(s) is/are correct?
A. Rhombic sulphur is stable at room temperature
B. Monochlinic sulphur is stable at room temperature
C. Both rhombic and monochlinic sulphur has the molecular formula
S_{8}
D. Both rhombic and monochlinic sulphur are soluble in CS_{2}

Answer: A::C::D

- Watch Video Solution

51. Which of the followingg statements are true about sodium thiosulphate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$?
A. It isused in the estimation of iodine
B. it can give a black precipitate with AgNO_{3}
C. it is used to remove the unexposed AgBr from photograhpic films
D. it contains ionic, covalet and coordinate covalent bonds

Answer: A::B::C

- Watch Video Solution

52. Peroxy acids of sulphur are:
A. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
B. $\mathrm{H}_{2} \mathrm{SO}_{5}$
C. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
D. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$

Answer: A: B

- Watch Video Solution

53. Sulphur dioxide can be used as:
A. bleaching agennt
B. antichlor
C. disinfectant
D. none of these

Answer: A::B::C

- Watch Video Solution

54. Which statements are correct for ozone?
A. it is obtained by silent electric discharge on oxygen
B.it can be obtained by the action of ultraviolet rays on oxygen
(modified)
C. it is regarded as an allotrope of oxygen
D. ozone molecules is paramagnetic like oxygen molecule

Answer: A::B::C

- Watch Video Solution

55. Concentrated sulphuric acid is:
A. efforescent
B. hygroscopic
C. oxidising agent
D. sulphonating agent

Answer: B::C::D

- Watch Video Solution

56. The reaction of sodium thiosulphate with I_{2} gives:
A. sodium sulphite
B. sodium sulphate
C. sodium iodide
D. sodium tetrathiomate

Answer: C::D

- Watch Video Solution

57. identify the correct statement(s):
A. Ozone is a powerful oxidising agent as compared to O_{2}
B. Ozone racts with KOHH and gives ann orange coloured solid KO_{3}
C. There is a decrese in volume when ozone decomposed to form O_{2}
D. The decomposition of O_{3} to O_{2} is exothermic

Answer: A::B::D

58. Oxygen is not evolved when:
A. potassium chlorate is heated with MnO_{2} catalyst
B. sodium peroxide racts with water
C. ammonium nitrate is heated
D. zinc oxide is treated with NaOH

Answer: C::D

- Watch Video Solution

59. Identify the correct statements:
A. Fluroine is a super halogen
B. iodine shows lewis basic nature
C. AgF is insoluble in water
D. $S C N^{-}$is a pseudohalide

Answer: A: D

- View Text Solution

60. Which of the following properties of the elements chlorine, bromine and iodine increase with increasing atomic number?
A. Ionization enerrgy
B. Ionic radius
C. Bond energy of the molecule X_{2}
D. Enthalpy of vaporization

Answer: B::D

- Watch Video Solution

61. Which of the following statement(s) is/are correct?
A. Chlorine dioxide $\left(\mathrm{ClO}_{2}\right)$ is powerful oxidising agent but bleaching action is lower than Cl_{2}
B. ClO_{2} in alkaline solution undergoes disproportionation
C. ClO_{2} is diamagnetic in nature
D. ClO_{2} is a yellow gas but deep red liquid

Answer: B::D

- Watch Video Solution

62. Which of the following statement is true about NO_{2} and ClO_{2} ?
A. Both are paramagnetic
B. Both have a bent structure
C. On cooling, both undergoes dimerisation
D. In both oxides, the central atom has an oxidation state +4 .

Answer: A: B::D

- Watch Video Solution

63. $\mathrm{Cl}_{2} \mathrm{O}_{6}+\mathrm{NaOH} \rightarrow$?
A. NaClO_{4}
B. NaOCl
C. NaClO_{2}
D. NaClO_{3}

Answer: A:D

- Watch Video Solution

64. Predict product(s) in the following reaction, $\mathrm{Cl}_{2}+\mathrm{OH}^{-} \xrightarrow{\text { hot }}$?
A. Cl^{-}
B. ClO_{2}
C. OCl^{-}
D. ClO_{3}^{-}

Answer: A:D

- Watch Video Solution

65. In the isolation of fluorine a number of difficulties were encountered.

Which statements are correct:
A. Fluorine reacts with moist glass vessels
B. Fluorine gas great affinity for hydrogen
C. Electrolysis of aqueous HF gives ozonized oxygen
D. the potential required for the discharge of the fluoride ions lowest

Answer: A::B::C

- Watch Video Solution

66. Iodine is formed when potasium iodide reacts with:
A. ZnSO_{4}
B. CuSO_{4}
C. Cl_{2}
D. $B r_{2}$

Answer: B::C::D

- Watch Video Solution

67. Available $C l_{2}$ is liberated from bleaching powder when it :-
A. is heated
B. reacts with acid
C. reacts with $\mathrm{H}_{2} \mathrm{O}$
D. recs with CO_{2}

Answer: B::C::D

- Watch Video Solution

68. Which reactions are used for the preparation of the halogen acid?
A. $2 \mathrm{KBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{HBr}$ (conc.)
B. $\mathrm{CaF}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{HF}$ (conc.)
C. $\mathrm{NaCl}+\underset{(\text { conc. })}{\mathrm{H}_{2} \mathrm{SO}_{4}} \rightarrow \mathrm{NaHSO}+\mathrm{HCl}$
D. $2 \mathrm{KI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{HI}$ (conc.)

Answer: B::C

69. Which of the following statement(s) is/are correct for halogens
A. halogen which is liquid at room temperature is bromine
B. the most electronegativity element is fluorine
C. the most reactive halogen is fluorine
D. the strongest oxidising agent is iodine

Answer: A::B::C

- Watch Video Solution

70. What are products in the following equation, $S+\mathrm{OH}^{-} \rightarrow$?
A. $H_{2} S$
B. S^{2-}
C. $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$
D. SO_{3}^{2-}

Answer: B::C

- Watch Video Solution

71. Correct statements about the hydrogen halides include that:
A. they are all coloured
B. the thermal stability decreases with increasing atomic number of
halogen
C. they all form soluble silver salts
D. they all donate protons to water

Answer: B::D

72. Which of the following statement(s) is/are not correct?
A. The covalency of N in HNO_{3} is +5
B. HNO_{3} in the gaseous state has a trigonal planar structure
C. The oxidation state of N in HNO_{3} is +4
D. Gold dissolves in HNO_{3} to form gold nitrate

Answer: A::C::D

D Watch Video Solution

73. Which of the substances react with water?
A. Chlorine
B. Phosphorus trichloride
C. Silicon tetrachloride
D. Tetrachloro methane

D Watch Video Solution

74. Which of the following substances are soluble in NaOH solution?
A. $\mathrm{Sn}(\mathrm{OH})_{2}$
B. $\mathrm{Al}(\mathrm{OH})_{3}$
C. $\mathrm{Bi}(\mathrm{OH})_{3}$
D. $\mathrm{Pb}(\mathrm{OH})_{2}$

Answer: A::B::D

Watch Video Solution

75. Which of the following molecules have a dative bonding $(p \pi-d \pi)$?
A. $P_{4} O_{10}$
B. $\left(\mathrm{SiH}_{3}\right)_{3} \mathrm{~N}$
C. $P_{4} O_{6}$
D. $\mathrm{N}_{2} \mathrm{O}_{5}$

Answer: A::B

- Watch Video Solution

76. Which of the following will give N_{2} when heated?
A. NaN_{3}
B. $\mathrm{NH}_{4} \mathrm{NO}_{2}$
C. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
D. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

Answer: A::B::D

77. Which of the following will give NO_{2} when heated?
A. LiNO_{3}
B. NaNO_{3}
C. $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{2}$
D. AgNO_{3}

Answer: A::C::D

- Watch Video Solution

78. identify the correct statements:
A. Calcium cyanamide on treatment with steam under pressure gives
NH_{3} and CaCO_{3}
B. $P C l_{5}$ is kept in well stopped bottle because it reacts readily with moisture
C. Ammonium nitrite on heating gives ammonia and nitrous acid
D. Cane sugar reacts with conc. HNO_{3} to form oxalic acid

Answer: A::B::D

- Watch Video Solution

79. Select the correct statement(s):
A. When Al is added to potassium hydroxide solution, hyddrogenn gas is evolved
B. $\mathrm{H}_{2} \mathrm{SiF}_{6}$ is formed when silica reaccts with hydrogen fluoride followed by hydrolysis
C. Phosphine gas is formed when red phosphorus is heated with NaOH
D. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \mathrm{FeSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is called alums

Answer: A::B

80. Which of the following gases on dissolution in water make the solution acidic?
A. CO
B. CO_{2}
C. SO_{3}
D. PH_{3}

Answer: B::C

- Watch Video Solution

81. Which of the following oxides is/are neutral?
A. $\mathrm{N}_{2} \mathrm{O}$
B. $C O$
C. $\mathrm{Al}_{2} \mathrm{O}_{3}$
D. NO

Answer: A::B::D

- Watch Video Solution

82. Which of the following statement(s) is/are incorrect about borazine (inorganic benzene)?
A. It contains $p \pi-p \pi$ bond
B. it does not give addition product with HCl like organic benzene
C. each boron and nitrogen atom is $s p^{2}$-hybridised
D. Its disubstituted derivatives gives equal no. of ortho, meta and para devivatives like disubstituted organic benzene

Answer: B::D

83. What is true about NO and ClO_{2} ?
A. Both molecules have fractional bond order
B. Both oxides are neutral in nature
C. Both have odd e^{-}bond in their structures
D. both are paramagnetic in nature

Answer: A::C::D

- View Text Solution

84. Select the correct statement(s) regarding structure of $A l_{2}\left(\mathrm{CH}_{3}\right)_{6}$:
A. All carbon atoms of $-\mathrm{CH}_{3}$ groups do not lie in the same plane
B. One vacant orbital of each Al-atom is involved in $s p^{3}$-hybridisation
C. There are only $8 s p^{3}$-hybridised atoms are present
D. There are total 48 bonding electrons are available

D Watch Video Solution

85. Which of the following statement(s) is/are correct about $S F_{4}$ molecule?
A. it has a square planar shape with S -atom having two lone pairs
B. It is hydrolysed by water to give $\mathrm{H}_{2} \mathrm{SO}_{3}$ and HF as final products
C. During hydrolysis, S-atom in transition state is $s p^{3} d^{2}$ hybridised
D. All S-F bond lengths are equal

Answer: B::C

D View Text Solution

86. Which of the given compound(s) can act as Lewis acid in both monomer and dimer form?
A. BH_{3}
B. BeCl_{2}
C. BeH_{3}
D. AlCl_{3}

Answer: A::B::C::D

- View Text Solution

87. Which of the following parent acid(s) does/do not have corresponding hypo-oxyacid?
A. HNO_{3}
B. $\mathrm{H}_{3} \mathrm{PO}_{4}$
C. $\mathrm{H}_{2} \mathrm{SO}_{4}$
D. HClO_{3}
88. Oxy anion(s) containing (6,2) pair of equivalent X-O linkaes (where X central atom) is/are:
A. $S_{2} O_{8}^{2-}$
B. $P_{2} O_{6}^{4-}$
C. $P_{2} O_{7}^{4-}$
D. $P_{2} O_{8}^{4-}$

Answer: A::C::D

- Watch Video Solution

89. Which of the following reactions of xenon compounds in not feasible?
A. $\mathrm{XeF}_{2}+H F \rightarrow H\left[\mathrm{XeF}_{3}\right]$
B. $X e F_{6}+R b F \rightarrow\left[X e F_{5}\right]\left[R b F_{2}\right]$
C. $X e F_{4}+P F_{5} \rightarrow\left[X e F_{3}\right]\left[P F_{6}\right]$
D. $3 \mathrm{XeF}_{4}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Xe}+\mathrm{XeO}_{3}+12 \mathrm{HF}+1.5 \mathrm{O}_{2}$

Answer: A: B

- Watch Video Solution

90. Select the incorrect statement(s):
A. NH_{3} has a highest dipole moment among $\mathrm{CO}, \mathrm{NH}_{3}$ and NF_{3}
B. HF has a highest boiling point among $\mathrm{CH}_{4}, \mathrm{NH}_{3}$ and HF
C. Cl_{2} has a lowest boiling point among $\mathrm{Cl}_{2}, B r_{2}$ and I_{2}
D. HClO_{3} is weakest acid among $\mathrm{HIO}_{3}, \mathrm{HBrO}_{3}$ and HClO_{3}

Answer: D

91. The possible product (s) formed in the following reaction is/are:
$I F_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow$?
A. HIO_{3}
B. HIO
C. HIO_{4}
D. $H F$

Answer: A:D

- Watch Video Solution

92. Which of the following species does/do not exist?
A. $O F_{4}$
B. NH_{2}^{-}
C. NCl_{5}
D. ICl_{3}^{+}

- Watch Video Solution

93. Consider the following table:

Accoridng to given information of correct order is/are:
A. $x_{1}>x_{2}>x_{3}>x_{4}$
B. $y_{1}>y_{2}>y_{3}>y_{4}$
C. $x_{1}>z_{4}>z_{3}>z_{2}$
D. $x_{1}>x_{4}>x_{3}>x_{2}$

Answer: A::B::C
94.2P $\xrightarrow{-\mathrm{H}_{2} \mathrm{O}} Q \xrightarrow{-[\mathrm{O}]} R$

If P is parent phosphoric acid then according to given information the correct statement is/are:
A. Q is pyro form and R is hypo form of givenn present oxy acid P
B. Number of H -atoms present in each given oxy acid is equal to its besicity
C. In P, Q, R oxy acids, oxidation state of central atom remains same.
D. All given oxy acids have $p \pi-d \pi$ bond(s) in their structure

Answer: A::B::D

- View Text Solution

95. The correct statement(s) regarding $P C l_{5}$ is/are:
A. In solid phase, hybridisation of P -atom in cation is $s p^{3}$
B. In vapour phase, al P-Cl bond lengths are equal
C. In vapour and solid phase, central atom has no lone pair
D. In solid phase, anion has only one type of bond angle

Answer: A::C

- Watch Video Solution

96. Correct order(s) is/are:
A. Thermal stability: $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$
B. Bond dissociation energy: $C l_{2}>B r_{2}>F_{2}>I_{2}$
C. Melting point: $\mathrm{NH}_{3}>\mathrm{SbH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}$
D. $X-C-X$ bond angle: $C O C l_{2}>C O F_{2}$

Answer: A::B::C::D

97. Which of the following reaction(s) do/does not givean oxo-acid?
A. Two moles of nitric acid $\xrightarrow{-\mathrm{H}_{2} \mathrm{O}}$
B. One mole of sulphrus acid $\xrightarrow{-\mathrm{H}_{2} \mathrm{O}}$
C. Two mole of Chloric acid $\xrightarrow{-\mathrm{H}_{2} \mathrm{O}}$
D. Two moles of sulphuric acid $\xrightarrow{-\mathrm{H}_{2} \mathrm{O}}$

Answer: A::B::C

- Watch Video Solution

Match The Column

($\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{MH}_{3}>\mathrm{SbH}_{3}$

(c) $\mathrm{MCH}_{3}>\mathrm{ABr}_{3}>\mathrm{Mal}_{2}$
1.

(P) Melting point
(Q) Lewis acid character
(R) Thermal stability
(5) Lewls basic character
(A) Does not neutralise dil. HNO_{3}
(B) Reaction with HF acid
(P) SiO_{2}
(Q) PbO_{2}
(C) Solid at room temperature
(D) May acts as reducing agent
2.
.
(R) CO
(S) SnO
(T) NO

View Text Solution

(A) H_{2} gas is evolved
(B) Proton donor oxyacid is formed
(C) Halogen acid is formed
(D) Back bonding is present in formed oxyacid
3.

(P) CaH_{2}
(Q) POCl_{3}
(R) NCl_{3}
(S) $\mathrm{B}_{2} \mathrm{H}_{6}$
(T) $\mathrm{R}_{2} \mathrm{SiCl}_{2}$

- View Text Solution

(A) POCl_{3}
(B) SOF_{2}
(C) XeOF_{4}
(D) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
4.
(P) Oxyacid formed during hydrolysis undergoes Tautomeric change
(Q) Oxidation state of central atom does not change during hydrolysis
(R) Complete as well as partial hydrolysis is possible
(S) Hydrolysed product reacts with glass
(T) Hybridization of central atom in the final product remains same as in the substrate on hydrolysis

View Text Solution

(A) $\mathrm{HNCl}_{3} \xrightarrow{\mathrm{H} \rho}$
5.

(C) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} \xrightarrow{\mathrm{H}_{2} \mathrm{O}}$
(D) $\mathrm{SF}_{4} \xrightarrow{\mathrm{H}_{ \pm} \mathrm{O}}$

(P) Dibasic acid
(0) Can act as flexidentate ligand
(R) Can act as both oxidising and reducing agent
(S) Can act as monodentate ligand
(T) Non-redox hydrolysis
(A) Disproportionation in alkaline
(P) Cl_{2} medium/heating
(B) Oxidizing agent
(C) Reacts with water/hydrolysis
(D) Basic gas evolves on heating
6.
(Q) NO_{2}
(R) XeF_{6}
(S) $\mathrm{NaH}_{2} \mathrm{PO}_{3}$
(T) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$

View Text Solution

Match the Column I with the graph of Column.II which is most close to the answer

Column-I

Column-II

(A) Bond energnes of the hydra acids of the (P) hatogens
fluorine, chlorine, bromine, sodine

(B) Boilng points of the hydrides of the 16 group elements
oxygen, sulphur, selenium, tellurium
(Q)

(C) The stability of monochlorides of group
(R)

13 elements
boron, aluminuum. gallium, indium

7.
(D) Melting points of the dioxides of the (S) group 14 elements carbon, silicon, germanium, tin

Column-I contains four statements following reason and Column-II consists of four options p Q. R, S.

Answer the following :

$\mathrm{P} \rightarrow$ If both statement and reason are true and reason is correct explanation of statement
$\mathrm{Q} \rightarrow$ If both statement and reason are true and reason is not correct explanation of statemene
$\mathrm{R} \rightarrow$ If statement is correct and reason is incorrect.
$\mathrm{S} \rightarrow$ If both statement and reason are incorrect.

Column-I

(A) Statements : Pb_{4} is a stable compound

Colnmery

P
Reason : lodide stabilizes higher oxidation state
(B) Statements : White phosphorus is more reactive than red phosphorus.
Reason : Red phosphorus consists of P_{4} tetrahedral units linked to one another to form linear chains.
(C) Statement : Caro's acid has sulphur atom in $s p^{3}$ hybridized state.
Reason : Caro's acid contains one peroxy O_{2}^{2-} linkage.
(D) Statement : Bleaching action of chlorine is permanent while that of SO_{2} is temporary.

Reason : Chlorine bleaches by reduction and SO_{2} by
8. oxidation.

Column-I

(A) Negative charge on the anion is equal to the number of terminal oxygen atoms
(B) Three shared corners and ten unshared corners
(C) Silicon atom(s) is/are present at the center of geometry and every oxygen atom is present at each corner of the geometry
(D) Non-planar geometry

(P) $\mathrm{Si}_{4} \mathrm{O}_{13}^{10-}$
(Q) SiO_{4}^{4-}
(R) $\mathrm{Si}_{4} \mathrm{O}_{12}^{6-}$
(S) $\mathrm{Si}_{2} \mathrm{O}_{7}^{6-}$
9.

List-I

(Mibxtures)

List-II
(Solution used for separation)
(A) N_{2} and CO
(P) Water
(B) N_{2} and O_{2}
(Q) $\mathrm{H}_{2} \mathrm{SO}_{4}$ acid
(C) N_{2} and NH_{3}
(R) Ammonical CuCl
(D) PH_{3} and NH_{3}
(S) Pyrogallol
10.

View Text Solution
Column-I
(Metal with HNO ${ }_{3}$)

Column-II
(Maln product)
(A) $\mathrm{Mg}+$ very dil. HNO_{3}
(P) NO
(B) $\mathrm{Zn}+$ dil. HNO_{3}
(Q) H_{2}
(C) $\mathrm{Sn}+$ dil. HNO_{3}
(R) $\mathrm{N}_{2} \mathrm{O}$
(D) $\mathrm{Pb}+$ dil. HNO_{3}
(S) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
11.

- View Text Solution

Column-I

(A) Moissan method
(B) Ostwald process
(P) Purification of bauxite
(C) Deacon process
(Q) Manufacture of Cl_{2}
(D) Baeyer process
(R) Manufacture of HNO_{3}
(S) Isolation of F_{2}

- Watch Video Solution

13.

Match
the
following
columns
1.

Column-II (Acid anhydride)

(P) $\mathrm{N}_{2} \mathrm{O}_{5}$
(A) HOCl
(Q) $\mathrm{Cl}_{2} \mathrm{O}_{7}$
(B) HNO_{3}
(C) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(R) $\mathrm{Cl}_{2} \mathrm{O}$
(D) HClO_{4}
(S) NO_{2}
(T) $\mathrm{P}_{4} \mathrm{O}_{10}$
(A) Maximum solubility in water
14. (B) Corrosive liquid
(P) F_{2}
(Q) Cl_{2}
(C) Maximum interatomic distance
(R) Br_{2}
(D) Maximum enthalpy of dissociation
(S) 1 ,

- View Text Solution

15. Match the following columns

Column-I

(A) Borax $\xrightarrow{\Delta}$

Column-II

(B) $\mathrm{B}_{2} \mathrm{H}_{6}+\mathrm{H}_{2} \mathrm{O} \longrightarrow$
(P) BN
(Q) $\mathrm{B}_{2} \mathrm{H}_{6}$
(C) $\mathrm{B}_{2} \mathrm{H}_{6}+\mathrm{NH}_{3}$ (excess) $\xrightarrow{\Delta}$
(R) $\mathrm{H}_{3} \mathrm{BO}_{3}$
(D) $\mathrm{BCl}_{3}+\mathrm{LiAlH}_{4} \longrightarrow$
(S) $\mathrm{NaBO}_{2}+\mathrm{B}_{2} \mathrm{O}_{3}$

- Watch Video Solution

(A) Platinum
(B) $\mathrm{V}_{2} \mathrm{O}_{5}$
(C) Iron
(D) Cobalt chloride
16.

(P) Decomposition of bleaching powder
(Q) Manufacturing of HNO_{3}
(R) Manufacturing of $\mathrm{H}_{2} \mathrm{SO}_{4}$
(S) Manufacturing of NH_{3}
(T) Hydrogenation

View Text Solution

(A) Hypo phosphoric acid
(B) Pyro phosphoric acid
(C) Boric acid
(D) Hypo phosphorus acid
17.
(P) All hydrogen are ionizable in water
(Q) Lewis acid
(R) Monobasic in water

Column-II

(S) $s p^{3}$ hybridized central atom

View Text Solution
18.

Match
the
following
columns

(A) CO_{2}
(B) SO_{2}
(C) NO_{2}
(D) $\mathrm{N}_{2} \mathrm{O}$

(P) Acidic oxide
(Q) Colourless
(R) Paramagnetic
(S) Coloured

Watch Video Solution

(A) $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}, 10 \mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(C) $\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$
19. (D) $\mathrm{NH}_{4} \mathrm{Cl}$
(P) Basic solution
(Q) Acidic solution
(R) can react with NaOH
(S) Swells un on heating

View Text Solution

Column-I

Column-II

(A) SiO_{2}
(P) React with HF
(B) CN^{-}
(Q) Pseudo halide
(C) I^{-}
(R) Gives compound with Cu^{2+} via redox Rxn
(D) SnO_{2}
(S) Can dissolves in alkali
20.

View Text Solution

(andornave columb-II
(P) $\left(\mathrm{SiO}_{3}\right)_{n}^{2 n-}$
(A) Sheet silicate
(Q) $\left(\mathrm{Si}_{4} \mathrm{O}_{11}\right)_{n}^{\text {ma }}$
(B) Pyroxene chain
(R) 3-comer oxygen atom are shared
(S) Non-planar

- View Text Solution

(A) Br_{2}
(B) O_{2}
(C) ClO_{2}
22. (D) 1,0,

(P) Liquid at room temperature
(Q) Used in estimation of CO
(R) Paramagnetic
(S) Powerful bleaching agent

Colume-:

(A) $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}$
(P) Reducing property
(B) $\mathrm{KF}>\mathrm{KCl}>\mathrm{KBr}>\mathrm{Kl}$
(Q) Heat of fusion (M.P.)
(C) $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$
23. (D) $\mathrm{CH}_{4}<\mathrm{SiH}_{4}<\mathrm{GeH}_{4}<\mathrm{SnH}_{4}$
(R) Thermal stability
(S) Lewis basic character

View Text Solution

Column-1
(Catalyst involved in process)
(A) SF_{4}
(B) AsH_{3}
(C) ClO_{4}
(D) SbCl_{4}^{-}
24.

View Text Solution

1. Assertion: $\mathrm{Al}(\mathrm{OH})_{3}$ is amphoteric in nature.

Reason: $\mathrm{Al}(\mathrm{OH})_{3}$ is H^{+}donar acid as well as OH^{-}donar base.
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: C

- Watch Video Solution

2. Assertion: $B F_{3}$ is weaker lewisi acid than $B C l_{3}$.

Reason: $B F_{3}$ is less electron deficient thann $B C l_{3}$.
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: A

- Watch Video Solution

3. Assertion: Compound having $\mathrm{X}-\mathrm{O}-\mathrm{H}$ linkage ($\mathrm{X}=$ =non-metal) always acts as Arrhenius acid.

Reason: Bond polarrity of $\mathrm{O}-\mathrm{H}$ bond is higher than that of $\mathrm{X}-\mathrm{O}$ bond.
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: D

- View Text Solution

4. Assertion: When two gaseous OF molecules are allowed to cool, then they undergo dimerisation through O-atom.

Reason: Dimerr form of OF molecule (i.e, $O_{2} F_{2}$) is having one peroxy linkage in its structure.
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: C

D View Text Solution

5. Assertion: bond dissociation energy of N-F bond in $N F_{3}$ molecule in lower than that of in NCl_{3} molecule.

Reason: Inter electronic repulsion exists between small size N and F atoms in N-F bond of $N F_{3}$ molecule.
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: D

- View Text Solution

6. Assertion: $K A l F_{4}$ salt can not be formed by combining $A l F_{3}$ with KF. Reason: $A l F_{3}$ being predominantly ionic compound never acts as lewis acid.
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false and (R) is false

Answer: D

D Watch Video Solution

7. Assertion: $\mathrm{NaBO}_{3} / \mathrm{OH}^{-}$can be used for oxidation of Cr^{3+} to Cr^{6+} Reason: IN alkaline medium NaBO_{3} produces $\mathrm{H}_{2} \mathrm{O}_{2}$
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: A

- Watch Video Solution

8. Statement-1: Aluminium and zinc metal evolve H_{2} gas from NaOH solution

Statement-II: Several non-metals such as P,S,Cl, etc. yield a hydride instead of H_{2} gas from NaOH
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: B::C

- Watch Video Solution

9. Assertion: There is a very little difference in acidic strengths of $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{2}$.
reason: Number of unprotonated oxygen $(=0)$ responsible for increase of acidic strength due to inductive effective remains the same.
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: A

- Watch Video Solution

10. Statement-I : $P C l_{5}$ and PbCl_{4} are thermally unstable.

Statement-II : They produce same gas on thermal decomposition
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: B::C

- Watch Video Solution

11. Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ cannot be used to prepare HBr from NaBr , because it ,
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: C

- Watch Video Solution

12. Statement-1: Oxygen is more electronegative than sulphur, yet $H_{2} S$ is acidic, while $\mathrm{H}_{2} \mathrm{O}$ is neutral.

Statement-2: $H-S$ bond is weaker than $O-H$ bond.
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: A

- Watch Video Solution

13. Asserrtion: Liquid $I F_{5}$ conducts electricity.

Reason: Liquid $I F_{5}$ conducts as, $2 I F_{5} \Leftrightarrow I F_{4}^{+}+I F_{6}{ }^{-}$.
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is true

Answer: A

14. Assertion: Red phophorus is less volatile then white phosphorus. Reason: Red phosphorus has a discrete tetrahedral structure.
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: C

- Watch Video Solution

15. Statement-1: $\mathrm{Al}(\mathrm{OH})_{3}$ is amphoteric in nature.

Statement-2: It cannot be used as an antacid.
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: C

- Watch Video Solution

16. Statement-1: Chlorine gas disproportionates in hot and conc. NaOH solution.

Statement-2: NaCl and NaOCl are formed in the above reaction.
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: C

- Watch Video Solution

17. Statement-I : Silicons are very inert polymers

Statement-II: Both $S i-O$ andSi $-C$ bond energies are very high
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: A

- Watch Video Solution

18. Assertion: Agl does not dissolve in NH_{3}.

Reason: Due to ionic character of Agl.
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: C

- Watch Video Solution

19. Assertion: Anhydrous AlCl_{3} is covalent while hydrated AlCl_{3} is ionic. Reason: In water AlCl_{3} is presennt as $A l_{(a q .)}^{3+}$ and $\mathrm{Cl}_{(a q .)}^{-}$ion.
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: B::C

- Watch Video Solution

20. Assertion: Boron reacts with HNO_{3}

Reason: Boron reacts with all acids.
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: C

- Watch Video Solution

21. Assertion: $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a weaker acid than HClO_{4}.

Reason: SO_{4}^{2-} is more stable than ClO_{4}^{-}in solution.
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: C

- Watch Video Solution

22. Asseration: $H F$ forms two series of salts but $H C l$ not.

Reason: F-atom is more electronegative than Cl -atom.
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: A

- Watch Video Solution

23. Assertion: PCl_{3} on hydrolysis gives $\mathrm{OH}-\underset{H}{P}-\mathrm{OH}$ and not $\mathrm{OH}-\underset{\substack{\mathrm{I} \\ \mathrm{OH}}}{\mathrm{P}}-\mathrm{OH}$ as major product.
Reason: $\mathrm{H}_{3} \mathrm{PO}_{3}$ exists in two tautomeric forms

A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: A

- Watch Video Solution

24. Assertion: BiI_{3} withh triiodide $\left(I_{3}^{-}\right)$ion never exists.

Reason: Intramoleclar redox reaction takes place between bismuth cation
and triiodide ion.
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: C

- View Text Solution

25. Assertion: SnO is more reactive towards acid than SnO_{2}.

Reason: Both SnO and SnO_{2} are amphoteric oxides.
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: C

D Watch Video Solution

26. Assertion: Bond dissociation energy of F_{2} molecule is less than that of $C l_{2}$ molecule.

Reason: Due to inter-electronic repulsion between F atom, $F-F$ bond length in F_{2} molecule is higher than $\mathrm{Cl}-\mathrm{Cl}$ bond lengthh in Cl_{2} molecule.
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: A

D Watch Video Solution

27. Assertion: In $\mathrm{H}_{3} \mathrm{PO}_{3}$ basicity of the oxy acid is two.

Reason: One H -atom is non-ionizable in more stable tautomeric form of $\mathrm{H}_{3} \mathrm{PO}_{3}$.
A. If both (A) and (R) are true and (R) is the correct explanation of (A)
B. if both (A) and (R) are true but (R) is not correct explanation of (A)
C. If (A) is true but (R) is false
D. If (A) is false but (R) is false

Answer: A

- Watch Video Solution

Subjective Problems

1. In phosphorus acid, If X is number of non-bonding electron pairs. Y is number of σ-bonds and Z is number of π-bonds. Then calculate value of "YxZ-X".

(D) Watch Video Solution

2. Consider the following oxyanions:
$\mathrm{PO}_{4}^{3-}, \mathrm{P}_{2} \mathrm{O}_{6}^{4-}, \mathrm{SO}_{4}^{2-}, \mathrm{MnO}_{4}^{-}, \mathrm{CrO}_{4}^{2-}, \mathrm{S}_{2} \mathrm{O}_{5}^{2-}, \mathrm{S}_{2} \mathrm{O}_{7}^{2-}$
and find the value of $R+Q-P$
where P-number of oxy anions having three equivalent X -O bonds per central atom
$\mathrm{Q}=$ number of oxy anions having two equivalent $\mathrm{X}-\mathrm{O}$ bonds per central atom.
$\mathrm{R}=$ Number of oxy anions having four equivalent $\mathrm{X}-\mathrm{O}$ bonds per central atom.

- Watch Video Solution

3. For oxyacid HClO_{x}, fi $\mathrm{x}=\mathrm{y}=\mathrm{z}$ (x, y and z are natural numbers), then calculate the value of $|x+y+z|$. Where $x=n u m b e r$ of ' O ' atoms $\mathrm{y}=$ total number of ions pairs at central atom
$\mathrm{z}=$ total number of $\mathrm{pi}(\pi)$ electrons in the oxyacid.

(D) Watch Video Solution

4. Consider the following representation of oxy-acid, $H_{n_{1}} S_{2} O_{n_{2}}$, (where S is central sulphur atom annd n_{1} and n_{2} are natural numbers.) if there are two possible oxy-acid of sulphur A and B contains ratio of $n_{2}: n_{1}$ are 2 and 4 respectively, then sum of oxidation state of 'S' atom in both oxyacid will be:

- Watch Video Solution

5. total number of molecule which hydrolysed at room temperature and hybridization of central atom is $s p^{3} d$ in transition state:

$$
C C l_{4}, S i C l_{4}, N C l_{3}, P C l_{3}, A s C l_{3}, S F_{6}, P_{4} O_{6}, P_{4} O_{10}, S e F_{6}
$$

- View Text Solution

6. The difference between total number of lone pairs and total number of σ-bonds in $\left[\mathrm{B}_{3} \mathrm{O}_{3}(\mathrm{OH})_{6}\right]^{3-}$ molecular ion is:

- Watch Video Solution

7. Calculate vlaue of $|x+y-z|$ for the followng sillicate $\left[S i_{x} O_{y+z}\right]^{z-}$ anion.

- View Text Solution

8. The general formula of polythionate ion is $\mathrm{S}_{n+2} \mathrm{O}_{6}^{2-}$. If average oxidation state of 'S' atom is any polythionate ion is equal to bond order
of 'S-O' bond. Then calculate the value of ' n ' for the corresponding polythionate ion.

- Watch Video Solution

9. total number of Boron atoms in anionic part of borax which participate in back bonding.

- View Text Solution

10. Choose total number of correct reaction.
(i) When CuSO_{4} solution reacts with NH_{3}, complex is formed.
(ii) When CuSO_{4} solution react withh PH_{3}, complex is formed.
(iii) $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \xrightarrow{\text { conc. } \mathrm{H}_{2} \mathrm{SO}_{4}} 2 \mathrm{C}+11 \mathrm{H}_{2} \mathrm{O}$
(iv) $\mathrm{NH}_{3}+\mathrm{Cl}_{2} \xrightarrow{\Delta} \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{N}_{2}$ (excess)

- Watch Video Solution

11. Consider the following orders:
(1) $\mathrm{H}_{2} \mathrm{SO}_{4}>\mathrm{H}_{2} \mathrm{SO}_{3}$: boiling point
(2) $\mathrm{H}_{2} \mathrm{O}>\mathrm{HF}$: Extent of H-bond
(3) $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{O}_{2}$: Strength off H -bond.

- View Text Solution

12. How many monovalent oxygen atoms are preset in the mineral kinoite $\left(\stackrel{+2}{\mathrm{C}} \mathrm{a}_{2} \stackrel{+2}{\mathrm{C}} \mathrm{u}_{2} \mathrm{Si}_{3} \mathrm{O}_{10} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) ?$

- View Text Solution

13. How many moles off given compound are decomposed in the following decomposition in the following decomposition reaction?
$\mathrm{NaOCl} \xrightarrow{\Delta} \mathrm{NaClO} 3+\mathrm{NaCl}$
14. How many moles of NaOH are required to react with one mole of solid $\mathrm{N}_{2} \mathrm{O}_{5}$?

- Watch Video Solution

15. How many moles of hypophophorous acid are involved in its thermal decomposition reaction when one mole of each product is formed.

- Watch Video Solution

16. Consider the structure of $A l_{2} M e_{6}$ compound and find the value of $\frac{x-y}{z}$ where $x=$ maximum number of atoms that can lie in place having terminal $(A l-M e)$ bonds

$$
y=\text { total number of } 3 c-2 e^{-} \text {bonds }
$$

$z=$ total number of atoms that are $s p^{3}$ hydrized.

- Watch Video Solution

17. Sum of oxidation state of nitrogen atom in hyponitrous acid, nitric acid and nitrous acid.

Watch Video Solution

18. Find the value of x in the tremolite abestos:
$\mathrm{Ca}_{2} \mathrm{Mg}_{x}\left(\mathrm{Si}_{4} \mathrm{O}_{11}\right)_{2}(\mathrm{OH})_{2}$

- Watch Video Solution

19. Consider the following silicates
(a) $\mathrm{BaTi}\left(\mathrm{Si}_{2} \mathrm{O}_{9}\right)$
(b) $\mathrm{ZnCa}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$

Then calculate $\mathrm{X}+\mathrm{Y}$, where X and Y are total number of monovalent and divalent oxygen atoms in both silicates respectively.

- Watch Video Solution

20. Atomicity of white or yellow phosphorus is 4 annd it is represented as P_{4} molecule

Calculate the value of expresion $\frac{x \cdot y}{z}$ regarding this molecule.
Where x: total number of vertex angles in P_{4} molecule.
y : Total number of lone pairs in P_{4} molecule
z: total number of P-P bonds in P_{4} molecule.

D Watch Video Solution

21. Marshall's acid $\xrightarrow{\mathrm{H}_{2} \mathrm{O}} A+B$
$A \xrightarrow{\mathrm{H}_{2} \mathrm{O}} B+C$
If P and Q represent maximum number of atoms that can lie in a plane of compound A and C respectively. Then, find out value of ($P-Q$).

- View Text Solution

22. Consider following four compounds:
(i) $C_{x} O_{y}$
(ii) $C_{x} O_{y+1}$
(iii) $C_{x+2} O_{y+1}$ and (iv) $C_{x+11} O_{y+8}$,
if " $x=y=1$ ", then calculate the vlaue of $|p-q|$, where p and q are total number of $s p^{2}$ and hybridized carbon atoms respectively in given four compounds.

- Watch Video Solution

23. If following molecules undergo dimerisation then find the value of $\frac{Y Z}{X}$:
(i) CiO_{3}
(ii) $O F$
(iii) GaH_{3}
(iv) AlCl_{3}
(v) ICl_{3}
(vi) BeH_{2}
(vi) NO_{2}

Where $\mathrm{X}=$ Number of molecules which are hypevalennt in dimeric form.
$Y=$ Number of molecules which complete octet in dimer form

Z=Number of molecules which are hypovalent in dimeric form.

- Watch Video Solution

24. Consider $\mathrm{Al}_{2}(\mathrm{OH})_{6}$ compound and caculate the value of $(X+Y)+Z$ Wher X=total number of $\left(2 c-2 e^{-}\right)$bond.
$Y=$ total number of $\left(3 c-2 e^{-}\right)$bond.
Z=total numbe of $\left(3 c-4 e^{-}\right)$bond

- View Text Solution

25. Consider the following covalent compounds in their solid state and find the value of expression $(X+Y+Z)$.
$\mathrm{N}_{2} \mathrm{O}_{5}, \mathrm{Cl}_{2} \mathrm{O}_{6}, \mathrm{PCl}, \mathrm{I}_{2} \mathrm{Cl}_{6}, \mathrm{XeF}_{6}, \mathrm{PBr}_{5}$
Where X=total number of compounds in which central atom of cationic or anionic part is $s p^{3}$ hybridized.
$Y=$ Total number of compounds having 90° bond angle either in cationic or anionic part.
$\mathrm{Z}=$ Total number of compounds having $109^{\circ} 28^{\prime}$ bond angle either in cationic or anionic part.

- View Text Solution

26. Consider following compounds A to E:
(A) $X e F_{n}$
(B) $X e F_{(n+1)}^{+}$
(C) $X e F_{(n+1)}^{-}$
(D) $\mathrm{Xe}_{(n+2)}$
(E) $X e F_{(n+4)}^{2-}$,

If value of n is 4 , then calculate value of $p \div q$ here, ' p ' is total number of bond pair and ' q ' is total number of lone pair on central atoms of compounds (A) to (E).

- Watch Video Solution

27. When $B_{2} H_{6}$ is allowed to react with following lewis bases, then how man ygiven lewis bases form adduct through symmetrical cleavage of $B_{2} H_{6}$?
$\mathrm{NH}_{3}, \mathrm{MeNH}_{2}$, Pyridine, $\mathrm{CO}, \mathrm{T} . \mathrm{H} . \mathrm{F}, \mathrm{PH}_{3}, P F_{3}, \mathrm{Me}_{3} \mathrm{~N}, \mathrm{Me}_{2} \mathrm{NH}$
28. What is covalency of chlorine atom in second excited state?

- Watch Video Solution

29. Consider the following molecule:

Calculate value of $\mathrm{q}+\mathrm{q}$, here p and q are total number of $d \pi-p \pi$ bonds and total number of $s p^{3}$-hybridised atoms respectively in given molecule.
30. Consider the following structures and calculate value of $\left(P^{2}-Q^{2}\right)$

Where $\mathrm{P}=$ total number of correct structure representation.
Q=Total number of incorrect structure representation.
(i)

(v)

(vi)

(vii)

- View Text Solution

31. Calculate the value of " $x+y-z$ " here x, y and z are total number of nonbonded electron pair (s),pie (π) bond(s) and sigma (σ) bonds in hydrogen phosphite ion respectively.

- Watch Video Solution

32. Consider the following species:
(i) CH_{3}^{+}
(ii) $\left(C_{3} H_{5}\right)_{3} \mathrm{Al}$
(iii) HCHO
(iv) CH_{4}
(v) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$
(v) TiCl_{4}
(vii) CO_{2}
(viii) SiCl_{4}
(ix) $B F_{3}$
the find out total number of species which can act as Lewis acid.

- Watch Video Solution

33.

Consider
the
following
species:
$\mathrm{CF}_{4}, \mathrm{GeH}_{4}, \mathrm{BCl}_{3}, \mathrm{AlBr}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{PH}_{3}, \mathrm{PCl}_{5}, \mathrm{CO}_{2}, \mathrm{CH}_{4}$ and calculate value of $(x-y)^{2}$:

Where, x : Total number of species which can act as only lewis acid.
y : total number of species which can act as lewis acid as well as lewis base.
34. If X, Y and Z are total number of π-bond(s) in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}, \mathrm{H}_{2} \mathrm{SO}_{3}$ and $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ respectively then calculate vlaue of expression $|X+Y-Z|$.

- Watch Video Solution

35. Calculate value of " $x+y$ " ffor "hypophoshporic acid", where x is total number of lone pair(s) and y is total number π-bond(s) in givenn oxoacids.

- Watch Video Solution

36. Atomicity of white or yellow phosphorus is 4 annd it is represented as
P_{4} molecule
Calculate the value of expresion $\frac{x \cdot y}{z}$ regarding this molecule.
Where x: total number of vertex angles in P_{4} molecule.
y : Total number of lone pairs in P_{4} molecule
z: total number of P-P bonds in P_{4} molecule.

- Watch Video Solution

