© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - KUMAR PRAKASHAN KENDRA

PHYSICS (GUJRATI ENGLISH)

WORK AND ENERGY

Activity 111

1. We come across various activities which we normally consider to be work in day-to-day life.
for each of these activities, ask the following questions and answer them :

What is the work being done on?

D Watch Video Solution

2. We come across various activities which we normally consider to be work in day-to-day life.
for each of these activities, ask the following questions and answer them :

What is happening to the object?
3. We come across various activities which we normally consider to be work in day-to-day life.
for each of these activities, ask the following questions and answer them :

Who (What) is doing work?

D Watch Video Solution

4. We come across various activities which we normally consider to be work in day-to-day life.
for each of these activities, ask the following
questions and answer them :

What is the work being done on?

- Watch Video Solution

5. We come across various activities which we normally consider to be work in day-to-day life.
for each of these activities, ask the following questions and answer them :

What is happening to the object?

- Watch Video Solution

6. We come across various activities which we normally consider to be work in day-to-day life.
for each of these activities, ask the following questions and answer them :

Who (What) is doing work?

D Watch Video Solution

Activity 113

1. Think of situation when the object is not displaced in spite of a force acting on it.
2. Think of situation when an obejct gets displaced in the absence of a force acting on it.

- Watch Video Solution

3. Think of situation when the object is not displaced in spite of a force acting on it.

- Watch Video Solution

4. Think of situation when an obejct gets displaced in the absence of a force acting on it.

D Watch Video Solution

Activity 114

1. Lift an object up. Work is done by the force exerted by you on the object. The object moves upwards. The force you exerted is in the
direction of displacement. However, there is the force of gravity acting on the object.

Which one of these forces is doing positive work? Give reason.

D Watch Video Solution

2. Lift an object up. Work is done by the force exerted by you on the object. The object moves upwards. The force you exerted is in the direction of displacement. However, there is the force of gravity acting on the object.

Which one is doing negative work? Give reason.

D Watch Video Solution

3. Lift an object up. Work is done by the force exerted by you on the object. The object moves upwards. The force you exerted is in the direction of displacement. However, there is the force of gravity acting on the object.

Which one of these forces is doing positive work? Give reason.

Watch Video Solution

4. Lift an object up. Work is done by the force exerted by you on the object. The object moves upwards. The force you exerted is in the direction of displacement. However, there is the force of gravity acting on the object.

Which one is doing negative work? Give reason.

1. Take a slinky as shown below.

Ask a friend to hold one of its ends. You hold
the other end and move away from your friend. Now you release the slinky.

A slinky

What happened?
(Watch Video Solution
2. Take a slinky as shown below.

Ask a friend to hold one of its ends. You hold
the other end and move away from your friend. Now you release the slinky.

A slinky

How did the slinky acquire energy when stretched?

D Watch Video Solution

3. Take a slinky as shown below.

Ask a friend to hold one of its ends. You hold
the other end and move away from your friend. Now you release the slinky.

Would the slinky acquire energy when it is

compressed?

D Watch Video Solution

4. Take a slinky as shown below.

Ask a friend to hold one of its ends. You hold
the other end and move away from your friend. Now you release the slinky.

A slinky

What happened?
5. Take a slinky as shown below.

Ask a friend to hold one of its ends. You hold
the other end and move away from your friend. Now you release the slinky.

A slinky

What happened?
6. Take a slinky as shown below.

Ask a friend to hold one of its ends. You hold
the other end and move away from your friend. Now you release the slinky.

A slinky

What happened?
(Watch Video Solution

Activity 1110

1. Take a toy car. Wind it using its key. Place the car on the ground.

Did it move?

D Watch Video Solution
2. Take a toy car. Wind it using its key. Place the car on the ground.

From where did it acquire energy?

D Watch Video Solution

3. Take a toy car. Wind it using its key. Place the car on the ground.

Does the energy acquired depend on the number of windings? How can you test this?

- Watch Video Solution

4. Take a toy car. Wind it using its key. Place the car on the ground.

Did it move?
5. Take a toy car. Wind it using its key. Place the car on the ground.

From where did it acquire energy?

- Watch Video Solution

6. Take a toy car. Wind it using its key. Place the
car on the ground.

Does the energy acquired depend on the number of windings? How can you test this?

Activity 1113

1. How do green plants produce food?

- Watch Video Solution

2. Where do they get their energy from?

D View Text Solution

3. Why does the air move from place to place?

- Watch Video Solution

4. How are fuels, such as coal and petroleum
formed?

- Watch Video Solution

5. What kind of energy conversions sustain the water cycle?

- Watch Video Solution

6. How do green plants produce food?

D Watch Video Solution
7. Where do plants get their energy from?

D Watch Video Solution

8. Why does the air move from place to place?

- Watch Video Solution

9. How are fuels, such as coal and petroleum formed?

D Watch Video Solution

10. What kind of energy conversions sustain
the water cycle?

Intext Questions And Answers

1. A force of 7 N acts on an object. The displacement is, say 8 m , in the direction of the force. Let us take it that the force acts on the object through the displacement. What is the work done in this case?

- Watch Video Solution

2. When do we say that work is done?

D Watch Video Solution

3. Write an expression for the work done when
a force is acting on an object in the direction of its displacement.

D Watch Video Solution
4. Define 1 J of work.

- Watch Video Solution

5. A pair of bullocks exerts a force of 140 N on a plough. The field being ploughed is $15 m$ long. How much work is done in ploughing the length of the field?

- Watch Video Solution

6. What is the kinetic energy of an object?

- Watch Video Solution

7. Write the expression for the kinetic energy of an object.

- Watch Video Solution

8. The kinetic energy of an object of mass in moving with a velocity of $5 \mathrm{~ms}^{-1}$ is 25 J . What
will be its kinetic energy when its velocity is doubled? What will be its kinetic energy when its velocity is increased three times?
9. What is power?

- Watch Video Solution

10. Define 1 watt of power.

D Watch Video Solution

11. A lamp consumes 1000 J of electrical energy
in 10s. What is its power?
12. Define average power.

- Watch Video Solution

13. A force of 7 N acts on an object. The displacement is, say 8 m , in the direction of the force. Let us take it that the force acts on the object through the displacement. What is
the work done in this case?

- Watch Video Solution

14. When do we say that work is done?

- Watch Video Solution

15. Write an expression for the work done when a force is acting on an object in the
direction of its displacement.

- Watch Video Solution

16. Define 1 J of work.

D Watch Video Solution

17. A pair of bullocks exerts a force of 140 N on
the plough. The field being ploughed is 15 m
long. How much work is done in ploughing the length of the field?

- Watch Video Solution

18. What is the kinetic energy of an object?

- Watch Video Solution

19. Write the expression for the kinetic energy of an object.
20. The kinetic energy of an object of mass, m moving with a velocity of $5 \mathrm{~ms}^{-1}$ is 25 J . What
will be its kinetic energy when its velocity is doubled? What will be its kinetic energy when its velocity is increased three times?

- Watch Video Solution

21. What is power?

- Watch Video Solution

22. Define 1 watt of power.

D Watch Video Solution

23. A lamp consumes 1000 J of electrical energy in 10s. What is its power?

- Watch Video Solution

24. Define average power.

Question Answer Answer The Following Questions In Very Short

1. Define work

D Watch Video Solution
2. What is the unit of work?

D Watch Video Solution
3. Is work a scalar or a vector quantity?

D Watch Video Solution

4. Why is the work done against gravity considered negative?

- Watch Video Solution

5. State two conditions needed for work to be done.

- Watch Video Solution

6. When is the work done by a force zero?

D Watch Video Solution
7. A porter is standing with a suitcase over his
head. What is the work done by him?

D Watch Video Solution
8. What is energy?

D Watch Video Solution

9. What is the unit of energy?

- Watch Video Solution

10. What is mechanical energy?

- Watch Video Solution

11. What is potential energy?

D Watch Video Solution

12. If the work done on an object is 10 J and the
object is displaced through 2 m , then what is
the force applied?
(D) Watch Video Solution
13. Name the type of energy possessed by a stretched rubber band.

D Watch Video Solution

14. A car and a truck are moving with the same
speed of $12 \mathrm{~ms}^{-1}$. If their masses are in the
ratio $1: 5$, find the ratio of their kinetic energy.

D Watch Video Solution

15. What is the commerical unit of energy?

D Watch Video Solution

16. Find the velocity of a body of mass 100 g
having kinetic energy 20 J.

D Watch Video Solution
17. State the law of conservation of energy.
18. Define work

D Watch Video Solution
19. What is the unit of work?

D Watch Video Solution

20. Is work a scalar or a vector quantity?

D Watch Video Solution
21. Why is the work done against gravity considered negative?

D Watch Video Solution

22. State two conditions needed for work to be done.

D Watch Video Solution

23. When is the work done by a force zero?

D Watch Video Solution

24. A porter is standing with a suitcase over his head. What is the work done by him?

D Watch Video Solution

25. What is energy?
26. What is the unit of energy?

- Watch Video Solution

27. What is mechanical energy?

- Watch Video Solution

28. What is potential energy?
29. If the work done on an object is 10 J and the object is displaced through 2 m , then what is the force applied?

D Watch Video Solution

30. Which energy is stored in a stretched rubber band?

D Watch Video Solution
31. A car and a truck are moving with the same speed of $12 \mathrm{~ms}^{-1}$. If their masses are in the ratio $1: 5$, find the ratio of their kinetic energy.

- Watch Video Solution

32. What is the commerical unit of energy?

- Watch Video Solution

33. Find the velocity of a body of mass 100 g having kinetic energy 20 J.

- Watch Video Solution

34. State the law of conservation of energy.

(D) Watch Video Solution

Question Answer Choose The Correct Option From Those Given Below Each Question

1. What is necessary for work to be done?

Choose the correct statement.
(1) Action of force is necessary.
(2) Displacement is necessary.
(3) Displacement in the direction of force is necessary.
A. Statement 1
B. Statement 2
C. Statement 3
D. Statement 1 and 3

Answer: A::C::D

D Watch Video Solution

2. A body of mass 10 kg performs motion along
a circle of radius 5 m with speed of $10 \mathrm{~ms}^{-1}$.

Work done during one revolution is
...............
A. 2000π
B. 1000π
C. 500π
D. zero

Answer:

D Watch Video Solution

3. Which one among kinetic energy, potential energy and mechanical energy cannot be negative?
A. kinetic energy
B. potential energy
C. mechanical energy
D. Both 'B' and 'C'

Answer: C

D Watch Video Solution

4. Work done on a body is equal to change in
its
A. kinetic energy only
B. potential energy only
C. mechanical energy only
D. energy

Answer: A

D Watch Video Solution

5. Mass of a man is 60 kg . He climbs up 20 m
height with a bucket having water of mass
15kg. So, work done is kJ. $\left(g=9.8 m s^{-2}\right)$
A. 15
B. 20
C. 150
D. 1.5

D Watch Video Solution

6. A box of 20 kg mass is pulled by force F with
constant velocity on a horizontal surface. If
force of friction is 49 N , work done during displacement of 10 m is.............J.
A. 490
B. 245
C. 980
D. zero

Answer:

D Watch Video Solution

7. Masses of two bodies are 1 kg and 4 kg respectively. If their kinetic energies are in $2: 1$ proportion, ratio of their speeds is
A. $2 \sqrt{2}: 1$
B. $1: \sqrt{2}$
C. 1:2
D. 2:1

Answer: A: B

- Watch Video Solution

8. Engine of a car of mass 1500 kg , keeps car moving with constant velocity $5 m s^{-1}$. If frictional force is 1000 N , power of engine is
A. $5 k W$
B. 7.5 kW
C. $15 k W$
D. $75 k W$

Answer:

D Watch Video Solution

9. Height of water dam in hydroelectric power station is 20 m . How much water, in 1 second,
should fall on turbine, so that 1 MW power is
generated? $\left(g=10 m s^{-2}\right)$
A. 5000 kg
B. $10,000 \mathrm{~kg}$
C. 500 kg
D. 7500 kg

Answer:
(D) Watch Video Solution
10. Speed of a body in motion is doubled. Its
kinetic energy is now Times the original
kinetic energy.
A. two
B. three
C. four
D. half

Answer:

- Watch Video Solution

11. An object is thrown vertically upwards with
velocity of $20 \mathrm{~ms}^{-1}$. At what height will its
kinetic energy and potential energy be equal?
$\left(g=10 m s^{-2}\right)$
A. 10 m
B. 20 m
C. $15 m$
D. $5 m$

Answer: B
12. $1 \mathrm{kWh}=$
A. 36×10^{6}
B. 3.6×10^{6}
C. 3.6×10^{7}
D. 3.6×10^{5}

Answer: A: C
13. When spring is compressed its potential energy
A. remains constant
B. reduces
C. increases
D. nothing can be said about it

Answer: A::C

- Watch Video Solution

14. What is the unit of work in the SI system of unit?
A. newton metre ${ }^{-1}$
B. joule second ${ }^{-1}$
C. newton-metre
D. watt

Answer:

D Watch Video Solution
15. What is power?
A. Rate of change in momentum
B. Rate of change in energy
C. A force through which an object moves
D. Rate of change of force

Answer: A::C

- Watch Video Solution

16. A person of mass 55 kg pushesh a wall.

Work done by this person
A. 55 J
B. 550 J
C. 5.5 J
D. zero

Answer:

D Watch Video Solution
17. In momentum of the object having mass

4 kg is $20 \mathrm{kgms}^{-1}$, what would be its kinetic energy?
A. 25 J
B. 50 J
C. 75 J
D. 100 J

Answer: B
18. An object of mass 2 kg is thrown in the upward direction with velocity of $3 m s^{-1}$. What would be the maximum potential energy

of this object?

A. $18 J$
B. 4.5 J
C. 9 J
D. 2.25 J

Answer: C

19. The kinetic energy of the object
A. depends only on its mass
B. depends only on its speed
C. depends on both its mass as well as its
speed
D. depends neither on its mass nor on its
speed
20. An object of mass 100 g moves with speed $1 m s^{-1}$. Its kinetic energy would beJ.
A. 50
B. 5
C. 0.5
D. 0.05

Answer: D

21. When the speed of a car moving with accelerated motion on a horizontal surface becomes four times than at the starting, then what is the change in its potential energy?
A. Would not change
B. Would be doubled
C. Would be four times
D. Would be sixteen times

Answer: A

D Watch Video Solution

22. A bullet of mass 20 g fired from a rifle is
found to cover the distance of 30 m in 4 s .

Assuming that the speed of the bullet to be constant, find its kinetic energy.
A. $0.5625 J$
B. 56.25 J
C. $30.08 J$

D. 1.125 J

Answer: B

D Watch Video Solution

23. A body is thrown up with a kinetic energy
of 10 J . If it attains maximum height of 5 m , then find its mass. $\left(g=10 m s^{-2}\right)$
A. $2 k g$
B. 20 kg

C. 0.02 kg

D. 0.2 kg

Answer: B

- Watch Video Solution

24. If an object is falling freely from certain
height towards the surface of earth, its total mechanical enrgy
A. decreases
B. increases
C. does not change
D. goes on increasing and decreasing

Answer: C

D Watch Video Solution

25. The work done on the object is negative,
then the measure of angle between force and
displacement would be
A. 0°
B. 45°
C. 90°
D. 180°

Answer: A

- Watch Video Solution

26. The diameter of an iron sphere of mass 10
kg is same as that of aluminium sphere of
mass 3.5 kg . Both of them are made to fall
freely simultaneously from the top of a tower.

When both of them would be at 10 m above the ground, they would have same
A. acceleration
B. momentum
C. potential energy
D. kinetic enery

Answer: A::C

D Watch Video Solution
27. A girl is carrying a school bag of 3 kg mass
on her back and moves 200 m on a levelled road, then the work done against the gravitational force would be J (Take $g=10 \mathrm{~ms}^{-2}$)
A. 6×10^{3}
B. 6
C. 0.06
D. zero
28. Which of the following is not the unit of energy?
A. joule
B. newton metre
C. kilowatt

D. kilowatt-hour

Answer: A

29. Work done on an object is not dependent
A. displacement
B. force applied
C. the angle between force and
displacement
D. initial velocity of the object

Answer: D

Watch Video Solution

30. Water stored in the dam
A. does not possess energy
B. possesses electrical energy
C. possesses kinetic energy
D. possesses potential energy

Answer: A
(Watch Video Solution
31. A body is falling freely from a height h.

When it covers distance $\frac{h}{2}$ in downward direction, at that place it possesses.
A. only potential energy
B. only kinetic energy
C. half potential energy and half kinetic
energy
D. more kinetic energy and less potential
energy

Answer: C

D Watch Video Solution

32. A boy lifts a mass of 300 g for 1.2 second at
height of 4 m . What would be the power of boy? (Take $g=10 m s^{-2}$).
A. $5 W$
B. 10 W
C. 15 W
D. 20 W

D Watch Video Solution

1 megawatt (MW)
 1 kilowatt (kW)

A. 10^{-3}
B. 10^{3}
C. 10^{6}
D. 10^{-6}
34. What is necessary for work to be done?

Choose the correct statement.
(1) Action of force is necessary.
(2) Displacement is necessary.
(3) Displacement in the direction of force is necessary.
A. Statement 1
B. Statement 2
C. Statement 3

D. Statement 1 and 3

Answer: A::C::D

D Watch Video Solution

35. A body of mass 10 kg performs motion along a circle of radius 5 m with speed of $10 m s^{-1}$. Work done during one revolution is
A. 2000π
B. 1000π
C. 500π
D. zero

Answer:

D Watch Video Solution

36. Which one among kinetic energy, potential energy and mechanical energy cannot be negative?
A. kinetic energy
B. potential energy
C. mechanical energy
D. Both 'B' and 'C'

Answer: C

D Watch Video Solution

37. Work done on a body is equal to change in its
A. kinetic energy only
B. potential energy only
C. mechanical energy only
D. energy

Answer:

D Watch Video Solution

38. Mass of a man is 60 kg . He climbs up 20 m height with a bucket having water of mass

15 kg . So, work done is kJ. $\left(g=9.8 m s^{-2}\right)$
A. 15
B. 20
C. 150
D. 1.5

Answer: A

D Watch Video Solution

39. A box of 20 kg mass is pulled by force F with constant velocity on a horizontal surface.

If force of friction is 49 N , work done during displacement of 10 m is.............J.
A. 490
B. 245
C. 980
D. zero

Answer: D
(Watch Video Solution
40. Masses of two bodies are 1 kg and 4 kg respectively. If their kinetic energies are in $2: 1$ proportion, ratio of their speeds is
A. $2 \sqrt{2}: 1$
B. $1: \sqrt{2}$
C. 1:2
D. $2: 1$

Answer: A

D Watch Video Solution
41. Engine of a car of mass 1500 kg , keeps car moving with constant velocity $5 m s^{-1}$. If frictional force is 1000 N , power of engine is
A. $5 k W$
B. 7.5 kW
C. $15 k W$

D. 75 kW

Answer: A
42. Height of water dam in hydroelectric power station is 20 m . How much water, in 1 second, should fall on turbine, so that 1 MW power is generated? $\left(g=10 \mathrm{~ms}^{-2}\right)$
A. 5000 kg
B. $10,000 \mathrm{~kg}$
C. 500 kg
D. 7500 kg

Answer: A

- Watch Video Solution

43. Speed of a body in motion is doubled. Its
kinetic energy is now Times the original
kinetic energy.
A. two
B. three
C. four
D. half

Answer: C

- Watch Video Solution

44. An object is thrown vertically upwards with
velocity of $20 \mathrm{~ms}^{-1}$. At what height will its
kinetic energy and potential energy be equal?
$\left(g=10 m s^{-2}\right)$
A. 10 m
B. 20 m
C. $15 m$
D. $5 m$

Answer: B

D Watch Video Solution

45. $1 \mathrm{kWh}=.$. J
A. 36×10^{6}
B. 3.6×10^{6}
C. 3.6×10^{7}
D. 3.6×10^{5}

Answer: B

- Watch Video Solution

46. When spring is compressed its potential
energy
A. remains constant
B. reduces
C. increases
D. nothing can be said about it

D Watch Video Solution

47. What is the unit of work in the SI system of unit?
A. newton metre ${ }^{-1}$
B. joule second ${ }^{-1}$
C. newton-metre
D. watt

Answer: C

- Watch Video Solution

48. What is power?
A. Rate of change in momentum
B. Rate of change in energy
C. A force through which an object moves
D. Rate of change of force
49. A person of mass 55 kg pushesh a wall. Work done by this person
A. 55 J
B. 550 J
C. 5.5 J
D. zero

Answer:
50. In momentum of the object having mass

4 kg is $20 \mathrm{kgms}^{-1}$, what would be its kinetic energy?
A. 25 J
B. 50 J
C. 75 J
D. 100 J
51. An object of mass 2 kg is thrown in the upward direction with velocity of $3 \mathrm{~ms}^{-1}$. What would be the maximum potential energy of this object?
A. 18 J
B. 4.5 J
C. $9 J$
D. 2.25 J

D Watch Video Solution

52. The kinetic energy of the object
A. depends only on its mass
B. depends only on its speed
C. depends on both its mass as well as its
speed

D. depends neither on its mass nor on its

speed

Answer: C

D Watch Video Solution

53. An object of mass 100 g moves with speed
$1 m s^{-1}$. Its kinetic energy would beJ.
A. 50
B. 5
C. 0.5
D. 0.05

Answer:

D Watch Video Solution

54. When the speed of a car moving with accelerated motion on a horizontal surface becomes four times than at the starting, then what is the change in its potential energy?
A. Would not change
B. Would be doubled
C. Would be four times
D. Would be sixteen times

Answer: A::C::D

D Watch Video Solution
55. A bullet of mass 20 g fired from a rifle is found to cover the distance of 30 m in 4 s .

Assuming that the speed of the bullet to be constant, find its kinetic energy.
A. 0.5625 J
B. 56.25 J
C. 30.08 J
D. 1.125 J

Answer: B
56. A body is thrown up with a kinetic energy
of 10 J . If it attains maximum height of 5 m , then find its mass. $\left(g=10 \mathrm{~ms}^{-2}\right)$
A. $2 k g$
B. 20 kg
C. 0.02 kg
D. 0.2 kg

Answer: D

D Watch Video Solution
57. If an object is falling freely from certain
height towards the surface of earth, its total mechanical enrgy
A. decreases
B. increases
C. does not change
D. goes on increasing and decreasing

Answer: C

- Watch Video Solution

58. The work done on the object is negative,
then the measure of angle between force and displacement would be
A. 0°
B. 45°
C. 90°
D. 180°

Answer: D

D Watch Video Solution
59. The diameter of an iron sphere of mass 10
kg is same as that of aluminium sphere of mass 3.5 kg . Both of them are made to fall freely simultaneously from the top of a tower.

When both of them would be at 10 m above
the ground, they would have same
A. acceleration
B. momentum
C. potential energy
D. kinetic enery

Answer: A::C

- Watch Video Solution

60. A girl is carrying a school bag of 3 kg mass
on her back and moves 200 m on a levelled
road, then the work done against the gravitational force would be J (Take $g=10 m s^{-2}$)
A. 6×10^{3}
B. 6

C. 0.06

D. zero

Answer:

D Watch Video Solution

61. Which of the following is not the unit of energy?
A. joule
B. newton metre

C. kilowatt

D. kilowatt-hour

Answer: C

D Watch Video Solution

62. Work done on an object is not dependent on
A. displacement
B. force applied

C. the angle between force and

displacement
D. initial velocity of the object

Answer: A::B::C

- Watch Video Solution

63. Water stored in the dam
A. does not possess energy
B. possesses electrical energy

C. possesses kinetic energy

D. possesses potential energy

Answer: D

- Watch Video Solution

64. A body is falling freely from a height h.

When it covers distance $\frac{h}{2}$ in downward direction, at that place it possesses.
A. only potential energy
B. only kinetic energy
C. half potential energy and half kinetic energy
D. more kinetic energy and less potential
energy

Answer: C
(D) Watch Video Solution
65. A boy lifts a mass of 300 g for 1.2 second at
height of 4 m . What would be the power of boy? (Take $g=10 m s^{-2}$).
A. $5 W$
B. 10 W
C. 15 W
D. 20 W

Answer: B

- Watch Video Solution

1 megawatt (MW)
 1 kilowatt (kW)

A. 10^{-3}
B. 10^{3}
C. 10^{6}
D. 10^{-6}

Answer: A::C

D Watch Video Solution

1. 1 watt-second = Joule.

D Watch Video Solution

2. A stone of mass 20 g is tied to one end of a strong string by a boy. He make it to revolve on a circular path, then work done by him would be joule.
3. An object of mass 120 g is taken upward at the height 5 m , then Joule work is done. $\left(g=10 m s^{-2}\right)$

- Watch Video Solution

4. Hetal having mass 50 kg climbs up 20 m height with an object of mass 30 kg for 40 s , then her power is W. (Take $g=10 m s^{-2}$)
5. The gravitational acceleration on moon is one-sixth that on the earth. A person can jump as high as 2 m on earth's surface. He can jump M high on the moon's surface.

- Watch Video Solution

6. An electric bulb of 60 W is used for 10 h per day Unit of electrical energy will be used in the month of June.
7. A object of weight 40 N is made to fall freely
towards the ground from height 10 m . When it
reaches the ground its kinetic energy would be J.

- Watch Video Solution

8.3730 watt = hp

- Watch Video Solution

9. A constant force of 1 N is applied on an object. The body displaces 1 m in the direction of the force. Then work done is J

D Watch Video Solution
10.1 watt-second = Joule.

D Watch Video Solution
11. A stone of mass 20 g is tied to one end of a strong string by a boy. He make it to revolve on a circular path, then work done by him would be joule.

- Watch Video Solution

12. An object of mass 120 g is taken upward at the height 5 m , then Joule work is done.
$\left(g=10 m s^{-2}\right)$
13. Hetal having mass 50 kg climbs up 20 m height with an object of mass 30 kg for 40 s , then her power is W. (Take $g=10 m s^{-2}$)

- Watch Video Solution

14. The gravitational acceleration on moon is one-sixth that on the earth. A person can jump as high as 2 m on earth's surface. He can jump M high on the moon's surface.
15. An electric bulb of 60 W is used for 10 h per day Unit of electrical energy will be used in the month of June.

- Watch Video Solution

16. A object of weight 40 N is made to fall freely towards the ground from height 10 m .

When it reaches the ground its kinetic energy
would be J.

- Watch Video Solution
17.3730 watt $=h p$

D Watch Video Solution

18. A constant force of 1 N is applied on an
object. The body displaces 1 m in the direction
of the force. Then work done is

(D) Watch Video Solution

Question Answer Fill In The Blanks By Selecting The Correct Alternative From Those Given In The Bracket

1. As the angle between force and displacement increases, the magnitude of work
(remains constant, increases, decreases)

- Watch Video Solution

2. On pressing a spring its potential energy

(remains constant, increases, decreases)

D Watch Video Solution
3. is a scalar quantity.
(Force, Work, Displacement)

D Watch Video Solution
4. The unit of power is
(joule, watt, unit)

D Watch Video Solution

5. When an object of mass 10 kg is at height m, its potential energy would be 200 J.
(Take $g=10 \mathrm{~ms}^{-2}$).
$(2,5,10)$

- Watch Video Solution

6. $1 M W=\ldots W$
$\left(10^{3}, 10^{5}, 10^{6}\right)$

- Watch Video Solution

7.20 unit $=$............... Watt-second.
$\left(20 \times 10^{3}, 3.6 \times 10^{6}, 7.2 \times 10^{7}\right)$

D Watch Video Solution

8. The total energy of a body falling freely towards the earth
(increases, decreases, remains constant)

D Watch Video Solution

9. 5 electric bulbs of 100 W are used for 8
hours, then unit of energy would be consumed in 1 day.
$(4,5,8)$
10. Power of a water-pump is $2 k W$.............. Litre
of water can be lifted to a height of 10 m in 1 minute.
$(600,1200,2000)$

D Watch Video Solution

11. As the angle between force and displacement increases, the magnitude of work
(remains constant, increases, decreases)
12. On pressing a spring its potential energy
(remains constant, increases, decreases)

- Watch Video Solution

13. is a scalar quantity.
(Force, Work, Displacement)

D Watch Video Solution
14. The unit of power is
(joule, watt, unit)

D Watch Video Solution

15. When an object of mass 10 kg is at height m, its potential energy would be 200 J.
(Take $g=10 m s^{-2}$).
$(2,5,10)$
16. $1 M W=\ldots \ldots \ldots \ldots . . .$.
$\left(10^{3}, 10^{5}, 10^{6}\right)$

D Watch Video Solution
17. 20 unit $=$............... Watt-second.
$\left(20 \times 10^{3}, 3.6 \times 10^{6}, 7.2 \times 10^{7}\right)$

- Watch Video Solution

18. The total energy of a body falling freely towards the earth
(increases, decreases, remains constant)

D Watch Video Solution

19. 5 electric bulbs of 100 W are used for 8
hours, then unit of energy would be consumed in 1 day.
$(4,5,8)$
20. Power of a water-pump is $2 k W$............. Litre of water can be lifted to a height of 10 m in 1 minute.
$(600,1200,2000)$

D Watch Video Solution

Question Answer State Whether The Following

 Statements Are True Or False1. Ability of an object to do work is called energy of that object.

D Watch Video Solution
2. The unit of work and energy is the same.

D Watch Video Solution

3. The potential energy of an object is a relative concept.

- Watch Video Solution

4. Power $=$ Work \times Time taken to do the work.

D Watch Video Solution
5. An force 10 N , then its kinetic energy would be zero at maximum height.

D Watch Video Solution
6. 1 unit electrical energy means 1000 joule electrical energy.

D Watch Video Solution

7. The time rate of doing work is called power.

1 megawatt (MW) power means 10^{6} watt (W)
power.

D Watch Video Solution

8. 1 megawatt (MW) power means 10^{6} watt (W)

power.

D Watch Video Solution
9. Both power and energy are scalar quantities.

D Watch Video Solution
10. If work is done by an object, its energy decreases.

D View Text Solution
11. The difference between potential energy and kinetic energy is called mechanical energy.

- Watch Video Solution

12. Work is the product of power and time.

- Watch Video Solution

13. Ability of an object to do work is called energy of that object.

- Watch Video Solution

14. The unit of work and energy is the same.

- Watch Video Solution

15. The potential energy of an object is a relative concept.

D Watch Video Solution
16. Power $=$ Work \times Time taken to do the work.
17. An force 10 N , then its kinetic energy would be zero at maximum height.

D Watch Video Solution
18. 1 unit electrical energy means 1000 joule electrical energy.

D Watch Video Solution
19. The time rate of doing work is called power.

1 megawatt (MW) power means 10^{6} watt (W) power.

D Watch Video Solution

20. 1 megawatt (MW) power means 10^{6} watt
(W) power.

D Watch Video Solution
21. Both power and energy are scalar quantities.

- Watch Video Solution

22. If mechanical work done on the body then
kinetic energy increases or decreases ?

- Watch Video Solution

23. The difference between potential energy
and kinetic energy is called mechanical energy.
(D) Watch Video Solution
24. Work is the product of power and time.

D Watch Video Solution

Question Answer Answer The Following
 Questions In Short

1. A mass of 10 kg is at a point A on a table. It is moved to a point B. If the line joining A and B is horizontal, what is the work done on the object by the gravitational force? Explain your answer.

2. What is the work done by the force of gravity on a satellite moving round the earth? Justify your answer.

- Watch Video Solution

3. Think of situation when an obejct gets
displaced in the absence of a force acting on
it.

- Watch Video Solution

4. An object thrown at a certain angle to the ground moves in a curved path and falls back to the ground. The initial and the final points
of the path of the object lie on the same horizontal line. What is the work done by the force of gravity on the object?

- Watch Video Solution

5. When is the work done by a force is positive and negative ?
6. How is work calculated, if a applying force to the object (i) there is no displacement displacement is perpendicular to the force.

- Watch Video Solution

7. Four men lift a 250 kg box to a height of 1 m and hold it without raising or lowering it. (i)

How much work is done by men in lifting the
box? (ii) How much work is done in just holding it? (Take $g=10 \mathrm{~ms}^{-2}$).

D Watch Video Solution

8. A boy is moving on a straight road against a
frictional force of 5 N . After travelling 1.5 km ,
he forgot the path at cross roads of radius

100m. He moves on the circular path for one and half cycle and then he moves forward up
to 2 km . Calculate the work done by him.

Cross roads

D Watch Video Solution

9. Name different types of energy. Give the unit of energy.

D Watch Video Solution
10. A freely falling object eventually stops on reaching the ground. What happens to its kinetic energy?

D Watch Video Solution

11. Write a suitable reason for heating up of a metal when hit by a fast moving hammer.
12. The figure show a simple pendulum consisting a bob of mass 100 g . Initially the bob of the pendulum is at rest at O . It is displaced to one side at A. The height of A above O is 5 cm . (i) What is the value of potential energy of the bob at A? (ii) What is
the value of kinetic energy of the bob at position P , whose height above O is 2 cm ?
(Take $g=10 m s^{-2}$)

- Watch Video Solution

13. Certain force acting on a 20 kg mass changes its velocity from $5 m s^{-1}$ to $2 m s^{-1}$.

Calculate the work done by the force.

D Watch Video Solution

14. An object of mass 16 kg has 3200 J of kinetic energy. What will be its velocity?
15. Find the momentum of a body of mass 100 g having kinetic energy 500 J.

D Watch Video Solution

16. An object of mass, m is moving with a constant velocity v. How much work should be done on the object in order to bring the object to rest?
17. Calculate the work required to be done to stop a car of 1500 kg moving at a velocity of $60 \mathrm{kmh}^{-1}$.

- Watch Video Solution

18. Can kinetic energy be negative? Why?

- Watch Video Solution

19. Give any four illustrations of the kinetic energy.

D Watch Video Solution

20. An object of mass 40 kg is raised to a height of 5 m above the ground. What is its potential energy? If the object is allowed to fall, find its kinetic energy when it is halfway down. (Take $g=10 \mathrm{~ms}^{-2}$.)
21. What are the various energy trans-
formations that occur when you are riding a bicyle?

D Watch Video Solution

22. Does the transfer of energy take place
when you push a huge rock with all your might and fail to move it? Where is the energy you spend going?
23. The potential energy of a freely falling object decreases progressively. Does this violate the law of conservation of energy? Why?

D Watch Video Solution
24. A battery lights a bulb. Describe the energy
changes involved in the process.

- Watch Video Solution

25. A person holds a bundle of hay over his
head for 30 minutes and gets tired. Has he done some work or not? Justify your answer.

- Watch Video Solution

26. An electric heater is rated 1500 W . How much energy does it use in 10 hour?
27. In each of the following a force F is acting on an object of mass m. The direction of dispalcement is from west to east shown by the longer arrow. Observer the diagrams carefully and state whether the work done by
the force is negative, positive or zero.

(a)

(b)

(c)

Forces acting on objects \mid

D Watch Video Solution

28. Soni says that the acceleration in an object
could be zero even when several forces are acting on it. Do you agree with her? Why?

D Watch Video Solution

29. Find the energy in kWh consumed in 10
hour by 4 devices of power 500 W each.

D Watch Video Solution

30. A certain household has consumed 250 units of energy during a month. How much energy is this in joule?

- Watch Video Solution

31. A mass of 10 kg is at a point A on a table. It
is moved to a point B. If the line joining A and
B is horizontal, what is the work done on the object by the gravitational force? Explain your
answer.

D Watch Video Solution

32. What is the work done by the force of gravity on a satellite moving round the earth? Justify your answer.
33. Think of situation when an obejct gets
displaced in the absence of a force acting on it.

D Watch Video Solution

34. An object thrown at a certain angle to the ground moves in a curved path and falls back to the ground. The initial and the final points of the path of the object lie on the same
horizontal line. What is the work done by the force of gravity on the object?
35. When is the work done by a force is positive and negative?

- Watch Video Solution

36. How is work calculated, if a applying force to the object (i) there is no displacement (ii) displacement is perpendicular to the force.
37. Four men lift a 250 kg box to a height of 1 m and hold it without raising or lowering it. (i) How much work is done by men in lifting the box? (ii) How much work is done in just holding it? (Take $g=10 \mathrm{~ms}^{-2}$).

- Watch Video Solution

38. A boy is moving on a straight road against
a frictional force of 5 N . After travelling 1.5 km ,
he forgot the path at cross roads of radius

100m. He moves on the circular path for one and half cycle and then he moves forward up to 2 km . Calculate the work done by him.

Cross roads

D Watch Video Solution
39. Name different types of energy. Give the unit of energy.

D Watch Video Solution
40. A freely falling object eventually stops on
reaching the ground. What happens to its
kinetic energy?

- Watch Video Solution

41. Write a suitable reason for heating up of a metal when hit by a fast moving hammer.

D Watch Video Solution

42. The figure show a simple pendulum consisting a bob of mass 100 g . Initially the bob of the pendulum is at rest at O . It is displaced to one side at A. The height of A above O is 5 cm . (i) What is the value of potential energy of the bob at A? (ii) What is
the value of kinetic energy of the bob at position P, whose height above O is 2 cm ?
(Take $g=10 m s^{-2}$)

- Watch Video Solution

43. Certain force acting on a 20 kg mass changes its velocity from $5 m s^{-1}$ to $2 m s^{-1}$.

Calculate the work done by the force.

- Watch Video Solution

44. An object of mass 16 kg has 3200 J of kinetic energy. What will be its velocity?

- Watch Video Solution

45. Find the momentum of a body of mass 100 g having kinetic energy 500 J.

- Watch Video Solution

46. An object of mass, m is moving with a constant velocity v. How much work should be done on the object in order to bring the object to rest?

- Watch Video Solution

47. Calculate the work required to be done to
stop a car of 1500 kg moving at a velocity of $60 \mathrm{kmh}^{-1}$.
48. Can kinetic energy be negative? Why?

D Watch Video Solution

49. Give any four illustrations of the kinetic energy.

- Watch Video Solution

50. An object of mass 40 kg is raised to a height of 5 m above the ground. What is its
potential energy? If the object is allowed to
fall, find its kinetic energy when it is halfway down. (Take $g=10 \mathrm{~ms}^{-2}$.)

D Watch Video Solution

51. What are the various energy transformations that occur when you are riding a bicyle?
52. Does the transfer of energy take place when you push a huge rock with all your might and fail to move it? Where is the energy you spend going?

- Watch Video Solution

53. The potential energy of a freely falling object decreases progressively. Does this violate the law of conservation of energy? Why?
54. A battery lights a bulb. Describe the energy changes involved in the process.

- Watch Video Solution

55. A person holds a bundle of hay over his
head for 30 minutes and gets tired. Has he done some work or not? Justify your answer.
56. An electric heater is rated 1500 W . How much energy does it use in 10 hour?

D Watch Video Solution

57. In each of the following a force F is acting on an object of mass m. The direction of
dispalcement is from west to east shown by
the longer arrow. Observer the diagrams carefully and state whether the work done by
the force is negative, positive or zero.

(a)

(b)

(c)

Forces acting on objects |

- Watch Video Solution

58. Soni says that the acceleration in an object could be zero even when several forces are acting on it. Do you agree with her? Why?
59. Find the energy in kWh consumed in 10 hour by 4 devices of power 500 W each.

D Watch Video Solution

60. A certain household has consumed 250 units of energy during a month. How much energy is this in joule?

D Watch Video Solution

Question Answer Give Scientific Reasons For The Following Statements

1. A man standing with a load on his head or a man walking with load does no work scientifically.

D Watch Video Solution

2. A bullet fired from a gun can pierce through
a thick wooden board but the same bullet
thrown with a blow of hand can't pierce in the board.

D Watch Video Solution

3. When the earth revolves around the sun, the work done by the gravitational force of the sun is zero.

D Watch Video Solution
4. While fixing a nail in a wooden block, the hammer is raise and brought on it.

- Watch Video Solution

5. It is necessary to wind the clock regularly to
run it.

D Watch Video Solution
6. When an object is falling freely from the height h from the earth's surface its gravitational potential energy decreases gradually but its mechanical energy does not change.

- Watch Video Solution

7. A man standing with a load on his head or a man walking with load does no work scientifically.
8. A bullet fired from a gun can pierce through
a thick wooden board but the same bullet thrown with a blow of hand can't pierce in the board.

D Watch Video Solution

9. When the earth revolves around the sun,
the work done by the gravitational force of the
sun is zero.
10. While fixing a nail in a wooden block, the hammer is raise and brought on it.

- Watch Video Solution

11. It is necessary to wind the clock regularly to run it.
12. When an object is falling freely from the height h from the earth's surface its gravitational potential energy decreases gradually but its mechanical energy does not change.

- Watch Video Solution

Question Answer Match The Following Properly
1.

Column I

1. Unit of work
2. Unit of power
3. Energy present in c. newton compressed spring d. joule
4. Energy present in e. joule second ${ }^{-1}$ the bullet released from the gun

Column II
a. Kinetic energy
b. potential energy

Column I
(Physical Quantity)

1. Work
a. $\quad \frac{W}{t}$
2. Power
b. $m g h$
3.
4. Potential energy
c. $\frac{1}{2} m v^{2}$
5. Kinetic energy
d. Fs
e. $\quad m a$

D Watch Video Solution

3.

Column I

1. Unit of work
2. Unit of power
3. Energy present in c. newton compressed spring d. joule
4. Energy present in e. joule second ${ }^{-1}$ the bullet released from the gun

Column I (Physical Quantity)

Column II
(Formula)
a. $\quad \frac{W}{t}$
2. Power
b. $m g h$
4.

1. Work

3. Potential energy
c. $\frac{1}{2} m v^{2}$
4. Kinetic energy d. Fs e. $m a$

- Watch Video Solution

Question Answer Distinguish Between The Following

1. Distinguish Between Work and Energy
2. Distinguish Between Potential energy and Kinetic energy

D Watch Video Solution
3. Distinguish Between Energy and Power

4. Distinguish Between Work and Power

D Watch Video Solution

5. Distinguish Between Work and Energy

D Watch Video Solution

6. Distinguish Between Potential energy and

Kinetic energy

7. Distinguish Between Energy and Power

(Watch Video Solution

8. Distinguish Between Work and Power

D Watch Video Solution

Question Answer Answer The Following
 Questions In Brief

1. Look at the activities listed below.

Reason out whether or not work is done in the
light of your understanding of the term 'work'.
(i) Suma is swimming in a pond.
(ii) A donkey is carrying a load on its back.
(iii) A windmill is lifting water from a well.
(iv) A green plant is carrying out photosynthesis.
(v) An engine is pulling a train.
(vi) Food grains are getting dried in the sun.
(vii) A sailboat is moving due to wind energy.
2. A car weighing 1000 kg is travelling at the speed of $15 \mathrm{~ms}^{-1}$. It decelerated due to brakes applied and stops after covering a distance of 25 m . Find the force exerted by the brakes and the work done by the brakes.

D Watch Video Solution

3. A lift carries a maximum weight of 2400 N to
a height of 10 m with a constant speed $2 m s^{-1}$
. Find out the power and the work done.

- Watch Video Solution

4. (a) Define work done by a constant force. Write its SI unit and define this unit.
(b) A 3000 kg truck at a speed of $72 \mathrm{kmh}^{-1}$
stops after covering some distance. The force applied by brakes is 2400 N . Compute the distance covered and work done by this force.
5. Illustrate the law of conservation of energy
by discussing the energy changes which occur when we draw a pendulum bob to one side and allow it to oscillate. Why does the bob eventually come to rest? What happens to its energy eventually? Is it a violation of the law of conservation of energy?
6. (a) State the law of conservation of energy.
(b) Name two forms of mechanical energy.
(c) Give three examples on transformation of energy to show that solar energy provides different forms of energy.

D View Text Solution

7. Look at the activities listed below.

Reason out whether or not work is done in the
light of your understanding of the term 'work'.
(i) Suma is swimming in a pond.
(ii) A donkey is carrying a load on its back.
(iii) A windmill is lifting water from a well.
(iv) A green plant is carrying out photosynthesis.
(v) An engine is pulling a train.
(vi) Food grains are getting dried in the sun.
(vii) A sailboat is moving due to wind energy.

D Watch Video Solution

8. A car weighing 1000 kg is travelling at the speed of $15 \mathrm{~ms}^{-1}$. It decelerated due to brakes
applied and stops after covering a distance of
25 m . Find the force exerted by the brakes and
the work done by the brakes.

D Watch Video Solution

9. A lift carries a maximum weight of 2400 N to
a height of 10 m with a constant speed $2 \mathrm{~ms}^{-1}$
. Find out the power and the work done.
10. (a) Define work done by a constant force.

Write its SI unit and define this unit.
(b) A 3000kg truck at a speed of $72 \mathrm{kmh}^{-1}$
stops after covering some distance. The force
applied by brakes is 2400 N . Compute the distance covered and work done by this force.

D Watch Video Solution
11. Illustrate the law of conservation of energy
by discussing the energy changes which occur when we draw a pendulum bob to one side and allow it to oscillate. Why does the bob eventually come to rest? What happens to its energy eventually? Is it a violation of the law of conservation of energy?

- Watch Video Solution

12. The vacant space of solid's electronic energy level is called

D Watch Video Solution

Question Answer Texutal Examples Numericals

1. A force of 5 N is acting on an object. The object is displaced through $2 m$ in the
direction of force. If the force acts on the object all through the displacement, then find
the work done on the object.

D Watch Video Solution

2. A porter lifts a luggage of 15 kg from the ground and puts it on his head 1.5 m above
the ground. Calculate the work done by him on the luggage.
(D) Watch Video Solution
3. An object of mass 15 kg is moving with a uniform velocity of $4 m s^{-1}$. What is the kinetic energy possessed by the object?

D Watch Video Solution

4. What is the work to be done to increase the velocity of a car from $30 \mathrm{kmh}^{-1}$ to $60 \mathrm{kmh}^{-1}$,
if the mass of the car is 1500 kg ?
5. Find the energy possessed by an object of mass 10 kg when it is at a height of 6 m above the ground. Given $g=9.8 m s^{-2}$.

D Watch Video Solution

6. An object of mas 12 kg is at a certain height
above the ground. If the potential energy of
the object is 480 J , find the height at which the
object is with respect to the ground. Given
$g=10 m s^{-2}$.
7. Two girls, each of weight 400 N climb up a rope through a height of 8 m . We name one of the girls A and the other B. Girl A takes 20 s while B takes 50 s to accomplish this task. What is the power expended by each girl?

D Watch Video Solution

8. A boy of mass 50 kg runs up a staircase of

45 steps in 9 s . If the height of each step in 15
cm , find his power. Take $g=10 \mathrm{~ms}^{-2}$.

- Watch Video Solution

9. An electric bulb of 60 W is used for 6 h per day. Calculate the 'units' of energy consumed in one day by the bulb.

(Watch Video Solution

10. A force of 5 N is acting on an object. The object is displaced through 2 m in the
direction of force. If the force acts on the object all through the displacement, then find the work done on the object.

- Watch Video Solution

11. A porter lifts a luggage of 15 kg from the ground and puts it on his head 1.5 m above the ground. Calculate the work done by him on the luggage.
12. An object of mass 15 kg is moving with a uniform velocity of $4 m s^{-1}$. What is the kinetic energy possessed by the object?

- Watch Video Solution

13. What is the work to be done to increase
the velocity of a car from $30 \mathrm{kmh}^{-1}$ to $60 \mathrm{kmh}^{-1}$, if the mass of the car is 1500 kg ?
14. Find the energy possessed by an object of mass 10 kg when it is at a height of 6 m above the ground. Given $g=9.8 m s^{-2}$.

D Watch Video Solution

15. An object of mas 12 kg is at a certain height above the ground. If the potential energy of the object is 480 J , find the height at which the
object is with respect to the ground. Given $g=10 m s^{-2}$.

D Watch Video Solution

16. Two girls, each of weight 400 N climb up a rope through a height of 8 m . We name one of the girls A and the other B. Girl A takes 20 s while B takes 50 s to accomplish this task. What is the power expended by each girl?

D Watch Video Solution

17. A boy of mass 50 kg runs up a staircase of

45 steps in 9 s . If the height of each step in 15
cm , find his power. Take $g=10 m s^{-2}$.

D Watch Video Solution

18. An electric bulb of 60 W is used for 6 h per day. Calculate the 'units' of energy consumed in one day by the bulb.

D Watch Video Solution

Question Answer Additional Numericals For Practice

1. A body of mas 15 kg undergoes downward displacement of 40 m under the effect of gravitational force. Calculate work done. (Take $\left.g=10 m s^{-1}\right)$.
(Watch Video Solution
2. An object of mass 120 g is taken upward at
the height 5 m , then Joule work is done.
$\left(g=10 m s^{-2}\right)$

- Watch Video Solution

3. At what speed a person having 60 kg mass
should run to acquire 750 J kinetic energy?

- Watch Video Solution

4. Kinetic energy of a car, having mass 1000 kg
is $1,12,500 \mathrm{~J}$. Driver applies brakes when an
obstacle is sighted and car comes to halt after
travelling 100 m distance (without meeting with an accident). Calculate frictional force.

D Watch Video Solution

5. Hetasvi, having her own mass 50 kg , climbs

20 m height along with 30 kg mass in 40 s .

Calculate her power and work done.
(Take $g=10 m s^{-2}$).

D Watch Video Solution
6. 5 tubelights each of 40 W are operated by

10 hour. Calculate electrical energy consumed in 'unit'.

D Watch Video Solution

7. A boy of mass 40 kg climbs a staircase of 30 steps, each of 0.2 m height, in 30 s . Calculate
power. $\left(g=9.8 m s^{-2}\right)$
8. A lady pulls a bucket filled with water having mass 10kg from a well 8 m deep in 20s.

Calculate work done and power. $\left(g=10 m s^{-2}\right)$

- Watch Video Solution

9. A car having mass 1000 kg is moving with
speed of $36 \mathrm{kmh}^{-1}$. Calculate its momentum and kinetic energy.
(Verify the value of kinetic energy using
$E_{k}=p^{2} / 2 m$. ' p ' is momentum, how kinetic energy is equal $E_{k}=p^{2} / 2 m$? Think)

- Watch Video Solution

10. The pendulum shown in the figure is kept horizontal. It is released from this positions.

What is its velocity when it reaches the lowest
position? $\left(g=9.8 m s^{-2}\right)$

- Watch Video Solution

11. In a residence 4 tubelights each of 40 W are operated daily for 5 hour and 3 fans each of

120 W are operated daily for 4 hour. What
would be the amount of electricity bill at ₹ 5 per unit for the month of September?

D Watch Video Solution

12. A rocket is moving in upward direction with
the velocity v , suddenly its velocity becomes
three times, then find the ratio of its initial and final kinetic energy.

- Watch Video Solution

13. Avinash is moving with the velocity $8 m s^{-1}$ against the frictional force 10 N acting on him and Kapil is moving with the velocity $3 m s^{-1}$ against the frictional force 25 N acting on him.

Whos power would be more?

- Watch Video Solution

14. The power of a water pump is 2 kW . How much amount of water can it raise in 1 minute to a height of 10 m ? (Take $g=10 \mathrm{~ms}^{-2}$).
15. Suppose the weight of a man on the planet
A is half than that on the earth. If he can jump
0.4 m high on earth's surface, then how high
he can jump on the planet A ?

D Watch Video Solution

16. A ball is falling freely from the height 10 m .

On striking the ground its energy decreases
40%, then how high can it jump?
17. The power of an electric iron is 1200 W . It is
used daily for 30 minute. How much electrical energy would be consumed in April month of any year?

- Watch Video Solution

18. The momentam of a light and heavy objects
are same. Find the ratio of their kinetic energy.

Whose kinetic energy is more?

D Watch Video Solution

19. Car A of mass 1000 kg moves on a horizontal straight road with speed $36 \mathrm{kmh}^{-1}$.

If the force resisting the motion is 100 N , then
find the power of the engine.

Now, after covering 200 m distance, car A collides with a stationary car B of same mass and becomes stationary. As a result car B start moving on the horizontal road, then what
would be the speed of car B just after the collision? (The engine of car B is off.)

D Watch Video Solution

20. A girl of mass 35 kg is sitting in a trolley of mass 5 kg . By applying the force on the trolley,
it has given the velocity $4 m s^{-1}$. Trolley comes
to rest after covering the distance 16 m , then
(1) How much work is done on the trolley?
(2) How much work is done on the girl?
21. Four men lift a 250 kg box to a height of 1 m and hold it without raising or lowering it. (i) How much work is done by men in lifting the box? (ii) How much work is done in just holding it? (Take $g=10 \mathrm{~ms}^{-2}$).

- Watch Video Solution

22. The height of 'Jog fall' in Karnataka state is

250 m high. 2000 ton water per minute falls
from it. If this entire energy is used up, then
find out the power. (Take $g=10 m s^{-2}$)

D Watch Video Solution

23. A man works with the constant power 100
W. How much mass of an object can he lift
upward at the uniform velocity $1 m s^{-1}$?
$\left(g=10 m s^{-2}\right)$

- Watch Video Solution

24. A car-engine of mass 150 kg spends 500 W power for 1 kg mass. How much force should be applied by the engine to run the car at uniform speed $20 m s^{-1}$?

- Watch Video Solution

25. A butterfly of mass 1.0 g moves upward
against the gravitational force with velocity
$0.5 m s^{-1}$ and a squirrel of mass 250 g climbs
the tree with velocity $0.5 m s^{-1}$, then compare
their power. $\left(g=10 m s^{-2}\right)$

D Watch Video Solution

26. A body of mas 15 kg undergoes downward displacement of 40 m under the effect of gravitational force. Calculate work done. (Take $\left.g=10 m s^{-1}\right)$.
27. An object of mass 120 g is taken upward at
the height 5 m , then Joule work is done.
$\left(g=10 m s^{-2}\right)$

D Watch Video Solution

28. At what speed a person having 60 kg mass
should run to acquire 750 J kinetic energy?

D Watch Video Solution

29. Kinetic energy of a car, having mass 1000
kg is $1,12,500 \mathrm{~J}$. Driver applies brakes when an obstacle is sighted and car comes to halt after travelling 100 m distance (without meeting with an accident). Calculate frictional force.

D Watch Video Solution

30. Hetasvi, having her own mass 50 kg , climbs

20 m height along with 30 kg mass in 40 s .

Calculate her power and work done.
(Take $g=10 m s^{-2}$).

D Watch Video Solution
31. 5 tubelights each of 40 W are operated by

10 hour. Calculate electrical energy consumed
in 'unit'.

D Watch Video Solution
32. A boy of mass 40 kg climbs a staircase of 30 steps, each of 0.2 m height, in 30 s .

Calculate power. $\left(g=9.8 m s^{-2}\right)$

D Watch Video Solution

33. A lady pulls a bucket filled with water having mass 10 kg from a well 8 m deep in 20 s .

Calculate work done and power.
$\left(g=10 m s^{-2}\right)$
34. A car having mass 1000 kg is moving with speed of $36 \mathrm{kmh}^{-1}$. Calculate its momentum and kinetic energy.
(Verify the value of kinetic energy using $E_{k}=p^{2} / 2 m$. ' p ' is momentum, how kinetic energy is equal $E_{k}=p^{2} / 2 m$? Think)

D Watch Video Solution

35. The pendulum shown in the figure is kept horizontal. It is released from this positions.

What is its velocity when it reaches the lowest position? $\left(g=9.8 m s^{-2}\right)$

D Watch Video Solution

36. In a residence 4 tubelights each of 40 W are operated daily for 5 hour and 3 fans each of

120 W are operated daily for 4 hour. What
would be the amount of electricity bill at ₹ 5 per unit for the month of September?

D Watch Video Solution

37. A rocket is moving in upward direction with
the velocity v , suddenly its velocity becomes
three times, then find the ratio of its initial
and final kinetic energy.

D Watch Video Solution
38. Avinash is moving with the velocity $8 m s^{-1}$ against the frictional force 10 N acting on him and Kapil is moving with the velocity $3 m s^{-1}$ against the frictional force 25 N acting on him.

Whos power would be more?

- Watch Video Solution

39. The power of a water pump is 2 kW . How much amount of water can it raise in 1 minute to a height of 10 m ? (Take $g=10 \mathrm{~ms}^{-2}$).
40. Suppose the weight of a man on the planet A is half than that on the earth. If he can jump 0.4 m high on earth's surface, then how high he can jump on the planet A ?

D Watch Video Solution

41. A ball is falling freely from the height 10 m .

On striking the ground its energy decreases
40%, then how high can it jump?
42. The power of an electric iron is 1200 W . It is used daily for 30 minute. How much electrical energy would be consumed in April month of any year?

- Watch Video Solution

43. The momentam of a light and heavy objects are same. Find the ratio of their kinetic
energy. Whose kinetic energy is more?

D Watch Video Solution

44. Car A of mass 1000 kg moves on a horizontal straight road with speed $36 \mathrm{kmh}^{-1}$.

If the force resisting the motion is 100 N , then
find the power of the engine.

Now, after covering 200 m distance, car A collides with a stationary car B of same mass and becomes stationary. As a result car B start moving on the horizontal road, then what
would be the speed of car B just after the collision? (The engine of car B is off.)

D Watch Video Solution

45. A girl of mass 35 kg is sitting in a trolley of mass 5 kg . By applying the force on the trolley,
it has given the velocity $4 m s^{-1}$. Trolley comes
to rest after covering the distance 16 m , then
(1) How much work is done on the trolley?
(2) How much work is done on the girl?
46. Four men lift a 250 kg box to a height of 1 m and hold it without raising or lowering it. (i)

How much work is done by men in lifting the
box? (ii) How much work is done in just holding it? (Take $g=10 \mathrm{~ms}^{-2}$).

D Watch Video Solution

47. The height of 'Jog fall' in Karnataka state is

250 m high. 2000 ton water per minute falls
from it. If this entire energy is used up, then
find out the power. (Take $g=10 \mathrm{~ms}^{-2}$)

D Watch Video Solution

48. A man works with the constant power 100
W. How much mass of an object can he lift
upward at the uniform velocity $1 m s^{-1}$?
$\left(g=10 m s^{-2}\right)$

D Watch Video Solution
49. A car-engine of mass 150 kg spends 500 W power for 1 kg mass. How much force should be applied by the engine to run the car at uniform speed $20 m s^{-1}$?

D Watch Video Solution

50. A butterfly of mass 1.0 g moves upward against the gravitational force with velocity
$0.5 m s^{-1}$ and a squirrel of mass 250 g climbs
the tree with velocity $0.5 m s^{-1}$, then compare
their power. $\left(g=10 m s^{-2}\right)$

- Watch Video Solution

