

MATHS

BOOKS - VK JAISWAL MATHS (HINGLISH)

SOLUTION OF TRIANGLES

Exercise 1 Single Choice Problems

1. In a ΔABC if $9(a^2 + b^2) = 17c^2$ then the value of the $\frac{\cot A + \cot B}{\cot C}$ is A. $\frac{13}{4}$ B. $\frac{7}{4}$ C. $\frac{5}{4}$

Answer: D

Watch Video Solution

2. Let H be the orthocenter of triangle ABC, then angle subtended by side BC at the centre of incircle of ΔCHB is :

A.
$$\frac{A}{2} + \frac{\pi}{2}$$

B.
$$\frac{B+C}{2} + \frac{\pi}{2}$$

C.
$$\frac{B-C}{2} + \frac{\pi}{2}$$

D.
$$\frac{B+C}{2} + \frac{\pi}{4}$$

Answer: B

H be the orthocentre then the value of $rac{1}{64}ig(AH^2+BC^2ig)ig(BH^2+AC^2ig)ig(CH^2+AB^2ig)$ equals :

3. Circum radius of a ΔABC is 3 units, let O be the circum and

A. 3^4

 $\mathsf{B.}\,9^3$

 $C. 27^{6}$

D. 81^4

Answer: B

4. The angles A, B and C of a triangle ABC are in arithmetic progression. If $2b^2 + 3c^2$ then the angle A is :

A. 15°

 $\mathrm{B.\,60}^{\,\circ}$

C. 75°

D. $90\,^\circ$

Answer: C

Watch Video Solution

5. In a triangle ABC if $an. \frac{A}{2} an. \frac{B}{2} = \frac{1}{3}$ and ab = 4, then the

value of c can be

A. 1

B. 2

C. 4

Answer: B

A.
$$\frac{rs}{R}$$

B. $\frac{r}{sR}$
C. $\frac{R}{rs}$
D. $\frac{Rs}{r}$

Answer: A

7. The set of all real numbers a such that $a^2 + 2a, 2a + 3, anda^2 + 3a + 8$ are the sides of a triangle is____

A. $(0,\infty)$ B. (5,8)C. $\left(-\frac{11}{3},\infty\right)$ D. $(5,\infty)$

Answer: D

Watch Video Solution

8. In a $\triangle ABC$, $\angle B = \frac{\pi}{3}$ and $\angle C = \frac{\pi}{4}$ let D divide BC internally in the ratio 1:3, then $\frac{\sin(\angle BAD)}{\sin(\angle CAD)}$ is equal to :

A.
$$\frac{1}{\sqrt{6}}$$

B.
$$\frac{1}{3}$$

C.
$$\frac{1}{\sqrt{3}}$$

D.
$$\frac{\sqrt{2}}{3}$$

Answer: A

9. Let AD, BE, CF be the lengths of internal bisectors of angles A,

B, C respectively of triangle ABC. Then the harmonic mean of

$$AD \mathrm{sec} rac{A}{2}, BE \mathrm{sec} rac{B}{2}, CF \mathrm{sec} rac{C}{2}$$
 is equal to :

A. Harmonic mean of sides of ΔABC

B. Geometric mean of sides of ΔABC

C. Arithmetic mean of sides of ΔABC

D. Sum of reciprocals of the sides of ΔABC

Answer: A

10. In a triangle ABC, if 2b = a + c and A - C = 90, then $\sin B$

equals

A.
$$\frac{\sqrt{7}}{5}$$

B.
$$\frac{\sqrt{5}}{8}$$

C.
$$\frac{\sqrt{7}}{4}$$

D.
$$\frac{\sqrt{5}}{3}$$

Answer: C

11. In a triangle ABC, if
$$2a\cos\left(rac{B-C}{2}
ight)=b+c$$
, then secA is

equal to :

A.
$$\frac{2}{\sqrt{3}}$$

B. $\sqrt{2}$
C. 2

Answer: C

D. 3

Watch Video Solution

12. In a triangle ABC if BC = 1 and AC = 2, then what is

the maximum possible value of angle A?

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: A

13. $\Delta I_1 I_2 I_3$ is an excentral triangle of an equilateral triangle ΔABC such that $I_1 I_2 = 4$ unit, if ΔDEF is pedal triangle of ΔABC , then $\frac{Ar(\Delta I_1 I_2 I_3)}{Ar(\Delta DEF)} =$

A. 16

B.4

C. 2

Answer: A

Watch Video Solution

14. Let ABC be a triangle with $\angle BAC = 2\pi/3$ and AB = x such that (AB) (AC) = 1. If x varies, then find the longest possible length of the angle bisector AD

Answer: B

15. In a equilateral triangle r, R and r_1 form (where symbols used

have usual meaning)

A. an A.P.

B. a G.P.

C. an H.P.

D. none of these

Answer: A

Watch Video Solution

16. In ΔABC if $rac{\sin A}{\sin C} = rac{\sin(A-B)}{\sin(B-C)}$, then a^2, b^2, c^2 are in :

A. A.P.

B. G.P.

C. H.P.

D. none of these

Answer: A

17. In
$$\triangle ABC$$
, $\tan A = 2$, $\tan B = \frac{3}{2}$ and $c = \sqrt{65}$, then

circumradius of the triangle is :

A. 65

B.
$$\frac{65}{7}$$

C. $\frac{65}{14}$

D. none of these

Answer: C

Watch Video Solution

18. If the sides a, b, c of a triangle ABC are the roots of the equation $x^3 - 13x^2 + 54x - 72 = 0$, then the value of $rac{\cos A}{a} + rac{\cos B}{b} + rac{\cos C}{c}$ is equal to : A. $\frac{61}{144}$ B. $\frac{61}{72}$ C. $\frac{169}{144}$ D. $\frac{59}{144}$

Answer: A

19. In
$$\triangle ABC$$
, if $\angle C=90^\circ,$ then $\frac{a+c}{b}+\frac{b+c}{a}$ is equal to :

A.
$$\frac{c}{r}$$

B. $\frac{1}{2Rr}$
C. 2

D.
$$\frac{R}{r}$$

Answer: A

20. In a ΔABC , if $a^2 \sin B = b^2 + c^2$, then :

A. $\angle A$ is obtuse

B. $\angle A$ is acute

C. $\angle B$ is abtuse

D. $\angle A$ is right angle

Answer: A

21. If R and R' are the circumradii of triangles ABC and OBC, where O is the orthocenter of triangle ABC, then :

A.
$$R' = \frac{R}{2}$$

B. $R' = 2R$
C. $R' = R$

D. R'=3R

Answer: C

22. The acute angle of a rhombus whose side is a mean proportional between its diagonals is

A. $15^{\,\circ}$

B. 20°

C. 30°

D. $60^{\,\circ}$

Answer: C

23. In a $\triangle ABC$ right angled at A, a line is drawn through A to meet BC at D dividing BC in 2:1. If $tan(\angle ADC) = 3$ then $\angle BAD$ is :

A. 30°

B. 45°

 $\mathrm{C.\,60}^\circ$

D. 75°

Answer: B

24. A circle is cirumscribed in an equilateral triangle of side 'l'.

The area of any square inscribed in the circle is :

A.
$$\frac{4}{3}l^2$$

B. $\frac{2}{3}l^2$
C. $\frac{1}{3}l^2$
D. l^2

Answer: B

Watch Video Solution

25. if the sides of a triangle are in the ratio $2: \sqrt{6}: \sqrt{3} + 1$, then the largest ange of the trangle will be (1) 60 (3) 90 (2) 75 (4) 120

A. $60^{\,\circ}$

B. 72°

C. 75°

D. 90°

Answer: C

Watch Video Solution

26. In a triangle ABC if a, b, c are in A.P. and $C-P=120^{\circ}$, then

 $\frac{s}{r} =$

(where notations have their usual meaning)

A. $\sqrt{15}$

 $\mathsf{B.}\,2\sqrt{15}$

C. $3\sqrt{15}$

D. $6\sqrt{15}$

Answer: C

27. If in
$$\triangle ABC$$
, $a = 5, b = 4$ and $\cos(A - B) = \frac{31}{32}$, then

A. $\sqrt{6}$

B. $6\sqrt{6}$

C. 6

D. $(216)^{1/4}$

Answer: C

Watch Video Solution

28. If semiperimeter of a triangle is 15, then the value of $(b+c)\cos(B+C) + (c+a)\cos(C+A) + (a+b)\cos(A+B)$

is equal to :

(where symbols used have usual meanings)

A. -60

B. -15

C. -30

D. can not be determined

Answer: C

29. Let triangle ABC be an isosceles with AB=AC. Suppose that the angle bisector of its angle B meets the side AC at a point D and that BC = BD + AD. Measure of the angle A in degrees, is : A. 80

B. 100

C. 110

D. 130

Answer: B

(where notations have their usual meaning)

A. 1

B. 2

C. 4

D. 9

Answer: A

Watch Video Solution

31. In a triangle ABC with altitude AD, $\angle BAC = 45^{\circ}, DB = 3 \text{ and } CD = 2$. The area of the triangle ABC is :

A. 6

B. 15

C.15/4

D. 12

Answer: B

32. A triangle has base 10 cm long and the base angles of 50° and 70° . If the perimeter of the triangle is $x + y \cos z^{\circ}$ where $z \in (0, 90)$ then the value of x + y + z equals :

A. 60

B. 55

C. 50

D. 40

Answer: D

Watch Video Solution

33. Let H be the orthocenter of triangle ABC, then angle subtended by side BC at the centre of incircle of ΔCHB is :

A.
$$\frac{A}{2} + \frac{\pi}{2}$$

B.
$$\frac{B+C}{2} + \frac{\pi}{2}$$

C.
$$\frac{B-C}{2} + \frac{\pi}{2}$$

D.
$$\frac{B+C}{2} + \frac{\pi}{4}$$

Answer: B

View Text Solution

34. Triangle ABC is right angle at A. The points P and Q are on hypotenuse BC such that BP = PQ = QC.if AP = 3 and AQ = 4, then length BC is equal to A. $\sqrt{27}$

B. $\sqrt{36}$

C. $\sqrt{45}$

D. $\sqrt{54}$

Answer: C

Watch Video Solution

35. In a ΔABC if $b=aig(\sqrt{3}-1ig)$ and $\angle C=30^\circ$ then the

measure of the angle A is

A. $15^{\,\circ}$

B. 45°

C. 75°

Answer: D

Watch Video Solution

36. Through the centroid of an equilateral triangle, a line parallel to the base is drawn. On this line, an arbitrary point P is taken inside the triangle. Let h denote the perpendicular distance of P from the base of the triangle. Let h_1 and h_2 be the perpendicular distance of P from the other two sides of the triangle of the triangle. Then :

A.
$$h=rac{h_1+h_2}{2}$$

B. $h=\sqrt{h_1h_2}$
C. $h=rac{2h_1h_2}{h_1+h_2}$

D.
$$h=rac{(h_1+h_2)\sqrt{3}}{4}$$

Answer: A

37. The angles A, B and C of a triangle ABC are in arithmetic progression. AB=6 and BC=7. Then AC is :

B. $\sqrt{39}$

 $C.\sqrt{42}$

D. $\sqrt{43}$

Answer: D

38. In $\triangle ABC$, if $A-B=120^{\circ}$ and R=8r, then the value of $\frac{1+\cos C}{1-\cos C}$ equals :

(All symbols used hav their usual meaning in a triangle)

A. 12

B. 15

C. 21

D. 31

Answer: B

Watch Video Solution

39. The lengths of the sides CB and CA of a triangle ABC are given by a and b and the angle C is $\frac{2\pi}{3}$. The line CD bisects the

angle C and meets AB at D. Then the length of CD is :

A.
$$\frac{1}{a+b}$$

B.
$$\frac{a^2+b^2}{a+b}$$

C.
$$\frac{ab}{2(a+b)}$$

D.
$$\frac{ab}{a+b}$$

Answer: D

View Text Solution

40. In
$$\Delta ABC$$
, angle A is $120^{\circ}, BC + CA = 20$, and $AB + BC = 21$ Find the length of the side BC

A. 13

B. 15

C. 17

D. 19

Answer: A

Watch Video Solution

41. A triangle has sides 6,7, and 8. The line through its incenter parallel to the shortest side is drawn to meet the other two sides at P and Q. Then find the length of the segment PQ.

A.
$$\frac{12}{5}$$

B. $\frac{15}{4}$
C. $\frac{30}{7}$
D. $\frac{33}{9}$

42. The perimeter of a ΔABC is 48 cm and one side is 20 cm.

Then remaining sides of ΔABC must be greater than :

A. 8 cm

B. 9 cm

C. 12 cm

D. 4 cm

Answer: D

View Text Solution

43. In a equilateral triangle r, R and r_1 form (where symbols used

have usual meaning)

A. an A.P.

B. a G.P.

C. an H.P.

D. neither an A.P., G.P. nor H.P.

Answer: A

44.Theexpression
$$(a+b+c)(b+c-a)(c+a-b)(a+b-c)$$
is equal to : $4b^2c^2$

 $\mathsf{B.}\sin^2 A$

 $\mathsf{C.}\cos A\cos B\cos C$

D. $\sin A \sin B \sin C$

Answer: B

45. Circumradius of an isosceles $\triangle ABC$ with $\angle A = \angle B$ is 4 times its in radius, then cosA is root of the equation :

A.
$$x^2-x-8=0$$

B.
$$8x^2 - 8x + 1 = 0$$

C.
$$x^2-x-4=0$$

D.
$$4x^2 - 4x + 1 = 0$$

46. A is the orthocentre of ΔABC and D is reflection point of A w.r.t. perpendicualr bisector of BC, then orthocenter of ΔDBC is :

A. D B. C C. B D. A

Answer: A

View Text Solution
47. If $a \neq b \neq c$ are all positive, then the value of the determinant $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ is A. > 0

 $\mathsf{B.} > 0$

- C. \leq -1
- D. < 0

, where $\lambda=$

(where notations have their usual meaning)

A. 1 B. 2 C. 3 D. $\frac{1}{3}$

Answer: A

Watch Video Solution

49. In any triangle, the minimum value of $r_1r_2r_3\,/\,r^3$ is equal to

A. 1

B. 3

C. 8

D. 27

Answer: D

Watch Video Solution

50. In $\triangle ABC, a = 3, b = 4$ and c = 5, then value of $\sin A + \sin 2B + \sin 3C$ is

A.
$$\frac{24}{25}$$

B. $\frac{14}{25}$
C. $\frac{64}{25}$

D. None

Answer: B

51. In any triangle ABC, the value of $\frac{r_1 + r_2}{1 + \cos C}$ is equal to

(where notation have their usual meaning) :

- A. 2R
- B. 2r
- C. R

D.
$$\frac{2R^2}{r}$$

Answer: A

Watch Video Solution

52. In a !ABC , medians AD and BE are drawn. If AD = 4, $\angle DAB = \pi/6 \text{ and } \angle ABE = \pi/3 \text{ then the area of } !ABC \text{ is}$

A.
$$\frac{8}{3\sqrt{3}}$$

B.
$$\frac{16}{3\sqrt{3}}$$

C.
$$\frac{32}{3\sqrt{3}}$$

D.
$$\frac{64}{3\sqrt{3}}$$

Answer: C

53. The sides of the triangle are $\sin \alpha$, $\cos \alpha$ and $\sqrt{1+\sin \alpha \cos \alpha}$ for some $0 < \alpha < \frac{\pi}{2}$. Then the greatest angle of the triangle is

A.
$$\frac{\pi}{3}$$

B. $\frac{\pi}{2}$
C. $\frac{2\pi}{3}$

Answer: C

Watch Video Solution

54. Let ABC be a right with $\angle BAC = rac{\pi}{2}$, then $\left(rac{r^2}{2R^2} + rac{r}{R}
ight)$ is equal to :

(where symbols used have usual meaning in a striangle)

A. sinB sinC

B. tanB tanC

C. secB secC

D. cotB cotC

Answer: A

55. Find the radius of the circle escribed to the triangle ABC (Shown in the figure below) on the side BC if $\angle NAB = 30^{\circ}, \angle BAC = 30^{\circ}, AB = AC = 5.$

C.
$$\frac{\left(10\sqrt{2} + 5\sqrt{3} - 5\right)}{2\sqrt{2}} \left(2 + \sqrt{3}\right)$$
$$D. \frac{\left(10\sqrt{2} + 5\sqrt{2} + 1\right)}{2\sqrt{3}} \left(\sqrt{3} - 1\right)$$

Answer: A

View Text Solution

56. In a ΔABC , with usual notations, if b > c then distance between foot of median and foot of altitude both drawn from vertex A on BC is :

A.
$$\frac{a^2 - b^2}{2c}$$

B. $\frac{b^2 - c^2}{2a}$
C. $\frac{b^2 + c^2 - a^2}{2a}$
D. $\frac{b^2 + c^2 - a^2}{2c}$

Answer: B

A.
$$\frac{rs}{R}$$

B. $\frac{r}{sR}$
C. $\frac{R}{rs}$
D. $\frac{Rs}{r}$

Answer: A

View Text Solution

58. In a acute triangle ABC, altitudes from the vertices A, B and C meet the opposite sides at the points D, E and F respectively. If the radisu of the circumcircle of ΔAFE , ΔBFD , ΔCED , ΔABC be respectively R_1 , R_2 , R_3 and R. Then the maximum value of $R_1 + R_2 + R_3$ is :

A. $\frac{3R}{8}$ B. $\frac{2R}{3}$ C. $\frac{4R}{3}$ D. $\frac{3R}{2}$

Answer: D

View Text Solution

59. A circle of area 20 sq. units is entered at the point O. Suppose ΔABC is inscribed in that circle and has area 8 sq. units. The central angles α , β and γ are as shown in the figure. The value of $(\sin \alpha + \sin \beta + \sin \gamma)$ is equal to :

C.
$$\frac{2\pi}{5}$$

D. $\frac{\pi}{4}$

Answer: A

View Text Solution

Exercise 2 One Or More Than One Answer Is Are Correct

1. If r_1, r_2, r_3 are radii of the escribed circles of a triangle ABC and r it the radius of its incircle, then the root(s) of the equation $x^2 - r(r_1r_2 + r_2r_3 + r_3r_1)x + (r_1r_2r_3 - 1) = 0$ is/are :

A. r_1

B. $r_2 + r_3$

C. 1

D. $r_1 r_2 r_3 - 1$

Answer: C::D

View Text Solution

2. In $\Delta ABC, \angle A=60^\circ, \angle B=90^\circ, \angle C=30^\circ.$ Let H be its

orthocentre, then :

(where symbols used have usual meanings)

A. AH = c

 $\operatorname{B.} CH = a$

 $\mathsf{C}.\,AH = a$

 $\mathsf{D}.\,BH=0$

Watch Video Solution

3. In an equilateral triangle, if inradius is a rational number then

A. circumradius is always rational

B. exradii are always rational

C. area is always ir-rational

D. perimeter is always rational

Answer: A::B::C

Watch Video Solution

4. Let A, B, C be angles of a triangle ABC and let $D = \frac{5\pi + A}{32}, E = \frac{5\pi + B}{32}, F = \frac{5\pi + C}{32}$, then : (where $D, E, F \neq \frac{n\pi}{2}, n \in I$, I denote set of integers) A. $\cot D \cot E + \cot E \cot F + \cot D \cot F = 1$ B. $\cot D + \cot E + \cot F = \cot D \cot E \cot F$ C. $\tan D \tan E + \tan E \tan F + \tan F \tan D = 1$ D. $\tan D + \tan E + \tan F = \tan D \tan E \tan F$

Answer: B::C

View Text Solution

5. In a triangle ABC, if a=4, b=8 and $\angle C=60^{\,\circ}$, then :

(where symbols used have usual meanings)

B. $c=4\sqrt{3}$ C. $\angle A=30^{\circ}$ D. $\angle B=90^{\circ}$

A. c = 6

Answer: B::C::D

Watch Video Solution

6. Find the perimeter of an equilateral triangle with side 9cm.

7. ABC is a triangle whose circumcentre, incentre and orthocentre are O, I and H respectively which lie inside the

triangle, then :

A.
$$\angle BOC = A$$

B. $\angle BIC = \frac{\pi}{2} + \frac{A}{2}$
C. $\angle BHC = \pi - A$
D. $\angle BHC = \pi - \frac{A}{2}$

Answer: B::C

Watch Video Solution

8. In a triangle ABC, tanA and tanB satisfy the inequality $\sqrt{3}x^2 - 4x + \sqrt{3} < 0$, then which of the following must be correct ?

(where symbols used have usual meanings)

A.
$$a^2 + b^2 - ab < c^2$$

B.
$$a^2+b^2>c^2$$

C. $a^2+b^2+ab>c^2$
D. $a^2+b^2< c^2$

Answer: A::C

9. If in
$$\triangle ABC, \angle C = \frac{\pi}{8}, a = \sqrt{2}$$
 and $b = \sqrt{2 + \sqrt{2}}$ then

find the measure of angle A (in degree).

A. $45^{\,\circ}$

B. $135^{\,\circ}$

C. 30°

D. 150°

Answer: A

10. In triangle ABC, a = 3, b = 4, c = 2. Point D and E trisect the side BC. If $\angle DAE = \theta$, then $\cot^2 \theta$ is divisible by :

A. 2

B. 3

C. 5

D. 7

Answer: B::C

Watch Video Solution

11. In a $\Delta ABC, 3\sin A + 4\cos B = 6$ and

 $3\cos A + 4\sin B = 1$, then $\angle C$ can be

A.
$$\frac{\pi}{4}$$

B. $\frac{\pi}{6}$
C. $\frac{\pi}{3}$
D. $\frac{5\pi}{6}$

Answer: B

12. If the line joining the incentre to the centroid of a triangle ABC is parallel to the side BC. Which of the following are correct

A. 2b = a + c

B.
$$2a=b+c$$

C. $\cotrac{A}{2}\cotrac{C}{2}=3$
D. $\cotrac{B}{2}\cotrac{C}{2}=3$

Answer: B::D

View Text Solution

13. In a triangle the lengths of the two larger are 10 and 9 respectively. If the angles are in A.P., the , length of the third side can be (A) $5 - \sqrt{6}$ (B) $3\sqrt{3}$ (C) 5 (D) $5 + \sqrt{6}$

A. $5 - \sqrt{6}$ B. $5 + \sqrt{6}$ C. $6 - \sqrt{5}$

D.
$$6 + \sqrt{5}$$

Answer: A::B

14. If area of $\Delta ABC(\Delta)$ and angle C are given and if c opposite

to given angle is minimum, then

A.
$$a = \sqrt{\frac{2\Delta}{\sin C}}$$

B. $b = \left(\frac{2\Delta}{\sin C}\right)$
C. $a = \frac{4\Delta}{\sin C}$
D. $b = \frac{4\Delta}{\sin^2 C}$

Answer: A::B

Watch Video Solution

15. In a triangle ABC, if $\tan A = 2\sin 2C$ and $3\cos A = 2\sin B\sin C$ then possible values of C is/are

A.
$$\frac{\pi}{8}$$

B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

Answer: C::D

Exercise 3 Comprehension Type Problems

1. Let $\angle A=23^\circ, \angle B=75^\circ\,\, {
m and}\,\, \angle C=82^\circ\,\,$ be the angles of $\Delta ABC.$

The incircle of ΔABC touches the sides BC, CA, AB at points D, E, F respectively. Let r', r'_1 respectively be the inradius, exradius opposite to vertex D of ΔDEF and r be inradius of ΔABC , then

$$Q. \frac{r}{r} =$$

$$A. \sin\frac{A}{2} + \sin\frac{B}{2} + \sin\frac{C}{2} - 1$$

$$B. 1 - \sin\frac{A}{2} + \sin\frac{B}{2} + \sin\frac{C}{2}$$

$$C. \cos\frac{A}{2} + \cos\frac{B}{2} + \cos\frac{C}{2} - 1$$

$$D. 1 - \cos\frac{A}{2} + \cos\frac{B}{2} + \cos\frac{C}{2}$$

Answer: A

2. Let $\angle A = 23^{\circ}, \angle B = 75^{\circ} \text{ and } \angle C = 82^{\circ}$ be the angles of $\Delta ABC.$

The incircle of ΔABC touches the sides BC, CA, AB at points D, E, F respectively. Let r', r'_1 respectively be the inradius, exradius opposite to vertex D of ΔDEF and r be inradius of ΔABC , then

$$\begin{array}{l} {\rm Q.}\; \frac{r_1'}{r} = \\ {\rm A.} \sin \! \frac{A}{2} + \sin \! \frac{B}{2} + \sin \! \frac{C}{2} - 1 \\ {\rm B.} \; 1 - \sin \! \frac{A}{2} + \sin \! \frac{B}{2} + \sin \! \frac{C}{2} \\ {\rm C.} \; \cos \! \frac{A}{2} + \cos \! \frac{B}{2} + \cos \! \frac{C}{2} - 1 \\ {\rm D.} \; 1 - \cos \! \frac{A}{2} + \cos \! \frac{B}{2} + \cos \! \frac{C}{2} \end{array}$$

Answer: B

3. Internal bisectors of ΔABC meet the circumcircle at point D,

E, and F

Area of ΔDEF is

A.
$$2R^2 \cos^2\left(\frac{A}{2}\right) \cos^2\left(\frac{B}{2}\right) \cos^2\left(\frac{C}{2}\right)$$

B. $2R^2 \sin\left(\frac{A}{2}\right) \sin\left(\frac{B}{2}\right) \sin\left(\frac{C}{2}\right)$
C. $2R^2 \sin^2\left(\frac{A}{2}\right) \sin^2\left(\frac{B}{2}\right) \sin^2\left(\frac{C}{2}\right)$
D. $2R^2 \cos\left(\frac{A}{2}\right) \cos\left(\frac{B}{2}\right) \cos\left(\frac{C}{2}\right)$

Answer: D

4. Internal angle bisecotors of ΔABC meets its circum circle at

D, E and F where symbols have usual meaning.

Q. The ratio of area of triangle ABC and triangle DEF is :

A. ≥ 1

- B. ≤ 1
- $\mathsf{C.}\ \geq 1/2$
- D. $\leq 1/2$

Answer: B

D View Text Solution

5. Let triangle ABC is right triangle right angled at C such that

A < B and r = 8, R = 41 .

Q. Area of ΔABC is :

A. 720

B. 1440

C. 360

D. 480

Answer: A

6. Let triangle ABC is right triangle right angled at C such that A < B and r = 8, R = 41. Q. $\tan \frac{A}{2} =$ A. $\frac{1}{18}$ B. $\frac{1}{3}$ C. $\frac{1}{6}$ D. $\frac{1}{9}$

7. Let the incircle of ΔABC touches the sides BC, CA, AB at A_1, B_1, C_1 respectively. The incircle of $\Delta A_1B_1C_1$ touches its sides of B_1C_1, C_1A_1 and A_1B_1 at A_2, B_2, C_2 respectively and so on.

- Q. $\lim_{n o \infty} \ \angle A_n =$
 - A. 0

B.
$$\frac{\pi}{6}$$

C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

8. Let the incircle of ΔABC touches the sides BC, CA, AB at A_1, B_1, C_1 respectively. The incircle of $\Delta A_1B_1C_1$ touches its sides of B_1C_1, C_1A_1 and A_1B_1 at A_2, B_2, C_2 respectively and so on.

Q. In $\Delta A_4 B_4 C_4$, the value of $\angle A_4$ is:

A.
$$\frac{3\pi + A}{6}$$

B.
$$\frac{3\pi - A}{8}$$

C.
$$\frac{5\pi - A}{16}$$

D.
$$\frac{5\pi + A}{16}$$

9. Let ABC be a given triangle. Points D and E are on sides AB and AC respectively and point F is on line segment DE. Let $\frac{AD}{AB} = x, \frac{AE}{AC} = y, \frac{DF}{DE} = z$. Let area of $\Delta BDF = \Delta_1$, Area of $\Delta CEF = \Delta_2$ and area of $\Delta ABC = \Delta$. Q. $\frac{\Delta_1}{\Delta}$ is equal to :

A. xyz

B. (1 - x)y(1 - z)C. (1 - x)yzD. x(1 - y)z

Answer: C

O View Text Solution

10. Let ABC be a given triangle. Points D and E are on sides AB

and AC respectively and point F is on line segment DE. Let $\frac{AD}{AB} = x, \frac{AE}{AC} = y, \frac{DF}{DE} = z$. Let area of $\Delta BDF = \Delta_1$, Area
of $\Delta CEF = \Delta_2$ and area of $\Delta ABC = \Delta$.

Q.
$$rac{\Delta_2}{\Delta}$$
 is equal to :

A.
$$(1-x)y(1-z)$$

B.
$$(1-x)(1-y)z$$

$$\mathsf{C}.\, x(1-y)(1-z)$$

D.
$$(1-x)yz$$

Answer: C

11. a, b, c ar the length of sides BC, CA, AB respectively of ΔABC satisfying $\log\left(1+\frac{c}{a}\right) + \log a - \log b = \log 2$. Also the quadratic equation $a(1-x^2) + 2bx + c(1+x^2) = 0$ has two equal roots.

Q. a, b, c are in :

A. A.P.

B. G.P.

C. H.P.

D. None

Answer: A

12. a, b, c ar the length of sides BC, CA, AB respectively of ΔABC satisfying $\log\left(a + \frac{c}{a}\right) + \log a - \log b = \log 2$. Also the quadratic equation $a(1 - x^2) + 2bx + c(1 + x^2) = 0$ has two equal roots.

Q. Measure of angle C is :

A. $30^{\,\circ}$

B. 45°

C. 60°

D. 90°

13. If a,b,c are the sides of triangle ABC satisfying $\log\left(1+\frac{c}{a}\right) + \log a - \log b = \log 2.$ Also $a(1-x^2) + 2bx + c(1+x^2) = 0$ has two equal roots. Find the value of $\sin A + \sin B + \sin C$.

A.
$$\frac{5}{2}$$

B. $\frac{12}{5}$
C. $\frac{8}{3}$
D. 2

Answer: B

14. Let ABC be a triangle inscribed in a circle and let $l_a = \frac{m_a}{M_a}, l_b = \frac{m_b}{M_b}, l_c = \frac{m_c}{M_c}$ where m_a, m_b, m_c are the

lengths of the angle bisectors of angles A, B and C respectively, internal to the triangle and M_a , M_b and M_c are the lengths of these internal angle bisectors extended until they meet the circumcircle.

Q. l_a equals :

A.
$$\frac{\sin A}{\sin\left(B + \frac{A}{2}\right)}$$

B.
$$\frac{\sin B \sin C}{\sin^2\left(\frac{B+C}{2}\right)}$$

C.
$$\frac{\sin B \sin C}{\sin^2\left(B + \frac{A}{2}\right)}$$

D.
$$\frac{\sin B + \sin C}{\sin^2\left(B + \frac{A}{2}\right)}$$

Answer: C

Niew Text Solution
15. Let ABC be a triangle inscribed in a circle and let $l_a = \frac{m_a}{M_a}, l_b = \frac{m_b}{M_b}, l_c = \frac{m_c}{M_c}$ where m_a, m_b, m_c are the lengths of the angle bisectors of angles A, B and C respectively, internal to the triangle and M_a, M_b and M_c are the lengths of these internal angle bisectors extended until they meet the circumcircle.

Q. The maximum value of the product $(l_a l_b l_c) imes \cos^2 \left(rac{B-C}{2}
ight) imes rac{\cos^2 (C-A)}{2}
ight) imes \cos^2 \left(rac{A-B}{2}
ight)$

is equal to :

A.
$$\frac{1}{8}$$

B. $\frac{1}{64}$
C. $\frac{27}{64}$
D. $\frac{27}{32}$

Answer: C

16. Let ABC be a triangle inscribed in a circle and let $l_a = \frac{m_a}{M_a}, l_b = \frac{m_b}{M_b}, l_c = \frac{m_c}{M_c}$ where m_a, m_b, m_c are the lengths of the angle bisectors of angles A, B and C respectively, internal to the triangle and M_a, M_b and M_c are the lengths of these internal angle bisectors extended until they meet the circumcircle.

Q. The minimum value of the expression $\frac{l_a}{\sin^2 A} + \frac{l_b}{\sin^2 B} + \frac{l_c}{\sin^2 C}$ is : A. 2 B. 3

C. 4

D. none of these

Answer: B

D View Text Solution

Exercise 4 Matching Type Problems

1. Consider a right angled triangle ABC right angled at C with integer sides. List-I gives inradius. List-II gives the number of triangles.

	Column-I	11	Column-II	· m
(A)	3	(P)	6	
(B)	4	(Q)	7	
(C)	6	(R)	8	
(D)	9	(5)	10	
		(T)	12	-

	Column-I		Column-ll
(A)	Find the sum of the series $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{9} + \frac{1}{12} + \dots \infty$, where the terms are the reciprocals of the positive integers whose only prime factors are two's and three's	(P)	7
(B)	The length of the sides of $\triangle ABC$ are a, b and c and A is the angle opposite to side a . If $b^2 + c^2 = a^2 + 54$ and $bc = \frac{a^3}{\cos A}$ then the value of $\left(\frac{b^2 + c^2}{9}\right)$, is	(Q)	10 1 23 1 1
(C)	The equations of perpendicular bisectors of two sides AB and AC of a triangle ABC are $x + y + 1 = 0$ and $x - y + 1 = 0$ respectively. If circumradius of $\triangle ABC$ is 2 units and the locus of vertex A is $x^2 + y^2 + gx + c = 0$, then $(g^2 + c^2)$, is equal to	(R)	13
(D)	Number of solutions of the equation $\cos \theta \sin \theta + 6(\cos \theta - \sin \theta) + 6 = 0$ in [0, 30], is equal to	(S)	3

View Text Solution

3. In ΔABC , If $r_1=21, r_2=24, r_3=28$, then

	Column-l		Column-II
(A)	a =	(P)	8
B)	<i>b</i> =	(Q)	12
\sim		(12)	
()	5-	(R)	26
(D)	r=	(5)	26

View Text Solution

Exercise 5 Subjective Type Problems

1. If the median AD of triangle ABC makes an angle $\frac{\pi}{4}$ with the side BC, then find the value of $|\cot B - \cot C|$.

2. In a ΔABC , $a = \sqrt{3}$, b = 3 and $\angle C = \frac{\pi}{3}$. Let internal angle bisectors of angle C intersects side AB at D and altitude from B meets the angle bisector CD at E. If Q_1 and Q_2 are incentres of ΔBEC and ΔBED . Find the distance between the vertex B and orthocentre of $\Delta O_1 EO_2$.

3. In a ΔABC ; inscribed circle with centre I touches sides AB, AC and BCatD, E, F respectively.Let area of quadrilateral ADIE is 5 units and area of quadrilteral BFID is 10

units. Find the value of $\frac{\cos\left(\frac{C}{2}\right)}{\sin\left(\frac{A-B}{2}\right)}$.

4. If Δ be area of incircle of a triangle ABC and $\Delta_1, \Delta_2, \Delta_3$ be the area of excircles then find the least value of $\frac{\Delta_1 \Delta_2 \Delta_3}{729 \Delta^3}$

5. In $\Delta ABC, b=c, \angle A=106^{\circ}$, M is an interior point such

that

 $\angle MBA = 7^{\circ}, \angle MAB = 23^{\circ} \ \ ext{and} \ \ \angle MCA = heta^{\circ}, \ \ ext{then} \ \ rac{ heta}{2}$

is equal to

(where notations have their usual meaning)

6. In an acute angled triangle ABC, $\angle A=20^{\circ}$, let DEF be the feet of altitudes through A, B, C respectively and H is the

orthocentre of
$$\Delta ABC$$
. Find $\frac{AH}{AD} + \frac{BH}{BE} + \frac{CH}{CF}$.
View Text Solution

7. Let ΔABC be inscribed in a circle having radius unity. The three internal bisectors of the angles A, B and C are extended to intersect the circumcircle of ΔABC at A_1B_1 and C_1 respectively. Then $\frac{AA_1\cos\frac{A}{2}BB_1\cos\frac{B}{2} + CC_1\cos\frac{C}{2}}{\sin A + \sin B + \sin C} =$

View Text Solution

8. If the quadratic equation $ax^2 + bx + c = 0$ has equal roots where a, b, c denotes the lengths of the sides opposite to vertex A, B and C of the ΔABC respectively then find the number of integers in the range of $\frac{\sin A}{\sin C} + \frac{\sin C}{\sin A}$

Watch Video Solution

9. if ABC is a triangle and $\tan\left(\frac{A}{2}\right)$, $\tan\left(\frac{B}{2}\right)$, $\tan\left(\frac{C}{2}\right)$ are in H.P. Then find the minimum value of $\cot\left(\frac{B}{2}\right)$

Watch Video Solution

10. In ΔABC , if circumradius 'R' and inradius 'r' are connected by relation $R^2 - 4Rr + 8r^2 - 12r + 9 = 0$, then the greatest integer which is less than the semiperimeter of ΔABC is :

View Text Solution

11. Sides AB and AC in an equilateral triangle ABC with side length 3 is extended to form two rays from point A as shown in the figure. Point P is chosen outside the triangle ABC and

between the two rays such that $\angle ABP + \angle BCP = 180^\circ$. If the maximum length of CP is M, then $M^2/2$ is equal to :

12. Let a, b, c be sides of a triangle ABC and Δ denotes its area .

If $a=2,\,\Delta=\sqrt{3}\,\,\mathrm{and}\,\,a\cos C+\sqrt{3}a\sin C-b-c=$ 0, then

find the value of (b + c).

(symbols used have usual meaning in ΔABC).

13. Circumradius of ΔABC is 3 cm and its area is $6cm^2$. If DEF is the triangle formed by feet of the perpendicular drawn from A,B and C on the sides BC, CA and AB, respectively, then the perimeter of ΔDEF (in cm) is ____

Watch Video Solution