

MATHS

BOOKS - VK JAISWAL MATHS (HINGLISH)

APPLICATION OF DERIVATIVES

Exercise Single Choice Problems

1. The difference between the maximum and minimum value of the function $f(x)=3\sin^4x-\cos^6x$ is :

A.
$$\frac{3}{2}$$

B. $\frac{5}{2}$
C. 3

Answer: D

2. A function y = f(x) has a second order derivative f(x) = 6(x - 1). If its graph passes through the point (2, 1) and at that point the tangent to the graph is y = 3x - 5 then the function is

- A. $(x 1)^2$ B. $(x - 1)^3$ C. $(x + 1)^3$
- $\mathsf{D}.\left(x+1\right)^2$

Answer: B

3. If the subnormal at any point on the curve $y=3^{1-k}$. x^k is of constant

length the k equals to :

A.
$$\frac{1}{2}$$

B. 1
C. 2

D. 0

Answer: A

Watch Video Solution

4. If $x^5 - 5qx + 4r$ is divisible by $(x - c)^2$ then which of the following must hold true

A. q = r

 $\mathsf{B.}\,q+r=0$

 $\mathsf{C}.\,q^5+r=0$

D. $q^4=r^5$

Answer: C

5. A spherical iron ball 10 cm in radius is coated with a layer of ice of uniform thickness that melts at a rate of $50cm^3 / \min$. When the thickness of ice is 5 cm, then the rate at which the thickness of ice decreases, is:

A.
$$\frac{1}{36\pi}cm / \min$$

B. $\frac{1}{18\pi}cm / \min$
C. $\frac{1}{54\pi}cm / \min$
D. $\frac{5}{6\pi}cm / \min$

Answer: B

6. If $f(x) = \frac{(x-1)(x-2)}{(x-3)(x-4)}$, then number of local externas for g (x), where g(x) = f(|x|):

A. 3

B.4

C. 5

D. None of these

Answer: C

Watch Video Solution

7. Two straight roads OA and OB intersect at an angle 60° . A car approaches O from A, where OA = 700m at a uniform speed of 20 m/s, Simultaneously, a runner starts running from O towards B at a uniform speed of 5 m/s. The time after start when the car and the runner are closest is :

A. 10 sec

B. 15 sec

C. 20 sec

D. 30 sec

Answer: D

Watch Video Solution

8. Let
$$f(x) = \begin{cases} a - 3x & -2 \le x < 0\\ 4x \pm 3 & 0 \le x < 1 \end{cases}$$
, if $f(x)$ has smallest valueat $x = 0$, then range of a, is
A. $(-\infty, 3)$
B. $(-\infty, 3]$
C. $(3, \infty)$

 $\mathsf{D}.\left[3,\infty\right)$

Answer: D

9. If $f(x) = \begin{cases} \begin{pmatrix} 3+|x-k| & x \leq k \\ a^2-2+rac{ an(x-k)}{x-k} & x > k \end{pmatrix}$ has minimum at x=k,then (a) $|a| \leq 2$ (b)|a| < 2 (c)|a| > 2 (d) $|a| \geq 2$

A. $a \in R$

 $|\mathsf{B}.\,|a|<2$

 $\mathsf{C}.\left|a
ight|>2$

 $\mathsf{D.1} < |a| < 2$

Answer: C

Watch Video Solution

10. For a certain curve $\frac{d^2y}{dx^2} = 6x - 4$ and curve has local minimum values 5atx = 1, Let the global maximum and global minimum vlaues, where $0 \le x \le 2$, are M and m. Then the vlaue of (M-m) equals to :

$$\mathsf{A}.-2$$

C. 12

D. - 12

Answer: B

Watch Video Solution

11. The tangent to $y = ax^2 + bx + \frac{7}{2}at(1, 2)$ is parallel to the normal at the point (-2, 2) on the curve $y = x^2 + 6x + 10$. Then the value of $\frac{a}{2} - b$ is: A. 2 B. 0 C. 3 D. 1

Answer: C

12. If (a,b) be the point on the curve $9y^2 = x^3$ where normal to the curve make equal intercepts with the axis, then the value of (a + b) is:

A. 0 B. $\frac{10}{3}$ C. $\frac{20}{3}$

D. None of these

Answer: C

Watch Video Solution

13. The curve
$$y = f(x)$$
 satisfies $\frac{d^2y}{dx^2} = 6x - 4$ and $f(x)$ has a local minimum value 5 when $x = 1$. Then $f'(0)$ is equal to :

A. 1

C. 5

D. None of these

Answer: C

Watch Video Solution

14. Let A be the point where the curve $5\alpha^2x^3 + 10\alpha x^2 + x + 2y - 4 = 0 (\alpha \in R, \alpha \neq 0)$ meets the y-axis, then the equation of tangent to the curve at the point where normal at A meets the curve again, is:

- A. $x \alpha y + 2\alpha = 0$
- $\mathsf{B.}\,\alpha x+y-2=0$
- C. 2x y + 2 = 0

D. x + 2y - 4 = 0

Answer: C

15. The difference between the greatest and the least value of the

function $f(x)=\cos x+rac{1}{2}{\cos 2x}-rac{1}{3}{\cos 3x}$

A.
$$\frac{11}{5}$$

B. $\frac{13}{6}$
C. $\frac{9}{4}$
D. $\frac{7}{3}$

Answer: C

Watch Video Solution

16. The x co-ordinate of the point on the curve $y=\sqrt{x}$ which is closest to the point (2,1) is :

A.
$$rac{2+\sqrt{3}}{2}$$

B.
$$\frac{1+\sqrt{2}}{2}$$

C. $\frac{-1+\sqrt{3}}{2}$

D. 1

Answer: A

17. The tangent at a point P on the curve
$$y=\lniggl(rac{2+\sqrt{4-x^2}}{2-\sqrt{4-x^2}}iggr)-\sqrt{4-x^2}$$
 meets the y-axis at T, then PT^2

equals to :

A. 2

B. 4

C. 8

D. 16

Answer: B

18. Let
$$f(x) = \int_{x^2}^{x^3} \frac{dt}{\ln t}$$
 for $x > 1$ and $g(x) = \int_{x}^{x} (2t^2 - \ln t) f(t) dt (x > 1)$, then:

 $x>1 \,\, {
m and} \,\, g(x)=\int_{1}^{x} ig(2t^2-\ln tig)f(t)dt(x>1), \,\, {
m then:}$

A. g is increasing on $(1,\infty)$

B.g is decreasing on $(1,\infty)$

C. g is increasing on (1, 20 and decreasing on (2, 00)

D. g is decreasing on (1,2) and increasing on $(2,\infty)$

Answer: A

Watch Video Solution

19. Let $f(x) = x^3 + 6x^2 + ax + 2$, if (-3, -1) is the largest possible interval for which f(x) is decreasing function, then a =

B. 9

C. -2

D. 1

Answer: B

Watch Video Solution

20. Let
$$f\left(x - = an^{-1}\left(rac{1-x}{1+x}
ight)$$
. Then difference of the greatest and

least value of f(x) on [0,1] is:

A. $\pi/2$

B. $\pi/4$

C. π

D. $\pi/3$

Answer: B

21. The number of integral values of a for which $f(x) = x^3 + (a+2)x^2 + 3ax + 5$ is monotonic in $\forall x \in R$ A. 2 B. 4 C. 6 D. 7

Answer: B

Watch Video Solution

22. The number of critical points of
$$f(x) = \left(\int_0^x \left(\cos^2 t - \sqrt[3]{t}\right) dt\right) + \frac{3}{4}x^{4/3} - \frac{x+1}{2}$$
 in $(0, 6\pi]$ is:

A. 10

B. 8

C. 6

D. 12

Answer: D

23. Let
$$f(x) = \min\left[\frac{1}{2} - 3\frac{x^2}{4}, 5\frac{x^2}{4}\right]$$
, for $0 \le x \le 1$ then maximum

value of f(x) is

A. 0

B.
$$\frac{5}{64}$$

C. $\frac{5}{4}$
D. $\frac{5}{16}$

Answer: D

24. Let
$$f(x) = egin{cases} 2 - |x^2 + 5x + 6| & x
eq -2 \ b^2 + 1 & x = -2 \end{cases}$$

Has relative maximum at x = -2, then complete set of values b can take is:

A. $|b| \ge 1$ B. |b| < 1C. b > 1D. b < 1

Answer: A

Watch Video Solution

25. Let for function $f(x) = \begin{bmatrix} \cos^{-1}x & -1 \le x \le 0 \\ mx + c & 0 < x \le 1 \end{bmatrix}$, Lagrange's mean value theorem is applicable in [-1, 1] then ordered pair (m, c) is:

A.
$$\left(1, -\frac{\pi}{2}\right)$$

B. $\left(1, \frac{\pi}{2}\right)$

$$\mathsf{C.}\left(-1,\ -\frac{\pi}{2}\right)$$
$$\mathsf{D.}\left(-1,\frac{\pi}{2}\right)$$

Answer: D

Watch Video Solution

26. Tangents are drawn from the origin to the curve $y = \cos X$. Their points of contact lie on

A.
$$\frac{1}{x^2} = \frac{1}{y^2} + 1$$

B. $\frac{1}{x^2} = \frac{1}{y^2} - 2$
C. $\frac{1}{y^2} = \frac{1}{x^2} + 1$
D. $\frac{1}{y^2} = \frac{1}{x^2} - 2$

Answer: C

27. The least natural number a for which $x+ax^{-2}>2$,AAx in $(0,\infty)$ is -

A. 1

B. 2

C. 5

D. None of these

Answer: B

Watch Video Solution

28. Angle between the tangents to the curve $y = x^2 - 5x + 6$ at the points (2,0) and (3,0) is

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

29. Difference between the greatest and least values opf the function

 $f(x)=\int_0^x \left(\cos^2t+\cos t+2
ight)$ dt in the interval $[0,2\pi]$ is $K\pi,$ then K is

equal to:

A. 1

B. 3

C. 5

D. None of these

Answer: C

30. The range of the function $f(\theta) = \frac{\sin \theta}{\theta} + \frac{\theta}{\tan \theta}, \theta \in \left(0, \frac{\pi}{2}\right)$ is equal to :

A. $(0, \infty)$ B. $\left(\frac{1}{\pi}, 2\right)$ C. $(2, \infty 0$ D. $\left(\frac{2}{\pi}, 2\right)$

Answer: D

31. Number of integers in the range of 'c' so that the equation $x^3 - 3x + c = 0$ has all its roots real and distinct is

A. 2

B. 3

C. 4

Answer: B

Watch Video Solution

32. Let
$$f(x) = \int e^x (x-1)(x-2) dx$$
, then f(x) decrease in the interval
A. $(2, \infty)$
B. $(-2, -1)$
C. $(1, 2)$
D. $(-\infty, 1)ii(2, \infty)$

Answer: C

33. If the cubic polymomial $y = ax^3 + bx^2 + cx + d(a, b, c, d \in R)$ has only one critical point in its entire domain and ac = 2, then the value of |b| is:

A. $\sqrt{2}$ B. $\sqrt{3}$ C. $\sqrt{5}$

D. $\sqrt{6}$

Answer: D

Watch Video Solution

34. On the curve
$$y = rac{1}{1+x^2}, ext{ the point at which } \left|rac{dy}{dx}
ight|$$
 is greatest in the

first quadrant is :

A.
$$\left(\frac{1}{2}, \frac{4}{5}\right)$$

B. $\left(1, \frac{1}{4}\right)$

$$\mathsf{C}.\left(\frac{1}{\sqrt{2}},\frac{2}{3}\right)$$
$$\mathsf{D}.\left(\frac{1}{\sqrt{3}},\frac{3}{4}\right)$$

Answer: D

Watch Video Solution

35. If
$$f(x)=2x,$$
 $g(x)=3\sin x-x\cos x,$ $then$ for $x\in \left(0,rac{\pi}{2}
ight)$:

- A. f(x) > g(x)
- $\mathsf{B.}\, f(x) < g(x)$
- C. f(x) = g(x) has exactly one real root.
- D. f(x) = g(x) has exactly two real roots

Answer: A

View Text Solution

36. let $f(x) = \sin^{-1}\left(\frac{2g(x)}{1+g(x)^2}\right)$, then which are correct ?

(i) f (x) is decreasing if g(x) is increasig and ert g(x) > 1

(ii) f(x) is an increasing function if g(x) is increasing and $|g(x)| \leq 1$

(iii) f (x) is decreasing function if f(x) is decreasing and |g(x)|>1

A. (i) and (iii)

B. (i) and (ii)

C. (i) (ii) and (iii)

D. (iii)

Answer: B

Watch Video Solution

37. The graph of the function y = f(x) has a unique tangent at the point

$$(e^a,0)$$
 through which the graph passes then ${
m \underline{lim}}~(x o e^a){
m \underline{log}_e\{1+7f(x)\}-\sin f(x)\over 3f(x)}$

- B. 3
- C. 2
- D. 7

Answer: C

Watch Video Solution

38. Let f(x) be a function such that $f'(x) = \log_{1/3}(\log_3(\sin x + a))$. The complete set of values of 'a' for which f(x) is strictly decreasing for all real values of x is:

A. $[4,\infty)$

B.[3, 4]

 $\mathsf{C.}\,(\,-\infty,\,4)$

D. $[2,\infty)$

Answer: A

39. If
$$f(x) = a \ln |x| + bx^2 + x$$
 has extremas at $x = 1$ and $x = 3$ then:

A.
$$a = \frac{3}{4}, b = -\frac{1}{8}$$

B. $a = \frac{3}{4}, b = \frac{1}{8}$
C. $a = -\frac{3}{4}, b = -\frac{1}{8}$
D. $a = -\frac{3}{4}, b = \frac{1}{8}$

Answer: C

40. Let
$$f(x)=egin{cases} 1+\sin x & x<0\ x^2-x+1 & x\geq 0 \end{cases}$$

A. f has a local maximum at
$$x=0$$

B. f has a local minimum at x=0

C. f is increasing everywhere

D. f is decreasing everywhere

Answer: A

Watch Video Solution

41. If m and n are positive integers and
$$f(x) = \int_1^x (t-a)^{2n} (t-b)^{2m+1} dt, a
eq b$$
, then

A. x = b is a point of local minimum

B. x = b is a point of local maximum

C. x = a is a point of local minimum

D. x = a is a point of local maximum

Answer: A

42. For any the real θ the maximum value of $\cos^2(\cos \theta) + \sin^2(\sin \theta)$ is

A. 1

 $\mathsf{B.1} + \sin^2 1$

 $\mathsf{C.}\,1+\cos^2 1$

D. Does not exist

Answer: B

Watch Video Solution

43. If the tangentat P of the curve $y^2 = x^3$ intersect the curve again at Q and the straigta line OP, OQ have inclinations α and β where O is origin, then $\frac{\tan \alpha}{\tan \beta}$ has the value equals to

A. -1

 $\mathsf{B.}-2$

C. 2

D. $\sqrt{2}$

Answer: B

Watch Video Solution

44. If x + 4y = 14 is a normal to the curve $y^2 = \alpha x^3 - \beta$ at (2,3), then the value of $\alpha + \beta$ is 9 (b) -5 (c) 7 (d) -7

A. 9

- B.-5
- C. 7
- $\mathsf{D.}-7$

Answer: A

45. The tangent to the curve $y = e^{kx}$ at a point (0,1) meets the x-axis at (a,0), where $a \in [-2, -1]$. Then $k \in \left[-\frac{1}{2}, 0\right]$ (b) $\left[-1, -\frac{1}{2}\right]$ [0, 1] (d) $\left[\frac{1}{2}, 1\right]$ A. $\left[-\frac{1}{2}, 0\right]$ B. $\left[-1-\frac{1}{2}\right]$ C. [0, 1] D. $\left[\frac{1}{2}, 1\right]$

Answer: D

46. Which of the following graph represent the function $f(x) = \int_0^{\sqrt{x}} e^{\frac{u^2}{x}}$

du, for x > 0 and f(0) = o

Answer: B

47. Let f(x) = (x - a)(x - b)(x - c) be a ral vlued function where $a < bc(a, b, c \in R)$ such that $f''(\alpha) = 0$. Then if $\alpha \in (c_1, c_2)$, which one of the following is correct ?

A. $lpha < c_1 < b \, ext{ and } \, b < c_2 < c$

 $\texttt{B.}\, \alpha < c_1, c_2 < b$

 $\mathsf{C}.\, b < c_1, c_2 < c$

D. None of these

Answer: A

Watch Video Solution

48. $f(x) = x^6 - x - 1, x \in [1, 2]$. Consider the following statements :

A. f is increasing on [1, 2]

B. f has a root in [1, 2]

C. f is decreasing on [1, 2]

D. f has no root in [1, 2]

Answer: A

49. Which one of the following curves is the orthogonal trajectory of straight lines passing through a fixed point (a,b) ?

k

A.
$$x - a = k(y - b)$$

B. $(x - a)(y - b) = k$
C. $(x - a)^2 = k(y - b)$
D. $(x - a)^2 + (y - b)^2 =$

Answer: D

50. The function $f(x) = \sin^3 x - m \sin x$ is defined on open interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and if assumes only 1 maximum value and only 1 minimum value on this interval. Then, which one of the must be correct?

A. 0 < m < 3B. -3 < m < 0C. m > 3D. m < -3

Answer: A

Watch Video Solution

51. The greatest of the numbers $2^{\frac{1}{2}}, 3^{\frac{1}{3}}, 4^{\frac{1}{4}}, 5^{\frac{1}{5}}, 6^{\frac{1}{6}}$ and $7^{\frac{1}{7}}$ is

A. $2^{1/2}$

B. $3^{1/3}$

C. $7^{1/7}$

D. $6^{1/6}$

Answer: B

Watch Video Solution

52. Let I be the line through (0,0) an tangent to the curve $y=x^3+x+16.$ Then the slope of I equal to :

A. 10

B. 11

C. 17

D. 13

Answer: D

53. The slope of the tangent at the point of inflection of $y = x^3 - 3x^2 + 6x + 2009$ is equal to :

A. 2

- B. 3
- C. 1

D. 4

Answer: B

Watch Video Solution

54. Let f be a real valued function with (n + 1) derivatives at each point

of R. For each pair of real numbers a, b, a < b, such that

$$\ln \Bigg[rac{f(b) + f(b) + + f^{\,(\,n\,)}\,(b)}{f(a) + f^{\,\prime}(a) + + f^{\,(\,n\,)}\,(a)} \Bigg]$$

Statement-1 : There is a number $c\in h(a,b)$ for which $f^{\,(\,n+1\,)}\left(c
ight)=f(c)$

because

Statement-2: If h(x) be a derivable function such that h(p)=h(q) then by Rolle's theorem $h'(d)=9, d\in (p,q)$

- A. Statement-1 is true, statemet-2 is true and statement-2 is correct explanation for statement-1
- B. Statement-1 is true, statement-2 is true and statement-2 is not

correct explanation for statement-1

C. Statement-1 is true, statement-2 is false

D. Statement-1 is false, statement-2 is true

Answer: A

View Text Solution

55. If f(x) is a differentiable real valued function satisfying $f''(x) - 3f'(x) > 3 \forall x \ge 0$ and f'(0) = -1, then $f(x) + x \forall x > 0$ is

A. strictly increasing

B. strictly decreasing

C. non monotonic

D. data insufficient

Answer: A

Watch Video Solution

56. If the line joining the points (0,3)and(5,-2) is a tangent to the curve $y=rac{C}{x+1}$, then the value of c is 1 (b) -2 (c) 4 (d) none of these

- A. 2
- B. 3
- C. 4
- D. 5

Answer: C

57. Number of solutions (s) of in $|\sin x| = -x^2$ if $x \in \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$ is/are: A. 2 B. 4 C. 6 D. 8

Answer: B

58. Find the value of a for which $\sin^{-1} x = |x - a|$ will have at least one solution.

A.
$$[-1,1]$$

B. $\left[-rac{\pi}{2},rac{\pi}{2}
ight]$

C.
$$\left[1-rac{\pi}{2},1+rac{\pi}{2}
ight]$$

D. $\left[rac{\pi}{2}-1,rac{\pi}{2}+1
ight]$

Answer: C

Watch Video Solution

59. For any ral number b, let f (b) denotes the maximum of $\left|\sin x + \frac{2}{3+\sin x} + b\right| \forall \times x \in R$. Then the minimum valur of $f(b) \forall b \in R$ is:

A.
$$\frac{1}{2}$$

B. $\frac{3}{4}$
C. $\frac{1}{4}$

D. 1

Answer: B

60. Which of the following are correct

A.
$$x^4+2x^2-6x+2=0$$
 has exactly four real solution

B. $x^3 + 5x + 1 = 0$ has exactly three real solutions

C. $x^n + ax + b = 0$ where n is an even natural number has atmost

two real solution a, b, in R.

D. $x^3 - 3x + c = 0, x > 0$ has two real solutin for $x \in (0,1)$

Answer: C

Watch Video Solution

61. For any ral number b, let f (b) denotes the maximum of $\left|\sin x + \frac{2}{3 + \sin x} + b\right| \forall \times x \in R$. Then the minimum valur of $f(b) \forall b \in R$ is:

A.
$$rac{1}{2}$$

B.
$$\frac{3}{4}$$

C. $\frac{1}{4}$
D. 1

Answer: B

Watch Video Solution

62. Find the coordinates of the point on the curve $y=rac{x}{1+x^2}$ where the

tangent to the curve has the greatest slope.

A.
$$(0, 0)$$

B.
$$\left(\sqrt{3}, \frac{\sqrt{3}}{4}\right)$$

C. $\left(-\sqrt{3}, -\frac{\sqrt{3}}{4}\right)$
D. $\left(1, \frac{1}{2}\right)$

Answer: A

63. Let $f:[0, 2p] \rightarrow [-3, 3]$ be a given function defined at $f(x) = 3\cos\frac{x}{2}$. The slope of the tangent to the curve $y = f^{-1}(x)$ at the point where the curve crosses the y-axis is:

$$A. -1$$
$$B. -\frac{2}{3}$$
$$C. -\frac{1}{6}$$
$$D. -\frac{1}{3}$$

Answer: B

Watch Video Solution

64. Number of stationary points in [0, po] for the function $f(x) = \sin x + \tan x - 2x$ is:

B. 1

C. 2

D. 3

Answer: C

Watch Video Solution

65. If a,b,c d $\in R$ such that $rac{a+2c}{b+3d}+rac{4}{3}=0,$ then the equation $ax^3+bx^3+cx+d=0$ has

A. atleast one root in $(\,-1,0)$

B. atleast one root in (0, 1)

C. no root in (-1, 1)

D. no root in (0, 2)

Answer: B

66. If $f'(x)\phi(x)(x-2)^2$. Were $\phi(2) \neq 0$ and $\phi(x)$ is continuous at x = 2 then in the neighbouhood of x = 2

A. f is increasing if $\phi(2) < 0$

B. f is decreasing if $\phi(2)>0$

C. f is neither increasing nor decreasing

D. f is increasin if $\phi(2)>0$

Answer: D

67. If the function $f(x)=x^3-6x^2+ax+b$ defined on [1,3] satisfies Rolles theorem for $c=rac{2\sqrt{3}+1}{\sqrt{3}}$ then find the value of aandb

A.
$$a = -11, b = 5$$

B. a = -11, b = -6

 $\mathsf{C}.\,a=11,b\in R$

D.
$$1 = 22, b = -6$$

Answer: C

Watch Video Solution

68. For which of the following function 9s) Lagrange's mean value theorem is not applicable in [1, 2]?

$$egin{aligned} \mathsf{A.}\; f(x) &= \left\{ egin{aligned} rac{3}{2} - x, & x < rac{3}{2} \ \left(rac{3}{2} - x
ight)^2, & x \geq rac{3}{2} \ \left(rac{3}{2} - x
ight)^2, & x \geq rac{3}{2} \ \mathbf{B.}\; f(x) &= \left\{ egin{aligned} rac{\sin{(x-1)}}{x-1}, & x
eq 1 \ 1, & x = 1 \ 1, & x = 1 \ \end{bmatrix} \ \mathsf{C.}\; f(x) &= (x-1)|x+1| \ \mathsf{D.}\; f(x) &= |x-1| \end{aligned}$$

Answer: A

View Text Solution

69. If the curves $rac{x^2}{a^2}+rac{y^2}{4}=1 ext{ and } y^2=16x$ intersect at right angles,

then:

A. $a=\pm 1$

B. $a = \pm \sqrt{3}$

C.
$$a = \pm \sqrt{3}$$

D.
$$a = \pm \sqrt{2}$$

Answer: D

Watch Video Solution

70. If the line $x \cos \alpha + y \sin \alpha = P$ touches the curve $4x^3 = 27ay^2$, then $\frac{P}{a} =$ A. $\cot^2 \alpha \cos \alpha$ B. $\cot^2 \alpha \sin \alpha$ C. $tna^2 \alpha \cos \alpha$ D. $\tan^2 \alpha \sin \alpha$

Answer: A

Exercise One Or More Than Answer Is Are Correct

1. common tangent to $y = x^3$ and $x = y^3$

A.
$$x-y=rac{1}{\sqrt{3}}$$

B. $x-y=-rac{1}{\sqrt{3}}$
C. $x-y=rac{2}{3\sqrt{3}}$
D. $x-y=rac{-2}{3\sqrt{3}}$

Answer: C::D

2. Let f:[0,8] o R be differentiable function such that $f(0)=0,\,f(4)=1,\,f(8)=1,\,$ then which of the following hold(s) good ?

A. There exist some $c_1 \in (0,8)$ where $f(c_1) = rac{1}{4}$ B. There exist some $x \in (0,8)$ where $f'(c) = rac{1}{12}$

C. There exist $c_1,c_2\in [0,8]$ where $8f'(c_1)f(c_2)=1$

D. There exist some lpha,eta=(0,2) such that $\int_0^8 f(t)dt=3ig(lpha^2fig(lpha^3ig)+eta^2ig(eta^3ig)ig)$

Answer: A::C::D

Watch Video Solution

3. If
$$f(x) = egin{cases} \sin^{-1}(\sin x) & x > 0 \ rac{\pi}{2} & x = 0 \ \cos^{-1}(\cos x) & x < 0 \end{cases}$$
 then

A. x=0 is a point of maxima

B. f(x) is continous $\, orall \, x \in R$

C. glolab maximum vlaue of f(x) $orall x \in R$ is π

D. global minimum vlaue of f(x) $orall x \in R$ is 0

Answer: A::C::D

View Text Solution

4. A function
$$f\colon R o R$$
 is given by $f(x)= egin{cases} x^4\Big(2+\sinrac{1}{x}\Big) & x
eq 0 \\ 0 & x=0 \end{pmatrix},$

then

A. f has a continous derivative $\,orall x\in R$

B. f is a bounded function

C. f has an global minimum at x=0

D. f" is continous $\, orall \, x \in R$

Answer: A::C::D

View Text Solution

5. If $f''(x) \mid \leq 1 \, \forall x \in R$, and f(0) = 0 = f'(0), then which of the following can not be true ?

A.
$$f\left(-\frac{1}{2}\right) = \frac{1}{6}$$

B. $f(2) = -4$
C. $f(-2) = 3$
D. $f\left(\frac{1}{2}\right) = \frac{1}{5}$

Answer: A::B::C::D

Watch Video Solution

6. Let $f: [-3,4] \to R$ such that f''(x) > 0 for all $x \in [-,4]$, then which of the following are always true ?

A. f (x) has a relative minimum on $(\,-3,4)$

B. f (x) has a minimum on [3, 4]

C. f (x) has a maximum on $\left[-3,4
ight]$

D. if $f(3)=f(4), ext{ then } f(x)$ has a critical point on $[\,-3,4]$

Answer: B::C::D

Watch Video Solution

7. Let f (x) be twice differentialbe function such that $f^{\,\prime\,\prime}(x)>0$ in [0,2].

Then :

A.
$$f(0)+f(2)=2f(x), ext{ for atleast one } c,c\in(0,2)$$

B.
$$f(0) + f(2) < 2f(1)$$

C. f(0) + f(2) > 2f(1)

D.
$$2f(0)+f(2)>3figgl(rac{2}{3}iggr)$$

Answer: C::D

8. Let g(x) be a cubic polnomial having local maximum at x=-1 and g '(x) has a local minimum at x=1, Ifg(-1)=10g, (3)=-22, then

A. perpendicular distance between its two horizontal tangents is 12

B. perpendicular distance betweent its two horizontal tangents is 32

C. g(x) = 0 has atleast one real root lying in interval (-2, 0)

D. g(x) = 0, has 3 distinict real roots

Answer: B::D

Watch Video Solution

9. Let S be the set of real values of parameter λ for which the equation f(x) = $2x^3 - 3(2 + \lambda)x^2 + 12\lambda$ x has exactly one local maximum and exactly one local minimum. Then S is a subset of

A. $\lambda \in (\,-4,\infty)$

B. $\lambda \in (\,-\infty,0)$

 $\mathsf{C}.\,\lambda\in(\,-\,3,\,3)$

D. $\lambda \in (1,\infty)$

Answer: A::B::C::D

Watch Video Solution

10. The function
$$f(x) = 1 + x \ln \left(x + \sqrt{1 + x^2}
ight) - \sqrt{1 - x^2}$$
 is:

A. strictly increasing $Ax \in (0,1)$

B. strictly decrreasing $\ orall x \in (\,-1,0)$

C. strictly decreasing for $x \in (-1,0)$

D. strictly decreasing for $x \in (0,1)$

Answer: A::C::D

11. Let m and n bwe positive integers and x, y > 0 and x + y = k, where k is constnat. Let $f(x, y) = x^m y^n$, then:

A. f(x,y) is maximum when $x=rac{mk}{m+n}$

B. f(x, y) is maximum wheere x = y

C. maximum value of $f(x,y)israc{m^nn^mk^{m+n}}{(m+n)^{m+n}}$ D. maximum vlaue of $f(x,y)israc{k^{m+n}m^mn^n}{(m+n)^{m+n}}$

Answer: A::D

Watch Video Solution

12. Determine the equation of straight line which is tangent at one point and normal at any point of the curve $x = 3t^2, y = 2t^3$

A.
$$y+\sqrt{3}(x-1)=0$$

$$\mathsf{B}.\,y-\sqrt{3}(x-1)=0$$

C.
$$y+\sqrt{2}(x-2)=0$$

D.
$$y - \sqrt{2}(x - 2) = 0$$

Answer: C::D

13. A curve is such that the ratio of the subnomal at any point to the sum of its co-ordinates is equal to the ratio of the ordinate of this point to its abscissa. If the curve passes through M(1,0), then possible equation of the curve is(are)

A.
$$y=x\ln x$$

B. $y=rac{\ln x}{x}$
C. $y=rac{2(x-1)}{x^2}$
D. $y=rac{1-x^2}{2x}$

Answer: A::D

14. Number of A parabola of the form $y = ax^2 + bx + c$ with a > 0intersection (s)of these graph of $f(x) = \frac{1}{x^2 - 4}$.number of a possible distinct intersection(s) of these graph is

Answer: B::C::D

Watch Video Solution

15. Find the gradient of the line passing through the point (2,8) and touching the curve $y = x^3$.

C. 9

D. 12

Answer: A::D

```
Watch Video Solution
```

16. The equation $x + \cos x = a$ has exactly one positive root. Complete set of values of 'a' is

A. $a\in(0,1)$

 ${\tt B}.\,a\in(2,3)$

 $\mathsf{C}.\,a\in(1,\infty)$

D. $a\in(\,-\infty,1)$

Answer: B::C

17. Given that f(x) is a non-constant linear function. Then the curves :

A.
$$y = f(x)$$
 and $y = f^{-1}(x)$ are orthogonal
B. $y = f(x)$ and $y = f^{-1}(-x)$ are orthogonal
C. $y = f(-x)$ and $y = f^{-1}(x)$ are orthogonal
D. $y = f(-x)$ and $y = f^{-1}(-x)$ are orthogonal

Answer: B::C

Watch Video Solution

18.
$$d(x) = \int_0^x e^{t^3} (t^2 - 1)(t+1)^{2011} at(x>0)$$
 then :

A. The number of point iof inflections is atleast 1

- B. The number of point of inflectins is 0
- C. The number of point of local maxima is 1
- D. The number of point of local minima is 1

19. Let $f(x) = \sin x + ax + b$. Then which of the following is/are true? f(x) = 0 has only one real root which is positive if a > 1, b < 0. f(x) = 0 has only one real root which is negative if a > 1, b < 0. f(x) = 0 has only one real root which is negative if a > 1, b < 0. noneof these

A. only one real root which is positive if a>1, b<0

B. only one real root which is negative if a > 1, b > 0

C. only one real root which is negative if a < -1, b < 0

D. only one real root which is positive if a < -1, b < 0

Answer: A::B::C

20. Which of the following graphs represent function whose derivatives have a maximum in the interval (0,1) ?

Answer: A::B::D

21. Consider $f(x) = \sin^5 x - 1, x \in \left[0, \frac{\pi}{2}\right]$, which of the following is/are correct ?

A. f is strictly decreasing in $\left[0, \frac{\pi}{4}\right]$ B. f is strictly increasing in $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ C. There exist a numbe 'c' in $\left(0, \frac{\pi}{2}\right)$ such that f(c) = 0D. The equation f(x) = 0 has only two roots in $\left[0, \frac{\pi}{2}\right]$

Answer: A::B::C::D

Watch Video Solution

22. Let $f(x) = egin{bmatrix} x^{2lpha+1}\ln x & x>0 \\ 0 & x=0 \end{bmatrix}$ If f (x) satisfies rolle's theorem in

interval [0, 1], then α can be:

A.
$$-rac{1}{2}$$

$$B. -\frac{1}{3}$$
$$C. -\frac{1}{4}$$
$$D. -1$$

Answer: B::C

View Text Solution

23. Which of the following is/are true for the function $f(x) = \int_0^x \frac{\cos t}{t} dt (x > 0)$?

A.f (x) is monotonically increasing in $\left((4n-1), rac{\pi}{2}, (4n+1)rac{\pi}{2}
ight) orall n \in N$

B. f (x) has a local minima at $x=(4n-1)rac{\pi}{2}$ $orall n\in N$

C. The point of infection of the curve y = f(x) lie on the curve

 $x \tan x + 1 = 0$

D. Number of critiacal points of y=f(x) in $(0,10\pi)$ are 19

Answer: A::B::C

24. Let $F(x) = (f(x))^2 + (f'(x))^2$, F(0) = 6, where f (x) is a thrice differentiable function such that $|f(x)| | \le 1 \forall x \in [-1, 1]$, then choose the correct statement (s)

- A there is atleast one point in each of the intervals (-1,0) and (0,1) where $|f'(x)| \le 2$ B there is atleast one point in each of the intervals (-1,0) and (0,1) where $F(x) \le 5$
- C. there is no poin tof local maxima of F(x) in $(\,-1,1)$
- D. for some $c\in(-1,1),$ $F(c)\geq 6,$ $F^{\,\prime}(c)=0\,$ and $\,f^{\,\prime\,\prime}(c)\leq 0$

Answer: A::B::D

View Text Solution

25. Let f(x) =
$$\begin{cases} x^3 + x^2 - 10x & -1 \le x < 0\\ \sin x & 0 \le x < x/2 \text{ then f(x) has}\\ 1 + \cos x & \pi/2 \le x \le x \end{cases}$$

A. locla maximum at
$$x=rac{\pi}{2}$$

B. local minimum at
$$x=rac{\pi}{2}$$

C. absolute maximum at
$$x=0$$

D. absolute maximum at $x=\,-\,1$

Answer: A::D

26. Minimum distnace between the curves

$$y^2 = x - 1$$
 and $x^2 = x - 1$ and $x^2 = y - 1$ is equal to :
A. $\frac{\sqrt{2}}{4}$
B. $\frac{3\sqrt{2}}{4}$
C. $\frac{5\sqrt{2}}{4}$

D.
$$\frac{7\sqrt{2}}{4}$$

Answer: B

Watch Video Solution

27. For the equation $\frac{e^{-x}}{x+1}$ which of the following statement(s) is/are correct ?

A. When $\lambda \in (0,\infty)$ equation has 2 real and distinct roots

B. When $\lambda, \ \in ig(-\infty, \ -e^2ig)$ equation has 2 real and istinct roots

C. When $\lambda \in (0,\infty)$ equation hs 1 real root

D. When $\lambda \in (-e,0)$ equation has no real root

Answer: B::C::D

28. If y=mx+5 is a tangent to the curve $x^3y^3=ax^3+by^3atP(1,2),$

then

A.
$$a + b = rac{18}{5}$$

B. $a > b$
C. $a < b$
D. $a + b = rac{19}{5}$

Answer: A::D

Watch Video Solution

29. If
$$(f(x) - 1)(x^2 + x + 1)^2 - (f(x) + 1)(x^4 + x^2 + 1) = 0$$

 $\forall x \in R - \{0\}$ and $f(x) \neq \pm 1$, then which of the following statement (s) is/are correct ?

A.
$$|f(x) \geq 2 \, orall \, x \in R-\{0\}$$

B. f(x) has a local maximum at x = -1

C. f(x) has a local minimum at x = 1

D.
$$\int_{-\pi}^{\pi} (\cos x) f(x) dx = 0$$

Answer: A::B::C::D

Exercise Comprehension Type Problems

1. Let
$$y=f(x)$$
 such that $xy=x+y+1, x\in R-\{1\}$ and $g(x)=xf(x)$
The minimum value of $g(x)$ is:
A. $3-\sqrt{2}$

 ${\rm B.}\,3+\sqrt{2}$

 $\mathsf{C.}\,3-2\sqrt{2}$

D. $3+2\sqrt{2}$

Answer: D

2.	Let	y=f(x)	such	that
$xy = x + y + 1, x \in R - \{1\} ext{ and } g(x) = xf(x)$				
There exis	t two values	of x, x_1 and x_2	where $g'(x)=rac{1}{2},$	then
$ x_1 + x_2 =$				
A. 1				
B. 2				
C. 4				
D. 5				
2.3				

Answer: C

3. Let $f(x) = egin{bmatrix} 1-x & 0 \leq x \leq 1 \ 0 & 1 < x \leq 2 \ (2-x)^2 & 2 < x \leq 3 \end{bmatrix}$

Let the tangent to the curve y = g(x) at point P whose abscissa is $\frac{5}{2}$ cuts x-axis in point Q.

Let the pependiculat from point Q on x-axis meets the curve y = g(x) in point R.

g(1) =

A. 0

$$\mathsf{B.}\,\frac{1}{2}$$

D. 2

Answer: B

 $\textbf{4. Let } f(x) = \begin{bmatrix} 1-x & 0 \leq x \leq 1 \\ 0 & 1 < x \leq 2 \text{ and } g(x) = \int_0^x f(t) dt. \\ \left(2-x\right)^2 & 2 < x \leq 3 \end{bmatrix}$

Let the tangent to the curve y = g(x) at point P whose abscissa is $\frac{5}{2}$ cuts x-axis in point Q.

Let the pependiculat from point Q on x-axis meets the curve y=g(x) in point R.

Rquation of tangent to the curve y = g(x)atP is:

A. 3y = 12x - 1

B. 3y = 12x - 1

C. 12y = 3x - 1

D. 12y = 3x + 1

Answer: C

5. Let $f(x) = egin{bmatrix} 1-x & 0 \leq x \leq 1 \ 0 & 1 < x \leq 2 \ (2-x)^2 & 2 < x \leq 3 \end{bmatrix}$

Let the tangent to the curve y = g(x) at point P whose abscissa is $\frac{5}{2}$ cuts x-axis in point Q.

Let the pependiculat from point Q on x-axis meets the curve y=g(x) in point R.

If 'heta' be the angle between tangents to the curve y=g(x) at point P and R, then an heta equals to :

A.
$$\frac{5}{6}$$

B. $\frac{5}{14}$
C. $\frac{5}{7}$
D. $\frac{5}{12}$

Answer: B

6. Let
$$f(x) < 0 \, \forall x \in (\equiv \infty, 0)$$
 and $f(x) > 0 \, \forall x \in (0, \infty)$ also $f(0) = o,$ Again

 $f'(x) < 0 \, orall x \in (\, -\infty, \, -1) \, ext{ and } \, f'(x) > \, orall x \in (\, -1, \infty) \,$ also

f'(-1)=0 given $\lim_{x o\infty} f(x)=0$ and $\lim_{x o\infty} f(x)=\infty$ and function is twice differentiable.

If $f'(x) < 0 \, orall x \in (0,\infty)$ and f'(0) = 1 then number of solutions of equatin $f(x) = x^2$ is :

A. 2

B. 3

C. 4

D. None of these

Answer: D

7. Let
$$f(x) < 0 \, \forall x \in (\equiv \infty, 0) ext{ and } f(x) > 0 \, \forall x \in (0, \infty)$$
 also $f(0) = o,$ Again

 $f'(x) < 0 \, orall x \in (\, -\infty, \, -1) \, ext{ and } \, f'(x) > \, orall x \in (\, -1, \infty) \,$ also

f'(-1)=0 given $\lim_{x o\infty} f(x)=0$ and $\lim_{x o\infty} f(x)=\infty$ and function is twice differentiable.

If $f'(x) < 0 \, orall x \in (0,\infty)$ and f'(0) = 1 then number of solutions of equatin $f(x) = x^2$ is :

A. 1

B. 2

C. 3

D. 4

Answer: B

f'(-1)=0 given $\lim_{x o\infty}\,f(x)=0\,\, ext{and}\,\,\lim_{x o\infty}\,f(x)=\infty$ and function is twice differentiable.

The minimum number of points where f'(x) is zero is:

A.	1
Β.	2
C.	3
D.	4

Answer: A

9. In the given figure graph of :

 $y = p(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_n$ is given.

The product of all imaginary roots of p(x) = 0 is:

$$A.-2$$

- $\mathsf{B.}-1$
- C. 1/2

D. noen of these

Answer: D

Watch Video Solution

10. In the given figure graph of :

 $y = p(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_n$ is given.

If p(x) + k = 0 has 4 distinct real roots $\alpha, \beta, \gamma, \delta$ then $[\alpha] + [\beta] + [\gamma] + [\delta]$, (where [.] denotes greatest integer function) is equal to:

- $\mathsf{A.}-1$
- $\mathsf{B.}-2$
- C. 0
- D. 1

Answer: A

11. In the given figure graph of :

The product of all imaginary roots of p(x)=0 is:

A. 3 B. 4 C. 5 D. 6

Answer: B

12. The differentiable function y = f(x) has a property that the chord joining any two points $A(x_1, f(x_1) \text{ and } B(x_2, g(x_2))$ always intersects y-axis at $(0, 2x_1, x_2)$. Given that f(1) = -1. then: $\int_0^{1/2} f(x) dx$ is equal to : A. $\frac{1}{6}$ B. $\frac{1}{8}$ C. $\frac{1}{12}$ D. $\frac{1}{24}$

Answer: D

Watch Video Solution

13. The differentiable function y = f(x) has a property that the chord joining any two points $A(x_1, f(x_1) \text{ and } B(x_2, g(x_2))$ always intersects y-axis at $(0, 2x_1, x_2)$. Given that f(1) = -1. then: The largest interval in whichy f(x) is monotonically increasing, is :

A.
$$\left(-\infty, \frac{1}{2}\right]$$

B. $\left[\frac{-1}{2}, \infty\right)$
C. $\left(-\infty, \frac{1}{4}\right]$
D. $\left[\frac{-1}{4}, \infty\right)$

Answer: C

Watch Video Solution

14. The differentiable function y = f(x) has a property that the chord joining any two points $A(x_1, f(x_1) \text{ and } B(x_2, g(x_2))$ always intersects y-axis at $(0, 2x_1, x_2)$. Given that f(1) = -1. then:

In which of the following intervals, the Rolle's theorem is applicable to the function F9x)=f(x)+x ?

A. 0 - 1, 0] B. [0, 1]C. [-1, 1] $\mathsf{D}.\,[0,\,2]$

Answer: B

Watch Video Solution

15. Let $f(x) = 1 + \int_0^1 (xe^y + ye^x) f(y) dy$ where x and y are independent vartiables.

If complete solution set of 'x' for which function h(x) = f(x) + 3x is strictly increasing is $(-\infty, k)$ then $\left[\frac{4}{4}e^k\right]$ equals to: (where [.] denotes greatest integer function):

A. 1

B. 2

C. 3

D. 4

Answer: C

16. If $f(x) = x + \int_0^1 (xy^2 + x^2y) f(y) dy$ where x and y are independent variable. Find f(x).

A.
$$\frac{8}{25}$$

B. $\frac{16}{25}$
C. $\frac{14}{25}$
D. $\frac{4}{5}$

Answer: A

Watch Video Solution

Exercise Matching Type Problems

1. Column-1 gives pair of curves and column-II gives the angle heta between

the curves at their intersection point.

	Column-l		Column-II
(A)	$y = \sin x, y = \cos x$	(P)	$\frac{\pi}{4}$
(B)	$x^2 = 4y, y = \frac{8}{x^2 + 4}$	(Q)	$\frac{\pi}{2}$
(C)	$\frac{x^2}{18} + \frac{y^2}{8} = 1, x^2 - y^2 = 5$	(R)	tan ⁻¹ 3
(D)	$xy = 1, x^2 - y^2 = 5$	(\$)	tan ⁻¹ 5
	and with the series of the part of	(T)	$\tan^{-1}(2\sqrt{2})$

View Text Solution

/	Column-I	Column-II	
(A)	$(\sin^{-1} x)^{\cos^{-1} x} - (\cos^{-1} x)^{\sin^{-1} x} \forall x \in (\cos 1, \sin 1)$	(P)	Always positive
(B)	$(\cos x)^{\sin x} - (\sin x)^{\cos x} \forall x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$	(Q)	Always negative
(C)	$(\sin x)^{\sin x} - (\cos x)^{\sin x} \forall \ x \in \left(0, \frac{\pi}{2}\right)$	(R)	May be positive or negative for some values of x
(D)	$(\ln (\ln x))^{\ln(\ln x)} - (\ln x)^{\ln x} \forall x \in (e^e, \infty)$	(S)	May result in zero for some of values of x
		(T)	Indeterminate

2.

View Text Solution

3. Let
$$f(x)=rac{x^3-4}{\left(x-1
ight)^3}\,orall x
eq 1, g(x)==rac{x^4-2x^2}{4}\,orall x\in R, h(x)rac{x^3+4}{\left(x+1
ight)^3}\,orall x$$

/	Column-l		Column-II
(A)	The number of possible distinct real roots of equation $f(x) = c$ where $c \ge 4$ can be	(P)	0
(B)	The number of possible distinct real roots of equation $g(x) = c$, where $c \ge 0$ can be	(Q)	1
(C)	The number of possible distinct real roots of equation $h(x) = c$, where $c \ge 1$ can be	(R)	2

(D)	The number of possible distinct real roots of equation $g(x) = c$ where $-1 < c < 0$ can be	(S)	3	
		(T)	4	

View Text Solution

1	Column-l	1	Column-II
(A)	If α , β , γ are roots of $x^3 - 3x^2 + 2x + 4 = 0$ and $y = 1 + \frac{\alpha}{x - \alpha} + \frac{\beta x}{(x - \alpha)(x - \beta)} + \frac{\gamma x^2}{(x - \alpha)(x - \beta)(x - \gamma)}$	(P)	2
	then value of y at $x = 2$ is :		Section 1 and the
(B)	If $x^3 + ax + 1 = 0$ and $x^4 + ax + 1 = 0$ have a common roots then the value of $ a $ can be equal to	(Q)	3
(C)	The number of local maximas of the function $x^2 + 4\cos x + 5$ is more than	(R)	4
(D)	If $f(x) = 2 x ^3 + 3x^2 - 12 x + 1$, where $x \in [-1, 2]$ then greatest value of $f(x)$ is more than	(S)	5
		(T)	0

4.

View Text Solution

5.

View Text Solution

6. Consider the function
$$f(x) = \frac{\ln x}{8} - ax + x^2$$
 and $a \ge 0$ is a real

constant :

	Column-l		Column-ll
(A)	f(x) gives a local maxima at	(P)	$a = 1; x = \frac{1}{4}$
(B)	f(x) gives a local minima at	(Q)	$a > 1; x = \frac{a - \sqrt{a^2 - 1}}{4}$
(C)	f(x) gives a point of inflection for	(R)	$0 \leq a < 1$
(D)	$f(x)$ is strictly increasing for all $x \in \mathbb{R}^+$	(S)	$a > 1; x = \frac{a + \sqrt{a^2 - 1}}{4}$

View Text Solution

7. The function $f(x) = \sqrt{\left(ax^3 + bx^2 + cx + a\right)}$ has its non-zero local minimum and local maximum values at x-2 and x=2, respectively. It 'a is a root of $x^2 - x - 6 = 0$

Watch Video Solution

	Column-l		Column-II
(A)	The ratio of altitude to the radius of the cylinder of maximum volume that can be inscribed in a given sphere is	(P)	$\frac{1}{\sqrt{2}}$
(B)	The ratio of radius to the altitude of the cone of the greatest volume which can be inscribed in a given sphere is		$\sqrt{2}$
(C)	The cone circumscribing the sphere of radius 'r' has the maximum volume if its semi vertical angle is θ , then 33 sin θ =		$\frac{32}{3}$.
(D)	The greatest value of x^3y^4 if $2x + 3y = 7$, $x \ge 0, y \ge 0$ is	(S)	11

8.

View Text Solution

Exercise Subjective Type Problems

1. A conical vessel is to be prepared out of a circular sheet of metal of unit radius in order that the vessel has maximum value, the sectorial area that must be removed from the sheet is A_1 and the area of the given sheet is A_2 , then $\frac{A_2}{A_1}$ is equal to

Watch Video Solution

2. On [1, e], then least and greatest vlaues of $f(x) = x^2 \ln x$ are m and M respectively, then $\left[\sqrt{M+m}\right]$ is : (where [] denotes greatest integer function)

Watch Video Solution

3. If $f(x) = \frac{px}{e^x} - \frac{x^2}{2} + x$ is a decreasing function for every $x \le 0$. Find the least value of p^2 .

4. Let $f(x) = \begin{cases} xe^{ax}, & x \leq 0\\ x + ax^2 - x^3, & x > 0 \end{cases}$ Where a is a positive constnat . The interval in which f '(x) is increasing is $\left[\frac{k}{a}, \frac{a}{l}\right]$, Then k + l is equal to

Watch Video Solution

5. Find sum of all possible values of the real parameter 'b' is the difference between the largest and smallest values of the function $f(x) = x^2 - 2bx + 1$ in the interval [0, 1] is 4.

Watch Video Solution

6. Let 'heta' be the angle in radians between the curves $rac{x^2}{36} + rac{y^2}{4} = 1$ and $x^2 + y^2 = 12$. If $heta = an^{-1} \left(rac{a}{\sqrt{3}}\right)$, Find the value

of a.

7. Let set of all possible values of λ such that $f(x)=e^{2x}-(\lambda+1)e^x+2x$ is monotonically increasing for $orall x\in R$ is $(-\infty,k].$ Find the value of k.

Watch Video Solution

8. Let a,b,c and d be non-negative real number such that $a^5+b^5\leq 1 \,\, {
m and} \,\, c^5+d^5\leq 1.$ Find the maximum value of $a^2c^3+b^2d^3.$

Watch Video Solution

9. There is a point (p,q) on the graph of $f(x) = x^2$ and a point (r, s) on the graph of $g(x) = \frac{-8}{x}$, where p > 0 and r > 0. If the line through (p,q) and (r,s) is also tangent to both the curves at these points, respectively, then the value of P + r is _____.

10. $f(x) = \max |2 \sin y - x|$ where $y \in R$ then determine the minimum value of f(x).

11. Let
$$f(x) = \int_0^x \left((a-1) \left(t^2 + t + 1 \right)^2 - (a+1) \left(t^4 + t^2 + 1 \right) \right) \, \mathrm{dt}.$$

Then the total numbr of integral values of 'a' for which f'(x) = 0 has no

rel roots is

Watch Video Solution

12. The numbr of real roots of the equation $x^{2013} + e^{20144x} = 0$ is

13. Let the maximum value of expression $y=rac{x^4-x^2}{x^6+2x^3-1}$ for $x>1israc{p}{1},$ where p and 1q are relatively prime natural numbers, then p+q=

14. The least positive integral value of 'k' for which there exists at least one line that the tangent to the graph of the curve $y = x^3 - kx$ at one point and normal to the graph at another point is

Watch Video Solution

15. Let $f(x) = x^2 + 2x - t^2$ and f(x) = 0 has two root $\alpha(t)$ and $\beta(t)(\alpha < \beta)$ where t is a real parameter. Let $I(t) = \int_{\alpha}^{\beta} f(x)$ dx. If the maximum value of I(t) be λ and $|\lambda| = \frac{p}{q}$ where p and q are relatively prime positive integers. Find the product (pq).

Watch Video Solution

16. A tank contains 100 litres of fresh water. A solution containing 1 gm/litre of soluble lawn fertilizeruns into the tank the of 1 lit/min and the

mixture pumped out of the tank at the rate of at rate of f 3 litres/min. Find the time when the amount of fertilizer in the tank is maximum.

Watch Video Solution

17. If f (x) is continous and differentiable in [3, 9) and $f'(x) \in [-2, 8] \forall x \in (-3, 9)$. Let N be the number of divisors of the greatest possible value of f(9) - f(-3), then find the sum of digits of N.

Watch Video Solution

18. It is given that f 9x) is difined on R satisfyinf f(1)=1 and for $orall x\in R,$ $f(x+5)\geq f(x)+5$ and $f(x+1)\leq f(x)+1.$ If g(x)=f(x)+1-x,

then g (2002)=

22. If p_1 and p_2 are the lengths of the perpendiculars from origin on the tangent and normal drawn to the curve $x^{2/3} + y^{2/3} = 6^{2/3}$ respectively.

Find the vlaue of
$$\sqrt{4p_1^2+p_2^2}.$$