

CHEMISTRY

BOOKS - VK JAISWAL CHEMISTRY (HINGLISH)

QUALITATIVE INORGANIC ANALYSIS

1. $Fe(OH)_3$ can be separated from $Al(OH)_3$ by addition of:

A. $BaCl_2$

B. Dil. HCl

- C. NaOH solution
- D. NH_4Cl & NH_4OH

Answer: C

2. Cations present in slightly acidic solution are Al^{3+} , Zn^{3+} and Cu^{3+} . The reagent which when added in excess to thiis solution would identity and separate Cu^{2+} in one step is:

A. HCl acid

B. NH_3 solution

C. NaOH solution

D. Na_2CO_3 solution

Answer: C

Watch Video Solution

3. When a KI solution is added to a metal nitrate, a black precipitate is produced which dissolves in an excess of KI to give an organge solution. The metal ion is:

A. $Hg^{2\,+}$

B. Bi^{3+}

 $\mathsf{C.}\, Cu^{2\,+}$

D. Pb^{2+}

Answer: B

Watch Video Solution

4. Which is not easily precipitated for aqueous solution ?

A. Cl^-

 $\mathsf{B.}\,SO_4^{2\,-}$

 $\mathsf{C.} NO_3^-$

D. CO_3^{2-}

Answer: C

5. Soda extract is useful when given mixture has any insoluble salt, it is prepared by:

A. fusing soda and mixture and then extracting with water

B. dissolving $NaHCO_3$ and mixture in dil. HCl

C. boiling Na_2CO_3 and mixture in dil. HCl

D. boiling Na_2CO_3 and mixture in distilled water

Answer: D

Watch Video Solution

6. An aqueous solution of a substance, on treatment with dilute HCl, gives a white precipitate soluble in hot water. When H_2S is passed through the hot acidic solution, a black precipitate is formed. The substance is:

A.
$$Hg_2^{2+}$$
 salt

B. Cu^{2+} salt

C. Ag^+ salt

D. $Pb^{2\,+}$ salt

Answer: D

Watch Video Solution

7.
$$CrCl_3 \xrightarrow[NH_4OH]{NH_4OH} (A) \xrightarrow[H_2O]{Na_2O_2} (B) \xrightarrow[acetate]{Lead} (C)$$

In this reaction sequence, the compound (C) is:

A. Na_2CrO_4

 $\operatorname{B.} Na_2 Cr_2 O_7$

 $\operatorname{C.} Cr(OH)_3$

D. $PbCrO_4$

Answer: D

8. Identify the correct order of solubility of Na_2S, CuS and ZnS in aqueous solution

A. $CuS > ZnS > Na_2S$

B. $ZnS > Na_2S > CuS$

C. $Na_2S > CuS > ZnS$

D. $Na_2S > ZnS > CuS$

Answer: D

9.
$$2Cu^{2+} + 5I^- \to 2CuI \downarrow + [X]$$

 $[X] + 2S_2O_3^{2-} \to 3[Y] + S_4O_6^{2-}, X \text{ and } Y \text{ are:}$
A. I_3^- and I^-
B. I_2 and I_3^-

C. I_2 and I^-

D. I_3^{-} and I_2

Answer: A

Watch Video Solution

10. In Nessler's reagent, the ion present is

A. HgI^{2-}

- B. $HgI_4^{2\,-}$
- C. Hg^+
- D. Hg^2

Answer: B

11. A reddish pink substance on heating gives off a vapour which condenses on the sides of the test tube and the substance turns blue. It on cooling water is added to the residue it turns to its original colour. The substance is:

A. lodine crystals

B. Copper sulphate crystals

C. Cobalt chloride crystals

D. Zinc oxide

Answer: C

Watch Video Solution

12. Oxalate $+MnO_2 + {
m dil.} H_2SO_4
ightarrow \,\,$ Gas. The gas evolved is

A. CO_2

 $\mathsf{B.}\,CO$

 $\mathsf{C}.SO_2$

 $\mathsf{D}.\,O_2$

Answer: A

Watch Video Solution

13. Which of the following reagents can used to identify bromide and iodide ions in the presence of organic layer?

A. Chlorine water

B. Silver nitrate solution

C. Starch solution

D. Concentrated sulphuric acid

Answer: A

14. To avoid the precipitation of hydroxides of Ni^{2+} , Co^{2+} , Zn^{2+} and Mn^{2+} along with those of Fe^{3+} , Al^{3+} and Cr^{3+} the third group solution should be:

A. Heated with a few drops of conc. HNO_3

B. Treated with excess of NH_4Cl

C. Concentrated

D. None of these

Answer: B

> Watch Video Solution

15. Which set gives yellow ppt.?

A. KO_3, Sb_2S_3, CdS

 $\mathsf{B.}\,Sb_2S_3,CdS,PbCrO_4$

 $\mathsf{C.} \ PbCrO_4, As_2S_3, SnS_2$

D. SnS_2 , As_2S_3 , $PbCrO_4$, PbO

Answer: C

16. Which of the following reagents can separate a mixture of AgCl and AgI?

A. KCN

 $\operatorname{B.} Na_2S_2O_3$

 $C. HNO_3$

D. NH_3

Answer: D

17. Brown ppt.(A) dissolve in HNO_3 gives (B) which gives white ppt. (C) with NH_4OH . (C) on reaction with HCl gives solution (D) which gives white turbidity on addition of water. What is (D)?

A. $Ca(OH)_2$ B. $Bi(OH)_3$

 $\mathsf{C}.\,BiOCl$

D. $Bi(NO_3)_3$

Answer: C

Watch Video Solution

18. Which nitrate on decomposition will give metal?

A. $Hg_2(NO_3)_2$

 $\mathsf{B.}\,NaNO_3$

 $\mathsf{C}.KNO_3$

D. $AgNO_3$

Answer: A::D

19. Which of the followingg compounds does not exist?

A. CrO_2Br_2

B. CrO_2Cl_2

C. $POCl_3$

D. BiOCl

Answer: A

20. Which one among the following pairs of ions cannot be separated by H_2S in dilute HCl?

A. Bi^{3+}, Sn^{2+} B. Al^{3+}, Hg^{2+} C. Zn^{2+}, Cu^{2+} D. Ni^{2+}, Cu^{2+}

Answer: A

Watch Video Solution

21. Salt (A) gives brick red fumes (B) with conc. H_2SO_4 and $K_2Cr_2O_7$ which gives yellow solution (C) with NaOH annd it gives yellow ppt. (D) with acetic aciid and lead acetate. What is (C)?

A. Na_2CrO_4

B. CrO_2Cl_2

C. $PbCrO_4$

 $\mathsf{D.}\, NaCl$

Answer: A

Watch Video Solution

22. When a nitrate is warmed with zinc powder and an NaOH solution, a gas is evolved. Which of the following reagents will be turned brown by the gas?

A. Sodium nitroprusside

B. Sodium cobaltinitrite

C. Nessler's reagent

D. Barium chloride

Answer: C

23. To avoid the precipitation of hydroxides of Ni^{2+} , Co^{2+} , Zn^{2+} and Mn^{2+} along with those of Fe^{3+} , Al^{3+} and Cr^{3+} the third group solution should be:

A. Heated with a few drops of conc. HNO_3

B. Treated with excess of NH_4Cl

C. H_2S gas is passed into solution

D. None of these

Answer: B

Watch Video Solution

24. Brown ppt.(A) dissolve in HNO_3 gives (B) which gives white ppt. (C) with NH_4OH . (C) on reaction with HCl gives solution (D) which gives white turbidity on addition of water. What is (D)?

B. $Bi(OH)_3$

C. BiOCl

D. $Bi(NO_3)_3$

Answer: A

Watch Video Solution

25. What is the oxidation number of iron in the brown ring complex compound ?

A. 0

B. 1

C.+2

 $\mathsf{D.}+3$

Answer: B

26. On adding KI solutio in excess to a solution off $CuSO_4$ we get a precipitate 'P' and another liquor 'M'. Select the correct pairs:

A. P is CuI and M is I_2 solution

B. P is CuI_2 and M is I_2 solution

C. P is CuI and M is KI_3 solution

D. P is CuI_2 and M is KI_3 solution

Answer: C

Watch Video Solution

27. On heating a mixture of NaBr and conc. H_2SO_4 we obtain:

A. HOBr

 $\mathsf{B}.\,HBr$

 $\mathsf{C}.\,Br_2$

D. $HBrO_3$

Answer: B::C

28. Which of the following complexes is responsible for the brown colour of the ring formed in the ring test for the nitrates?

A.
$$[Fe(H_2O)_5NO]^{2+}$$

B. $[Fe(CN)_5NO]^{2-}$

C.
$$\left[Fe(NO_2)_6
ight]^{4\,-}$$

D.
$$\left[Fe(H_2O)_5NO_2
ight]^+$$

Answer: A

29. There is mixture of Cu(II) chloride and Fe(II) sulphate. The best way to separate the metal ions from the mixture in qualitative analysis is:

A. hydrogen sulphide in acidic medium, where only Cu(II) sulphide will

be precipitated

B. ammonium hydroxide buffer, where only Fe(II) hydroxide will be

precipitated

C. hydrogen sulphide in acidic medium, where only Fe(II) sulphide will

be precipitated

D. ammonium hydroxide buffer, where only Cu(II) hydroxide will be precipitated

Answer: A

30. Which of the following reagents can be used to distinguish between a

sulphite and a sulphate in solution?

A. $FeSO_4$

- $\mathsf{B.} \, Na_2 \big[Fe(CN)_5 NO \big]$
- $C. BaCl_2 + dil. HCl$

D. $Na_3[Co(NO_2)_6]$

Answer: C

Watch Video Solution

31. A doctor by mistake administers a $Ba(NO_3)_2$ solution to a patient for radiography investigations. Which of the following should be given as the best to prevent to adsorption of soluble barium?

A. NaCl

 $\mathsf{B.}\,Na_2SO_4$

 $C. Na_2CO_3$

 $\mathsf{D.}\, NH_4Cl$

Answer: B

Watch Video Solution

32. A colourless water soluble solid (X) on heating gives equimolar quantities of (Y) and (Z). Y gives dense white fumes with HCl and Z does so with NH_3 . Y gives brown ppt. with K_2Hgl_4 (Nesslers reagent) and Z gives white precipitate with nitrates of Ag^+ , Pb^{2+} and Hg^+ . What is X

?

A. NH_4Cl

B. NH_4NO_3

 $\mathsf{C.}\,NH_4NO_2$

D. $FeSO_4$

Answer: A

33. The colour of the iodine solution is discharged by shaking with

A. sodium sulphate

B. sodium sulphide

C. aqueous sulphur dioxide

D. sodium bromide

Answer: B::C

34. Three separate samples of a solution of a single salt gave these results. One formed a white precipitate with excess ammonia solution, one formed a white precipitate with dil. NaCl solution and one formed a black precipitate with H_2S . The salt could

A. $AgNO_3$

B. $Pb(NO_3)_2$

C. $Hg(NO_3)_2$

D. $MnSO_4$

Answer: B

Watch Video Solution

35. In an alkaline solution, sodium nitroprusside gives a violet colour with

A. $S^{2\,-}$

:

 $\mathsf{B.}\,SO_3^{2\,-}$

 $\mathsf{C.}\,SO_4^{2\,-}$

D. NO_3^-

Answer: A

36. A pale yellow precipitate and a gas with pungent odour are formed on warming dilute hydrochloric acid with an aqueous solution containing

A. sulphate ion

B. sulphide ion

C. thiosulphate ion

D. sulphite ion

Answer: C

37.
$$AgNO_3 \xrightarrow{\Delta} (W) + (X) + O_2$$

 $(X) + H_2O \rightarrow HNO_2 + HNO_3$
 $(W) + HNO_3 \rightarrow Y + NO + H_2O$
 $(Y) + Na_2S_2O_3(\operatorname{excess}) \rightarrow (Z) + NaNO_3$

A.
$$W = Ag, X = N_2O, Y = AgNO_3, Z = Na_2[Ag(S_2O_3)_2]$$

B. $W = Ag_2O, X = NO, Y = AgNO_3, Z = Na_3[Ag(S_2O_3)_2]$
C. $W = Ag, X = NO_2, Y = AgNO_3, Z = Na_2[Ag(S_2O_3)_2]$
D. $W = Ag_2O, X = N_2, Y = AgNO_3, Z = Na[Ag(S_2O_3)_2]$

Answer: C

D Watch Video Solution

38. Consider the following sequence of tests,

 $M^{n+}
ightarrow HCl
ightarrow \,$ white precipitate $\stackrel{\Delta}{\longrightarrow} \,$ water soluble.

The metal ion $\left(M^{n\,+}
ight)$ would be:

A. $Hg^{2\,+}$

B. Ag^+

 $\mathsf{C}.\, Pb^{2\,+}$

D. Sn^{2+}

Answer: C

39. The brown ring test for NO_3^- is due to the formation of the complex ion with formula:

A.
$$[Fe(H_2O)_6]^{2+}$$

B. $Fe[NO(CN)_5]^{2-}$
C. $[Fe(H_2O_5NO]^{2+}$
D. $[Fe(H_{2O}(NO)_5]^{2+}]^{2+}$

Answer: C

40. Which of the following compounds does magnesium precipitate when

you test for it?

A. $MgCO_3 \cdot MgO$

B. $MgCO_3$

 $C.Mg(OH)_2$

D. $MgNO_4PO_4 \cdot 6H_2O$

Answer: D

Watch Video Solution

41. $MgCO_3$ is not precipitated with the carbonates of Vth group radicals in presence of NH_4Cl and NH_4OH because:

A. $MgCO_3$ is soluble in NH_4OH

B. $MgCO_3$ is not precipitated in presence of NH_4Cl

C. $MgCO_3$ is soluble in water

D. $MgCO_3$ is soluble in $(NH_4)_2CO_3$

Answer: B

42. Which of the following salt gives green colour mass in cobalt nitrate

charcoal cavity test?

A. Zn salts

B. Al salts

C. Alumns

D. Copper salts

Answer: A

Watch Video Solution

43. Yellow coloured compound is:

A. NH_4CNS

B. $PbCrO_4$

 $\mathsf{C}.\, NaOH$

D. $K_4[Fe(CN)_6]$

Answer: B::D

Watch Video Solution

44. Which of the following tests cann you identify K^+ in a salt?

A. Flame test (violet) and precipitation (yellow) with sodium

cobaltinitrite

- B. Flame test (violet) and precipitation (violet) with sodium cobaltinitrite
- C. Flame test (crimson) and precipitation (yellow) with sodium cobaltinitrite
- D. Flame test (golden) and precipitation (violet) with sodium cobaltinitrite

Answer: A

45. A chloride salt on addition of alkali solution gives gas B whicch gives brownn ppt. with nessler's regent. What is A, B and C?

A. NH_4Cl , NH_3 and $HgO \cdot Hg(NH_2)(NO_3)$

B. NH_4Cl , NH_3 and $Hg(NH_3)Cl$

C. NH_4Cl , NH_3 and $HgO \cdot Hg(NH_2)Cl$

D. NH_4Cl , NH_3 and $HgO \cdot Hg(NH_2)I$

Answer: D

46. An inorganic salt is strongly heated. The residue is yellow when hot

and white when cold. The salt contains:

A. $Pb^{2\,+}$

B. Zn^{2+}

C. Hg^{2+}

D. $NH_4^{\,+}$

Answer: B

Watch Video Solution

47. Which of the following sulphides is white?

A. CdS

 $\mathsf{B}.\, PbS$

 $\mathsf{C}.\,ZnS$

 $\mathsf{D.}\,SnS$

Answer: C

48. The gas evolved in which of the following reactions forms the iodide of Millon's base on being passed through a solution of $[HgI_4]^{2-}$ in KOH?

A. $CaSO_4$ treated with dilute HCl

B. NH_4Cl boiled with NaOH

C. ZnS treated with dilute H_2SO_4

D. $MgCO_3$ heated alone

Answer: B

49. A white, sublimable inorganic substance gives a brown precipitate on treatment with nessler's reagent and a whiite precipitate (soluble in NH_3) with ann $AgNO_3$ solution. The substance is :

A. Hg_2Cl_2

B. $HgCl_2$

 $\mathsf{C.}\, As_2O_3$

 $\mathsf{D.}\, NH_4Cl$

Answer: D

Watch Video Solution

50. A white sublimable substance, that turns black on treatment with an

 NH_3 solution can be:

A. Hg_2Cl_2

 $\mathsf{B.}\,HgCl_2$

 $\mathsf{C.}\, As_2O_3$

D. NH_4Cl

Answer: A

51. Rinman's green is:

A. $\left[Ni(NH_3)_6\right]SO_4$

B. $FeSO_4 \cdot 7H_2O$

 $C. CoZnO_2$

D. $Fe(BO_2)_2$

Answer: C

Watch Video Solution

52. A whilte crystalline salt imparts a violet colour to a Bunsen flame, and with hot concentrated H_2SO_4 , forms a pungent gas. On treatment with an $AgNO_3$ solution, this gas forms a white precipitate readily soluble in NH_3 . The whilte crystalline salt may be:

A. Na_2SO_4

 $\mathsf{B.}\,KCl$

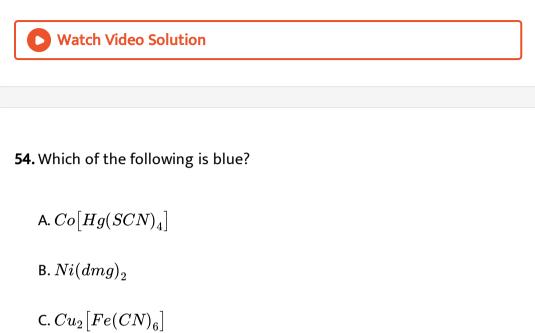
 $\mathsf{C.}\, CaCl_2$

D. $SrCl_2$

Answer: B

Watch Video Solution

53. A which solid gives a green residue on beingi subjected to the cobalt nitrate test.on being warmed with concentrated H_2SO_4 , the solid gives a brown gas, which evolves vigorously on the addition of Cu turningsl. The solid may be:


A. $Zn(NO_3)_2$

B. $Al(NO_3)_2$

C. $ZnBr_2$

D. $Mg(NO_3)_2$

Answer: A

D. $Fe(SCN)_3$

Answer: A

55. Which of the following pairs of cations cannot be separated by using

an NH_3 solution?

A.
$$Pb^{2+}, Zn^{2+}$$

B. Pb^{2+}, Cu^{2+}
C. Zn^{2+}, Cu^{2+}
D. Al^{3+}, Ag^+

Answer: C

56. Which of the following pairs of cations cann be separated by adding NH_4Cl and NH_4OH to the mixture?

A. Fe^{3+}, Al^{3+} B. Cr^{3+}, Ni^{2+} C. Al^{3+}, Cr^{3+} D. Fe^{3+}, Cr^{3+}

Answer: B

57. Which of the following pairs of cations cannot be separated by adding NH_4Cl and NH_4OH to the mixture and then passing H_2S through it?

A. Co^{2+}, Ca^{2+} B. Ni^{2+}, Sr^{2+} C. Co^{2+}, Ni^{2+} D. Zn^{2+}, Ba^{2+}

Answer: C

Watch Video Solution

58. Before adding the reagents of group III, the solution is heated with some concentrated HNO_3 in order to :

A. oxidise Fe^{2+} to Fe^{3+}

B. oxidise Cr^{3+} to $Cr_2O_7^{2-}$

C. lower than pH

D. increase the NO_3^-

Answer: A

Watch Video Solution

59. Which of the following pairs of sulphides are insoluble in dilute HCl?

A. CoS and NiS

B. CoS and MnS

C. NiS and MnS

D. NiS and ZnS

Answer: A

60. If a solution containing Al^{3+} , Ni^{3+} and Mg^{3+} is first created with NH_4Cl and then with NH_4OH , which of the following will precipitate?

A. $Al(OH)_3$

 $\mathsf{B.}\,Ni(OH)$

 $\mathsf{C}.Mg(OH)_2$

D. $Al(OH)_3$, $Ni(OH)_3$ and $Mg(OH)_2$

Answer: A

Watch Video Solution

61. Which of the following leaves a black residue on the addition of NH_3

?

A. AgCl

B. $PbCl_2$

 $C. Hg_2Cl_2$

D. $HgCl_2$

Answer: C

62. Which of the following is not soluble in hot an conc. HNO_3 ?

A. PbS

B. NiS

C. CuS

D. HgS

Answer: D

63. Which of the following cations will form an insoluble red-brown compound with $\left[Fe(CN)_6\right]^{4-}$?

A. Hg^{2+} B. Pb^{2+} C. Cu^{2+}

D. Cd^{2+}

Answer: C

> Watch Video Solution

64. Which of the following, on treatement with KCN, will give cyanogen

gas?

A. $\left[Ag(NO_3)_2 \right]^-$ B. $\left[Cu(NH_3)_4 \right]^{2+}$ C. $\left[Cd(NH_3)_4 \right]^{2+}$

D.
$$\left[Zn(NH_3)_4\right]^{2+}$$

Answer: B

65. Which of the following is insolublein yellow ammonium polysulphide?

A. CuS

B. As_2S_3

 $\mathsf{C.}\,Sb_2S_3$

 $\mathsf{D.}\,SnS$

Answer: A

66. Which of the following is formed when As_2S_3 is warmed with NH_4OH and H_2O_2 ?

A. $As(OH)_3$

B. AsO_4^{3-}

C. AsO_3^{2-}

D. $\left[As(NH_3)_6
ight]^{5\,+}$

Answer: B

Watch Video Solution

67. The role of NH_4Cl in the precipitation of the hydroxides of group III

cations is to:

A. increase the Cl^-

B. facilitate the dissociation of NH_4OH

C. suppress the dissociation of NH_4OH by the common ion effect

D. render the solution weakly acidic

Answer: C

68. Which of the following pairs of cations can be separted by using on adding NaOH solution?

A. Cu^{2+}, Zn^{2+} B. Pb^{2+}, Al^{3+} C. Sn^{2+}, Pb^{2+} D. Zn^{2+}, Pb^{2+}

Answer: A

69. On heating, a salt gives a gas which turns lime water milky and an acidified dichromate solution green. The salt may be:

A. carbonate

B. sulphide

C. sulphate

D. sulphite

Answer: D

Watch Video Solution

70. Reaction of $Zn(OH)_2$ with NaOH produces:

A. Na_2ZnO_2

B. ZnO

 $\mathsf{C}.Na_2O$

D. None of these

Answer: A

71. In group separation, before precipitating out group III metal ions as hydroxides, it is necessary to boil then solution of the salt mixture with a few drops of concentrated HNO_3 is treated. This is done to convert:

A.
$$Co^{3+}$$
 to Co^{3+}
B. Fe^{2+} to Fe^{3+}

C.
$$Mn^{3+}$$
 to MnO_4^{-}

D.
$$Cr^{3+}$$
 to CrO_4^{2-}

Answer: B

72. A compound X on heating gives a colourless gas. This residue is dissolved in water to obtain Y. excess CO_2 is bubbled through aqueous solution of Y, Z is formed. Z on gentle heating give back X. the X is

A. $NaHCO_3$

 $\mathsf{B.}\,Na_2CO_3$

 $C.Ca(HCO_3)_2$

D. $CaCO_3$

Answer: D

Watch Video Solution

73. An aqueous solution of a substance gives a white percipitate on treatment with dil HCl, which dissole on heating. On passing H_2S in hot acidic solution a black percipitate is formed. The substance is:

A.
$$Hg_2^{2\,+}$$
 salt

B. $Hg^{2\,+}$ salt

C. Ag^+ salt

D. $Pb^{2\,+}$ salt

Answer: D

Watch Video Solution

74. A solid mixture of AgCl ad $K_2 C r_2 O_7$ is heated with conc. $H_2 S O_4$ and

produces:

A. greenish yellow gas

B. colourless gas

C. red coloured gas

D. no gas

Answer: D

75. Which of the following has the highest value of K_p ?

A. $BeCO_3$

 $\mathsf{B.}\,MgCO_3$

 $C. CaCO_3$

D. $BaCO_3$

Answer: A

Watch Video Solution

76. When copper sulphate solution is treatd with potasium iodide and excess of hypo solution is added in resulting solution, a white precipitate is formed. The white ppt. is due to formation off:

A. $Na_2S_4O_6$

 $\mathsf{B.}\, CuI_2$

 $\mathsf{C}.\, CuI$

 $\mathsf{D.}\, NaI$

Answer: C

Watch Video Solution

77. The ferrous ion in a given sample is detected by the formation of a white precipitate on the addition of a potassium ferrocyanide solution to it. The precipitate has the constitutional formula:

A.
$$K_2 F e^{II} ig[F e^{II} (CN)_6ig]$$

- $\mathsf{B.}\, K_2 F e^{III} \big[F e(CN)_6 \big]$
- $\mathsf{C.}\,KFe^{III}\big[Fe^{II}(CN)_6\big]$
- ${\rm D.}\,KFe^{II}\big[Fe^{III}(CN)_6\big]$

Answer: A

78. Which one is correct group reagent for group cations?

A.
$$Mn^{2+}CO^{2+}Zn^{2+}Ni^{2+}$$
: $HCl + H_2S$
B. $Mn^{2+}Co^{2+}Zn^{2+}Ni^{2+}$, dil . HCl
C. $Mn^{2+}Co^{2+}Zn^{2+}Ni^{2+}$, $NH_4Cl + NH_4OH$
D. $Mn^{2+}Co^{2+}Zn^{2+}Ni^{2+}$, $NH_4Cl + NH_4OH + H_2S$

Answer: D

Watch Video Solution

79. Cobalt salt+ $KNO_2 + CH_3COOH \rightarrow$ yellow ppt.the yellow precipitate is:

A. Potassium cobaltanitrate

B. Potassium cobaltinitrite

C. Cobalt nitrite

D. Cobalt nitrate

Answer: B

Watch Video Solution

80. Sulphide ions react with $Na_{20}[Fe(NO)(CN)_5]$ to form a purple coloured compound $Na_4[Fe(CN)_5(NOS)]$. In the reaction, the oxidation state of iron:

A. Changes from +2 to +3

B. Changes from +3 to +2

C. Changes from +2 to +4

D. does not change

Answer: D

81. White crystal (A) on treatment with $AgNO_3$ gives white crystalline precipitate. (A) discharge the colour of $KMnO_4$ solution but no gas is evolved. Probable radical present in (A) is:

A. Cl^{-}

B. $Br^{\,-}$

 $\mathsf{C}.NO_2^-$

D. CO_3^{2-}

Answer: C

82. Iodate ions (IO_3^-) can be reduced to iodine by iodide ions. The half equation which represent the redox reaction are:

$$egin{aligned} &IO_3^{-}(aq.\,)+6H^+(aq.\,)+5e orac{1}{2}I_2(s)+3H_2O(l)\ldots$$
 (i) $&I^-(aq.\,) orac{1}{2}I_2(s)+e^-\ldots$ (ii)

How many moles of iodine are produced for every mole of iodate ions consumed int he reaction?

B. 1

C. 2.5

D. 3

Answer: D

Watch Video Solution

83.
$$Cl_2 + OH^- \rightarrow Cl^- + ClO_3^-$$

What is the coefficient for $OH^{\,-}$ when this equation is balanced with the

smallest interger coefficients ?

A. 2

B. 3

C. 4

D. 6

Answer: D

84. A solution of metal hydroxide (MOH) with copper sulphate and mixed tartarate of metal M with another metal M_1 of the same group is used in the detection of -CHO froup. Metal M and M_1 are respectively

A. K, Na

B. K, Rb

C. Na, Li

D. Rb, Na

Answer: A

85. (i) $A + Na_2CO_3 \rightarrow B + C$, (ii) $A \xrightarrow{CO_2}$ (Milkyl) C. Itbr. The chemical formula of A and B are respectively:

A. NaOH and $Ca(OH)_2$

 $B.Ca(OH)_2$ and NaOH

 $\mathsf{C}.\,NaOH$ and CaO

D. CaO and $Ca(OH)_2$

Answer: B

Watch Video Solution

86. Sometimes yellow turbidity appears while passing H_2S gas even in the absence of II group radicals. This is because of

A. sulphur is present in the mixture as impurity

B. (IV) grou radicals are precipitated as sulphides

C. the oxidation of H_2S gas by some acid radicals

D. III group radicals are precipitated as hydroxides

Answer: C

Watch Video Solution

87. Incorrect order of solubility product (K_{sp}) of given precipitated compound is:

A. $AgCl < PbCl_2$

- $\mathsf{B.} Al(OH)_3 < Zn(OH)_2$
- $C. BaCO_3 < MgCO_3$

D. $MnS < Ag_2S$

Answer: D

88. On adding KI to a metal salt solution, no precipitate was observed but the salt solution gives yellow precipitate with K_2CrO_4 in the presence of CH_3COOH . Then the salt is:

A. $Sr(NO_3)_2$

B. $Pb(CH_3COO)_2$

 $C. AgNO_3$

D. $BaCl_2$

Answer: D

Watch Video Solution

89. Which of the following precipitate is soluble in excess of NH_3 solution?

A. $Pb(OH)_2$

B. $Fe(OH)_2$

 $\mathsf{C.} Ni(OH)_2$

D. Ag_2S

Answer: C

Watch Video Solution

90. When of the following precipitate is soluble in excess of NH_3 solution?

A. Zn^{2+}, Cd^{2+} B. Hg^{2+}, Ag^{+} C. Cu^{2+}, Pb^{2+}

D. Mn^{2+}, Ni^{2+}

Answer: A

91. Which of the following mixtures cann be separated by using excess NH_3 solution?

A.
$$Bi_{(aq.)}^{3+}$$
 and $Al_{(aq.)}^{3+}$
B. $Al_{(aq.)}^{3+}$ and $Zn_{(aq.)}^{2+}$
C. $Hg_{(aq.)}^{2+}$ and $Pb_{(aq.)}^{2+}$
D. $Cu_{(aq.)}^{2+}$ and $Cd_{(aq.)}^{2+}$

Answer: B

92. Which of the following salt on heating with concentrated H_2SO_4 , coloured vapours do not evolve?

A. NaBr

B. $NaNO_3$

 $\mathsf{C}.\,CaF_2$

 $\mathsf{D.}\,KI$

Answer: C

LEVEL 2

1. When a reagent (X) reacts with Fe^{3+} salt solution turnsred due to the formation of a compound (Y). This reagent cause no change in colour with Fe^{2+} salt solution. Compound (X) and (Y) are respectively:

- A. NH_4SCN and $Fe(SCN)_3$
- B. $K_4[Fe(CN)_6]$ and $FeSO_4$
- $C. Na_2HPO_4$ and $FeSO_4$

D.
$$K_3 \big[Fe(CN)_6 \big]$$
 and $K_2 Fe \big[Fe(CN)_6 \big]$

Answer: A

2. Which of the following mixtures cann be separated by using excess NH_3 solution?

A.
$$Bi^{3+}(aq.)a \neq Al^{3+}(aq.)$$

B. $Al^{3+}(aq.)$ and $Zn^{2+}(aq.)$
C. $Hg^{2+}(aq.)$ and $Pb^{2+}(aq.)$
D. $Cu^{2+}(aq.)$ and $Cd^{2+}(aq.)$

Answer: B

Watch Video Solution

3. Which of the following salt will not give positive brown ring test?

A. $Cu(NO_3)_2$

B. $Pb(NO_3)_2$

 $C. Zn(NO_3)_2$

D. $Mg(NO_3)_2$

Answer: B

Watch Video Solution

$$P+Q
ightarrow R+K_2SO_4$$

 $R
ightarrow 2CuI + I_2$

 $Ag^+ + Q
ightarrow S + K^+$

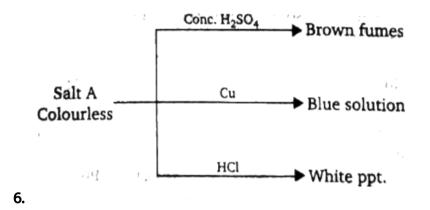
Then according to given information the incorrect match is:

A.
$$P=CuSO_4$$

B. $Q=KI$
C. $R=CuI_2$
D. $S=K[AgI_2]$

Answer: D

5. A very dilute acidic solution of Cd^{2+} and Ni^{2+} gives only yellow ppt. of CdS on passing H_2S , this is due to


A. Solubility product (K_{sp}) of CdS is more than that of NiS

B. Solubility product (K_{sp}) of CdS is less than that of NiS

C. $Cd^{2\,+}$ belong to IIB group while $Ni^{2\,+}$ belongs to IV^{th} group

D. CdS is insoluble in yellow ammonium sulphide (YAS)

Answer: B

Identif salt (A) satisfying above chemical property:

A. $Cu(NO_3)_2$

- B. $NaNO_3$
- $C. AgNO_3$

D. $Pb(NO_3)_2$

Answer: C

7. Reddish brown (chocolate) precipitate is formed by mixing solutions containing:

A. Cu^{2+} and $[Fe(CN)_6]^{3-}$ ions B. Cu^{2+} and $[Fe(CN)_6]^{4-}$ C. Pb^{2+} and SO_4^{2-} ions

D. Pb^{2+} and I^- ions

Answer: B

Watch Video Solution

8. Water soluble mixture
$$\xrightarrow{(i) \ . \ BaCl_2}$$
 White ppt.

Filtrate+(Hot and conc.) $HNO_3 + BaCl_2 \rightarrow$ White ppt.

The mixture contains:

A.
$$SO_4^{2\,-}$$

B. SO_3^{2-}

C. both (a) and (b)

D. none of these

Answer: C

Watch Video Solution

9. Which of the following compounds after mixing can produce blue colouration?

(I) $K_4[Fe(CN)_6]$ and $FeCl_3$ solution

(II) NH_4OH and $CuSO_4$ solution

(III) Adding anhydrous $CuSO_4$ to water

(IV) $NH_4OH + NiSO_4$ solution

Choose the correct code:

A. I,II,III

B. II,III

C. I,III

D. I,II,III,IV

Answer: D

10. A bromide ion does not intefere with the chromyl chloride test because when a bromide is present:

A. Br_2 is liberated, which leaves the NaOH solution colourless

B. CrO_2Br_2 formed does not volatilise as CrO_2Cl_2 does

C. CrO_2Br_2 does not react with NaOH

D. no gaseous substance containing bromine is produced

Answer: A

11. A red solid is insoluble in water. However, it becomes soluble if some KI is added to water. Heating rod solid in a test tube produces violet coloured fumes and droplets of metal appear on the cooler parts of test tube. The red solid is

A. Pb_3O_4

 $\mathsf{B}.\,HgI_2$

C. HgO

D. $(NH_4)_2 Cr_2 O_7$

Answer: B

Watch Video Solution

12. Which of the following reaction(s) relevat t the microcosmic salt bead

test?

A.
$$Cr_2O_3+3B_2O_3
ightarrow 2Cr(BO_2)_3$$

 $B.CoO + ZnO \rightarrow CoZnO_2$

 $\mathsf{C}.\mathit{CoO} + \mathit{NaPO}_4 \rightarrow \mathit{NaCoPO}_4$

D. $Al_2(SO_4)_3 + 3Na_2CO_3
ightarrow Al_2O_3 + 3Na_2SO_4 + 3CO_2$

Answer: C

Watch Video Solution

13. Solid KCl, when heated with solid $K_2Cr_2O_7$ and concentrated H_2SO_4 , gives red vapours (a) that turn NaOH solution yellow (b). The yellow solution, when acidified with acetic acid and treated with lead acetate, gives a yellow precipitate (c). which of the following is true with respect to a, b and c?

A. a nd b contain $CrO_4^{2\,-}$

- B. a and c contain CrO_4^{2-}
- C. a, b and c contain CrO_4^{2-}

D. a, b and c contain Cr(VI)

Answer: D

14. Choose the correct code by identifying (X), (Y) and (Z) in each case for the changes indicated: $KOH = conc = H_2SO_1 = AaNO_2$

(i)
$$CrO_2Cl_2 \xrightarrow{\text{NOH}} (X) \xrightarrow{\text{conc.} \quad H_2OO_4} (Y) \xrightarrow{\text{HgrO}_3} (Z)$$

(ii) $CrCl_3(aq) \xrightarrow{\text{excess}} (X) \xrightarrow{Na_2O_2}_{H_2O, \text{ boil}} (Y) \xrightarrow{\text{lead}}_{\text{acetate}} (Z)$
(iii) $ZnSO_4(aq) \xrightarrow{Na_2CO_3} (X) \xrightarrow{\Delta} (Y) \xrightarrow{\text{cobalt}}_{\text{nitrate, }\Delta} (Z)$
(iv) $CuCl_2(aq) \xrightarrow{NH_4OH}_{H_2S} (X) \xrightarrow{HNO_3}_{\Delta} (Y) \xrightarrow{KCN}_{\text{excess}} (Z)$

A.
$$X=K_2CrO_4$$
 $Y=K_2Cr_2O_7$ $Z=Ag_2CrO_4$

- $\mathsf{B}.\,X=ig[Cr(OH)_4ig]^- \qquad Y=Na_2CrO_4 \qquad Z=PbCrO_4$
- C. $X = ZnCO_3$ Y = ZnO $Z = CoZnO_2$

D.
$$X=CuS$$
 $Y=Cu(NO_3)_2$ $Z=K_3ig[Cu(CN)_4ig]$

Answer: D

View Text Solution

15. A salt, when warmed with zinc powder and an NaOH solution, gives a gas that turns a filter paper soaked with an alkaline solution of $K_2[HgI_4]$ brown. The salt responds to the brown ring test when acetic acid is used in place of sulphuric acid. The anion present in the salt is:

A. NO_3^-

 $\mathrm{B.}\,NO_2^{\,-}$

C. Br^{-}

D. None of these

Answer: B

Watch Video Solution

16. A sulphate of a metal (A) on heating evolves two gases (B) and (C) and an oxide (D). Gas (B) turns $K_2Cr_2O_7$ paper green while gas (C) forms a trimer in which there is no S - S bond. Compound (D) with HCl, forms a Lewis acid (E) which exists as a dimer. Compounds (A), (B), (C),(D) and (E) are respectively:

A.
$$FeSO_4$$
, SO_2 , SO_3 , Fe_2O_3 , $FeCl_3$
B. $Al_2(SO_4)_3$, SO_2 , SO_3 , Al_2O_3 , $FeCl_3$
C. FeS , SO_2 , SO_3 , $FeSO_4$, $FeCl_3$
D. FeS , SO_2 , SO_3 , $Fe_2(PO_4)_3$, $FeCl_2$

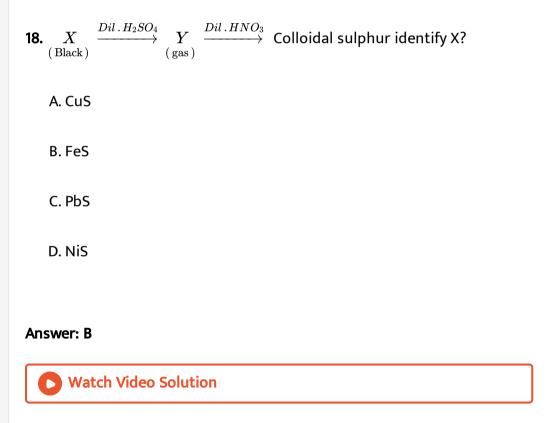
Answer: A

Watch Video Solution

17. $X + HNO_3
ightarrow Y + NO_2 + H_2O + S$, Y+Ammonium molybdate ightarrow

yellow ppt. identify X:

A. As_2S_5


 $\mathsf{B.}\,Sb_2S_5$

 $\mathsf{C}.\,SnS_2$

 $\mathsf{D}.\, CdS$

Answer: A

19. A mixture of Na_2CO_3 and Na_2SO_3 is treated with dilute H_2SO_4 I a setus such that the gaseous mixture emerging can pass first through a solution of $BaCl_2$ and then gases mixture passed through acidified $K_2Cr_2O_7$. Which of the following will you observe?

- A. The $BaCl_2$ solution remains unaffected and the acidified dichromate soution turns green
- B. The $BaCl_2$ solution gives a white precipitate and the acidfied dichromate solution remains unaffected
- C. The $BaCl_2$ solution givbes a white precipitate and the acidified

dichromate solutin turns green

D. Both the solutions remains unaffected

Answer: B

Watch Video Solution

20. An organic compound (A) on heatig produces two gases (B) and (C) and neutral oxide (D) which turns cobalt chloride paperr pink. Gas (B) turns lime water milky and produces an acidic solution with water. Gas (C) produces a poisonous gas (E) with chlorine gas, the gas, this gas with ammonia gives an organic compound (F) which on further reaction with (D) gives NH_3 gas. Then, compound (A) and (F) can be found as:

A. $H_2C_2O_4$ and NH_2CONH_2

B. CH_3COOH and NH_2CONH_2

 $C. CHCl_3$ and CH_3CONH_2

D. CH_3Cl and NH_2COONH_4

Answer: A

21. Which of the following compounds is/are partially soluble or insoluble

in NH_4OH solution:

(1) $Fe(OH)_3$

(2) Ag_2CrO_4

(3) $Al(OH)_3$

(4) Ag_2CO_3

(5) $Ni(OH)_2$

A. 1,3,5

B. 2,3,4

C. 1,3

D. 2,3,5

Answer: C

Watch Video Solution

22. Which of the following will be precipitated when a solution containing calcium acetate, strontium acetate and barium acetate is treated with $(NH_4)_2SO_4$?

A. $CaSO_4$ and $SrSO_4$

- **B**. $SrSO_4$ and $BaSO_4$
- $C. BaSO_4$ and $CaSO_4$

D. $SrSO_4$ only

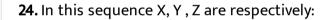
Answer: B

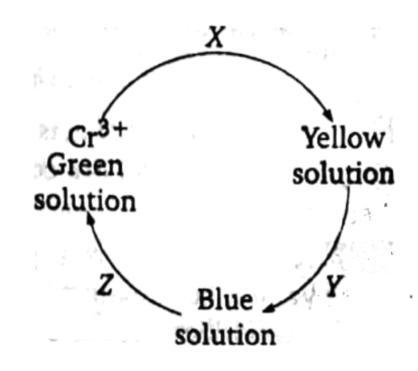
23. Give the correct order of initials T or F for following statements. Use T iff statement is true and F if it is false.

(i) Cu^+ undergoes disproportionation to Cu and Cu^{2+} in aqueous solution.

(ii) Hg_2Cl_2 does not impart chromyl chloride test

(iii) Sulphide ions react with sodium nitroprusside to form a purple coloured complex. in this reaction, oxidation state of iron changes.


B. FTT


C. TFT

D. TTF

Answer: D

View Text Solution

A. Acidified H_2O_2 , alkaline H_2O_2 , acidified H_2O_2

B. Alkaline H_2O_2 , acidified H_2O_2 , Zn/HCl

C. Acifidied H_2O_2 , Heat, alkaline H_2O_2

D. Alkaline H_2O_2 , acidified H_2O_2 , on standing

Answer: D

Watch Video Solution

25. What will be the colour of the solution when $Mn(OH)_2$ is treated with concentrated HNO_3 and sodium bismuthate (or red lead or lead dioxide)?

A. Yellow

B. Purple

C. Green

D. Blue

Answer: B

> Watch Video Solution

26. A white powder "A" on heating gave a non-combustible gas and a white residue. The residue on heating turns yellow. The residue dissolves in dil. HCl and the solution gives a white ppt. with $K_4[Fe(CN)_6]$. "A" would be:

A. $CaCO_3$

B. $ZnCO_3$

 $C. CaSO_3$

 $\mathsf{D.}\, CuCO_3$

Answer: B

Watch Video Solution

27. An aqueous solution of $FeSO_4 \cdot Al_2(SO_4)_3$ and chromium alum is heated with excess of Na_2O_2 and filtered. The material obtained are:

A. a colourless filtrate and green residue

B. a yellow filtrate and brown residue

C. a yellow filtrate annd a green residue

D. a green filtrate and a brown residue

Answer: B

Watch Video Solution

28. When a solution of $Na_2Cr_2O_7$ is treated with amyl alcohol and acidified H_2O_2 , the layer of ayl alcohol turns blue. What is the blue colouration?

A. Cr^{2+}

B. CrO_5

 $C. CrO_4$

D. $Cr^{2+} + CrO_5$

Answer: B

Watch Video Solution

29. Hg_2^{2+} when reacts with H_2S , black ppt. (A) formed which when reacts with Na_2S followed by filtration leaving behind black ppt. (B). The filitrate with H^+ gives black ppt. (C). A, B and C are:

A. Hg_2S, Hg, HgS

 $\mathsf{B}.\,Hg+HgS,HgS,Hg$

C. Hg + HgS, Hg, HgS

 $\mathsf{D}. Hg_2S, HgS, Hg$

Answer: C

30. (A) light blue coloured compound on heating will convert into black (B) which reacts with glucose gives red compound (C) and (A) reacts with ammonium hdyroxide in excess in presence of ammonium sulphate give blue compound (D). What is (A), (B), (C) and (D)?

A.
$$[Cu(NH_3)_4]SO_4, CuO, Cu_2O, CuSO_4$$

B. $CuSO_4, CuO, Cu_2O, Cu(OH)_2$
C. $Cu(OH)_2, Cu_2O, CuO, [Cu(NH_3)_4]SO_4$
D. $Cu(OH)_2, CuO, Cu_2O, [Cu(NH_3)_4]SO_4$

Answer: D

Watch Video Solution

31. A mixture of ferric alum, chrome alum and potash alum is dissolved in water and treated with an excess of NH_3 solution annd warmed with a mixture of NaOH and H_2O_2 and filtered. We will get:

A. a green residue ad a yellow filtrate

B. a brown residue and a yellow filtrate

C. a brownn residue ad a green filtrate

D. a blue residue and a green filtrate

Answer: B

Watch Video Solution

32. When KCN is added to $CuSO_4$ solution:

A. KCN acts an reducing agent

B. KCN acts as an complexing agent

C. $K_3 [Cu(CN)_4]$ is formed

D. All are correct

Answer: D

33. Fe^{2+} and Fe^{3+} can be distinguished by

A. $K_3[Fe(CN)_6]$

 $\mathsf{B}.\,K_4\big[Fe(CN)_6\big]$

 $\mathsf{C}.\,KSCN$

D. All are correct

Answer: D

Watch Video Solution

34. Which of the following will not dissolve in a hot mixture of NaOH and

 H_2O_2 ?

A. $Fe(OH)_3$

 $\mathsf{B.}\, Al(OH)_3$

 $\operatorname{C.} Cr(OH)_3$

D. $Zn(OH)_2$

Answer: A

Watch Video Solution

35. $(X) \xrightarrow{KOH} (Y)$ (gas turns red litmus blue)+ $(Z) \xrightarrow{Zn+KOH} (Y)$ (gas). $(X) \xrightarrow{\Delta}$ gas (does not support combustion) identify (X) to (Z): A. $X = NH_4NO_2$ $Y = NH_3$ $Z = KNO_2$ B. $X = (NH_4)_2Cr_2O_7$ $Y = NH_3$ $Z = Cr_2O_3$ C. $X = (NH_4)_2SO_4$ $Y = NH_3$ $Z = K_2SO_4$ D. $X = NH_4NO_3$ $Y = NH_3$ $Z = KNO_3$

Answer: A

Watch Video Solution

36. $SO_3^{2-} + S^{\star} \xrightarrow{\text{boil}} SS^{\star}O_3^{2-}, SS^{\star}O_3^{2-} + 2H^+ \rightarrow H_2SO_3 + S^{\star}$

The above reaction sequence proves:

A. Two sulphur atoms of thiosulphate are not equivalent

B. Both are equivalent

C. Both of the above are correct

D. None of these

Answer: A

View Text Solution

(Clear solution)
$$D \xleftarrow{\text{dil. HCl}} A \xrightarrow[(\text{in acetic acid})]{K_2 \text{CrO}_4} B$$
 (Yellow ppt.)
dil. H₂SO₄
C (White ppt.)

37.

Compound(s) is/are:

A. lead carbonate

B. red lead

C. barium carbonate

D. calcium carbonate

Answer: C

Watch Video Solution

38. Which of the following is presipitated when an arsenate reacts withh a magnesium mixture?

A. $MgHAsO_3$

B. Mg_2AsO_3

C. $MgNH_4AsO_4\cdot 6H_2O$

D. $Mg_2NH_4AsO_4\cdot 6H_2O$

Answer: C

39. A coloured solution known to contain two metal ions, was treated with excedss cold sodium hydroxide solution. When filtered a whitish solid, slowly changing to brown, was retained on the filter paper and a colourless solution collected as the filtrate. dropwise addition of hydrochloric acid to the filtrate produced a white ppt. which dissolved in excess acid. treatment of the residue on filter paper with a solution of strong oxidier produced a reddishh-violet solution.. indicate any pairs of ions:

A. Zn^{2+} and Mn^{2+} ions B. Mg^{2+} and Zn^{2+} ions C. Mn^{2+} and Mg^{2+} ions D. Fe^{2+} and Zn^{2+} ions

Answer: A

40. Which of the following statement is incorrect?

(I) In $S_2 O_3^{2\,-}$ bothh sulphur are different in nature.

(II) Sodium acetate and lead acetate on heating giving same type of product. Whereas Mn, Sn, Fe oxalate salt giving different type of products.

(III) Aqueous solution OCl^-, S^{2-} and CO_3^{2-} basic in nature

(IV) NO_2^- oxidises I^- whereas $Br_2 \,$ and $\, Cl_2$ oxidises NO_2^-

A. II only

B. II, III, IV

C. II, IV

D. I, II, IV

Answer: A

Watch Video Solution

41. On strongly heating, a blue salt leaves a black residue. Which of the following cations can be present in the salt?

A. Fe^{2+} B. Fe^{3+} C. Cu^{2+}

D. Zn^{2+}

Answer: C

Watch Video Solution

42. Which of the following, when dissolved in yellow ammonium sulphide,

forms a thiocomplex containing the metal in the oxidation state +IV?

A. As_2S_3

 $\mathsf{B.}\, As_2S_3$

 $\mathsf{C.}\,Sb_2S_3$

 $\mathsf{D.}\,SnS$

Answer: D

43. Thenard's blue is

- A. $CoAl_2O_4$
- $\mathsf{B.} \operatorname{Fe}_4 \left[\operatorname{Fe}(CN)_6 \right]_3$
- $\mathsf{C.}\,K_2Fe\big[Fe(CN)_6\big]$
- D. $\left[Cu(NH_3)_4 \right] (OH)_2$

Answer: A

44. A salt imparts a yellow colour to a borax bead in an oxidising flame. What would be the colour of the bead in a reducing flame?

A. Green

B. Blue

C. Red

D. Violet

Answer: A

Watch Video Solution

45. $BiCl_3$ can be reduced to metallic bismuth by:

A. H_2S

 $\mathsf{B.}\,SO_2$

 $\mathsf{C}.\,FeSO_4$

 $\mathsf{D.}\, Na_2\big[Sn(OH)_4\big]$

Answer: D

46. The blue colour in an oxidising flame of a microcosmic bead containing Cu^{2+} is due to:

A. $NaCuPO_4$

B. $Cu(PO_3)_2$

 $\mathsf{C.}\,Cu_3(PO_4)_2$

D. None of these

Answer: A

47. Which of the following reaction(s) relevat t the microcosmic salt bead

test?

A. $Na(NH_4)HPO_4\cdot 4H_2O
ightarrow NapO_3+NH_3+5H_2O$

$$B.CoO + NaPO_3 \rightarrow NaCoPO_4$$

C. $CuO + NaPO_4
ightarrow NaCuPO_4$

D. all of these

Answer: D

Watch Video Solution

48. Which of the following is formed in solution when $[Cu(NH_3)_4]^{2+}$ is treated with KCN till the colour of the complex is discharged?

A. $Cu(CN)_2$

- $\mathsf{B.}\left[Cu(CN)_4\right]^{2-}$
- $\mathsf{C.}\left[Cu(CN)_4\right]^{3\,-}$

D. $\left[Cu(CN)_6
ight]^{4-}$

Answer: C

49. A white solid forms Rinmann's greenn in the charcoal cavity test in an oxidising flame. On treatment with dilute H_2SO_4 , this solid produces a gas that turns an acidified dichromate paper green ad lead acetate paper black. The white solid is:

A. PbS

- B. $ZnSO_3$
- C.ZnS
- $\mathsf{D.}\, Na_2S$

Answer: C

50. A white solid imparts a violet colour to a Bunsen flame. On being heated with concentrated H_2SO_4 , the solid gives violet vapours that turn

starch paper blue. The salt may be :

A. Nal

B. KI

 $\mathsf{C.}\, CaBr_2$

D. MgI_2

Answer: B

Watch Video Solution

51. Which of the following is soluble in boiling water, but less soluble in

cold water?

A. $PbCl_2$

 $\mathsf{B.}\, PbCr_2$

 $\mathsf{C}.\, PbI_2$

D. all of these

Answer: D

52. Which of the following pairs of cations cannot be separated by using

dilute HCl?

A. Hg_2^{2+}, Pb^{2+} B. Hg^{2+}, Ag^+ C. Ag^+, Cu^{2+} D. Hg_2^{2+}, Bi^{3+}

Answer: A

53. If NH_4OH in presence of NH_4Cl is added to a solution containing

 $Al_2(SO_4)_2$ and $MgSO_4$, which of the following will precipitate?

A. $Al(OH)_3$ only

- B. $Mg(OH)_2$ only
- $\mathsf{C}. Al(OH)_3$ and $Mg(OH)_2$

D. None of these

Answer: A

Watch Video Solution

54. Which of the following pairs of cations ca be separated by adding NH_4Cl, NH_4OH and then $(NH_4)_2CO_3$ to the mixture?

A. Ca^{2+}, Mg^{2+} B. Ba^{2+}, Sr^{2+} C. Sr^{2+}, Ca^{2+} D. Ba^{2+}, Ca^{2+}

Answer: A

55. H_2S is passed through the solution in an acididc medium to precipitate the sulphides of group II cations, but in an alkaline medium to precipitate the sulphides of group IV cations because:

A. the sulphides of group II cations are more soluble than those of

group IV cations

- B. the sulphides of group II cations have lower solubility products than those of group IV cations
- C. the sulphides of group II cations are soluble in an acidic medium,

but those of group IV cations are not

D. The sulphides of group IV cations are soluble in an alkaline medium

but those of group II cations are not

Answer: B

56. Which of the following pairs of cations can be separated by passing H_2S through the mixture in the presence of 0.2 M HCl?

A.
$$Pb^{2+}$$
, Cu^{2+}
B. Ag^+ , Cu^{2+}
C. Cd^{2+} , Bi^{3+}
D. Cu^{2+} , Zn^{2+}

Answer: D

Watch Video Solution

57. Which of the following pairs of cations can be separated by using an

 NH_3 solution?

A. $Cu^{2\,+},\,Ag^{\,+}$

B. $Pb^{2\,+}, Ag^{\,+}$

C. Ag^+, Zn^{2+}

D. Cu^{2+}, Cd^{2+}

Answer: B

Watch Video Solution

58. Which of the following ions cannot be detected by the borax bead or microcosmic bead test?

A. $Cu^{2\,+}$

B. Cr^{3+}

- $\mathsf{C.}\,Fe^{3\,+}$
- D. Zn^{2+}

Answer: D

Watch Video Solution

59. Which of the following pairs of cations will turn borax beads blue in an oxidising flame?

A. Fe^{2+} and Co^{2+} B. Co^{2+} and Cu^{2+} C. Cu^{2+} and Mn^{2+} D. Cu^{2+} and Cr^{3+}

Answer: B

60. A colourless crystalline salt, on being heated, gives a coloured gas with a pungent smell. On being passed through an $AgNO_3$ solution, this gas forms a white precipitate insoluble in HNO_3 but readily soluble in an NH_3 solution. Which of the following reaction can lead to the above observation?

A. $MgCl_2 + H_2O
ightarrow Mg(OH)Cl + HCl$

B.
$$(NH_4)_2CO_3
ightarrow 2NH_3 + CO_2 + H_2O$$

C.
$$ZnSO_3 \rightarrow ZnO + SO_2$$

D. $NaNH_4HPO_4
ightarrow NaPO_3 + NH_3 + H_2O$

Answer: A

View Text Solution

61. When NH_4Cl is not used together with NH_4OH in group-III reagent

which of the following cation will not be precipitated?

A. Fe^{2+}

B. Cr^{3+}

C. Zn^{2+}

D. NH_3 soln.

Answer: D

View Text Solution

62.

$$\begin{array}{ccc} (T) & \xrightarrow{\text{Compound (U)+conc. } H_2SO_4} (V) & \xrightarrow{\text{NaOH} + AgNO_3} (W) & \xrightarrow{\text{NE}} \\ \text{imparts violet colour to flame} & & & & \\ (W) & \xrightarrow{\text{dil. KCl}} (Y) \text{ white ppt} \\ (W) & \xrightarrow{\text{MaoH}} (Z) \text{ gas (gives white fumes with HCl)} \\ \text{Identify (T) to (Z).} \end{array}$$

Α.

$$T = KMnO_4, U = HCl, V = Cl_2, W = HgI_2, X = Hg(NH_2)NO_3,$$

Β.

$$T = K_2 C r_2 O_7, U = N H_4 C l, V = C r O_2 C l_2, W = A g_2 C r O_4, X = igg[A g_2 C r O_$$

C.

$$T = K_2 CrO_4, U = KCl, V = CrO_2 Cl_2, W = HgI_{20, X = Na_2 CrO_4, Y = B}$$

D.

$$T=K_2MnO_4, U=NaCl, V=CrO_3, W=AgNO_2, X=(NH_4)_2O_2$$

Answer: B

63. In the separation of Cu^{2+} and Cd^{2+} in II group qualitative analysis of cations tetramine copper (II) sulphate and tetramine cadium (II) sulphate react with KCN to form the corresponding cyano complexes. Which one of the following pairs of the complexes and their relative stability enables the separation of Cu^{2+} and Cd^{2+} ?

A. $K_3[Cu(CN)_4]$ is perfect and $K_2[Cd(CN)_4]$ is inperfect complex B. $K_3[CN)_4]$ and $K_2[Cd(CN)_4]$ is perfect complex C. $K_2[Cu(CN)_4]$ inperfect and $K_2[Cd(CN)_4]$ perfect complex D. $K_3[Cu(CN)_4]$ inperfect and $K_2[Cd(CN)_4]$ is perfect complex

Answer: A

64. The only cations present in the slightly acidic solution are Fe^{3+} , Zn^{2+} and Cu^{2+} . The reagent that when added in exess to this solution would identify and separate Fe^{3+} in one step is:

A. 2M HCl

B. 6M NH_3

C. 6M NaOH

D. H_2S gas

Answer: B

Watch Video Solution

65. When conc. H_2SO_4 was teated with $K_4[Fe(CN)_6]$, CO gas was evolved. By mistake, somebody used dilute H_2SO_4 instead of conc. H_2SO_4 then the gas evolved was

 $\mathsf{B}.\,HCN$

 $\mathsf{C}.\,N_2$

 $\mathsf{D.}\, CO_2$

Answer: B

Watch Video Solution

66. Unknown salt 'A' + $K_2Cr_2O_7$ + conc. $H_2SO_4
ightarrow$ Reddish brown

fumes. Which is the correct statement regarding the above observation?

A. it confirms the presence of Cl^- ion

B. confirms the presence of Br^{-} ion

C. It confirms the presence of both

D. it neither confirms Cl^- nor Br^- unless it is passed through NaOH

solution

Answer: D

67. An inorganic red coloured compound (A) on heating gives a compound (B) and a gas (C). (A) on treatment with dil. HNO_3 gives compound (D), brown colour substnace (E) and a neutral oxide (F). Compound (D) on warming gives off again gas (C). Then, (E) will be

A. Mn_3O_4

- B. PbO_2
- $C. Pb_3O_4$
- D. Fe_2O_3

Answer: B

D View Text Solution

68. Select correct statement(s):

(I) When excess $FeCl_3$ solution is added to $K_4 \big[Fe(CN)_6 \big]$ solution, in

addition to $Fe^{III}[Fe^{II}(CN)_6]^-$, $Fe^{II}[Fe^{III}(CN)_6]^-$ is also formed due to side redox reaction

(II) When $FeCl_2$ is added to $K_3[Fe(CN)_6]$ solution, in addition to $Fe^{II}[Fe^{III}(CN)_6]^-$, $Fe^{III}[Fe^{II}(CN)_6]^-$ is also formed due to side redox reaction.

(III) $Fe^{III}[Fe^{II}(CN)_6]^-$ is paramagnetic while $Fe^{II}[Fe^{III}(CN)_6]^-$ is diamagnetic.

(IV) $Fe^{III}[Fe^{II}(CN)_6]^-$ is diamagnetic while $Fe^{II}[Fe^{III}(CN)_6]^-$ is paramagnetic

A. I,II

B. III,IV

C. both (a) and (b)

D. none of these

Answer: A

69. Which of the followig reagents are used for the detection of acetate and oxalate ions respectively?

A. $BaCl_2$ and $CaCl_2$

B. NaOH and $BaCl_2$

C. $FeCl_3$ and $CaCl_2$

 $\mathsf{D}.\, FeCl_3 \ \text{and} \ NaOH$

Answer: C

View Text Solution

70. Which of the following mixtures of ions cann be separated by using an excess of an NaOH solution?

A.
$$Pb^{2+}$$
 and Zn^{2+}

B. Al^{3+} and Zn^{2+}

C. $Fe^{3+}a\cap dAl^{3+}$

D.
$$Sn^{2+}$$
 and Pb^{2+}

Answer: C

71. A metal carbonate, on being heated strongly gives a solid that forms a greenn solid with CoO. In which analytical group will the cation be precipitate and what will be the colour of the precipitate ?

A. Group I, white

B. Group II, yellow

C. Group III, white

D. Group IV, white

Answer: D

72. A solution of a metal ion when treated with KI gives a red precipitate which dissolves in excess KI to give a colourless solution. Moreover, the solution of metal ion on treatment with a solution of cobalt (II) thiocyanate gives rise to a deep blue crystalline precipitate. The metal ion

is

A. Pb^{2+} B. Hg^{2+} salt C. Cu^{2+} D. Co^{2+}

Answer: B

Watch Video Solution

73. A white powder solid A forms a light green solution with water, which one treatment with potassium hexacyanoferrate (III) gives a blue precipitate. On being strongly heated. A leaves a brown residue and forms a mixture off two gaseous oxides, which turns a dichromate solution green and forms a white precipitate with a $BaCl_2$ solutio containing concentrated HCl. A is:

A. $CuSO_4$

B. $Fe_2(SO_4)_3$

 $\mathsf{C}.\,FeSO_4$

D. $Cr_2(SO_4)_3$

Answer: C

View Text Solution

74. Which of of the following is the composition of the yellow precipitate obtained in the test for phosphoates using ammonium molybdate?

```
A. (NH_4)_3 [PMo_{12}O_{40}]
```

 $\mathsf{B.} (NH_4)_2 [PMo_{12}O_{36}]$

 $\mathsf{C}.\,(NH_4)_2PO_4\cdot 10MoO_3$

D.
$$(NH_4)_3 PO_4 \cdot 14 MoO_3$$

Answer: A

75. Which of the following mixtures cann be separated by using excess NH_3 solution?

A.
$$Fe^{3+}$$
 and Al^{3+}
B. Al^{3+} and Zn^{2+}
C. Sn^{2+} and Pb^{2+}
D. Cu^{2+} and Cd^{2+}

Answer: B

1. A pale yellow inorganic compound K is insoluble in hot and dil. HNO_3 but dissolves in concentrated ammonia solution and compound L is formed, on treatment with dil. HNO_3 compound L produces a metal cation which gives white precipitate M with hypo solution. when an aqueous solution of (M) is boiled, a black precipitate of (N) is formd which dissolves in hot dil. HNO_3 and on adding HCl gives a white precipitate. when the compound (K) is heated with concentrated H_2SO_4 and MnO_2 brown fumes are observed.

Q. The compound (K) is:

A. Agl

B. AgBr

 $C. AgNO_2$

D. PbI_2

Answer: B

2. A pale yellow inorganic compound K is insoluble in hot and dil. HNO_3 but dissolves in concentrated ammonia solution and compound L is formed, on treatment with dil. HNO_3 compound L produces a metal cation which gives white precipitate M with hypo solution. when an aqueous solution of (M) is boiled, a black precipitate of (N) is formd which dissolves in hot dil. HNO_3 and on adding HCl gives a white precipitate. when the compound (K) is heated with concentrated H_2SO_4 and MnO_2 brown fumes are observed.

Q. Compound (M) and black precipitate of (N) are respectively:

A. PbI_2 , PbS

B. PbS_2 , PbS

 $\mathsf{C.}\, Ag_2S_2O_3, Ag_2S$

D. $AgSO_3, Ag$

Answer: C

3. A pale yellow inorganic compound K is insoluble in hot and dil. HNO_3 but dissolves in concentrated ammonia solution and compound L is formed, on treatment with dil. HNO_3 compound L produces a metal cation which gives white precipitate M with hypo solution. when an aqueous solution of (M) is boiled, a black precipitate of (N) is formd which dissolves in hot dil. HNO_3 and on adding HCl gives a white precipitate. when the compound (K) is heated with concentrated H_2SO_4 and MnO_2 brown fumes are observed.

Q. Compound (K) on heating with conc. H_2SO_4 and MnO_2 gives:

A. $I_3^{\,-}$

B. Br_2

 $\mathsf{C}.\,HI$

 $D.NO_2$

Answer: B

4. A colourless inorganic compound (A) imparts a green colour to the flame. Its solution gives a white ppt. (B) with H_2SO_4 . When heated with $K_2Cr_2O_7$ and conc. H_2SO_4 , a brown red vapour/gas (C) is formed. The gas/ vapour when passed through aqueous NaOH solution, it turns into a yellow solution (D) which forms yellow precipitate (E) with CH_3COOH and $(CH_3COO)_2Pb$. with reference to above information, answe the following questions.

Q. The colourless inorganic compound (A) is:

A. $Ba(NO_3)_2$

B. $BaCl_2$

 $C. CuCl_2$

D. $CrBr_3$

Answer: B

5. A colourless inorganic compound (A) imparts a green colour to the flame. Its solution gives a white ppt. (B) with H_2SO_4 . When heated with $K_2Cr_2O_7$ and conc. H_2SO_4 , a brown red vapour/gas (C) is formed. The gas/ vapour when passed through aqueous NaOH solution, it turns into a yellow solution (D) which forms yellow precipitate (E) with CH_3COOH and $(CH_3COO)_2Pb$. with reference to above information, answe the following questions.

Q. The liberated gas vapour (C) is:

A. Br_2

 $\mathsf{B.}\,NO_2$

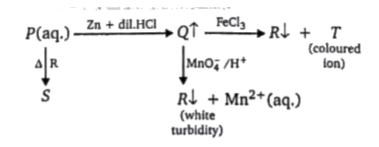
 $\mathsf{C.}\, CrO_2 Cl_2$

D. Cl_2

Answer: C

6. A colourless inorganic compound (A) imparts a green colour to the flame. Its solution gives a white ppt. (B) with H_2SO_4 . When heated with $K_2Cr_2O_7$ and conc. H_2SO_4 , a brown red vapour/gas (C) is formed. The gas/ vapour when passed through aqueous NaOH solution, it turns into a yellow solution (D) which forms yellow precipitate (E) with CH_3COOH and $(CH_3COO)_2Pb$. with reference to above information, answe the following questions.

Q. The yellow ppt. formed when (D) reacts with CH_3COOH and $(CH_2COO)_2Pb$ is:


A. PbI_2

B. $PbCrO_4$

C. $BaCrO_4$

D. AgBr

Answer: B

7.

Q. 'T' can not be identified by:

A. NH_3 solution

- B. NH_4SCN
- $C.(NH_4)_2S$
- D. excess KCN

Answer: B

$$P(aq.) \xrightarrow{Zn + dil.HCl} Q^{\uparrow} \xrightarrow{FeCl_3} R^{\downarrow} + T$$

$$\downarrow^{A} R \qquad \qquad \downarrow^{MnO_{4}^{-}/H^{+}} \qquad \text{ion)}$$

$$R^{\downarrow} + Mn^{2+}(aq.)$$
(white
turbidity)

8.

- Q. Species P and S are respectively:
 - A. $SO_3^-(aq.), S$ B. $SO_3^{2-}(aq.), S_2O_3^{2-}(aq.)$ C. $S_2O_3^{2-}(aq.), SO_3^{2-}(aq.)$
 - D. none of these

Answer: B

9. A teacherr gave a student two salts (A) and (B) told him to identiify these salts. The student heated salt (A) strongly and observed two oxides

to sulphur. He added NaOH solution to aqueous solution of (A) and observed a green precipitate, which turned brown on exposure to air. When he tok salt (B) to flame test, green colour was observed. On heating salt (B) with a solid compound (X) and concentrated sulphuric acid, orange red vapours are evolved. when this gas is passed through an aqueous solution of a base, the solution turns yellow.

Q. The salt (A) can be:

A. $Fe(SO_4)_3$

B. $FeSO_4$

C. $FeSO_4 \cdot 7H_2O$

D. both (b) and (c)

Answer: D

O View Text Solution

10. A teacherr gave a student two salts (A) and (B) told him to identiify

these salts. The student heated salt (A) strongly and observed two oxides

to sulphur. He added NaOH solution to aqueous solution of (A) and observed a green precipitate, which turned brown on exposure to air. When he tok salt (B) to flame test, green colour was observed. On heating salt (B) with a solid compound (X) and concentrated sulphuric acid, orange red vapours are evolved. when this gas is passed through an aqueous solution of a base, the solution turns yellow.

Q. Salt (B) suggest that the cation and anion in it are respectively:

A.
$$Ba^{2\,+}$$
 and $SO_4^{2\,-}$

B. Ba^{2+} and Cl^{-}

C. Ba^{2+} and S^{2-}

D.
$$Ba^{2\,+}$$
 and $CO_3^{2\,-}$

Answer: B

D View Text Solution

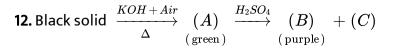
11. A teacherr gave a student two salts (A) and (B) told him to identiify

these salts. The student heated salt (A) strongly and observed two oxides

to sulphur. He added NaOH solution to aqueous solution of (A) and observed a green precipitate, which turned brown on exposure to air. When he tok salt (B) to flame test, green colour was observed. On heating salt (B) with a solid compound (X) and concentrated sulphuric acid, orange red vapours are evolved. when this gas is passed through an aqueous solution of a base, the solution turns yellow.

Q. Compound (X) is:

A. $K_2 Cr_2 O_7$


B. NH_4Cl boiled with NaOH

 $C. CaF_2$

D. $Na_2B_4O_7\cdot 10H_2O$

Answer: A

(i) KI on reaction with alkali solution of (B) changes into a compound (D).

(ii) The colour of the compound (B) disappears on treatment with the acidic solution of $FeSO_4$

(iii) With cold conc. H_2SO_4 compound (B) gives (E), which being explosive decomposes to yield (F) and oxygen. ltBrgt Q. Nature of compound (E) is:

A. Acidic oxide

B. Basic oxide

C. Amphoteric oxide

D. Neutral oxide

Answer: A

View Text Solution

13. Black solid
$$\xrightarrow[]{AOH + Air}{\Delta}$$
 (A) $\xrightarrow[]{H_2SO_4}{}$ (B) $+$ (C) $(purple)$

(i) KI on reaction with alkali solution of (B) changes into a compound (D). (ii) The colour of the compound (B) disappears on treatment with the acidic solution of $FeSO_4$

(iii) With cold conc. H_2SO_4 compound (B) gives (E), which being explosive

decomposes to yield (F) and oxygen. ltBrgt Q. Colour of the solution obtained, when ferrous sulphate reacts with acidic solution of (B):

A. Colourless

B. Pink

C. Green

D. Yellow

Answer: D

View Text Solution

14. Black solid
$$\xrightarrow[\Delta]{KOH + Air} (A) \xrightarrow[(\text{green})]{H_2SO_4} (B) + (C)$$

(i) KI on reaction with alkali solution of (B) changes into a compound (D).

(ii) The colour of the compound (B) disappears on treatment with the acidic solution of $FeSO_4$

(iii) With cold conc. H_2SO_4 compound (B) gives (E), which being explosive decomposes to yield (F) and oxygen. ltBrgt Q. Which of the following options is correct?

A. (C) and (F) are same compounds having same colour.

B. (C) and (F) are different compounds having same colour.

C. Compound (B) forms similar compound (E) with hot and conc.

 H_2SO_4 .

D. Compound (A) does not give same type of reaction in acidic and

neutral medium

Answer: A

View Text Solution

15. Black solid
$$\xrightarrow{KOH + Air} (A) \xrightarrow[(\text{green})]{H_2SO_4} (B) + (C)$$

(i) KI on reaction with alkali solution of (B) changes into a compound (D).

(ii) The colour of the compound (B) disappears on treatment with the acidic solution of $FeSO_4$

(iii) With cold conc. H_2SO_4 compound (B) gives (E), which being explosive decomposes to yield (F) and oxygen. ltBrgt Q. Type of hybridization in compound (D) is:

A. sp^2

 $\mathsf{B.}\, sp^3$

 $\mathsf{C.}\, sp^3d$

D. No hybridization

Answer: B

Watch Video Solution

16.
$$(A) + NaCl
ightarrow (B)$$
 (white ppt.)

$$(B)+Ki
ightarrow (C)$$
 (green ppt).

$$(C)+ \mathop{KI}\limits_{(\,{
m excess}\,)}
ightarrow (D)+(E)$$
 (colourless solution)

 $(E) + NH_3 + KOH
ightarrow (F)$

Q. Compounds (A) and (B) are respectively:

A. $AgNO_3$ and AgCl

B.
$$Pb(NO_3)_2$$
 and $PbCl_2$

 $\mathsf{C}. Hg_2(NO_3)_2$ and Hg_2Cl_2

 $D. Cu_2(NO_3)_2$ and Cu_2Cl_2

Answer: C

17.
$$(A) + NaCl
ightarrow (B)$$
 (white ppt.)

(B)+Ki
ightarrow (C) (green ppt).

- $(C)+ \mathop{KI}\limits_{(\,{
 m excess\,})}
 ightarrow (D)+(E)$ (colourless solution)
- $(E) + NH_3 + KOH
 ightarrow (F)$

Q. When compound (A) reacts with Na_2CrO_4 solution, the colour of the

compound formed is

A. black

B. red

C. yellow

D. white

Answer: B

18.
$$(A) + NaCl
ightarrow (B)$$
 (white ppt.)

$$(B)+Ki
ightarrow (C)$$
 (green ppt).

- $(C)+ \mathop{KI}\limits_{(\,{
 m excess\,})}
 ightarrow (D)+(E)$ (colourless solution)
- $(E) + NH_3 + KOH
 ightarrow (F)$
- Q. Type of hybridization in compound (E) is:

A. $d^2 s p^3$

 $\mathsf{B.}\, sp^3d^2$

 $\mathsf{C.}\, sp^3$

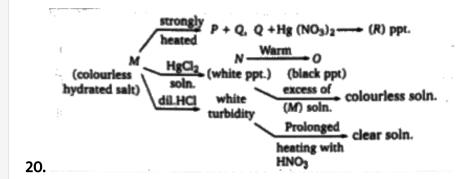
D. dsp^2

Answer: C

19.
$$(A) + NaCl \rightarrow (B)$$
 (white ppt.)
 $(B) + Ki \rightarrow (C)$ (green ppt).
 $(C) + \underset{(\text{excess})}{KI} \rightarrow (D) + (E)$ (colourless solution)
 $(E) + NH_3 + KOH \rightarrow (F)$

Q. Colour of the compound (F) is:

A. Yellow

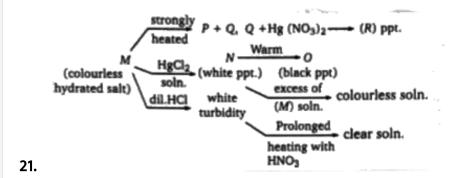

B. Blue

C. White

D. Brown

Answer: D

Q. The structure of compound P is:


A. Linear

B. Crown shaped

C. Square pyramidal

D. Zig-zag chain

Answer: D

- Q. Compound M is used
- (I) In photography
- (II) ini analytical chemistry
- (III) as a hydrating agent
- (IV) as an oxidizing as well as reducing agent

Choose the correct code:

A. I,III

B. I,II and III

C. I,II

D. I,II,III and IV

Answer: C

22. A white crystalline solid 'A' on boiling with caustic soda solution gives a gas 'B', which on passing through an alkaline solution of ptassium tetraiodomercurate (II) solution gives a brown ppt. the substance 'A' on heating eveolves a neutral gas 'C', which is inert at room temperature and reactive a presence of catalyst and does ont give grown fumes with nitric oxide.

Q. The gas 'B' is:

A. H_2S

B. NH_3

 $\mathsf{C}.\,HCl$

 $\mathsf{D.}\,CO_2$

Answer: B

23. A white crystalline solid 'A' on boiling with caustic soda solution gives a gas 'B', which on passing through an alkaline solution of ptassium tetraiodomercurate (II) solution gives a brown ppt. the substance 'A' on heating eveolves a neutral gas 'C', which is inert at room temperature and reactive a presence of catalyst and does ont give grown fumes with nitric oxide.

Q. The gas 'C' is:

- A. N_2O
- $\mathsf{B.}\,O_2$
- $\mathsf{C}.\,NO$

 $\mathsf{D}.\,N_2$

Answer: D

24. A white crystalline solid 'A' on boiling with caustic soda solution gives a gas 'B', which on passing through an alkaline solution of ptassium tetraiodomercurate (II) solution gives a brown ppt. the substance 'A' on heating eveolves a neutral gas 'C', which is inert at room temperature and reactive a presence of catalyst and does ont give grown fumes with nitric oxide.

Q. The substance 'A' is:

A. NH_4Cl

B. NH_4NO_3

 $\mathsf{C.}\, NH_4NO_2$

D. $NaNO_3$

Answer: C

25. A chemist opened a cupboard to find four bottles containing water solutions, each of which has lost its label. Bottles 1,2,3 contained colourless solutions, Whilst bottle 4 contained a blue solution. The labels from the bottles were lying scattered ont he floor of the cupboard.

They were

copper (II) sulphate

sodium carbonate

lead nitrate

hydrochloric acid

By mixing sammples of teh contents of the bottles, in pairs, the chemist

made the following observations:

- (i) Bottle 1 + Bottle 2 white precipitate
- (ii) Bottle 1 + bottle 3 white precipitate
- (iii) Bottle 1 + Bottle 4 white precipitate
- (iv) Bottle 2 +Bottle 3 colourless gas evolved
- (v) Bottle 2+ Bottle 4 no visible reaction
- (vi) bottle 3 +bottle 4 blue precipitate
- Q. Chemical formula of white precipitate in observation (i) is:

A. $CuCl_2$

B. $PbCl_2$

 $C. PbCO_3$

D. $CuSO_3$

Answer: B

View Text Solution

26. A chemist opened a cupboard to find four bottles containing water solutions, each of which has lost its label. Bottles 1,2,3 contained colourless solutions, Whilst bottle 4 contained a blue solution. The labels from the bottles were lying scattered ont he floor of the cupboard.

They were

copper (II) sulphate

sodium carbonate

lead nitrate

hydrochloric acid

By mixing sammples of teh contents of the bottles, in pairs, the chemist made the following observations:

(i) Bottle 1 + Bottle 2 white precipitate

(ii) Bottle 1 + bottle 3 white precipitate

(iii) Bottle 1 + Bottle 4 white precipitate

(iv) Bottle 2 +Bottle 3 colourless gas evolved

(v) Bottle 2+ Bottle 4 no visible reaction

(vi) bottle 3 +bottle 4 blue precipitate

Q. Colourless solution present in bottle-1 is:

A. $CuSO_4$

 $\mathsf{B}.\,HCl$

 $\mathsf{C}. Pb(NO_3)_2$

D. Na_2CO_3

Answer: C

27. A chemist opened a cupboard to find four bottles containing water solutions, each of which has lost its label. Bottles 1,2,3 contained colourless solutions, Whilst bottle 4 contained a blue solution. The labels from the bottles were lying scattered ont he floor of the cupboard.

They were

copper (II) sulphate

sodium carbonate

lead nitrate

hydrochloric acid

By mixing sammples of teh contents of the bottles, in pairs, the chemist

made the following observations:

- (i) Bottle 1 + Bottle 2 white precipitate
- (ii) Bottle 1 + bottle 3 white precipitate
- (iii) Bottle 1 + Bottle 4 white precipitate
- (iv) Bottle 2 +Bottle 3 colourless gas evolved
- (v) Bottle 2+ Bottle 4 no visible reaction
- (vi) bottle 3 +bottle 4 blue precipitate
- Q. Nature of gas evolved in observation (iv) is:

A. Acidic

B. Neutral

C. Basic

D. Amphoteric

Answer: A

View Text Solution

28. A chemist opened a cupboard to find four bottles containing water solutions, each of which has lost its label. Bottles 1,2,3 contained colourless solutions, Whilst bottle 4 contained a blue solution. The labels from the bottles were lying scattered ont he floor of the cupboard.

They were

copper (II) sulphate

sodium carbonate

lead nitrate

hydrochloric acid

By mixing sammples of teh contents of the bottles, in pairs, the chemist made the following observations:

- (i) Bottle 1 + Bottle 2 white precipitate
- (ii) Bottle 1 + bottle 3 white precipitate
- (iii) Bottle 1 + Bottle 4 white precipitate
- (iv) Bottle 2 +Bottle 3 colourless gas evolved
- (v) Bottle 2+ Bottle 4 no visible reaction
- (vi) bottle 3 +bottle 4 blue precipitate
- Q. Chemical formula of white ppt. formed in observation (iii) is:
 - A. $PbCl_2$
 - B. $PbCO_3$
 - $C. CuCO_3$
 - D. $PbSO_4$

Answer: D

Q. "A" probably, is:

A. $ZnSO_3$

 $\mathsf{B.}\, CoS$

 $\mathsf{C}.\,MnS$

D. NiS

Answer: C

Q. When "B" racts with "E":

A. a new gas F will be produced

B. It produced D and a colourless liquid

C. there will be no reaction between them

D. it yields B and an acidic oxie

Answer: B

Q. Which is not correct about E?

A. It is colourless and highly water soluble

B. The molecule is linear

C. Its aqueous solution acidic

D. it turns starch iodate paper blue

Answer: B

Q. When D is boiled with alkaline sulphite solution a compound F is formed. F can be used in

(I) Iodine titrations in volumetric analysis

(II) Bleaching industry to destroy excess Cl_2

(III) Photography for 'fixing' films

(IV) Iodometric titrations

Choose the correct codes:

A. I and IV

B. I, III and IV

C. II and III

D. I, II, III and IV

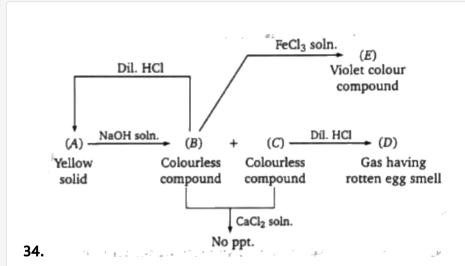
Answer: D

View Text Solution

33. A coloured compound (A) reacts with dilute H_2SO_4 to produce a colourless gas (B) and colourless solution (C). The reaction between (B) and the acidified $K_2Cr_2O_7$ solution produces a green solution and a slightly yellowish precipitate (D). the substance (D) burns in air to produce a gas (E) which also cann change the colour of $K_2Cr_2O_7$ solution.

Q. When colourless solution (C) reacts with Pb_3O_4/H^+ , it acquries a violet red colour due to formation of :

A. MnO_4^-


B. PbO_2

 $\mathsf{C}.I_3^-$

D. $[Ni(en)_3]S_2O_3$

Answer: A

View Text Solution

Q. The structure of compound (A) is:

A. Linear

B. Crown shaped

C. Square pyramidal

D. Zig-zag chain

Answer: B

35. Read the following short write up and answer subsequent questions based on observations(A) to (J).

Q. Compound A and B are respectively:

A. $FeCl_2, FeCl_3$

B. $CuCl_2.2H_2O, [CuCl_4]^{2-}$

 $C. CrCl_3, K_2CrO_4$

D. $NiCl_2$, $NiCl_3$

Answer: C

View Text Solution

36. An unknown mixture contains one or two of the following: $CaCO_3$, $BaCl_2$, $AgNO_3$, Na_2SO_4 , $ZnSO_4$ and NaOH. The mixture is completely soluble in water and solution gives pink colour with phenolphthalein. When dilute hydrochloric acid is gradually added to the solution, a precipitate is formed which dissolved with further addition of the acid.

Q. Which of the following combination of compounds is soluble in water?

A. $BaCl_2$ and $AgNO_3$

B. $AgNO_3$ and NaOH

 $C. BaCl_2$ and Na_2SO_4

D. $ZnSO_4$ and excess NaOH

Answer: D

View Text Solution

37. An unknown mixture contains one or two of the following: $CaCO_3$, $BaCl_2$, $AgNO_3$, Na_2SO_4 , $ZnSO_4$ and NaOH. The mixture is completely soluble in water and solution gives pink colour with phenolphthalein. When dilute hydrochloric acid is gradually added to the solution, a precipitate is formed which dissolved with further addition of the acid.

Q. The aqueous solution of mixture gives white precipitate with dil. HCl which dissolves in excess of dil HCl . it confirms.

A. $BaCl_2 + NaOH$

B. $Na_2SO_4 + NaOH$

 $C. ZnSO_4 + NaOH$

D. $AgNO_3 + NaOH$

Answer: C

View Text Solution

38. An unknown mixture contains one or two of the following: $CaCO_3$, $BaCl_2$, $AgNO_3$, Na_2SO_4 , $ZnSO_4$ and NaOH. The mixture is completely soluble in water and solution gives pink colour with phenolphthalein. When dilute hydrochloric acid is gradually added to the solution, a precipitate is formed which dissolved with further addition of the acid.

Q. The white precipitate is

- A. $ZnSO_4$
- B. Zn_2ZnO_2
- $\mathsf{C.} Zn(OH)_2$
- D. $ZnCl_2$

Answer: C

39. Aqueous solution of a salt 'A', when mixed with NaoH solution and warmed, a black precipitate is formed. Black ppt. is filtered and dissolved in dil. H_2SO_4 solution. The resulting solution gives a chocolate coloured precipitate with potassium ferrocyanide solution. the filtrate obtained after filtering off the black precipitate, upon warming with Zn and NaOH evolves a pungent smelling gas. the resulting solution also responds to the ring test. the filtrate does not evolve any gas when it is boiled with urea in the presence of H_2SO_4 .

Q. Salt 'A' consists of:

A. Cu^{2+}

B. Hg^{2+} salt

C. Cu^+

D. Pb^{2+}

Answer: A

40. Aqueous solution of a salt 'A', when mixed with NaoH solution and warmed, a black precipitate is formed. Black ppt. is filtered and dissolved in dil. H_2SO_4 solution. The resulting solution gives a chocolate coloured precipitate with potassium ferrocyanide solution. the filtrate obtained after filtering off the black precipitate, upon warming with Zn and NaOH evolves a pungent smelling gas. the resulting solution also responds to the ring test. the filtrate does not evolve any gas when it is boiled with urea in the presence of H_2SO_4 .

Q. The filtrate obtained after filtering off the black precipitate consists of:

- A. NO_2^-
- $\mathsf{B.}\,NO_3^{\,-}$
- C. CO_3^{2-}
- D. Cl^{-}

Answer: B

41. Aqueous solution of a salt 'A', when mixed with NaoH solution and warmed, a black precipitate is formed. Black ppt. is filtered and dissolved in dil. H_2SO_4 solution. The resulting solution gives a chocolate coloured precipitate with potassium ferrocyanide solution. the filtrate obtained after filtering off the black precipitate, upon warming with Zn and NaOH evolves a pungent smelling gas. the resulting solution also responds to the ring test. the filtrate does not evolve any gas when it is boiled with urea in the presence of H_2SO_4 .

Q. The chocolate coloured precipitate is:

- A. $Fe_2[Fe(CN)_6]$
- $\mathsf{B.}\,Cu_2\big[Fe(CN)_6\big]$

 $C. HgSO_4$

D. $[Fe(H_2O)_5(NO)]SO_4$

Answer: B

42. Borax Bead Test is carried out when the original mixture is coloured. It is done with the help of a cleam platinum wire on which a small loop is made at the end. When borax is heated on platinum wire loop transparent glass like bead is obtained. The hot bead is brought in contact with salt till it reacts with fused borax and colour is imparted to the bead. bead colour is noted.

Colour of the bead Ion Cu^{2+} Blue green 1. Fe^{3+} Yellow 2. Cr^{3+} 3. Green $Mn^{2\,+}$ Violet 4. Co^{2+} Dark blue 5.

6. Brown Ni^{2+}

Q. Glassy bead of :

A. $B_2O_3 + NaBO_2$

 $\mathsf{B.} NaBO_2 + Na_3BO_3$

C. $Na_{2}B_{4}O_{7} + B_{2}O_{3}$

D. $SiO_2 + B_2O_3$

Answer: A

Watch Video Solution

43. Borax Bead Test is carried out when the original mixture is coloured. It is done with the help of a cleam platinum wire on which a small loop is made at the end. When borax is heated on platinum wire loop transparent glass like bead is obtained. The hot bead is brought in contact with salt till it reacts with fused borax and colour is imparted to the bead. bead colour is noted.

Colour of the bead Ion

- 1. Blue green Cu^{2+} 2. Yellow Fe^{3+}
- 3. Green Cr^{3+}
- 4. Violet Mn^{2+}
- 5. Dark blue Co^{2+}
- 6. Brown Ni^{2+}
- Q. Blue bead can be of:

A. $Cu(BO_2)_2$

 $\mathsf{B.} \operatorname{Co}(BO_2)_2$

C. both (a) and (b)

D. None of these

Answer: C

Watch Video Solution

44. Borax Bead Test is carried out when the original mixture is coloured. It is done with the help of a cleam platinum wire on which a small loop is made at the end. When borax is heated on platinum wire loop transparent glass like bead is obtained. The hot bead is brought in contact with salt till it reacts with fused borax and colour is imparted to the bead. bead colour is noted.

Colour of the bead Ion

- 1. Blue green Cu^{2+}
- 2. Yellow Fe^{3+}
- 3. Green Cr^{3+}
- 4. Violet Mn^{2+}
- 5. Dark blue Co^{2+}
- 6. Brown Ni^{2+}
- Q. The flame used in Borax Bead Test is:

A. Reducing

B. Oxidising

C. Both (a) and (b)

D. Neither (a) nor (b)

Answer: C

Watch Video Solution

45. When a crystalline compound X is heated with $K_2Cr_2O_7$ and concentrated H_2SO_4 , a reddish brown gas A is evolved. On passing A into caustic soda, a yellow solution of B is formed. A yellow precipitate of C is obtained when a solution B is neutralised with acetic acid and then treated with a lead acetate solution. when X is heated with NaOH, a colourless gas is evolved which, when passed into a solution of $K_2[HgI_4]$, gives a reddish brown precipitate of D. ltBrgt Q. Compound (X) is:

A. NH_4Br

B. NH_4Cl

 $\mathsf{C.}\,NH_4NO_2$

D. NH_4NO_3

Answer: B

View Text Solution

46. When a crystalline compound X is heated with $K_2Cr_2O_7$ and concentrated H_2SO_4 , a reddish brown gas A is evolved. On passing A into caustic soda, a yellow solution of B is formed. A yellow precipitate of C is obtained when a solution B is neutralised with acetic acid and then treated with a lead acetate solution. when X is heated with NaOH, a colourless gas is evolved which, when passed into a solution of $K_2[HgI_4]$, gives a reddish brown precipitate of D. ItBrgt Q. If the solution B is colourless, which of the following ions would not be present in the solid X?

B. Br^{-}

 $C.NO^{-}$

 $\mathsf{D}.NO_2^-$

Answer: A

View Text Solution

47. When a crystalline compound X is heated with $K_2Cr_2O_7$ and concentrated H_2SO_4 , a reddish brown gas A is evolved. On passing A into caustic soda, a yellow solution of B is formed. A yellow precipitate of C is obtained when a solution B is neutralised with acetic acid and then treated with a lead acetate solution. when X is heated with NaOH, a colourless gas is evolved which, when passed into a solution of $K_2[HgI_4]$, gives a reddish brown precipitate of D. ItBrgt Q. Which of the following is the composition of the brown precipitate (D) ?

A. HgI_2

 $\mathsf{B}.\,Hg(NH_2)I$

C. HgO

D. $HgO \cdot Hg(NH_2)I$

Answer: D

View Text Solution

48. A white solid A reacts with dilute H_2SO_4 to produce a colourless gas B and a colourless solution C. the reaction between B and acidified dichromate yields a green solution and a slightly coloured precipitate D. the substance D, when burnt in air, gives a gas E which reacts with B to yield D and a colourless liquid. anhydrous copper sulphate turns blue with this colourless liquid. the addition of aqueous NH_3 or NaOH to C produces a precipitate that dissolves in an excess of the reagent to form a clear solution.

Q. Which of the following gases are B and E respectively?

A. CO_2 and SO_2

 $B.SO_2$ and H_2S

 $C. H_2 S$ and SO_2

 $\mathsf{D}. CO_2$ and H_2S

Answer: C

View Text Solution

49. A white solid A reacts with dilute H_2SO_4 to produce a colourless gas B and a colourless solution C. the reaction between B and acidified dichromate yields a green solution and a slightly coloured precipitate D. the substance D, when burnt in air, gives a gas E which reacts with B to yield D and a colourless liquid. anhydrous copper sulphate turns blue with this colourless liquid. the addition of aqueous NH_3 or NaOH to C produces a precipitate that dissolves in an excess of the reagent to form a clear solution.

Q. What would happen if the gas E were passed through an acidified $KMnO_4$ solution?

A. Bleaching of the permangnate solution without any precipitation

B. Bleaching of the perrmangnate solution which would show a

yellowish white turbidity

C. Bleaching of the permangnate solution and the formation of a

brown precipitate

D. No action

Answer: A

View Text Solution

50. A white solid A reacts with dilute H_2SO_4 to produce a colourless gas B and a colourless solution C. the reaction between B and acidified dichromate yields a green solution and a slightly coloured precipitate D. the substance D, when burnt in air, gives a gas E which reacts with B to yield D and a colourless liquid. anhydrous copper sulphate turns blue with this colourless liquid. the addition of aqueous NH_3 or NaOH to C produces a precipitate that dissolves in an excess of the reagent to form a clear solution. Q. What would appear if the gas B were passed through an aqueous solution solution of $Pb(NO_3)_2$?

A. A white precipitate solution in hot dilute HNO_3

B. A black precipitate soluble in hot dilute HNO_3

C. A black precipitate insoluble in hot dilute HNO_3

D. A yellow precipitate insoluble in hot concentrated HNO_3

Answer: B

View Text Solution

51. A white solid A reacts with dilute H_2SO_4 to produce a colourless gas B and a colourless solution C. the reaction between B and acidified dichromate yields a green solution and a slightly coloured precipitate D. the substance D, when burnt in air, gives a gas E which reacts with B to yield D and a colourless liquid. anhydrous copper sulphate turns blue with this colourless liquid. the addition of aqueous NH_3 or NaOH to C produces a precipitate that dissolves in an excess of the reagent to form a clear solution.

Q. Which of the following reactions are relevant to the action of NH_3 or NaOH` solution on C?

A.
$$Zn(OH)_{2} + 4NH_{3} \rightarrow [Zn(NH_{3})_{4}]^{2+} + 2OH^{-}$$

B. $Zn(OH)_{2} + 2OH^{-} \rightarrow [Zn(OH)_{4}]^{2-}$
C. $Pb(OH)_{2} \rightarrow 4NH_{3} \rightarrow [Pb(NH_{3})_{4}]^{2+} + 2OH^{-}$
D. $Pb(OH)_{2} + 2OH^{-} \rightarrow [Pb(OH)_{4}]^{2-}$

Answer: A::B

View Text Solution

52. A white solid A reacts with dilute H_2SO_4 to produce a colourless gas B and a colourless solution C. the reaction between B and acidified dichromate yields a green solution and a slightly coloured precipitate D. the substance D, when burnt in air, gives a gas E which reacts with B to yield D and a colourless liquid. anhydrous copper sulphate turns blue with this colourless liquid. the addition of aqueous NH_3 or NaOH to C produces a precipitate that dissolves in an excess of the reagent to form a clear solution.

Q. Suppose the solution obtained by the treatment off the solution C with an excess of NaOH is acidified with acetic acid and the gas B is passed through it. which of the following will obtained?

A. A colourless solution

B. A yellow precipitate

C. A black precipitate

D. A white precipitate

Answer: D

View Text Solution

53. (i) An aqueous solution of a compound (A) is acidic towards litmus and (A) sublimes at about $300^{\circ}C$.

(ii) (A) on treatment with an excess of NH_4SCN gives a red coloured compound (B) and on treatment with a solution of $K_4[Fe(CN)_6]$ gives a

blue coloured compound (C).

(iii) (A) on heating with excess of $K_2 C r_2 O_7$ in the presence of concentrated $H_2 S O_4$ evolves deep red vapours of (D).

(iv) On passing the vapour of (D) into a solution of NaOH and then adding the solution of acetic acid and lead acetate, a yellow precipitate of compound (E) is obtained.

Identify (A) to (E) and give chemical equations for the reactions.

A.
$$Ni(SCN)_2$$
 and $Ni_2[Fe(CN)_6]$

B.
$$Co(SCN)_2$$
 and $Co_2[Fe(CN)_6]$

C.
$$\left[Fe(SCN)_6\right]^{3-}$$
 and $Fe_3\left[Fe(CN)_6\right]_2$

D.
$$Fe(SCN)_3$$
 and $Fe_4[Fe(CN)_6]_3$

Answer: D

Watch Video Solution

54. (i) An aqueous solution of a compound (A) is acidic towards litmus

and (A) sublimes at about $300^{\,\circ}\,C.$

(ii) (A) on treatment with an excess of NH_4SCN gives a red coloured compound (B) and on treatment with a solution of $K_4[Fe(CN)_6]$ gives a blue coloured compound (C).

(iii) (A) on heating with excess of $K_2Cr_2O_7$ in the presence of concentrated H_2SO_4 evolves deep red vapours of (D).

(iv) On passing the vapour of (D) into a solution of NaOH and then adding the solution of acetic acid and lead acetate, a yellow precipitate of compound (E) is obtained.

Identify (A) to (E) and give chemical equations for the reactions.

A. + VI

 $\mathsf{B.}+V$

 $\mathsf{C.}+III$

 $\mathsf{D.}-II$

Answer: A

Watch Video Solution

55. (i) An aqueous solution of a compound A is acidic towards litmus and A sublimes at about $300^{\,\circ}C$

(ii) A solution of A, on treatment with an excess of NH_4SCN , gives a red compound, and on treatment with a solution of $K_4[Fe(CN)_6]$, gives a blue compound.

(iii) The solid A, on being heated with an excess of $K_2 C r_2 O_7$ in the presence of concentrated $H_2 S O_4$, evolves deep red vapours of D.

(iv) On passing the vapours of D into a solution of NaOH and then adding the solution of acetic acid and lead acetate, a yellow precipitate of a compound E is obtained.

Q. Can compound A be prepared in the anhydrous form by strongly heating its hydrated crystals?

A. No, because the water molecules are very stongly bound in the

hydrated crystals

B. No, because the salt gets hydrolysed in the process

C. Yes, because the water molecules are loosely bound in the hydrated

D. yes, because the salt sublimes at $300^{\,\circ}C$

Answer: B

56. (i) A yellow precipiate of the compound A is formed on passing H_2S through a neutral solution of the salt B.

(ii) The compound A is soluble in hot dilute HNO_3 but insoluble in yellow ammonium sulhpide.

(iii) The The solution of B, on treatment with a small quantitity of NH_3 , gives a white precipitate soluble in an excess of the reagent, forming a compound C.

(iv). The solution of B gives a white precipitate with a small concentration of KCN. the precipitate is soluble in an excess of the reagent, forming a compound D.

(v) the solution of D, on treatment with H_2S , gives A.

(vi) The solution of B in dilute HCl, on treatment with a solution of $BaCl_2$, gives a white precipitate of the compound E, which is almost insoluble in concentrated HNO_3 .

Q. Which of the following is the cation present in B?

A. As^{3+} B. Sb^{3+} C. Zn^{2+}

D. Cd^{2+}

Answer: D

View Text Solution

57. (i) A yellow precipiate of the compound A is formed on passing H_2S through a neutral solution of the salt B.

(ii) The compound A is soluble in hot dilute HNO_3 but insoluble in yellow ammonium sulhpide.

(iii) The The solution of B, on treatment with a small quantitity of NH_3 , gives a white precipitate soluble in an excess of the reagent, forming a compound C.

(iv). The solution of B gives a white precipitate with a small concentration of KCN. the precipitate is soluble in an excess of the reagent, forming a compound D.

(v) the solution of D, on treatment with H_2S , gives A.

(vi) The solution of B in dilute HCl, on treatment with a solution of $BaCl_2$, gives a white precipitate of the compound E, which is almost insoluble in concentrated HNO_3 .

Q. Which of the following anions is present in B?

A. SO_4^{2-} B. CO_3^{2-} C. SO_3^{2-}

D. S^{2-}

Answer: A

58. (i) A yellow precipiate of the compound A is formed on passing H_2S through a neutral solution of the salt B.

(ii) The compound A is soluble in hot dilute HNO_3 but insoluble in yellow ammonium sulhpide.

(iii) The The solution of B, on treatment with a small quantitity of NH_3 , gives a white precipitate soluble in an excess of the reagent, forming a compound C.

(iv). The solution of B gives a white precipitate with a small concentration of KCN. the precipitate is soluble in an excess of the reagent, forming a compound D.

(v) the solution of D, on treatment with H_2S , gives A.

(vi) The solution of B in dilute HCl, on treatment with a solution of $BaCl_2$, gives a white precipitate of the compound E, which is almost insoluble in concentrated HNO_3 .

Q. Which of the following are the white precipitate and the soluble substance formed by the excess of the NaOH reagent, respectively?

A. AsOCl and AsO_3^{3-}

B. SbOCl and SbO_3^{3-}

C. $Zn(OH)_2$ and $\left[Zn(NH_3)_4\right]^{2+}$

D. $Cd(OH)_2$ and $\left[Cd(NH_3)_4\right]^{2+}$

Answer: D

View Text Solution

59. (i) A yellow precipiate of the compound A is formed on passing H_2S through a neutral solution of the salt B.

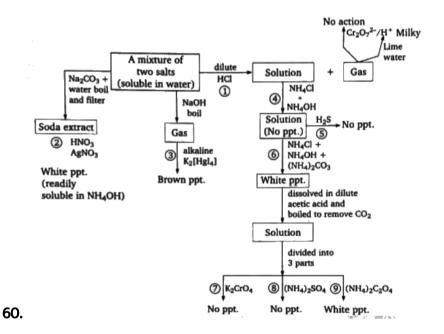
(ii) The compound A is soluble in hot dilute HNO_3 but insoluble in yellow ammonium sulhpide.

(iii) The The solution of B, on treatment with a small quantitity of NH_3 , gives a white precipitate soluble in an excess of the reagent, forming a compound C.

(iv). The solution of B gives a white precipitate with a small concentration of KCN. the precipitate is soluble in an excess of the reagent, forming a compound D.

(v) the solution of D, on treatment with H_2S , gives A.

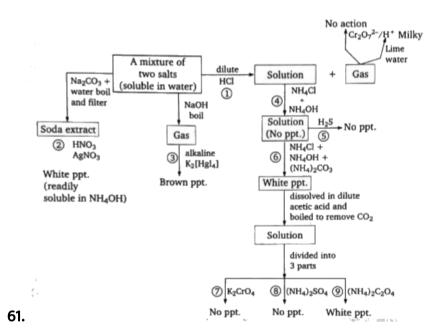
(vi) The solution of B in dilute HCl, on treatment with a solution of $BaCl_2$,


gives a white precipitate of the compound E, which is almost insoluble in concentrated HNO_3 .

Q. Which of the following are the white precipitate and the soluble substance formed by the excess of the KCN reagent. respectively, in (iv) ?

```
A. As(CN)_3 and [As(CN)_6]^{2-}
B. Sn(CN)_3 and [Sb(CN)_6]^{3-}
C. Zn(CN)_2 and [Zn(CN)_4]^{2-}
D. Cd(CN)_2 and [Cd(CN)_4]^{2-}
```

Answer: D


View Text Solution

Q. The white precipitate obtained in step (2) when filtered, washed with water and dissolved in NH_4OH , furnishes the ions:

A.
$$Ag^+$$
, NH_4^+ and OH^-
B. $Ag^{2+} + NH_4^+ + Cl^-$
C. $[Ag(NH_3)_2]^+$, Cl^-
D. $[Ag(OH)_2]^-$, NH_4^+ , Cl^+

Answer: C

Q. What will happen if the white precipitate obtained in step (9) is treated with a large volume of dilute H_2SO_4 and then with a few drops of a $KMnO_4$ solution?

A. The precipitate will dissolve in dilute H_2SO_4 and the solution will

decolorise the permangnate solution

B. The precipitate will dissolve in dilute H_2SO_4 and the solution will

give a brown precipitate with the $KMnO_4$ solution

C. The precipitate will dissolve in dilute H_2SO_4 and the solution will

not react with $KMnO_4$

D. The precipitate will not dissolve in dilute H_2SO_4 and the mixture

will not react with $KMnO_4$

Answer: A

View Text Solution

62. An aqueous solution of a white salt A gives a white precipitate B on treatment with dilute HCl in cold condition. B is soluble in boiling water. An aqeous solution of A gives a yellow precipitate on treatment with a solution of K_2CrO_4 . The soda extract of A is acidified with diolute H_2SO_4 , boiled to remove CO_2 and treated with a freshly prepared solution of $FeSO_4$. concentratd H_2SO_4 is added to the resulting solution. a brownn ring is formed at the junction of the two layers. Q. On treatment with a KI solution, an aqueous solution of A will give:

A. a yellow precipitate, soluble in boiling water

B. a yellow precipitate, insoluble in boiling water

C. a white precipitate, soluble, soluble in boiling water

D. a white precipitate, insoluble in boiling water

Answer: A

View Text Solution

63. An aqueous solution of a white salt A gives a white precipitate B on treatment with dilute HCl in cold condition. B is soluble in boiling water. An aqeous solution of A gives a yellow precipitate on treatment with a solution of K_2CrO_4 . The soda extract of A is acidified with diolute H_2SO_4 , boiled to remove CO_2 and treated with a freshly prepared solution of $FeSO_4$. concentratd H_2SO_4 is added to the resulting solution. a brownn ring is formed at the junction of the two layers. Q. A solution of A, when treated with NH_3 , gives:

A. a white precipitate soluble in an axcess of NH_3

B. a whiite precipitate insoluble in an excess of NH_3

C. a grey precipitate solugble in an excess of NH_3

D. a grey precipitate insoluble in an excess of NH_3

Answer: B

View Text Solution

64. An aqueous solution of a white salt A gives a white precipitate B on treatment with dilute HCl in cold condition. B is soluble in boiling water. An aqeous solution of A gives a yellow precipitate on treatment with a solution of K_2CrO_4 . The soda extract of A is acidified with diolute H_2SO_4 , boiled to remove CO_2 and treated with a freshly prepared solution of $FeSO_4$. concentratd H_2SO_4 is added to the resulting solution. a brownn ring is formed at the junction of the two layers. Q. The salt A is:

A. $PbBr_2$

B. $Pb(NO_3)_2$

C. $AgNO_3$

D. $Hg_2(NO_3)_2$

Answer: B

View Text Solution

65. When an aqueous solution of a colourless mixture of two salts is treated with a drop of chlorine water, the solution becomes brown. Some chloroform is added to the brown solution and the resulting mixture is shaken wel. The chloroform layer becomes violet.

(ii) When chlorine water is again added dropwise to the above mixture, the chloroform layer becomes colourless.

(iii) On being heated with solid $K_2Cr_2O_7$ and concentrated H_2SO_4 , the solid mixture gives vapours of a dark colour which form a yellow solution with aqueous NaOH. On acidification with acetic acid followed by treatment with lead acetate, the yellow solution gives a yellow precipitate.

(iv) When boiled with an NaOH solution, the mixture gives a gas that produces thick white fumes with HCl vapours and turns nessler's reagent

brown. the mixture does not respond to any other test for cations.

- (v) The mixture, on being heated, gets completely sublimed.
- Q. The brown solutin obtained in (i) is due to:

A. Br_{3}^{-} B. I_{3}^{-} C. Cl_{2}

D. NO_2

Answer: B

66. When an aqueous solution of a colourless mixture of two salts is treated with a drop of chlorine water, the solution becomes brown. Some chloroform is added to the brown solution and the resulting mixture is shaken wel. The chloroform layer becomes violet.

(ii) When chlorine water is again added dropwise to the above mixture, the chloroform layer becomes colourless. (iii) On being heated with solid $K_2Cr_2O_7$ and concentrated H_2SO_4 , the solid mixture gives vapours of a dark colour which form a yellow solution with aqueous NaOH. On acidification with acetic acid followed by treatment with lead acetate, the yellow solution gives a yellow precipitate.

(iv) When boiled with an NaOH solution, the mixture gives a gas that produces thick white fumes with HCl vapours and turns nessler's reagent brown. the mixture does not respond to any other test for cations.
(v) The mixture, on being heated, gets completely sublimed.

 $18H^{+}$

Q. Which of the following reactions takes place in (ii)?

A.
$$I_2 + 2Cl^- \rightarrow 2I^- + Cl_2 \uparrow$$

B. $Br_2 + 2Cl^- \rightarrow 2Br^- + Cl_2 \uparrow$
C. $I_3^- + 8Cl_2 + 9H_2O \rightarrow 3IO_3^- + 16Cl^- + 18H^+$
D. $Br_3^- + 8Cl_2 + 9H_2O \rightarrow 3BrO_3^- + 16Cl^- + 18H^+$

Answer: C

View Text Solution

67. When an aqueous solution of a colourless mixture of two salts is treated with a drop of chlorine water, the solution becomes brown. Some chloroform is added to the brown solution and the resulting mixture is shaken wel. The chloroform layer becomes violet.

(ii) When chlorine water is again added dropwise to the above mixture, the chloroform layer becomes colourless.

(iii) On being heated with solid $K_2Cr_2O_7$ and concentrated H_2SO_4 , the solid mixture gives vapours of a dark colour which form a yellow solution with aqueous NaOH. On acidification with acetic acid followed by treatment with lead acetate, the yellow solution gives a yellow precipitate.

(iv) When boiled with an NaOH solution, the mixture gives a gas that produces thick white fumes with HCl vapours and turns nessler's reagent brown. the mixture does not respond to any other test for cations.

(v) The mixture, on being heated, gets completely sublimed.

Q. The vapours obtained in (iii) contain:

A. CrO_2Cl_2 and I_2

B. CrO_2Cl_2 only

C. I_2 only

D. CrO_2Br_2

Answer: A

View Text Solution

68. When an aqueous solution of a colourless mixture of two salts is treated with a drop of chlorine water, the solution becomes brown. Some chloroform is added to the brown solution and the resulting mixture is shaken wel. The chloroform layer becomes violet.

(ii) When chlorine water is again added dropwise to the above mixture, the chloroform layer becomes colourless.

(iii) On being heated with solid $K_2Cr_2O_7$ and concentrated H_2SO_4 , the solid mixture gives vapours of a dark colour which form a yellow solution with aqueous NaOH. On acidification with acetic acid followed by treatment with lead acetate, the yellow solution gives a yellow precipitate.

(iv) When boiled with an NaOH solution, the mixture gives a gas that

produces thick white fumes with HCl vapours and turns nessler's reagent

brown. the mixture does not respond to any other test for cations.

(v) The mixture, on being heated, gets completely sublimed.

Q. What is the oxidation sate of the central atom in the anion constituting the yellow precipitate obtained in (iii)?

A. 0

 $\mathsf{B.}+2$

C.+4

D.+6

Answer: D

View Text Solution

69. When an aqueous solution of a colourless mixture of two salts is treated with a drop of chlorine water, the solution becomes brown. Some chloroform is added to the brown solution and the resulting mixture is shaken wel. The chloroform layer becomes violet.

(ii) When chlorine water is again added dropwise to the above mixture, the chloroform layer becomes colourless.

(iii) On being heated with solid $K_2Cr_2O_7$ and concentrated H_2SO_4 , the solid mixture gives vapours of a dark colour which form a yellow solution with aqueous NaOH. On acidification with acetic acid followed by treatment with lead acetate, the yellow solution gives a yellow precipitate.

(iv) When boiled with an NaOH solution, the mixture gives a gas that produces thick white fumes with HCl vapours and turns nessler's reagent brown. the mixture does not respond to any other test for cations.

(v) The mixture, on being heated, gets completely sublimed.

Q. The original mixture contains:

A. NH_4Cl and NH_4Br

B. NH_4Br and NH_4I

 $\mathsf{C}.NH_4Cl$ and NH_4I

D. NH_4Cl and NH_4NO_3

Answer: C

70. (i) A white solid mixture of two salts containing a common cations in insoluble in water. It dissolves in dilute HCl producing some gases (with effervescence) that turn an acidified dichromate solution gren. After the gases are passed through the acidified dichromate solution, the emerging gas turns baryta water milky.

(ii) On treatment with dilute HNO_3 , the white solid gives a solution which does not directly give a precipitate with a $BaCl_2$ solution but gives a white precipitate when warmed with H_2O_2 and then treated with a $BaCl_2$ solution.

(iii) The solution of the mixture in dilute HCl, when treated with NH_4Cl , NH_4OH and an Na_2HPO_4 solution, gives a white precipitate. Q. The gases evolved in (i) are:

A. CO_2 and HCl

 $B.SO_2$ and CO_2

 $\mathsf{C}.SO_2$ and H_2S

 $D. NH_3$ and CO_2

Answer: B

View Text Solution

71. (i) A white solid mixture of two salts containing a common cations in insoluble in water. It dissolves in dilute HCl producing some gases (with effervescence) that turn an acidified dichromate solution gren. After the gases are passed through the acidified dichromate solution, the emerging gas turns baryta water milky.

(ii) On treatment with dilute HNO_3 , the white solid gives a solution which does not directly give a precipitate with a $BaCl_2$ solution but gives a white precipitate when warmed with H_2O_2 and then treated with a $BaCl_2$ solution.

(iii) The solution of the mixture in dilute HCl, when treated with NH_4Cl , NH_4OH and an Na_2HPO_4 solution, gives a white precipitate. Q. The white precipitate obtained in (ii) indicates the presence of a: A. carbonate

B. sulphide

C. sulphite

D. chloride

Answer: C

View Text Solution

72. (i) A white solid mixture of two salts containing a common cations in insoluble in water. It dissolves in dilute HCl producing some gases (with effervescence) that turn an acidified dichromate solution gren. After the gases are passed through the acidified dichromate solution, the emerging gas turns baryta water milky.

(ii) On treatment with dilute HNO_3 , the white solid gives a solution which does not directly give a precipitate with a $BaCl_2$ solution but gives a white precipitate when warmed with H_2O_2 and then treated with a $BaCl_2$ solution. (iii) The solution of the mixture in dilute HCl, when treated with NH_4Cl, NH_4OH and an Na_2HPO_4 solution, gives a white precipitate. Q. The white precipitate obtained in (iii) consists of:

A. $Ba_3(PO_4)_2$

B. $Sr_3(PO_4)_2$

 $\mathsf{C.}\, Ca_3(PO_4)_2$

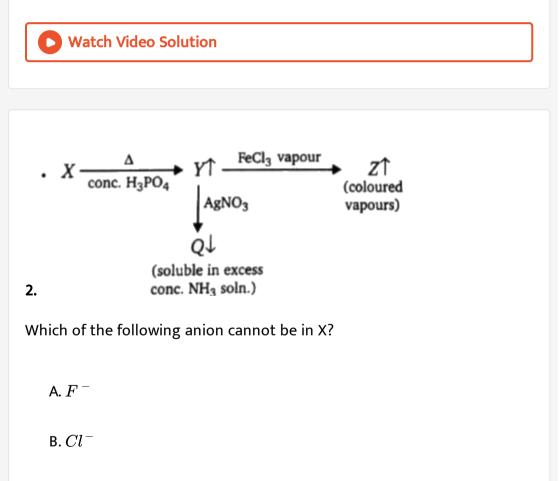
D. $MgNH_4PO_4 \cdot 6H_2O$

Answer: D

View Text Solution

ONE OR MORE ANSWER IS/ARE CORRECT

1. Basic radical(s) which can not be identified by borax bead test:


A.
$$Mg^{2\,+}$$

 $\mathsf{B}.\, Pb^{2\,+}$

 $\mathsf{C.}\,Fe^{3\,+}$

D. Ag^+

Answer: A::B::D

C. $Br^{\,-}$

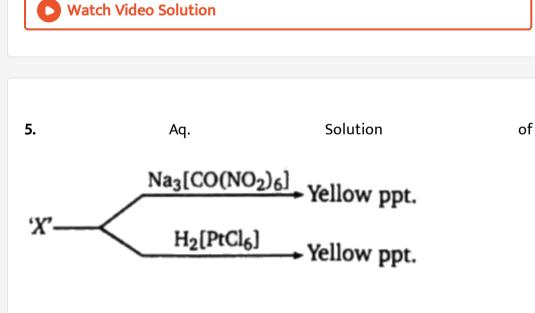
D. $I^{\,-}$

View Text Solution

3. When ozone reacts with an excess of potassium iodide solution buffered with a borate buffer (pH 9.2) iodine is liberated which can be titrated against a standard solution of sodium thiosulphate, this is a quantitative method for estimating O_3 gas. when liberated I_2 and sodium thiosulphate will react, then product is/are:

A.
$$S_4O_6^{2\,-}$$

- B. $SO_4^{2\,-}$ C. $S_2O_4^{2\,-}$
- $\mathsf{D}.S$


Answer: A

Watch Video Solution

4. Which of the following pairs of cations cannot be separate by using an NaOH solution?

A. Fe^{3+} , Al^{3+} B. Cr^{3+} , Al^{3+} C. Sn^{2+} , Pb^{2+} D. Cu^{2+} , Pb^{2+}

Answer: B::C

the cation(s) present in 'X' is/are:

A. NH_4^+

B. Na^+

C. $Mg^{2\,+}$

D. K^+

Answer: A::D

6. Potassium chromate solution is added to an aqueous solution of a metal chlrodie. The precipitate thus obtained are insoluble in acetic acid. These are subjected to flame test, the colour of the flame is

A. Lilac

B. Apple green

C. Crimson red

D. Blue

Watch Video Solution

7. A white sublimable solid, when boiled with an NaOH solution, gives a colourless gas that turns nessler's reagent brown. The solid on being heated with solid $K_2Cr_2O_7$ and concentrated H_2SO_4 , gives red brown vapours. The white solid can be:

A. NH_4I

 $\mathsf{B.}\,NH_4Br$

 $\mathsf{C.}\,NH_4Cl$

D. $(NH_4)_2 SO_4$

Answer: B::C

Watch Video Solution

KMnO₄ + gas 'B' H₂O₂ + gas 'B' Aq. suspension $\xrightarrow{[P]}$ H₂SO₄ Br₂ water+gas 'B'

Which of the following option(s) is/are correct reagarding 'P' among the

following?

8.

A. O_3

B. Excess Cl_2 water

C. conc. HNO_3

D. HCl

Answer: A::C::D

View Text Solution

9. In which of the following case a vilet colouration be observed?

A. An alkaline solutino of sodium nitroprusside is treated with a

solution of Na_2S

- B. A solution of sodium cobaltinitrite is treated with one of KCl
- C. A solution of $Mn(NO_3)_2$ is treated with sodium bismuthate or red

lead in the presence of concentrated HNO_3

D. A solution of sodium nitroprusside in aqueous NaOH is treated with

 Na_2SO_3

Answer: A::C

Watch Video Solution

10. Saturated solution of SO_2 is heated at $150^{\circ}C$ in a closed container. The product obtained is treated with $BaCl_2$ solution. What is/are the observation (s)?

A. No ppt.

B. White turbidity

C. Evolution of SO_2

D. White ppt.

Answer: B::D

11. Which reaction is/are possible?

A. $MgCl_2 + NaNO_3
ightarrow$

- $\text{B.} BaSO_4 + HCl \rightarrow$
- C. $ZnSO_4 + BaS
 ightarrow$
- D. $BaCO_3 + CH_3COOH
 ightarrow$

Answer: C::D

View Text Solution

12. Which of the following combinations in an aqueous medium will give a

blue colour or precipitate ?

A.
$$Fe^{2+} + [Fe(CN)_6]^{3+}$$

B. $Fe^{3+} + [Fe(CN)_6]^{4-}$
C. $Hg^{2+} + SCN^- + Co^{2+}$
D. $Fe^{3+} + SCN^-$

Answer: A::B::C

13. Which of the following statements (s) is (are) correct with reference to the ferrous and ferric ions? (a). Fe^{3+} gives brown colour with potassium ferricyanide. (b). Fe^{2+} gives blue precipitate with potassium ferricyanide. (c). Fe^{3+} gives red colour with potassium thiocyanate. (d). Fe^{2+} gives brown colour with ammonium thiocyanate. A. Fe^{2+} gives brown colour with potassium ferricyanide B. Fe^{2+} gives blue colour with potassium ferricyanide C. Fe^{3+} gives red colour with potassium thiocyanate

D. Fe^{2+} gives brown colour with potassium thiocyanate

Answer: B::C

Watch Video Solution

14. Which of the following combinations in an aqueous medium will give a

red colour or precipitate?

A. $Fe^{3\,+}+SCN^{\,-}$

- B. $Fe^{2+} + [Fe(CN)_6]^{3-}$
- C. Ni^{2+} +dimethylyoxime+ NH_3 solution

D. $Co^{2+} + SCN^{-}$

Answer: A::C

Watch Video Solution

15. Which of the following sulphates are soluble in water?

A. $CuSO_4$

B. $PbSO_4$

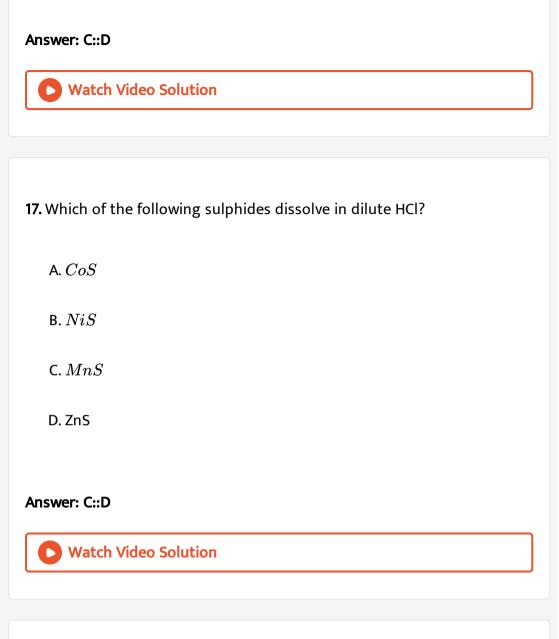
 $\mathsf{C.}\, Ag_2SO_4$

D. $BaSO_4$

Answer: A::C

Watch Video Solution

16. Which of the following pair(s) contain species, which react with each


other on mixing their aquouos solutions to give yellow precipitate?

A. NaI and NaCl

B. NaCl and I_2

 $C. AgNO_3$ and NaI

 $D. Pb(NO_3)_2$ and NaI

18. Acidic $K_2 C r_2 O_7$ reacts with $H_2 S$ to produce:

A. $Cr^{6\,+}$ ions

B. Cr^{3+} ions

 $\mathsf{C}.\,SO_2$

D. S

Answer: B::D

Watch Video Solution

19. Which of the following reagents can be used to distinguish between

 SO_2 and CO_2 ?

A. Lime water

B. $BaCl_2$ solution

C. $H_2O_2 + BaCl_2$ solution+dil. HCl

D. Acidified dichromate paper

Answer: C::D

Watch Video Solution

20. Which of the followng wild dissolve in a mixuture of NaOH and H_2O_2 ?

A. $Fe(OH)_3$

 $\mathsf{B.}\, Cr(OH)_3$

 $\mathsf{C.} Al(OH)_3$

D. $Zn(OH)_2$

Answer: B::C::D

Watch Video Solution

21. Which of the following reagents willnot be useful in separating a mixture of Zn^{2+} and Cu^{2-} ?

A. H_2S in an acid medium

B. H_2S in an alkaline method

C. Excess of NaOH solution

D. NH_3 solution

Answer: B::D

22. Which of the following mixtures cannot be separated by passing H_2S through their solutions containing dilute HCl ?

A.
$$Cu^{2+}$$
 and Sb^{3+}
B. Pb^{2+} and Cd^{2+}
C. Pb^{2+} and Al^{3+}
D. Zn^{2+} and Mn^{2+}

Answer: A::B::D

Watch Video Solution

23. Which of the following substance on being heated with give a gas that turns limewater milky?

A. Na_2CO_3

B. $ZnCO_3$

C. $ZnSO_3$

D. $MgCO_3$

Answer: B::C::D

Watch Video Solution

24. A white precipitate is obtained when:

A. a solution of $BaCl_2$ is treated with Na_2SO_3

B. a solution of $NaAlO_2$ is heated with NH_4Cl

C. H_2S is pased through a solution of $ZnSO_4$

D. a solution of $ZnSO_4$ is treated with Na_2CO_3

Answer: A::B::D

25. Which of the following cations will turns a borax bead green in an oxidising flame?

- A. Fe^{2+} B. Mn^{2+} C. Cr^{3+}
- D. Cu^{2+}

Answer: C

26. Which of the following substance are blue?

A. $Fe(BO_2)_2$

 $\mathsf{B.} \operatorname{CoAl}_2O_4$

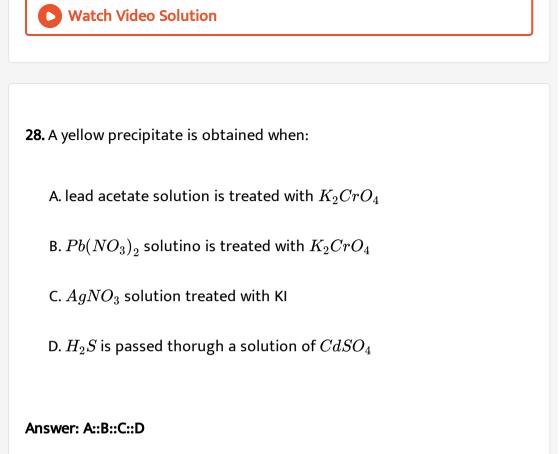
 $C.Co(BO_2)_2$

D. $NaCoPO_4$

Answer: B::C::D

Watch Video Solution

27. On raction with dilute H_2SO_4 , which of the following salts will give out a gas that turns an acidified dichromate paper green?


A. Na_2CO_3

 $\mathrm{B.}\, Na_2S$

 $C. ZnSO_3$

 $\mathsf{D.}\,FeS$

Answer: B::C::D

D Watch Video Solution

29. Which of the following ions can be separated by using NH_4Cl and NH_4OH ?

A.
$$Fe^{3+}$$
 and Cr^{3+}

B. Cr^{3+} and Co^{2+}

C. Cr^{3+} and Al^{3+}

D. Al^{3+} and Ba^{2+}

Answer: B::D

Watch Video Solution

30. Which of the following pairs of cations cannot be separated by adding NH_4Cl and NH_4OH to the mixture and then passing H_2S through it?

A.
$$Ca^{2+}$$
 and Ni^{2+}

B.
$$Mg^{2+}$$
 and Mn^{2+}

 $\mathsf{C.}\,Ni^{2\,+}\;\;\mathrm{and}\;\;Mn^{2\,+}$

D.
$$Co^{2+}$$
 and Zn^{2+}

Answer: C::D

Watch Video Solution

31. Which of the following mixtures of ions in solution can be separted by using NH_3 solution?

A. Hg_2^{2+} and Ag^+ B. Bi^{3+} and Cu^{2+} C. Ag^+ and Pb^{2+} D. Cu^{2+} and Cd^{2+}

Answer: A::B::C

Watch Video Solution

32. Which of the following compound are coloured?

A. $PbCl_2$

B. PbI_2

 $\mathsf{C.}\,AgCl$

D. AgI

Answer: B::D

33. Which of the followig mixtures of ions in solubiotn can be separted by using dilute H_2SO_4 ?

A.
$$Zn^{2+}$$
 and Pb^{2+}

- B. Ba^{2+} and Pb^{2+}
- C. Mn^{2+} and Sr^{2+}

D.
$$Sr^{2+}$$
 and Ba^{2+}

Answer: A::C

D View Text Solution

34. Which of the following species will be decomposed on acidification?

A.
$$[Ag(NH_3)_2]^+$$

B. $[Cu(NH_3)_4]^{2+}$
C. $[Zn(OH)_4]^{2-}$
D. $[Pb(OH)_4]^{2-}$

Answer: A::B::C::D

View Text Solution

35. Which of the following mixtures of ions in solution can be separated by using NaOH solution?

A.
$$Fe^{3+}$$
 and Pb^{2+}
B. Pb^{2+} and Sn^{2+}
C. Zn^{2+} and Sn^{2+}
D. Al^{3+} and Cu^{2+}

Answer: A::D

36. Which of the following ions can be separated by using dilute HCI?

A.
$$Ag^+$$
 and Cu^{2+}

B. Ag^+ and Hg_2^{2+}

 $\mathsf{C}.\,Hg_2^{2\,+}\;\;\mathrm{and}\;\;Cd^{2\,+}$

D. Ag^+ and Al^{3+}

Answer: A::C::D

Watch Video Solution

37. Which of the following substance will leave a black residue on strong

heating?

A. $CuSO_4 \cdot 5H_2O$

B. $ZnCO_3$

 $C. PbCO_3$

D. $MnSO_4$

Answer: A::D

Watch Video Solution

38. By which of the following reagents can a sublimate of $HgCl_2$ be distinguished from NH_4Cl ?

A. H_2S

 $\mathsf{B.}\,BaCl_2$

 $C. NaNO_3$

D. $FeCl_3$

Answer: A

Watch Video Solution

39. An aqueous solution is prepared by dissolving a mixture containing $ZnCl_2$, $CdCl_2$ and $CuCl_2$. Now H_2S gas is passed through the aqueous oslution of salt to form precipitate.

A. CdS

B. CuS

C. ZnS

D. No ppt.

Answer: A::B

Watch Video Solution

40. An aqueous solution containing S^{2-} ions will not give:

A. Yellow precipitate with the suspension off $CdCO_3$ in water

B. Black precipitate with lead acetate solution

C. White precipitate with $BaCl_2$ solution

D. Purple colour with sodium thiosulphate solution

Answer: C::D

41. Which of the following statement (s) is (are) correct when a mixture of

NaCl and $K_2 C r_2 O_7$ is gently warmed with conc. $H_2 S O_4$?

A. A deep red vapour is evolved

B. The vapour when passed into NaOH solution gives a yellow solution

of Na_2CrO_4

C. Chlorine gas is evolved

D. Chromyl chloride is formed

Answer: A::B::D

Watch Video Solution

42. Choose the correct reaction:

A.
$$BaCl_2 + AcOH + K_2CrO_4 \rightarrow$$
 yellow ppt.
B. $BaCO_3(s) + K_2C_2O_4 + AcOH \rightarrow$ white ppt.
C. $BaCO_3(s) + K_2CrO_4 + AcOH \rightarrow$ No ppt.
D. $SrCO_3(s) + K_2CrO_4 + AcOH \rightarrow$ No ppt.

Answer: A::D

View Text Solution

43. Which of the following aqueous solution of cation(s) give(s) white ppt. with NaOH and NH_4OH solution and formed ppt. is/are further completely dissolve din one of the excess reagent?

A. Cd^{2+}

B. Cr^{3+}

C. Sn^{2+}

D. $Bi^{3\,+}$

Answer: A::C

44.
$$Al_2(SO_4)_3 + NH_4OH o X$$

Select the correct statement(s) about compound X:

A. X is a white coloured compound

B. X is insoluble in excess of NH_4OH

C. X is soluble in NaOH

D. X can be used an an antacid

Answer: A::B::C::D

Watch Video Solution

45. The evolution of a red-brown gas on heating a salt with $K_2 C r_2 O_7$ and

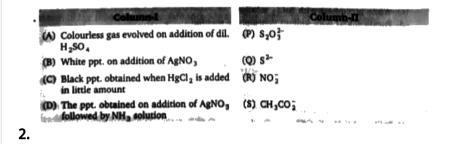
concentrated H_2SO_4 can arise from:

A. chlroride

B. bromide

C. nitrate

D. nitrite


Answer: A::B::C::D

Watch Video Solution

MATCH THE COLUMN

	Column-I (Reaction with Salt/Radical)	Colume-II (Selt/Radical)
	(A) $Zn + dil.H_2SO_4$	(P) Pb(NO₂)₂
	(B) dil. HCl	(Q) $(NH_4)_2S$
	(C) NaOH (excess)	(R) MnO ₄ (aq.)
	(D) KI	(S) $Hg_2^{2*}(aq.)$
1.		(T) Bi ³⁺ (aq.)

ASSERTION-REASON TYPE QUESTIONS

1. Assertion: $AgNO_3$ reacts with KCNN to form white ppt. of AgCN. This

white ppt. disappears when excess kCN is added.

Reason: AgCN decomposes to form silver-carbide and evolve N_2 gas.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. If both assertion and reason are true and reason is the correct

explanation of assertion

D. If oth assertion and reason are true but reason is not the correct

explanation of assertion

Answer: A

View Text Solution

2. Assertion: $HgCl_2$ does not respond chromyl chloride test.

Reason: $HgCl_2$ being covalent compound ionises upto 2%.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. If both assertion and reason are true and reason is the correct

explanation of assertion

D. If oth assertion and reason are true but reason is not the correct

explanation of assertion

Answer: C

Watch Video Solution

3. Assertion: $Zn + HNO_3(conc.)
ightarrow Zn(NO_3)_2 + NO_2 + H_2O$

Reason: Nitric acid plays double role in action of Zn metal, it acts as an acid as well as an oxidising agent.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. If both assertion and reason are true and reason is the correct

explanation of assertion

D. If oth assertion and reason are true but reason is not the correct

explanation of assertion

Answer: C

Watch Video Solution

4. Assertion: If yellow precipitate is obtained on adding ammonium molybdate solution on boiling then phosphoate radical is identified. Reason: Ammonium phosphomolybdate is a yellow compound.

A. If assertion is true but the reason is false

- B. If assertion is false but reason is true
- C. If both assertion and reason are true and reason is the correct

explanation of assertion

D. If oth assertion and reason are true but reason is not the correct

explanation of assertion

Answer: B

View Text Solution

5. Assertion: $HgCl_2$ and $SnCl_2$ cannot exist together in an aqueous solution.

Reason: $SnCl_2$ is a strong reducing agent because Sn shows inert part effect.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. If both assertion and reason are true and reason is the correct

explanation of assertion

D. If oth assertion and reason are true but reason is not the correct

explanation of assertion

Answer: A

6. Assertion: Sometimes a white turbidity is obtained when a solution is prepared in water.

Reason: Pb^{2+} catinos are precipitate as $PbCl_2$ which is sparingly solution in water.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. If both assertion and reason are true and reason is the correct

explanation of assertion

D. If oth assertion and reason are true but reason is not the correct

explanation of assertion

Answer: D

7. Assertion: CdS and As_2S_3 are yellow coloured compounds.

Reason: CdS and As_2S_3 can be separated by ammonium sulphide.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. If both assertion and reason are true and reason is the correct

explanation of assertion

D. If oth assertion and reason are true but reason is not the correct

explanation of assertion

Answer: D

Watch Video Solution

8. Assertion Green edge flame rest tells presence of borate ion.

Reason: Green colour of the flame is due to burining of tri ethyl borate.

A. If assertion is true but the reason is false

- B. If assertion is false but reason is true
- C. If both assertion and reason are true and reason is the correct

explanation of assertion

D. If oth assertion and reason are true but reason is not the correct

explanation of assertion

Answer: C

View Text Solution

9. Assertion: A solution of AgCl in NH_4OH gives a white precipitate when acidified with HNO_3 .

Reason: $\left[Ag(NH_3)_2\right]^+$ decomposes in the presence of HNO_3 .

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. If both assertion and reason are true and reason is the correct

explanation of assertion

D. If oth assertion and reason are true but reason is not the correct

explanation of assertion

Answer: C

Watch Video Solution

10. Assertion: When H_2S is passed through a solution of $CuSO_4$, no precipiate of CuS is obtained until the solution is acidifeid with HCl. Reason: The solubility product constant of CuS is not so high as to require a high concentration of S^{2-} for the precipitate of CuS.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. If both assertion and reason are true and reason is the correct explanation of assertion

D. If oth assertion and reason are true but reason is not the correct

explanation of assertion

Answer: B

11. Assertion: When H_2S is passed through a solution containing $[Cu(CN)_4]^{2-}$ and $[Cd(CN)_4]^{2-}$ ions, only cadmium precipitates as CdS.

Reason: The oxidation state and co-ordination number of cadmium in $\left[Cd(CN)_4\right]^{2-}$ are II and 4 respectively.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. If both assertion and reason are true and reason is the correct

explanation of assertion

D. If both assertion and reason are true but reason is not the correct

explanation of assertion

Answer: D

12. Assertion: concentrated solution of $BiCl_3$ can be hydrolysed with water.

Reason: $BiCl_3$ does not change in composition with dilution.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. If both assertion and reason are true and reason is the correct

explanation of assertion

D. If oth assertion and reason are true but reason is not the correct

explanation of assertion

Answer: A

View Text Solution

13. Assertion: The blue precipitate formed by the action of $K_4[Fe(CN)_6]$ on Fe^{3+} and by that of $K_3[Fe(CN)_6]$ on Fe^{2+} have the same composition.

Reason: $\left[Fe(CN)_6\right]^{3-}$ oxidises Fe^{2+} to Fe^{3+} and itself gets reduced to $\left[Fe(CN)_6\right]^{4-}$.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. If both assertion and reason are true and reason is the correct

explanation of assertion

D. If oth assertion and reason are true but reason is not the correct

explanation of assertion

Answer: C

View Text Solution

14. Assertion: $Zn(OH)_2$ dissolves in an excess of NaOH solution as well as NH_4OH solution.

Reason: $Zn(OH)_2$ forms the soluble zincate salts with these alkalies.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. If both assertion and reason are true and reason is the correct

explanation of assertion

D. If oth assertion and reason are true but reason is not the correct

explanation of assertion

Answer: A

View Text Solution

15. Assertion: When a solution of Na_2ZnO_2 is acidified with dilute HCl and treated with H_2S , a precipitate of ZnS is formed.

Reason: Na_2ZnO_2 is decomposed by HCl to give Zn^{2+} ions.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. If both assertion and reason are true and reason is the correct

explanation of assertion

D. If oth assertion and reason are true but reason is not the correct

explanation of assertion

Answer: B

View Text Solution

16. Assertion: Br^- ions do not interfere in the chromyl chloride test forr chlorides.

Reason: A bromide, on oxidation with $K_2Cr_2O_7/concentrated H_2SO_4$,

liberates Br_2 , which dissolves in NaOH to give a colourless solution.

A. If assertion is true but the reason is false

- B. If assertion is false but reason is true
- C. If both assertion and reason are true and reason is the correct

explanation of assertion

D. If oth assertion and reason are true but reason is not the correct

explanation of assertion

Answer: C

View Text Solution

17. Assertion: Basic radical of V group are precipitated as their carbonates

in presence of NH_4Cl .

Reason: NO_4OH maintains the pH of the solution basic.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. If both assertion and reason are true and reason is the correct

explanation of assertion

D. If oth assertion and reason are true but reason is not the correct

explanation of assertion

Answer: D

View Text Solution

18. Assertion: NO_3^- ion can not be detected by brown ring test in presence of NO_2^- ion.

Reason: Both NO_2^- and NO_3^- ions evolve brown NO_2 gas with conc. H_2SO_4 acid.

A. If assertion is true but the reason is false

B. If assertion is false but reason is true

C. If both assertion and reason are true and reason is the correct

explanation of assertion

D. If oth assertion and reason are true but reason is not the correct

explanation of assertion

Answer: C

View Text Solution

SUBJECTIVE PROBLEMS

1. Consider the following reaction

$$\begin{array}{ccc} Na_2SO_4 + C & \xrightarrow{\Delta} & (A) & \underbrace{Na_2[Fe(CN)_5NO]}_{\begin{subarray}{c} (B) \\ & \downarrow Cd(NO_3)_2 \\ & (C) \\ & yellow \ ppt. \end{array} \end{array} (B)$$

Then calculate value of $|X^2 - Y^2|$ (where X and Y are total number of electrons present t_(2g) and e_(g) orbitals respectively in d-block metal ion of compound B).

View Text Solution

2. Find number of basic radicals among the following cations, which can

form soluble complex on adding excess of NH_4 solution.

$$Cd^{2+}(\mathit{aq.}\), Pb^{2+}(\mathit{aq.}\), Ni^{2+}(\mathit{aq.}\), Mn^{2+}(\mathit{aq.}\), Zn^{2+}(\mathit{aq.}\), Ag^{+}(\mathit{aq.}\),$$

3. Consider the following reaction

 $Na_3PO_4 + (NH_4)_2MoO_4 + HNO_3(dil)
ightarrow$ 'X'

Then calculate total number off atoms of 15th group element which are

 sp^3 hybridized in compound 'X'.

Watch Video Solution

4. How many anions will give colourles acid vapour/ gas with conc.

 H_2SO_4 on reaction with following gives anions?

 $CH_{3}COO^{-}, Cl^{-}, Br^{-}, S^{2-}, SO^{2-}_{3}, BO^{3-}_{3}, NO^{-}_{2}, C_{2}O^{2-}_{4}, I^{-}$

Watch Video Solution

5.
$$X(s) \xrightarrow{\text{dil. HCl}} Y \uparrow O_{NaOH} verset(Na_2[Fe(CN)_5(NO)]) \rightarrow \mathsf{Purple}$$

solution gas Y has been allowed to react with following species in neutral/acidic medium:

(a) $FeCl_3$

(b) $CuSO_4$

(c) $BaCl_2$

(d) SO_2

(e) $Cr_2 O_7^{2\,-}$

(f) CH₃COONa

(g) $Hg^{2\,+}$

Then calculate value of (P+Q-R)

P: Number of specis which undregoes redox reaction with gas Y.

Q: Numbe of species with which gas Y undergoes precipitation.

R: Number of spceis with which gas Y produce no observable change.

View Text Solution