

MATHS

BOOKS - VK JAISWAL MATHS (HINGLISH)

FUNCTION

Single Choice Problems

1. Range of the function $f(x) = \log_{\sqrt{2}} \bigl(2 - \log_2 16 \sin^2 x + 1\bigr)$ is:

- A. [0, 1]
- $\texttt{B.}\,(\,-\infty,1]$
- $\mathsf{C}.\,[\,-1,\,1]$
- D. $(-\infty,\infty)$

Answer: B

2. The values of lpha and eta for which $\left|e^{|x-eta|}-lpha
ight|=2$ has four distinct solutions are

A.
$$a\in(-2,\infty), b=0$$

B. $a\in(2,\infty), b=0$
C. $a\in(3,\infty), b\in R$
D. $a\in(2,\infty)b=0$

Answer: C

Watch Video Solution

3. The range of the function : $f(x) = an^{-1}x + rac{1}{2} \sin^{-1}x$

A.
$$(\,-\pi/2,\pi/2)$$

B. $[\,-\pi/2,\pi/2]-\{0\}$

C.
$$[-\pi/2,\pi/2]$$

D.
$$(\,-3\pi\,/\,4,\,3\pi\,/\,4)$$

Answer: C

4. Find the number of real ordered pair(s) (x, y) for which: $16^{x^2+y}+16^{x+y^2}=1$

A. 0

B. 1

C. 2

D. 3

Answer: B

5. The range of values of 'a' such that $\left(rac{1}{2}
ight)^{|x|}=x^2-a$ is satisfied for

maximum number of values of 'x'

A. $(-\infty, -1)$ B. $(-\infty, \infty)$ C. (-1, 1)D. $(-1, \infty)$

Answer: D

Watch Video Solution

6. For a real number x, let [x] denote the greatest integer less than or equal to x. Let f: R ightarrow R be defined as $f(x)=2x+[x]+\sin x\cos x$ then f is

A. One-one but not onto

B. onto but not one-one

- C. Both one-one and onto
- D. Neither one-one nor onto

Answer: A

Watch Video Solution

7. The maximum value of
$$\sec^{-1}\left(rac{7-5ig(x^2+3ig)}{2(x^2+2)}
ight)$$
 is:

A.
$$\frac{5\pi}{6}$$

B. $\frac{5\pi}{12}$
C. $\frac{7\pi}{12}$
D. $\frac{2\pi}{3}$

۲

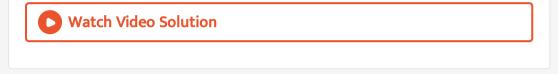
Answer: D

8. Number of ordered pair (a,b) the set $A = \{1, 2, 3, 4, 5\}$ so that the functon $f(x) = \frac{x^3}{3} + \frac{a}{2}x^2 + bx + 10$ is an injective mapping $\forall x \in R$: A. `13 B. 14 C. 15 D. 16

Answer: C

Watch Video Solution

9. let A be the greatest value of the function $f(x) = \log_x[x]$, (where [.] denotes gratest integer function) and B be the least value of the function $g(x) = |\sin x| + |\cos x|$, then :


A. A > B

 $\mathsf{B.}\, A < B$

 $\mathsf{C}.\, A = B$

D.2A + B = 4

Answer: C

10. Let $A=[a,\infty)$ denotes domain, then $f\colon [a,\infty) o B,\, f(x)=2x^3+6$ will have an inverse for then smallest real values of a, if:

A. $a = 1, B = [5, \infty)$ B. $a = 2, B = [10, \infty)$ C. $a, 0, B = [6, \infty)$ D. $a = -1, B = [1, \infty)$

· •

Answer: A

View Text Solution

11. Solution of the inequation $\{x\}(\{x\}-1)(\{x\}+2)\geq 0$

where $\{.\}$ denots fractin part function) is :

A. $x\in(\,-2,1)$

B. $x \in I$ (I denote set of integers)

 $\mathsf{C}.\,x\,\in\,[0,\,1)$

D. $x\in [-2,0)$

Answer: B

Watch Video Solution

12. Let f(x), g(x) be two real valued functions then the function $h(x) = 2 \max \{f(x) - g((x), 0\} \text{ is equal to }:$

A.
$$f(x) - g(x) - |g(x) - f(x)|$$

B. $f(x) + g(x) - |g(x) - f(x)|$

C.
$$f(x)-g(x)+|g(x)-f(x)|$$

D. $f(x)+g(x)+|g(x)-f(x)|$

Answer: C

13. Let
$$R = \{(1,3), (4,2), (2,4), (2,3), (3,1)\}$$
 be a relation the set

 $A=\{1,2,3,4\}$. The relation R is

A. a function

B. reflexive

C. not symmetric

D. transitive

Answer: C

14. The true set of valued of 'K' for which $\sin^{-1}\left(\frac{1}{1}\right)$

$$\left(rac{1}{+\sin^2 x}
ight)=rac{k\pi}{6}$$
 may

have a solution is :

A.
$$\left[\frac{1}{4}, \frac{1}{2}\right]$$

B. $[1, 2]$
C. $\left[\frac{1}{6}, \frac{1}{2}\right]$

D.
$$[2, 4]$$

Answer: B

Watch Video Solution

15. A ral valued functin f(x) satisfies the functional equation f(x - y) = f(x)f(y) - f(a - x)f(x + y) where 'a' is a given constant and f(0) = 1, f(2a - x) is equal to :

A. -f(x)

 $\mathsf{B.}\,f(x)$

$$\mathsf{C}.\,f(a)+f(a-x)$$

$$\mathsf{D}.\,f(\,-x)$$

Answer: A

Watch Video Solution

16. Let $g\colon R o R$ be given by g(x)=3+4x if $g^n(x)=$ gogogo.....og (x)

n times. Then inverse of $g^n(x)$ is equal to :

A.
$$(x+1-4^n)$$
. 4^{-n}

B.
$$(x - 1 + 4^n)4^{-n}$$

C. $(x + 1 + 4^n)4^{-n}$

D. None of these

Answer: A

17. Let $f: D \to R$ bge defined as $: f(x) = \frac{x^2 + 2x + a}{x^2 + 4x + 3a}$ where D and R denote the domain of f and the set of all the real numbers respectively. If f is surjective mapping. Then the complete range of a is :

A. $0 < a \le 1$ B. $0 < a \le 1$ C. $0 \le a < 1$ D. 0 < a < 1

Answer: D

O Watch Video Solution

18. If $f \colon [2,\infty) o (\,-\infty,4], ext{ where } f(x) = x(4-x) ext{ then find } f^{\,-1}(x)$

A.
$$2-\sqrt{4-x}$$

B.
$$2+\sqrt{4-x}$$

 $\mathsf{C}.-2+\sqrt{4-x}$

D.
$$-2 - \sqrt{4 - x}$$

Answer: A

Watch Video Solution

19. IF $\{5\sin x\} + [\cos x] + 6 = 0$, then range of $f(x) = \sqrt{3}\cos x + \sin x$ corresponding to solution set of the given equation is: (where [.] denotes greatest integer function)

A.
$$[-2, -1]$$

B. $\left(-\frac{3\sqrt{3}+2}{5}, -1\right)$
C. $[-2, -\sqrt{3})$
D. $\left(-\frac{3\sqrt{3}+4}{5}, -1\right)$

Answer: D

20. If $f\!:\!R o R$ where $f(x)=ax+\cos x$ is an invertible function, then

A.
$$(-2, -1] \cup [1, 2)$$

B. $[-1, 1]$
C. $(-\infty, -1] \cup [1, \infty)$
D. $(-\infty, -2] \cup [2, \infty)$

Answer: C

21. The range of
$$f(x) = [1 + \sin x] + \left[2 + s \in \frac{2}{x}\right] + \left[3 + s \in \frac{x}{3}\right] + + \left[n + s \in \frac{x}{n}\right] \forall x$$
, where [.] denotes the greatest integer function, is,
$$\left\{\frac{n + n - 2^2}{2}, \frac{n(n+1)}{2}\right\} \qquad \qquad \left\{\frac{n(n+1)}{2}\right\}$$
$$\left\{\frac{n^2 + n - 2^{\Box}}{2}, \frac{n(n+1)}{2} \frac{n^2 + n + 2}{2}\right\} \left[\frac{n(n+1)}{2}, \frac{n^2 + n + 2}{2}\right]$$
A.
$$\left\{\frac{n^2 + n - 2}{2}, \frac{n(n+1)}{2}\right\}$$

$$\begin{array}{l} \mathsf{B}.\left\{\frac{n(n+1)}{2}\right\}\\ \mathsf{C}.\left\{\frac{n(n+1)}{2},\frac{n^2+n+2}{2},\frac{n^2+n+4}{2}\right\}\\ \mathsf{D}.\left\{\frac{n(n+1)}{2},\frac{n^2+n-2}{2}\right\}\end{array}$$

Answer: D

Watch Video Solution

22.
$$f\!:\!R o R$$
, where $f(x)=rac{x^2+ax+1}{x^2+x+1}$ Complete set of values of 'a'

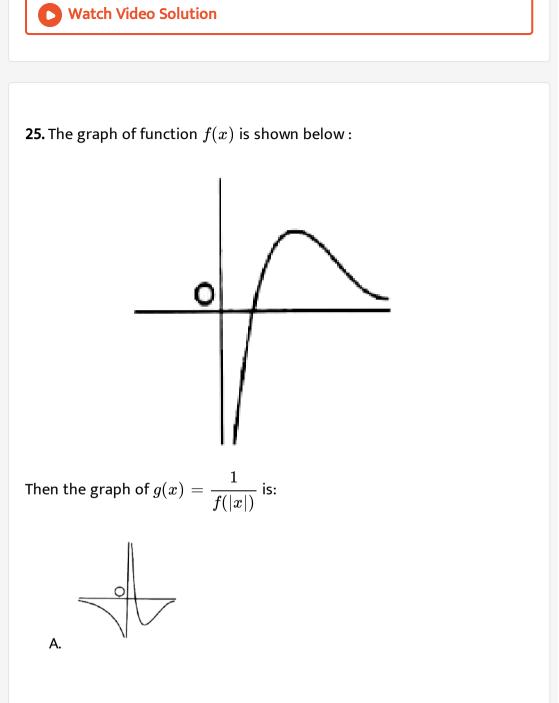
such that f(x) is onto, is

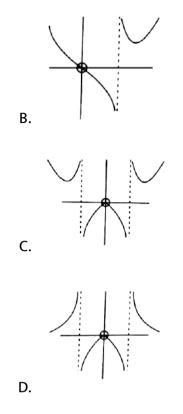
- A. $(\,-\infty,\infty)$
- $\mathsf{B.}\,(\,-\infty,\,0)$
- $\mathsf{C}.\left(0,\infty
 ight)$

D. not possible

Answer: D

23. If f(x) and g(x) are two function such that $f(x) = \{x\} + [-x]$ and $g(x) = \{x\} \forall x \in R$ and h(x) = f(g(x)), then which of the following is incorrect? [.] denotes greatest integer function and $\{.\}$ denotes fractional part function)


- A. f(x) and h(x) are identical functions
- B. f(x) = g(x) has no solution
- C. f(x) + h(x) > 0 has no solution
- D. f(x) h(x) is a periodic function


Answer: B

24. Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$

what is the number of non empty relations from A to B

Answer: C

View Text Solution

26. Which of the following function is homogeneous ?

A.
$$f(x) = x \sin y + y \sin x$$

$$\mathsf{B.}\,g(x)=xz\frac{^{y}}{x}+ye\frac{x}{y}$$

C.
$$h(x)=rac{xy}{x+y^2}$$

D. $\phi(x)=rac{x-y\cos x}{y\sin x+y}$

Answer: B

27. Let
$$f(x)=egin{bmatrix} 2x+3 & x>1\ lpha^2x+1 & x\leq 1 \end{bmatrix}$$
 If range of $f(x)=R$ (set of real

numbers) then number orf integral value(s), which lpha any take :

A. 2

B. 3

C. 4

D. 5

Answer: C

28. The maximum integral values of x in the domain of
$$f(x) = \log_{10} \left(\log_{1/3} (\log_4 (x-5)) \text{ is }: \right)$$

A. 5
B. 7
C. 8
D. 9

Answer: C

Watch Video Solution

29. Range of the function f(x)=
$$\log_2\left(\frac{4}{\sqrt{x+2}+\sqrt{2-x}}\right)$$
 is

A. $(0, \infty)$ B. $\left[\frac{1}{2}, 1\right]$ C. [1, 2]

$$\mathsf{D}.\left[\frac{1}{4},1\right]$$

Answer: B

30.	Number	of	integers	stastifying	the	equation
$\left x^2+5x ight +\left x-x^2 ight =\left 6x ight $ is:						
A.	.3					
B.	. 5					
C.	. 7					
D.	.9					
Answer: C						

31. If $A=\{2,1\}, ext{ find } A imes A imes A$

Watch Video Solution

32. Which of the following function is periodic with fundamental period π

A.
$$f(x) = \cos x \left| \frac{\sin x}{2} \right|$$
, where [.] denotes greatest integer function
B. $g(x) = \frac{\sin x + \sin 7x}{\cos x + \cos 7x} + |\sin x|$
C. $h(x) = \{x\} + |\cos x|$, where {.} denotes functional part function
D. $\phi(x) = |\cos x| + \ln(\sin x)$

Answer: B

?

33. Let
$$f: N \to Z$$
 and $f(x) = \begin{bmatrix} \frac{x-1}{2} & \text{when x is odd} \\ -\frac{x}{2} & \text{when x is even} \end{bmatrix}$, then:

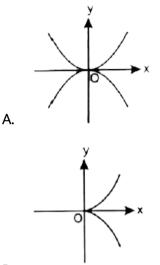
A. f (x) is bijective

B. f (x) is injective but not surjective

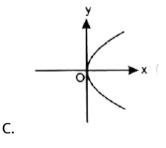
C. f (x) is not injective but surjective

D. f (x) is neither injective nor subjective

Answer: A


Watch Video Solution

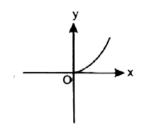
34. Let g(x) be the inverse of $f(x)=rac{2^{x+1}-2^{1-x}}{2^x+2^{-x}}$ then g (x) be :


A.
$$\frac{1}{2}\log_2\left(\frac{2+x}{2-x}\right)$$

B.
$$-\frac{1}{2}\log_2\left(\frac{2+x}{2-x}\right)$$

C.
$$\log_2\left(\frac{2+x}{2-x}\right)$$

D.
$$\log_2\left(\frac{2-x}{2+x}\right)$$


Answer: C

35. Which of the following is the graph of the curve $\sqrt{|y|}=x$ is ?

D.

Answer: B

36. Domain of
$$f(x) = \log_{\left(x
ight)}\left(9-x^{2}
ight)$$
 is :

Watch Video Solution

37. If
$$e^x + e^{f(x)} = e$$
, then for $f(x)$ domain is:

38. If high voltage current is applied on the field given by the grapph y + |y| - x - |x| = 0. on which of the following curve a person can move so that the ramains safe ?

A.
$$y = x^2$$

B. $y = sgnig(-e^2ig)$

$$\mathsf{C}.\, y = \log_{1\,/\,3} x$$

D.
$$y=m+|x|, m>3$$

Answer: D

39. If
$$\left|f(x)+6-x^2
ight|=\left|f(x)
ight|+\left|4-x^2
ight|+2$$
, then f(x) is necessarily

non-negaive for

A.
$$x \in [-2,2]$$

B. $xn(-\infty, -2) \cup (2,\infty)$
C. $x \in [-\sqrt{6},\sqrt{6}]$
D. $x \in [-5, -2] \cup [2,5]$

Answer: A

40. Let $f(x) = \cos x + \sin px$ be periodic, then p must be :

A. Positive real number

B. Negative real number

C. Rational

D. Prime

Answer: C

Watch Video Solution

41. The domain of f(x)is(0,1). Then the domain of $(f(e^x) + f(1n|x|))$ is

$$(-1, e)$$
 (b) $(1, e)$ $(-e, -1)$ (d) $(-e, 1)$
A. $\left(\frac{1}{e}, 1\right)$
B. $(-e, 1)$
C. $\left(-1, -\frac{1}{e}\right)$
D. $(-e, -1) \cup (1, e)$

Answer: B

42. Let
$$A = \{1, 2, 3, 4\}$$
 and $f: A \rightarrow$ A satisfy
 $f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 1$. Suppose $g: A \rightarrow A$ satisfies
 $g(1) = 3$ and $fog = gof$, then $g =$
A. $\{(1, 3), (2, 1), (3, 2), (4, 4)\}$
B. $\{(1, 3), (2, 4), (3, 1), (4, 2)\}$
C. $\{(1, 3), (2, 2), (3, 4), (4, 3)\}$
D. $\{(1, 3), (2, 4), (3, 2), (4, 1)\}$

Answer: B

43. Number of solutions of the equation, $[y + [y]] = 2\cos x$ is: (where $y = 1/3)[\sin x + [\sin x + [\sin x]]]$ and [] = greatest integer function) 0 (b) 1 (c) 2 (d) ∞

A. 0

B. 1

C. 2

D. Infinite

Answer: A

Watch Video Solution

44. The function
$$f(x) = \left\{ rac{(x^{2n})}{(x^{2n}sgnx)^{2n+1}} \left(rac{e^{rac{1}{x}} - e^{rac{1}{x}}}{e^{rac{1}{x}} + e^{-rac{1}{x}}}
ight) \! x
eq 0 n \in N$$

is:

A. Odd function

B. Even function

C. Neither odd nor even function

D. Constant function

Answer: B

45. Let
$$A = \{1, 2\}, B = \{1, 2, 3\}, c = \{5, 6\}$$
 and $d = \{5, 6, 7\}$ verify

that

A imes C is a subset of B imes D

46. Let
$$f(x) = rac{x}{\sqrt{1+x^2}}$$
 then ubrace(fo fo foof)(x)`is :

A.
$$rac{x}{\sqrt{1+ig(\sum_{r=1}^n rig)x^2}}$$

B. $rac{x}{\sqrt{1+ig(\sum_{r=1}^n 1ig)x^2}}$

C.
$$\left(\frac{x}{\sqrt{1+x^2}}\right)^n$$

D. $\frac{n\pi}{\sqrt{1+\pi x^2}}$

Answer: B

Watch Video Solution

47. Let
$$f \colon R o R$$
, then $f(x) = 2x + |\cos x|$ is

A. One-one into

B. One-one and onto

C. May-one and into

D. Many-one and onto

Answer: B

48. Let $f \colon R o R$ be a function defined by $f(x) = x^3 + x^2 + 3x + \sin x$.

Then f is

A. One-one end into

B. One-one and onto

C. Many-one and into

D. many-one and onto

Answer: B

Watch Video Solution

49. If $f(x) = \{x\} + \{x+1\} + \{x+2\}$ $\{x+99\}$, then the value of $\left[f(\sqrt{2})\right]$ is, where (.) denotes fractional part function & [.] denotes the greatest integer function

A. 5050

B. 4950

C. 41

D. 14

Answer: C

Watch Video Solution

50. If
$$|\cot x + \cos ecx| = |\cot x| + \cos ecx|, x \in |[0, 2\pi],$$
 then complete

set of values of x is :

A.
$$[0, \pi]$$

B. $\left(0, \frac{\pi}{2}\right]$
C. $\left(0, \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2}, 2\pi\right)$
D. $\left(\pi, \frac{3\pi}{2}\right] \cup \left[\frac{7\pi}{4}, 2\pi\right]$

Answer: C

51. The funcrtin f(x) = 0 has eight distinvt real solution and f also satisfy f(4+x) = f(4-x). The sum of all the eight solution of f(x) = 0 is :

A. 12

B. 32

C. 16

D. 15

Answer: B

Watch Video Solution

52. Let f(x) polynomial of degree 5 with leading coefficient unity such that

f(1)=5, f(2)=4,f(3)=3,f(4)=2,f(5)=1, then f(6) is equal to

A. 0

B. 24

C. 120

D. 720

Answer: C

Watch Video Solution

53. Let $f\colon A o B$ be a function such that $f(x)=rac{(c)}{\sqrt{x-2}}+\sqrt{4-x,}$

is invertible, then which of the following is not possible ?

A.
$$A = [3, 4]$$

B. $A = [2, 3]$
C. $A = \left[2, 2\sqrt{3}
ight]$
D. $\left\{2, 2\sqrt{2}
ight]$

Answer: C

54. Find the number of positive integral values of x satisfying $\begin{bmatrix} \frac{x}{9} \end{bmatrix} = \begin{bmatrix} \frac{x}{11} \end{bmatrix} \text{ is where [.] -=GI.F)}$ A. 21
B. 22
C. 23
D. 24

Answer: D

Watch Video Solution

55. The domain of function $f(x) = \log_{\left[x+\frac{1}{2}\right]} (2x^2 + x - 1)$, where [.] denotes the greatest integer function is :

A.
$$\left[\frac{3}{2},\infty
ight)$$

B. $(2,\infty)$
C. $\left(-\frac{1}{2},\infty
ight) - \left\{\frac{1}{2}\right\}$

$$\mathsf{D}.\left(\frac{1}{2},1\right)\cup(1,\infty)$$

Answer: A

56. The solution set of the equation $[x]^2 + [x + 1] - 2 = 0$, where [.] represents greatest integeral function is :

- A. $[-1,o)\cup [1,2)$
- B. $[\,-2,\,-1)\cup [1,2]$
- $\mathsf{C}.\,[1,\,2]$
- D. $[-3, -2) \cup [2, 3)$

Answer: B

57. Which among the following relations is a function ?

A.
$$x^2+y^2=r^2$$

B. $rac{x^2}{a^2}+rac{y^2}{b^2}=r^2$
C. $y^2=4ax$
D. $x^2=dxy$

Answer: D

Watch Video Solution

58. A function $f\colon R o R$ is defined as $f(x)=3x^2+1.$ then $f^{-1}(x)$ is :

A.
$$rac{\sqrt{x-1}}{3}$$

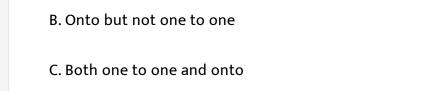
B. $\left(rac{1}{2}\sqrt{x}-1
ight)$

C. f^{-1} does not exist

D.
$$\sqrt{rac{x-1}{3}}$$

Answer: C

Watch Video Solution


$$\begin{array}{l} \textbf{59. If} \begin{cases} 2+x, \ x \geq 0 \\ 4-x, \ x < 0 \end{cases}, \text{ a then } f(f(x)) \text{ is given by :} \\ \\ \textbf{A. } f(f(x)) = \begin{cases} 4+x, \ x \geq 0 \\ 6-x, \ x < 0 \end{cases} \\ \\ \textbf{B. } f(f(x)) = \begin{cases} 4+x, \ x \geq 0 \\ x, \ x < 0 \end{cases} \\ \\ \textbf{C. } f(f(x)) = \begin{cases} 4-x, \ x \geq 0 \\ x, \ x < 0 \end{cases} \\ \\ \\ \textbf{D. } f(f(x)) = \begin{cases} 4-x, \ x \geq 0 \\ x+2x, \ x < 0 \end{cases} \end{array}$$

Answer: A

60. The function $f\colon R o R$ defined as $f(x)=rac{3x^2+3x-4}{3+3x-4x^2}$ is :

A. One ot one buty not onto

D. Neither one to one nor onto

Answer: B

Watch Video Solution

61. The number of solutions of the equation $e^x - \log |x| = 0$ is :

A. 0

B. 1

C. 2

D. 5

Answer: B

62. If complete solution set of $e^{-x} \leq 4 - xis[lpha, eta]$ is equal to : (where [.]

denotes greatest integer function)

A. 0 B. 2 C. 1 D. 4

Answer: C

Watch Video Solution

63. Range of
$$f(x) = \sqrt{\sin(\log_7(\cos(\sin x)))}$$
 is:

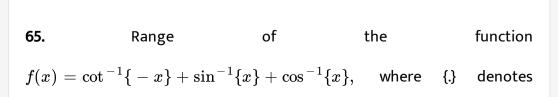
 $\mathsf{A}.\left[0,\,1\right]$

B. $\{0, 1\}$

C. {0}

D. [1, 7]

Answer: C



64. If the domain of y = f(x)is[-3, 2], then find the domain of g(x) = f(|[x]|), wher[] denotes the greatest integer function.

- A. [-3, 2]B. [-2, 3]
- $\mathsf{C}.\,[\,-3,\,3]$
- D. [-2, 3]

Watch Video Solution

Answer: B

fractional part function:

A.
$$\left(\frac{3\pi}{4}, \pi\right)$$

B. $\left[\frac{3\pi}{4}, \pi\right)$
C. $\left[\frac{3\pi}{4}, \pi\right]$
D. $\left(\frac{3\pi}{4}, \pi\right]$

Answer: D

Watch Video Solution

66.

$$f{:}R-\left\{rac{3}{2}
ight\}
ightarrow R, f(x)=rac{3x+5}{2x-3}. \ Let f_1(x)=f(x), f_n(x)=f(f_{n-1}(x))$$

Let

for $\pi\geq 2, n\in N,$ then $f_{2008}(x)+f_{2009}(x)=$

A.
$$\frac{2x^2 + 5}{2x - 3}$$

B. $\frac{x^2 + 5}{2x - 3}$
C. $\frac{2x^2 - 5}{2x - 3}$

D.
$$\frac{x^2-5}{2x-3}$$

Answer: A

67. Find the range of the function $f(x) = rac{ig(1+x+x^2ig)ig(1+x^4ig)}{x^3}$

- A. $[0,\infty]$
- $\mathrm{B.}\left[2,\infty\right]$
- $\mathsf{C}.\,[4,\infty]$
- D. $[6,\infty]$

Answer: D

68. The function $f\colon (\,-\infty,3] o \left(o,e^7
ight]$ defined by $f(x)=e^{x^3-3x^2-9x+2}$

is

A. Many one and onto

B. Many one and into

C. One to one and onto

D. One to one and into

Answer: A

Watch Video Solution

69. If
$$f(x)= {
m sin}\ln {\sqrt{4-x^2}\over 1-x},$$
 then A. $[\,-1,1]$

B.[0,1]

 $\mathsf{C}.\,[\,-1,1)$

D. None of these

Answer: A

Watch Video Solution

70. Set of values of 'a' for which the function $f\!:\!R o R,\,\,$ given by $f(x)=x^3+(a+2)x^2+3ax+10$ is one-one is given by :

- A. $(-\infty,1]\cup[4,\infty)$
- B.[1, 4]
- $\mathsf{C}.\left[1,\infty\right]$
- $\mathsf{D}.\,[\,-\infty,\,4]$

Answer: B

71. If the range of the function $F(x) = \tan^{-1}(3x^2 + bx + c)$ is $\left[0, \frac{\pi}{2}\right)$; (domain in R) then :

A. $b^2=3c$ B. $b^2=4c$ C. $b^2=12c$

D. $b^2=8c$

Answer: C

> Watch Video Solution

72. Let $f(x) = \sin^{-1} x - \cos^{-1}$, x, then the set of values of k for which of |f(x)| = k has exactly two distinct solutions is :

A.
$$\left(0, \frac{\pi}{2}\right]$$

B. $\left(0, \frac{\pi}{2}\right]$
C. $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right)$

D.
$$\left[\pi, \frac{3\pi}{2}\right]$$

Answer: A

73. Let
$$f: R \to R$$
 is defined by $f(x) = egin{cases} (x+1)^3 & x \leq 1 \\ \ln x + (b^2 - 3b + 10) & x > 1 \end{bmatrix}$ If f (x) is invertible, then the

set of all values of 'b' is :

A. $\{1,\,2\}$

 $\mathsf{B.}\,\phi$

 $C. \{2, 5\}$

D. None of these

Answer: A

74. If f(x) is continuous such that $|f(x)| \le 1, \ \forall x \in R \text{ and } g(x) = rac{e^{f(x)} - e^{-|f(x)|}}{e^{f(x)} + e^{-|f(x)|}},$ then range of g(x) is

A.
$$[0, 1]$$

B. $\left[0, \frac{e^2 + 1}{e^2 - 1}\right]$
C. $\left[0, \frac{e^2 - 1}{e^2 + 1}\right]$
D. $\left[\frac{e^2 + 1}{e^2 + 1}, 0\right]$

Answer: D

75. Consider all function $f: \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$ which are one-one, onto and satisfy the following property :

If f(k) is odd then f(k+1) is even,K = 1, 2, 3. The number of such function is :

A. 4	
B.8	
C. 12	
D. 16	

Answer: C

=

Watch Video Solution

76. Consider the function $f\!:\!R-\{1\}$ given by $f(x)=rac{2x}{x-1}$ Then f'(1)

Watch Video Solution

77. If range of function f(x) whose domain is set of all real numbers is [-2,4], then range of function $g(x)=rac{1}{2}f(2x+1)$ is equal to

A. [-2,4]

B.
$$[-1, 2]$$

C. $[-3, 9]$
D. $[-2, 2]$

Answer: B

:

Watch Video Solution

78. Let
$$f: R \to ext{ and } f(x) = rac{x \left(x^4 + 1
ight) (x+1) + x^4 + 2}{x^2 + x + 1}, ext{ then } f(x) ext{ is }$$

A. one-one, inot

B. Many -one onto

C. One-one, onto

D. Mny one, into

Answer: D

79. Let f (x) be defined as

$$f(x) = \left\{egin{array}{ccc} |x| & 0 \leq x < 1 \ |x-1| + |x-2| & 1 \leq x < 2 \ |x-3| & 2 \leq x < 3 \end{array}
ight.$$

The range of function $g(x) = \sin(7(f(x)))$ is :

A.
$$[0, 1]$$

B. $[-1, 0]$
C. $\left[-\frac{1}{2}, \frac{1}{2}\right]$
D. $[-1, 1]$

Answer: D

Watch Video Solution

80. If $[x]^2 - 7[x] + 10 < 0$ and $4[y]^2 - 16[y] + 7 < 0$, then [x + y] cannot be ([.]' denotes greatest integer function):

B. 8

C. 9

D. both (b) and (c)

Answer: C

Watch Video Solution

81. Let $f\!:\!R o R$ be a functino defined by $f(x)=e^x-e^{-x},\,$ then f'(1)=

Watch Video Solution

82. The function
$$f(x)$$
 satisfy the equation $f(1-x)+2f(x)=3x \ \forall x \in R, \ ext{then} \ f(0)=$
A. -2
B. -1

C. 0

Answer: B

Watch Video Solution

83. Let $f:[0,5] \to [0,5)$ be an invertible function defined by $f(x) = ax^2 + bx + C$, where $a, b, c \in R, abc \neq 0$, then one of the root of the equation $cx^2 + bx + a = 0$ is:

A. a

B.b

C. c

 $\mathsf{D}. a + b + c$

Answer: A

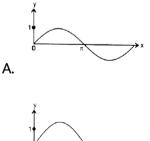
84. Let $f(x) = x^2 + \lambda x + \mu \cos x$, λ being an integer and μ is a real number. The number of ordered pairs (λ, μ) for which the equation f(x) = 0 and f(f(x)) = 0 have the same (non empty) set of real roots is:

A. 2 B. 3 C. 4 D. 6

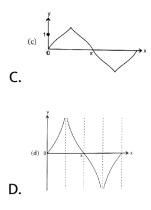
Answer: C

Watch Video Solution

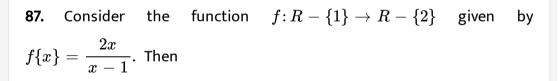
85. Consider all function $f: \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$ which are one-one, onto and satisfy the following property : If f(k) is odd then f(k + 1) is even,K = 1, 2, 3. The number of such


function is :


A. 4		
B. 8		
C. 12		
D. 16		


Answer: C

86. Which of the following is closest to the graph of $y = an(\sin x), x > 0$?



Answer: B

A. f is one-one but not onto

B. f is onto but not one-one

C. f is one-one nor onto

D. f is both one-one and onto

Answer: D

88. If rang of fraction f(x) whose domain is set of all real numbers is [-2,4], then range of function $g(x) = \frac{1}{2}f(2x+1)$ is equal to :

- A. [-2, 4]
- $\mathsf{B}.\,[\,-1,\,.2]$
- $\mathsf{C}.\,[\,-3,\,9]$
- $\mathsf{D}.\,[\,-2,\,2]$

Answer: B

:

Watch Video Solution

89. Let
$$f: R \to \text{ and } f(x) = rac{x \left(x^4 + 1
ight) (x + 1) + x^4 + 2}{x^2 + x + 1}, ext{ then } f(x) ext{ is }$$

A. One-one, into

B. Many one, onto

C. One-one, onto

D. Many one, into

Answer: D

Watch Video Solution

$$f(x) = \left\{egin{array}{ccc} |x| & 0 \leq x < 1 \ |x-1| + |x-2| & 1 \leq x < 2 \ |x-3| & 2 \leq x < 3 \end{array}
ight.$$

The range of function $g(x) = \sin(7(f(x)))$ is :

A.
$$[0, 1]$$

B. $[-1, 0]$
C. $\left[-\frac{1}{2}, \frac{1}{2}\right]$
D. $[-1, 1]$

Answer: D

91. Number of integral values of x in the domain of function
$$f(x) = \sqrt{\ln(|\ln x|)} + \sqrt{7|x| - (|x|)^2 - 10}$$
 is equal to

A. 5

- B. 6
- C. 7

D. 8

Answer: B

92. The complete set of values of x in the domain of function $f(x) = \sqrt{\log_{x+2(x)} \left(\left[x \right]^2 - 5[x] + 7 \right)} \text{ where [.] denote greatest integer}$

functioon and $\{.\}$ denote fraction pert function) is :

$$\begin{aligned} &\mathsf{A}.\left(-\frac{1}{3},0\right)\cup\left(\frac{1}{3},1\right)\cup(2,\infty)\\ &\mathsf{B}.\left(0,1\right)\cup(1,\infty)\\ &\mathsf{C}.\left(-\frac{2}{3},0\right)\cup\left(\frac{1}{3},1\right)\cup(1,\infty)\\ &\mathsf{D}.\left(-\frac{1}{3},0\right)\cup\left(\frac{1}{3},1\right)\cup(1,\infty)\end{aligned}$$

Answer: D

Watch Video Solution

93. The number of integral ordered pair (x,y) that satisfy the system of

equatin $|x+y-4|=5 ext{ and } |x-3|+|y-1|=5$ is/are:

A. 2

B. 4

C. 6

D. 12

Answer: D

94.
$$f \colon R o R$$
, where $f(x) = rac{x^2 + ax + 1}{x^2 + x + 1}$ Complete set of values of 'a'

such that f(x) is onto, is

A. $(\,-\infty,\infty)$

B. $(-\infty,0)$

 $\mathsf{C}.\left(0,\infty
ight)$

D. Empty set

Answer: D

95. If A={1,2,3,4} and f : A->A, then total number of invertible functions, 'f', such that $f(2) \neq 2$, $f(4) \neq 4$, f(1) = 1 is equal to:

Answer: C

D. 4

Watch Video Solution

96. The domian of definition of $f(x) = \log_{(x^2 - x - 1)} \left(2x^2 - 7x + 9
ight)$ is :

A. R

B. $R - \{0\}$

 $\mathsf{C}.\,R-\{0,1\}$

D. $R - \{1\}$

Answer: C

97. If $A = \{1, 2, 3, 4\}$ and $B = \{1, 2, 3, 4, 5, 6\}$ are two sets and function $f: A \to B$ is defined by $f(x) = x + 2, \ \forall x \in A$, then the function f is

A. 182

B. 181

C. 183

D. None of these

Answer: B

Watch Video Solution

98. Let $f(x0 = x^2 - 2x - 3, x \ge 1 \text{ and } g(x) = 1 + \sqrt{x + 4}, x \ge -4$

then the number of real solution os equation f(x)=g(x) is/are

B. 1

C. 2

D. 4

Answer: B

Watch Video Solution

One Or More Than One Answer Is Are Correct

1. f (x) is an even periodic function with period 10 In

$$[0,5], f(x) = \begin{cases} 2x & 0 \le x < 2 \\ 3x^2 - 8 & 2 \le x < 4 \\ 10x & 4 \le x \le 5 \end{cases}$$
 Then:

A.
$$f(-4) = 40$$

B.
$$rac{f(\,-\,13)\,-\,f(11)}{f(13)\,+\,f(\,-\,11)}=rac{17}{21}$$

C. f(5) is not defined

D. Range of f(x) is [0, 50]

Answer: A::B::D

2. Let
$$f(x) = \left| \left| x^2 - 4x + 3 \right| - 2 \right|$$
. Which of the following is/are correct ?

A. f(x) = m has exactly two real solutios of different sign $\, orall \, m > 2$

B. f(x)=m has exactly two real solution $\, orall \, n \in (2,\infty) \cup \{0\}$

C.
$$f(x) = m$$
 has no solutions $orall m < 0$

D. f(x) = m has four distinct real solution $\forall m \in (0, 1)$

Answer: A::B::C

3. Let
$$f(x) = \cos \& ^{-1} igg(rac{1 = - an^2 (x \, / \, 2)}{1 + an^2 (x \, / \, 2)} igg)$$

Which of the following statement (s) is/are correct about f(x) ?

A. Domain is R

B. Range is $[0, \pi]$

C. f(x) is even

D. f(x) is dervable in $(\pi, 2\pi)$

Answer: C::D

Watch Video Solution

4. $|\mathrm{log}_e|x||=|k-1|-3$ has four distict roots then k satisfies : (where $|x|< d^2, x
eq 0ig)$

A. (-4, -2)B. (4, 6)C. (e^{-1}, e) D. (d^{-2}, e^{-1})

Answer: A::B

5. Which of the following funjctions are difined for all $x \in R$? (Where[.] = denotes greatest integer function)

A.
$$f(x) = \sin[x] + \cos[x]$$

B. $f(x) = \sec^{-1}(1 + \sin^2 x)$
C. $f(x) = \sqrt{\frac{9}{8} + \cos x + \cos 2x}$
D. $f(x) = \tan(\ln(1 + |x|))$

Answer: A::B::C

Watch Video Solution

6. Let $f(x) = egin{cases} x^2 & 0 < x < 2 \\ 2x - 3 & 2 \le x < 3 \\ x + 2 & x \ge 3 \end{cases}$ then the tuue equations: A. $figg(figg(rac{3}{2}igg)igg) = figg(rac{3}{2}igg)$

$$B. 1 + f\left(f\left(f\left(\frac{5}{2}\right)\right)\right) = f\left(\frac{5}{2}\right)$$
$$C. f(f(f(2)) = f(1)$$
$$D. \underbrace{f(f(f(\ldots,f(4)),\ldots))}_{=} = 2012$$

Answer: A::B::C::D

Watch Video Solution

7. Let
$$f: \left[\frac{2\pi}{3}, \frac{5\pi}{3}\right] \to [0, 4]$$
 be a function difined as
 $f(x) = \sqrt{3} \sin x - \cos x + 2$, then :
A. $f^{-1}(1) = \frac{4\pi}{3}$
B. $f^{-1}(1) = \pi$
C. $f^{-1}(2) = \frac{5\pi}{6}$
D. $f^{-1}(2) = \frac{7\pi}{6}$

Answer: A::D

8. Let f(x) be invertible function and let $f^{-1}(x)$ be is inverse. Let equation $f(f^{-1}(x)) = f^{-1}(x)$ has two real roots α and β (with in domain of f(x)), then :

A. f(x) = x also have same two rreal roots

B. $f^{-1}(x) = x$ also have same two real roots

C. $f(x) = f^{-1}(x)$ also have same two real roots

D. Area of triangle formed by $(0, 0), (\alpha, f(\alpha)), \text{ and } (\beta, f(\beta))$ is 1

unit

Answer: A::B::C

View Text Solution

9. Find the value of
$$\cos^{-1}\left(rac{x}{2}+rac{\sqrt{3-3x^2}}{2}
ight)$$

A. Range of
$$f(x)is\left[rac{\pi}{3}, rac{10\pi}{3}
ight]$$

B. Rang
$$f(x)is\left[rac{\pi}{3},rac{5\pi}{3}
ight]$$

C. f (x) is one-one for $x\in\left[-1,rac{1}{2}
ight]$
D. f (x) is one-one for $x\in\left[rac{1}{2},1
ight]$

Answer: B::C

Watch Video Solution

10. Let $f\!:\!R o R$ defined by $f(x)=\cos^{-1}(-\{-x\}),$ where {x}

denotes fractional part of x. Then, which of the following is/are correct?

A. f is many coe but not even function

B. Eange of f contains two prime numbers

C. f is a periodic

D. Graph of f does not lie below x-axis

Answer: A::B::D

11. Which option (s) is/are ture ?

A.
$$f: R \to R, f(x) = e^{|x|} - e^{-x}$$
 is many-one into function
B. $f: R \to R, f(x) = 2x + |\sin x|$ is one-one onto
C. $f: R \to R, f(x) = \frac{x^2 + 4x + 30}{x^2 - 8x + 18}$ is many-one onto
D. $f: R \to R, f(x) = \frac{2x^2 - x + 5}{7x^2 + 2x + 10}$ is many-one into

Answer: A::B::D

View Text Solution

12. If
$$f(x) = \left[\frac{\ln(x)}{e} + \left[\frac{\ln(e)}{x}\right]$$
, where [.] denotes greatest interger

function, the which of the following are ture ?

A. range of
$$h(x)is\{-1,0\}$$

B. If h(x) = -1, then x can be rational as well as irractional

C. If $h(x)=\,-\,1,\,$ then x can be rational as well as irrational

D. h(x) is periodic function

Answer: A::C

Watch Video Solution

13. If
$$figg(x0=igg\{ x^3 \qquad x
eq Q\ -x^3 \qquad x
eq Q \ , ext{ then }:$$

A. f (x) is periodic

B.f (x) is many-one

C. f (x) is one-one

D. range of the function is R

Answer: C::D

14. Let f(x) be a real valued function such that $f(0) = \frac{1}{2}$ and $f(x+y)=f(x)f(a-y)+f(y)f(a-x), \forall x, y \in R$, then for some real a,

A. f (x) is perodic function

B. f (x) is a constant function

C.
$$f(x)=rac{1}{2}$$

D. $f(x)=rac{\cos x}{2}$

Answer: A::B::C

15. f (x) is an even periodic function with period 10 In

$$[0,5], f(x) = \begin{cases} 2x & 0 \le x < 2 \\ 3x^2 - 8 & 2 \le x < 4 \\ 10x & 4 \le x \le 5 \end{cases}$$
A. $f(-4) = 40$

B.
$$rac{f(-13)-x(11)}{f(13)+f(-11)}=rac{17}{21}$$

C. f(5) is not defined

D. Range of f(x) is [0, 50]

Answer: A::B::D

Watch Video Solution

16. For the equation $\frac{e^{-x}}{1+x} = \lambda$ which of the following statement (s) is/are correct ?

A. when $\lambda \in (0,\infty)$ equation has 2 real and distinct roots

B. when $\lambda \in ig(-\infty, \ -e^2ig)$ equation has 2 real and distinct roots

C. when $\lambda \in (0,\infty)$ equatio has 1 real root

D. when $\lambda \in (-e,0)$ equation has no real root

Answer: B::C::D

View Text Solution

17. For $x \in R^+$, if $x, [x], \{x\}$ are in harmonic progression then the value of x can not be equal to (where [*] denotes greatest integer function, {*} denotes fractional part function)

A.
$$\frac{1}{\sqrt{2}} \tan \frac{\pi}{8}$$

B.
$$\frac{1}{\sqrt{2}} \cot \frac{\pi}{8}$$

C.
$$\frac{1}{\sqrt{2}} \tan \frac{\pi}{12}$$

D.
$$\frac{1}{\sqrt{2}} \cot \frac{\pi}{12}$$

Answer: A::C::D

Watch Video Solution

18. The equation $||x-1|+a|=4, a\in R, \;$ has :

A. 3 distinct real roots for unique value of a.

B. 4 distinct real roots for $a\in($ $-\infty,$ -4)

C. 2 distinct real roots for |a| < 4

D. no rela roots for a>4

Answer: A::B::C::D

Watch Video Solution

19. Let
$$f_n(x)=(\sin x)^{1\,/\,\pi}, x\in R,\,$$
 then:

A.
$$f_2(x)>1$$
 for all $x\in \Big(2k\pi, (4k+1)rac{\pi}{2}\Big), k\in I$

B.
$$f_2(x)=1$$
 for $x=2k\pi, k\in I$

C.
$$f_2(x)>f_3(x)$$
 for all $x\in \Big(2k\pi,(4k+1)rac{\pi}{2}\Big),k\in I$
D. $f_3(x)\geq f_5(x)$ for all $x\in \Big(3k\pi(4k+1)rac{\pi}{2}\Big),k\in I$

Answer: A::B

View Text Solution

20. If the domain of $f(x) = \frac{1}{\pi} \cos^{-1} \left[\log_3 \left(\frac{x^3}{3} \right) \right]$ where, x > 0 is [a,b] and the range of f(x) is [c,d], then :

A. a,b are the roots of the equation $x^4 - 3x^4 - 3xc^3 - x + 3 = 0$

B. a,b are the roots of the equatin $x^4-x^3+x^2-2x+1=0$

 $C. a^3 + d^3 = 1$

D.
$$a^2 + b^2 + c^2 = 11$$

Answer: A::D

Watch Video Solution

21. The number of real values of x satisfying the equation $\left[\frac{2x+1}{3}\right] + \left[\frac{4x+5}{6}\right] = \frac{3x-1}{2}$ are greater than or equal to {[*] denotes greatest integer function}:

A. 7

B. 8

C. 9

D. 10

Answer: A::B::C

Watch Video Solution

22. Let
$$f\Big(x=\sin^6\Big(rac{x}{4}\Big)+\cos^6\Big(rac{x}{4}\Big).$$
 $Iff^n(x)$ denotes n^{th} derivative of f

evaluated at x. Then which of the following hold ?

A.
$$f^{2014}(0) = -\frac{3}{8}$$

B. $f^{2015}(0) = \frac{3}{8}$
C. $f^{2010}\left(\frac{\pi}{2}\right) = 0$
D. $f^{2011}\left(\frac{\pi}{2}\right) = \frac{3}{8}$

Answer: A::C::D

23. Which of the following is (are) incorrect ?

A. If $f(x) = \sin x$ and g(x) =in x then range of g(f(x)) is [-1, 1]

Β.

C. If $f(x) = \left(2011 - x^{2012}
ight)^{rac{1}{2012}}$ then $f(f(2)) = rac{1}{2}$

D. The function $f\!:\!R o R$ defined as $f(x)=rac{x^2+4x+30}{x^2-8x+18}$ is not

surjective.

Answer: A::B

View Text Solution

24. If [x] denotes the integral part of x for real x, and

$$S = \left[\frac{1}{4}\right] + \left[\frac{1}{4} + \frac{1}{100}\right] + \left[\frac{1}{4} + \frac{1}{100}\right] + \left[\frac{1}{4} + \frac{3}{200}\right] \dots + \left[\frac{1}{4} + \frac{199}{200}\right] \dots$$

then

A. S is a composite number

B. Exposent of S in 100 is 12

C. Number of factors of S is 10

D. $^{25}C,\,$ is max when r=51

Answer: A::B

Watch Video Solution

25. Let
$$f(x) = \log_{\{x\}} [x]$$

 $g(x) = \log_{\{x\}} - \{x\}$
 $h(x)\log_{\{x\}} \{x\}$
where [], {} denotes the greatest integer function and fractional part

function respectively.

For $x \in (1,5) thef(x)$ is not defined at how many points :

A. 5 B. 4 C. 3

D. 2

Answer: C

Comprehension Type Problems

1. Let
$$f(x) = \log_{\{x\}} [x]$$
 $g(x) = \log_{\{x\}} - \{x\}$ $h(x) \log_{\{x\}} \{x\}$

where $[], \{\}$ denotes the greatest integer function and fractional part function respectively.

If $A = \{x : x \in \text{ domine of } f(x))\}$ and $B\{x : x \text{ domine of } g(x)\}$ then

 $orall x \in (1,5), A-B$ will be :

A. (2, 3)

B. (1, 3)

C.(1,2)

D. None of these

Answer: D

2. Let
$$f(x) = \log_{\{x\}} [x]$$
 $g(x) = \log_{\{x\}} - \{x\}$ $h(x) \log_{\{x\}} \{x\}$

where $[], \{\}$ denotes the greatest integer function and fractional part function respectively.

Domine of h(x) is :

A. $[2,\infty)$

 $\mathsf{B}.\left[1,\infty\right)$

 $\mathsf{C}.\left[2,\infty
ight)-\{I\}$

 $\mathsf{D}.\,R^+-\{I\}$

Answer: C

3. θ is said to be well behaved if it lies in interval $\left[0, \frac{\pi}{2}\right]$. They are intelligent if they make domain of f + g and g equal. The value of θ for which $h(\theta)$ is defined are handosome. Let

$$f(x) = \sqrt{ heta x^2 - 2(heta^2 - 3)x - 12 heta, g(x)} = \ln(x^2 - 49),
onumber \ h(heta) \ln iggl[\int_0^ heta 4 \cos^2 t dt - heta^2 iggr], ext{ where } heta ext{ is in radians.}$$

Complete set of vlaues of θ which are well behaved as well as intellignent is:

A.
$$\left[\frac{3}{4}, \frac{\pi}{2}\right]$$

B. $\left[\frac{3}{5}, \frac{7}{8}\right]$
C. $\left[\frac{5}{6}, \frac{\pi}{2}\right]$
D. $\left[\frac{6}{7}, \frac{\pi}{2}\right]$

Answer: D

View Text Solution

4. θ is said to be well behaved if it lies in interval $\left[0, \frac{\pi}{2}\right]$. They are intelligent if they make domain of f + g and g equal. The value of θ for which $h(\theta)$ is defined are handosome. Let

$$f(x) = \sqrt{ heta x^2 - 2(heta^2 - 3)x - 12 heta, g(x)} = \ln(x^2 - 49),$$

 $h(heta) \ln \left[\int_0^ heta 4 \cos^2 t dt - heta^2
ight], ext{ where } heta ext{ is in radians.}$

Complete set of alues of θ which are intelligent is :

A.
$$\left[\frac{6}{7}, \frac{7}{2}\right]$$

B. $\left(0, \frac{\pi}{3}\right]$
C. $\left[\frac{1}{4}, \frac{6}{7}\right]$
D. $\left[\frac{1}{2}, \frac{\pi}{2}\right]$

Answer: A

D View Text Solution

5. θ is said to be well behaved if it lies in interval $\left[0, \frac{\pi}{2}\right]$. They are intelligent if they make domain of f + g and g equal. The value of θ for

which $h(\theta)$ is defined are handosome. Let

$$f(x) = \sqrt{ heta x^2 - 2(heta^2 - 3)x - 12 heta,} g(x) = \ln(x^2 - 49),$$
 $h(heta) \ln \left[\int_0^ heta 4 \cos^2 t dt - heta^2
ight], ext{ where } heta ext{ is in radians.}$

Complete set of values of θ which are well behaved, intelligent adn handsome is :

A.
$$\left(0, \frac{\pi}{2}\right]$$

B. $\left[\frac{6}{7}, \frac{\pi}{2}\right]$
C. $\left[\frac{3}{4}, \frac{\pi}{2}\right]$
D. $\left[\frac{3}{5}, \frac{\pi}{2}\right]$

Answer: B

View Text Solution

6. Let $f(x)=2-|x-3|, 1\leq x\leq 5$ and for rest of the values f(x) can be obtained by using the relation f(5x)=lpha f(x) $orall x\in R$ The maximum value of f(x) in $\left[5^4,5^5
ight]$ for lpha=2 is

A. 16	
B. 32	
C. 64	
D. 8	

Answer: B

Watch Video Solution

7. Let $f(x)=2-|x-3|, 1\leq x\leq 5$ and for rest of the values f(x) can be obtained by using the relation f(5x)=lpha f(x) $orall x\in R$ The maximum value of f(x) in $\left[5^4,5^5
ight]$ for lpha=2 is

A. 1118

B. 2007

C. 1050

D. 132

Answer: A

8. An even periodic functin $f\colon R o R$ with period 4 is such that

$$f(x) = egin{bmatrix} \max \ . \ ig(ert x ert, x^2 ig) & 0 \leq x < 1 \ x & 1 \leq x \leq 2 \end{bmatrix}$$

The value of $\{f(5.12)\}$ (where $\{.\}$ denotes fractional part function), is :

A. $\{f(3.26)\}$ B. $\{f(7.88)\}$ C. $\{f(2.12)\}$

D. $\{f(5.88)\}$

Answer: B

9. An even periodic functin $f \colon R o R$ with period 4 is such that

$$f(x) = egin{bmatrix} \max \ . \ ig(|x|, x^2ig) & 0 \leq x < 1 \ x & 1 \leq x \leq 2 \end{cases}$$

The number of solution of $f(x)|3\sin x|$ for $x\in(\,-\,6,\,6)$ are :

A. 5	
B. 3	
C. 7	
D. 9	

Answer: C

Watch Video Solution

10. Let
$$f(x)=rac{2|x|-1}{x-3}$$

Range of f(x):

A.
$$R=\{3\}$$

B. $\left(-\infty, rac{1}{3}
ight] \cup (2,\infty)$

C.
$$\left(-2, \frac{1}{3}\right]$$
 uu (2,00)`

D. R

Answer: B

Watch Video Solution

11. Let
$$f(x)=rac{2|x|-1}{x-3}$$

Range of the values of 'k' for which f(x) = k has exactly two distinct

solutions:

A.
$$\left(-2\frac{1}{3}\right)$$

B. $(-2, 1]$
C. $\left(0, \frac{2}{3}\right]$
D. $(-\infty, -2)$

Answer: A

12. Let f(x) be a continuous function (define for all x) which satisfies $f^3(x) - 5f^2(x) + 10f(x) - 12 \ge 0, f^2(x) + 3 \ge 0$ and $f^2(x) - 5f(x) + 4$ If distinct positive number b_1, b_2 and b_3 ar in G.P. then $f(1) + \ln b_{91}), f(2) + \ln b_2, f(3) + \ln b_3$ are in :

A. A.P.

B. G.P.

C. H. P.

D. A. G. P.

Answer: A

Watch Video Solution

13. Let f(x) be a continuous function (define for all x) which satisfies $f^3(x) - 5f^2(x) + 10f(x) - 12 \ge 0, f^2(x) + 3 \ge 0$ and $f^2(x) - 5f(x) + 4$

The equation of tangent that can be drawn from (2,0) on the curve $y=x^2f(\sin x)$ is :

A. y=24(x+2)

B. y = 12(x + 2)

 $\mathsf{C}.\, y=24(x-2)$

D.
$$y = 12(x - 2)$$

Answer: C

Watch Video Solution

14. Let
$$f:[2,\infty) \to \{1,\infty)$$
 defined by $f(x) = 2^{x^4-4x^3}$ and $g:\left[\frac{\pi}{2},\pi\right] \to A$ defined by $g(x) = \frac{\sin x + 4}{\sin x - 2}$ be two invertible functions, then

 $f^{-1}(x)$ is equal to

A.
$$\sqrt{2+\sqrt{4-\log_2 x}}$$

B. $\sqrt{2+\sqrt{4+\log_2 x}}$

C.
$$\sqrt{4+\sqrt{4+\log_2 x}}$$

D. $\sqrt{4-\sqrt{2+\log_2 x}}$

Answer: B

15. Let
$$f:[2,\infty) \to \{1,\infty)$$
 defined by $f(x) = 2^{x^4 - 4x^3}$ and $g:\left[\frac{\pi}{2},\pi\right] \to A$ defined by $g(x) = \frac{\sin x + 4}{\sin x - 2}$ be

two invertible functions, then

The set "A" equals to

A.[5,2]

- $\mathsf{B}.\,[\,-2,\,5]$
- $\mathsf{C}.\,[\,-5,2]$
- D. [-5, -2]

Answer: D

Matching Type Problems

1. If $x,y,z\in R$ satisfies the system of equations $x+(y)+(s)=12.7, [x]+\{y\}+z=4.1$ and $\{x\}+y+[z]=2$

where {.} and [.] denotes the fractional and integral parts respectively) then match the following

	Column-I		Column-II	
(A)	${x} + {y} =$	(P)	7.7	
(B)	[z] + [x] =	(Q)	1.1	
(C)	$x + \{z\} =$	(R)	1	
(D)	$z + [y] - \{x\} =$	(\$)	3	
	Maria manda ta sa	(T)	4	

View Text Solution

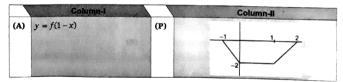
2.

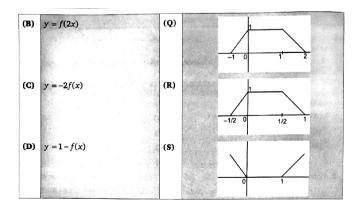
Consider

$$ax^4 + (7a-2b)x^3 + (12a-14b-c)x^2 - (2ab+7c)x + 1 - 12c = 0,$$

has no real roots and
$$f_1(x)=rac{\sqrt{\log_{(\pi+e)}{(ax^4+(7a-2b)x^3+(12a-14b-c)x^2-(24b+7c)}}}{\sqrt{a}\sqrt{-sgn(1+ac+b^2)}}$$

$$f_2(x) = -2 + 2\log_{\sqrt{2}} \cos \left(an^{-1} \left(\sin \left(\pi \left(\cos \left(\pi \left(x + rac{7}{2}
ight)
ight)
ight)
ight)
ight)
ight)
ight).$$

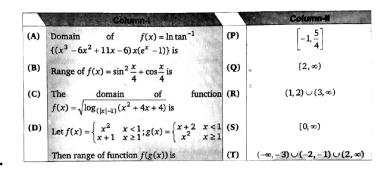

Then match the following :


	Column-1		Column-II
(A)	Domain of $f_1(x)$ is	(P)	[-3, -2]
(B)	Range of $f_2(x)$ in the domain of $f_1(x)$ is	(Q)	[4, - 2]
(C)	Range of $f_2(x)$ is	(R)	(-∞, ∞)
(D)	Domain of $f_2(x)$ is	(S)	(-∞,-4]∪[-3,∞)
	and a sub-second second s	(T)	[0, 1]

View Text Solution

3. Given the graph of y = f(x)

Column-l Column-II $f(x) = \sin^2 2x - 2\sin^2 x$ (A) (P) Range contains no natural number (B) $f(x) = \frac{4}{\pi} (\sin^{-1} (\sin \pi x))$ (Q) Range contains atleast one integer (C) $f(x) = \sqrt{\ln(\cos(\sin x))}$ (R) Many one but not even function (D) $f(x) = \tan^{-1}\left(\frac{x^2+1}{x^2+\sqrt{3}}\right)$ **(S)** Both many one and even function Periodic but not odd function (T) 4.


View Text Solution

	Column-l		Column-II
(A)	If $ x^2 - x \ge x^2 + x$, then complete set of values of x is	(P)	(0,∞)
(B)	If $ x+y > x-y$, where $x > 0$, then complete set of values of y is	(Q)	(–∞, 0]
(C)	If $\log_2 x \ge \log_2(x^2)$, then complete set of values of x is	(R)	[−1,∞)

5.

(D)	$[x] + 2 \ge x $, (where [] denotes the greatest integer function) then complete set of	st (S) of	(0,1]	
	values of x is	(T)	[1,∞)	

View Text Solution

6.

View Text Solution

7. Let
$$f(x) = egin{cases} 1+x, & 0 \leq x \leq 2 \ 3-x, & 2 < x \leq 3 \end{cases}$$

find (fof) (x).

Watch Video Solution

Subjective Type Problems

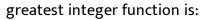
1. Let f(x) be a polynomial of degree 6 with leading coefficient 2009. Suppose further that f(1) =1, f(2)=3, f(3)=5, f(4)=7, f(5) =9, f'(2)=2. Then the sum of all the digits of f(6) is

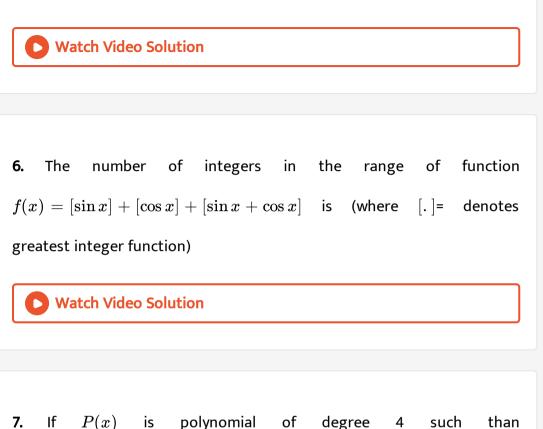
2. Let
$$f(x) = x^3 - 3x$$
 Find $f(f(x))$

Watch Video Solution

3. If
$$f(x+y+1) = \left\{\sqrt{f(x)} + \sqrt{f(y)}
ight\}^2$$
 and

 $f(0)=1\,orall x,y\in R,determ\in ef(n),n\in N_{2}$


Watch Video Solution


4. If the domain of
$$f(x)=\sqrt{12-3^x-3^{3-x}}+\sin^{-1}iggl(rac{2x}{3}iggr)is[a,b],$$

then $a = \ldots$

5. The number of elements in the range of functions:

$$y = \sin^{-1} \left[x^2 + \frac{5}{9} \right] + \cos^{-1} \left[x^2 - \frac{4}{9} \right]$$
 where where [.] denotes the

 $P(-1) = P(1) = 5 ext{ and } P(-2) = P(0) = P(2) = 2 ext{ find } ext{the}$

maximum vaue of P (x).

Watch Video Solution

8. The number of integral vlaue (s) of k for which the curve $y = \sqrt{-x^2 - 2x}$ and x + y - k = 0 intersect at 2 distinct points is/are

9. Let the solution set of the equation $\sqrt{\left[x + \left[\frac{x}{2}\right]\right]} + \left[\sqrt{\left\{x\right\}} + \left[\frac{x}{3}\right]\right] = 3$ is [a, b). Find the product ab. (where $[\cdot]$ and $\{\cdot\}$ denote greatest integer and fractional part function, respectively).

Watch Video Solution

10. For the real number x, let $f(x)=rac{1}{2011\sqrt{1-x^{2011}}}.$ Find the number of

real roots of the equation

$$f(f(\ldots ,(f(x)).\ldots))=(\{-x\}$$

where f is applies 2013 times and {.} denotes fractional part function.

11. Find the number of elements contained in the range of the function

 $f(x)=\Big[rac{x}{6}\Big]\Big[rac{-6}{x}\Big]orall x\in$ (0,30)]where[.]` denotes greatest integer function)

12. Let
$$f(x,y) = x^2 - y^2$$
 and $g(x,y) = 2xy$. such that $(f(x,y))^2 - (g(x,y))^2 = \frac{1}{2}$ and $f(x,y)$. $G(x,y) = \frac{\sqrt{3}}{4}$ Find the

number of ordered pairs (x, y) ?

Watch Video Solution

13. Let $f(x)=rac{x+5}{\sqrt{x^2}+1}$ $orall x\in R,\,$ then the smallest integral value of k

for which $f(x) \leq k \, orall x \in R$ is

14. The number of integral values of which $f: R \to R, f(x) = \frac{x^2}{3} + (m-1)x^2 + (m+5)x + n$ is bijective is : Watch Video Solution 15. The number of roots of equation $\frac{(x-1)(x-3)}{(x-2)(x-4)} - e^x \frac{(x+1)(x+3)e^x}{(x+2)(x+4)} - 1(x^3 - \cos x) = 0$: Watch Video Solution

16. Let $f(x) = x^2 - bx + c$, b is an odd positive integer. Given that f(x)=0 has two prime numbers as roots and b+c=35. If the least value of $f(x) \forall x \in R$ is λ , then $\left[\left| \frac{\lambda}{3} \right| \right]$ is equal to (where [.] denotes greatest integer function)

17. Let f(x) be a continuous function such that f(0) = 1 and $f(x) = f\left(\frac{x}{7}\right) = \frac{x}{7} \forall x \in R$, then f(42) is Watch Video Solution

18.

$$f(x)=4x^3-x^2-2x+1 ext{ and } g(x)= egin{cases} \min \left\{f(t): 0\leq t\leq x
ight\} & 0\leq \ 3-x & 1< \ lpha = gigg(rac{1}{4}igg)+gigg(rac{3}{4}igg)+gigg(rac{5}{4}igg), ext{ then } 2\lambda = \ \end{array}$$

Watch Video Solution

19. If
$$x = 10 \sum_{r=3}^{100} rac{1}{(r^2-4)},$$
 then $[x] =$

(where [.] denotes gratest integer function)

20. Let $fx = \frac{ax+b}{xa+d}$, where a,b,c d are non zero If f(7) = 7, f(11) = 11 and f(f(x)) = x for all x expect $-\frac{d}{c}$. The

unique number which is not is the range of f is

Watch Video Solution

21. Let
$$A = \left\{ x \mid x^2 - 4x + 3 < 0, x \in R
ight\}$$

If $A \subset B$, then the rang of real number $p \in [a, b]$ where, a,b are integers. Find the value of (b - a).

Watch Video Solution

22. Let the maximum value of expression $y=rac{x^4-x^2}{x^6+2x^3-1}$ for $x>1israc{p}{1},$ where p and 1q are relatively prime natural numbers, then p+q=

23. If f(x) is an even function then find the number of distinct real

numbers x such that
$$f(x) = f igg(rac{x+1}{x+2} igg).$$

Watch Video Solution

24. The least integral value of m, m $\,\in R$ for which the range of function

$$f(x)=rac{x+m}{x^2+1}$$
 contains the interval $[0,1]$ is :

Watch Video Solution

25. Let x_1, x_2, x_3 satisfying the equation $x^3 - x^2 + \beta x + \gamma = 0$ are in GP where $(x_1, x_2, x_3 > 0)$, then the maximum value of $[\beta] + [\gamma] + 2$ is, [.] is greatest integer function.

26. If $\sum_{r=1}^{n} [\log_2 r] = 2010$ where [.] denotes greatest integer function,

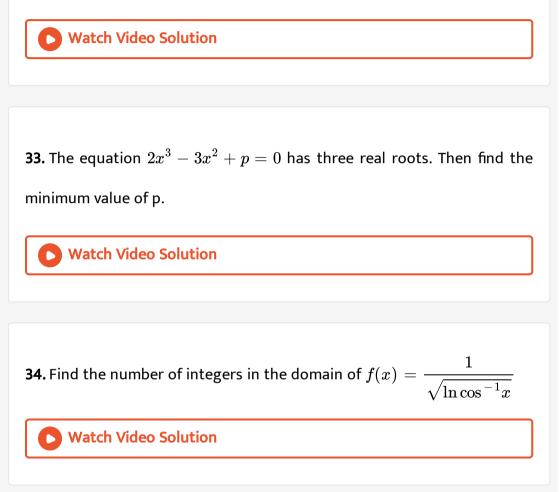
then the sum of the digits of n is:

27. Let
$$fx = \frac{ax+b}{xa+d}$$
, where a,b,c d are non zero If $f(7) = 7$, $f(11) = 11$ and $f(f(x)) = x$ for all x expect $-\frac{d}{c}$. The unique number which is not is the range of f is

Watch Video Solution

28. It is pouring down rain and the amount of rain hitting point (x, y) is given by $f(x, y) = |x^3 + 2x^2y - 5xy^2 - 6y^3|$. If Mr. 'A' starts at (0, 0), find number of possible value (s) for 'm' such that y= mx is a line along which Mr.' A could walk without any rain falling on him.

29. Let P (x) be a cubic polynomical with leading co-efficient unity. Let the remainder when P (x) is divided by $x^2 - 5x + 6$ equals 2 times the remainder when P (x) is divided by $x^2 - 5x + 4$. If P(0) = 100, find thesum of the digits of P(5),


Watch Video Solution

30. Let $f(x) = x^2 + 10x + 20$. Find the number of real solution of the equation f(f(f(f(x)))) = 0

Watch Video Solution

31. If range of
$$f(x) = \frac{(\ln x)(\ln x^2) + \ln x^3 + 3}{\ln^2 x + \ln x^2 + 2}$$
 can be expressed as $\left[\frac{a}{b}, \frac{c}{d}\right]$ where a,b,c and d are prime numbers (not nacessarily distinct) then find the value of $\frac{(a+b+c+d)}{2}$.

32. Polynomial P(x) contains only terms of aodd degree. when P(x) is divided by (x - 3), the ramainder is 6. If P(x) is divided by $(x^2 - 9)$ then remainder is g(x). Then find the value of g(2).

