©‘’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - VK JAISWAL MATHS (HINGLISH)

SOLUTION OF TRIANGLES

Exercise 1 Single Choice Problems

1. In a $\triangle A B C$ if $9\left(a^{2}+b^{2}\right)=17 c^{2}$ then the value of the $\frac{\cot A+\cot B}{\cot C}$ is
A. $\frac{13}{4}$
B. $\frac{7}{4}$
C. $\frac{5}{4}$
D. $\frac{9}{4}$

Answer: D

- Watch Video Solution

2. Let H be the orthocenter of triangle $A B C$, then angle subtended by side BC at the centre of incircle of $\triangle C H B$ is :
A. $\frac{A}{2}+\frac{\pi}{2}$
B. $\frac{B+C}{2}+\frac{\pi}{2}$
C. $\frac{B-C}{2}+\frac{\pi}{2}$
D. $\frac{B+C}{2}+\frac{\pi}{4}$

Answer: B
3. Circum radius of a $\triangle A B C$ is 3 units, let O be the circum and H be the orthocentre then the value of $\frac{1}{64}\left(A H^{2}+B C^{2}\right)\left(B H^{2}+A C^{2}\right)\left(C H^{2}+A B^{2}\right)$ equals :
A. 3^{4}
B. 9^{3}
C. 27^{6}
D. 81^{4}

Answer: B

- Watch Video Solution

4. The angles A, B and C of a triangle $A B C$ are in arithmetic progression. If $2 b^{2}+3 c^{2}$ then the angle A is :
A. 15°
B. 60°
C. 75°
D. 90°

Answer: C

- Watch Video Solution

5. In a triangle ABC if $\tan \cdot \frac{A}{2} \tan \cdot \frac{B}{2}=\frac{1}{3}$ and $\mathrm{ab}=4$, then the value of c can be
A. 1
B. 2
C. 4
D. 6

Answer: B

- Watch Video Solution

6. In a triangle $A B C$ the expression $a \cos B \cos C+b \cos C \cos A+c \cos A \cos B$ equals to :
A. $\frac{r s}{R}$
B. $\frac{r}{s R}$
C. $\frac{R}{r s}$
D. $\frac{R s}{r}$

Answer: A
7. The set of all real numbers a such that $a^{2}+2 a, 2 a+3, a^{2} d a^{2}+3 a+8$ are the sides of a triangle is
A. $(0, \infty)$
B. $(5,8)$
C. $\left(-\frac{11}{3}, \infty\right)$
D. $(5, \infty)$

Answer: D

- Watch Video Solution

8. In a $\triangle A B C, \angle B=\frac{\pi}{3}$ and $\angle C=\frac{\pi}{4}$ let D divide BC internally in the ratio $1: 3$, then $\frac{\sin (\angle B A D)}{\sin (\angle C A D)}$ is equal to :
A. $\frac{1}{\sqrt{6}}$
B. $\frac{1}{3}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{\sqrt{2}}{3}$

Answer: A

- Watch Video Solution

9. Let $A D, B E, C F$ be the lengths of internal bisectors of angles A, B, C respectively of triangle $A B C$. Then the harmonic mean of $A D \sec \frac{A}{2}, B E \sec \frac{B}{2}, C F \sec \frac{C}{2}$ is equal to :
A. Harmonic mean of sides of $\triangle A B C$
B. Geometric mean of sides of $\triangle A B C$
C. Arithmetic mean of sides of $\triangle A B C$
D. Sum of reciprocals of the sides of $\triangle A B C$

Answer: A

- Watch Video Solution

10. In a triangle ABC , if $2 b=a+c$ and $A-C=90$, then $\sin B$ equals
A. $\frac{\sqrt{7}}{5}$
B. $\frac{\sqrt{5}}{8}$
C. $\frac{\sqrt{7}}{4}$
D. $\frac{\sqrt{5}}{3}$

Answer: C
11. In a triangle ABC , if $2 a \cos \left(\frac{B-C}{2}\right)=b+c$, then $\sec A$ is equal to :
A. $\frac{2}{\sqrt{3}}$
B. $\sqrt{2}$
C. 2
D. 3

Answer: C

- Watch Video Solution

12. In a triangle $A B C$ if $B C=1 a n d A C=2$, then what is the maximum possible value of angle A ?
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: A

- Watch Video Solution

13. $\Delta I_{1} I_{2} I_{3}$ is an excentral triangle of an equilateral triangle $\triangle A B C$ such that $I_{1} I_{2}=4$ unit, if $\triangle D E F$ is pedal triangle of $\Delta A B C$, then $\frac{\operatorname{Ar}\left(\Delta I_{1} I_{2} I_{3}\right)}{\operatorname{Ar}(\Delta D E F)}=$
A. 16
B. 4
C. 2

Answer: A

- Watch Video Solution

14. Let ABC be a triangle with $\angle B A C=2 \pi / 3$ and $A B=x$
such that $(A B)(A C)=1$. If x varies, then find the longest possible length of the angle bisector AD
A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. $\frac{2}{3}$
D. $\frac{\sqrt{2}}{3}$

Answer: B

15. In a equilateral triangle r, R and r_{1} form (where symbols used have usual meaning)
A. an A.P.
B. a G.P.
C. an H.P.
D. none of these

Answer: A

- Watch Video Solution

16. In $\Delta A B C$ if $\frac{\sin A}{\sin C}=\frac{\sin (A-B)}{\sin (B-C)}$, then a^{2}, b^{2}, c^{2} are in :
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: A

- Watch Video Solution

17. In $\triangle A B C, \tan A=2, \tan B=\frac{3}{2}$ and $c=\sqrt{65}$, then circumradius of the triangle is :
A. 65
B. $\frac{65}{7}$
C. $\frac{65}{14}$
D. none of these

Answer: C

- Watch Video Solution

18. If the sides a, b, c of a triangle $A B C$ are the roots of the equation $x^{3}-13 x^{2}+54 x-72=0$, then the value of $\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}$ is equal to :
A. $\frac{61}{144}$
B. $\frac{61}{72}$
C. $\frac{169}{144}$
D. $\frac{59}{144}$
19. In $\triangle A B C$, if $\angle C=90^{\circ}$, then $\frac{a+c}{b}+\frac{b+c}{a}$ is equal to :
A. $\frac{c}{r}$
B. $\frac{1}{2 R r}$
C. 2
D. $\frac{R}{r}$

Answer: A

- Watch Video Solution

20. In a $\Delta A B C$, if $a^{2} \sin B=b^{2}+c^{2}$, then :
A. $\angle A$ is obtuse
B. $\angle A$ is acute
C. $\angle B$ is abtuse
D. $\angle A$ is right angle

Answer: A

- Watch Video Solution

21. If R and R^{\prime} are the circumradii of triangles $A B C$ and $O B C$, where O is the orthocenter of triangle $A B C$, then :
A. $R^{\prime}=\frac{R}{2}$
B. $R^{\prime}=2 R$
C. $R^{\prime}=R$
D. $R^{\prime}=3 R$

Answer: C

- View Text Solution

22. The acute angle of a rhombus whose side is a mean proportional between its diagonals is
A. 15°
B. 20°
C. 30°
D. 60°

Answer: C

23. In a $\triangle A B C$ right angled at A , a line is drawn through A to meet BC at D dividing BC in $2: 1$. If $\tan (\angle A D C)=3$ then $\angle B A D$ is :
A. 30°
B. 45°
C. 60°
D. 75°

Answer: B

- Watch Video Solution

24. A circle is cirumscribed in an equilateral triangle of side ' l '.

The area of any square inscribed in the circle is :
A. $\frac{4}{3} l^{2}$
B. $\frac{2}{3} l^{2}$
C. $\frac{1}{3} l^{2}$
D. l^{2}

Answer: B

- Watch Video Solution

25. if the sides of a triangle are in the ratio $2: \sqrt{6}: \sqrt{3}+1$, then the largest ange of the trangle will be (1) 60 (3) 90 (2) 75 (4) 120
A. 60°
B. 72°
C. 75°
D. 90°

Answer: C

- Watch Video Solution

26. In a triangle ABC if $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. and $C-P=120^{\circ}$, then
$\frac{s}{r}=$
(where notations have their usual meaning)
A. $\sqrt{15}$
B. $2 \sqrt{15}$
C. $3 \sqrt{15}$
D. $6 \sqrt{15}$

Answer: C

27. If in $\triangle A B C, a=5, b=4$ and $\cos (A-B)=\frac{31}{32}$, then
A. $\sqrt{6}$
B. $6 \sqrt{6}$
C. 6
D. $(216)^{1 / 4}$

Answer: C

- Watch Video Solution

28. If semiperimeter of a triangle is 15 , then the value of

$$
(b+c) \cos (B+C)+(c+a) \cos (C+A)+(a+b) \cos (A+B)
$$

is equal to :
(where symbols used have usual meanings)
A. -60
B. -15
C. -30
D. can not be determined

Answer: C

(D) Watch Video Solution

29. Let triangle $A B C$ be an isosceles with $A B=A C$. Suppose that the angle bisector of its angle B meets the side $A C$ at a point D and that $B C=B D+A D$. Measure of the angle A in degrees, is :
A. 80
B. 100
C. 110
D. 130

Answer: B

- Watch Video Solution

30.

In
triangle
ABC
$A: B: C=1: 2: 4, \quad$ then $\left(a^{2}-b^{2}\right)\left(b^{2}-c^{2}\right)\left(c^{2}-a^{2}\right)=\lambda a^{2} b^{2} c^{2}$
, where $\lambda=$
(where notations have their usual meaning)
A. 1
B. 2
C. 4
D. 9

Answer: A

- Watch Video Solution

31. In a triangle $A B C$ with altitude AD,
$\angle B A C=45^{\circ}, D B=3$ and $C D=2$. The area of the triangle $A B C$ is :
A. 6
B. 15
C. $15 / 4$
D. 12

- View Text Solution

32. A triangle has base 10 cm long and the base angles of 50° and 70°. If the perimeter of the triangle is $x+y \cos z^{\circ}$ where $z \in(0,90)$ then the value of $x+y+z$ equals :
A. 60
B. 55
C. 50
D. 40

Answer: D

33. Let H be the orthocenter of triangle $A B C$, then angle subtended by side BC at the centre of incircle of $\triangle C H B$ is :
A. $\frac{A}{2}+\frac{\pi}{2}$
B. $\frac{B+C}{2}+\frac{\pi}{2}$
C. $\frac{B-C}{2}+\frac{\pi}{2}$
D. $\frac{B+C}{2}+\frac{\pi}{4}$

Answer: B

- View Text Solution

34. Triangle $A B C$ is right angle at A. The points P and Q are on hypotenuse $B C$ such that $B P=P Q=Q C$.if $A P=3$ and $A Q=4$, then length BC is equal to
A. $\sqrt{27}$
B. $\sqrt{36}$
C. $\sqrt{45}$
D. $\sqrt{54}$

Answer: C

D Watch Video Solution

35. In a $\triangle A B C$ if $b=a(\sqrt{3}-1)$ and $\angle C=30^{\circ}$ then the measure of the angle A is
A. 15°
B. 45°
C. 75°
D. 105°

Answer: D

D Watch Video Solution

36. Through the centroid of an equilateral triangle, a line parallel to the base is drawn. On this line, an arbitrary point P is taken inside the triangle. Let h denote the perpendicular distance of P from the base of the triangle. Let h_{1} and h_{2} be the perpendicular distance of P from the other two sides of the triangle. Then :
A. $h=\frac{h_{1}+h_{2}}{2}$
B. $h=\sqrt{h_{1} h_{2}}$
C. $h=\frac{2 h_{1} h_{2}}{h_{1}+h_{2}}$
D. $h=\frac{\left(h_{1}+h_{2}\right) \sqrt{3}}{4}$

Answer: A

- Watch Video Solution

37. The angles A, B and C of a triangle $A B C$ are in arithmetic progression. $A B=6$ and $B C=7$. Then $A C$ is :
A. $\sqrt{41}$
B. $\sqrt{39}$
C. $\sqrt{42}$
D. $\sqrt{43}$

Answer: D

38. In $\triangle A B C$, if $A-B=120^{\circ}$ and $R=8 r$, then the value of $\frac{1+\cos C}{1-\cos C}$ equals :
(All symbols used hav their usual meaning in a triangle)
A. 12
B. 15
C. 21
D. 31

Answer: B

D Watch Video Solution

39. The lengths of the sides $C B$ and $C A$ of a triangle $A B C$ are given by a and b and the angle C is $\frac{2 \pi}{3}$. The line CD bisects the
angle C and meets $A B$ at D. Then the length of $C D$ is :
A. $\frac{1}{a+b}$
B. $\frac{a^{2}+b^{2}}{a+b}$
C. $\frac{a b}{2(a+b)}$
D. $\frac{a b}{a+b}$

Answer: D

- View Text Solution

40. In
$\triangle A B C$,
angle
A
is
$120^{\circ}, B C+C A=20$, and $A B+B C=21$ Find the length of the side $B C$
A. 13
B. 15
C. 17
D. 19

Answer: A

D Watch Video Solution

41. A triangle has sides 6,7 , and 8 . The line through its incenter parallel to the shortest side is drawn to meet the other two sides at P and Q . Then find the length of the segment PQ .
A. $\frac{12}{5}$
B. $\frac{15}{4}$
C. $\frac{30}{7}$
D. $\frac{33}{9}$

(D) Watch Video Solution

42. The perimeter of a $\triangle A B C$ is 48 cm and one side is 20 cm .

Then remaining sides of $\triangle A B C$ must be greater than :
A. 8 cm
B. 9 cm
C. 12 cm
D. 4 cm

Answer: D

- View Text Solution

43. In a equilateral triangle r, R and r_{1} form (where symbols used have usual meaning)
A. an A.P.
B. a G.P.
C. an H.P.
D. neither an A.P., G.P. nor H.P.

Answer: A

- Watch Video Solution

B. $\sin ^{2} A$
C. $\cos A \cos B \cos C$
D. $\sin A \sin B \sin C$

Answer: B

- View Text Solution

45. Circumradius of an isosceles $\triangle A B C$ with $\angle A=\angle B$ is 4 times its in radius, then $\cos A$ is root of the equation :
A. $x^{2}-x-8=0$
B. $8 x^{2}-8 x+1=0$
C. $x^{2}-x-4=0$
D. $4 x^{2}-4 x+1=0$

(D) Watch Video Solution

46. A is the orthocentre of $\triangle A B C$ and D is reflection point of A
w.r.t. perpendicualr bisector of BC , then orthocenter of $\triangle D B C$
is :
A. D
B. C
C. B
D. A

Answer: A

47. If $a \neq b \neq c$ are all positive, then the value of the determinant $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ is
A. ≥ 0
B. >0
C. ≤-1
D. <0

Answer: D

(D) Watch Video Solution

48.

In
triangle
ABC
if
$A: B: C=1: 2: 4, \quad$ then $\left(a^{2}-b^{2}\right)\left(b^{2}-c^{2}\right)\left(c^{2}-a^{2}\right)=\lambda a^{2} b^{2} c^{2}$
, where $\lambda=$
(where notations have their usual meaning)
A. 1
B. 2
C. 3
D. $\frac{1}{3}$

Answer: A

- Watch Video Solution

49. In any triangle, the minimum value of $r_{1} r_{2} r_{3} / r^{3}$ is equal to
A. 1
B. 3
C. 8
D. 27

Answer: D

- Watch Video Solution

50. In $\triangle A B C, a=3, b=4$ and $c=5$, then value of $\sin A+\sin 2 B+\sin 3 C$ is
A. $\frac{24}{25}$
B. $\frac{14}{25}$
C. $\frac{64}{25}$
D. None
51. In any triangle $A B C$, the value of $\frac{r_{1}+r_{2}}{1+\cos C}$ is equal to (where notation have their usual meaning) :
A. 2 R
B. $2 r$
C. R
D. $\frac{2 R^{2}}{r}$

Answer: A

- Watch Video Solution

52. In a $!A B C$, medians AD and BE are drawn. If $\mathrm{AD}=4$, $\angle D A B=\pi / 6$ and $\angle A B E=\pi / 3$ then the area of $!A B C$ is
A. $\frac{8}{3 \sqrt{3}}$
B. $\frac{16}{3 \sqrt{3}}$
C. $\frac{32}{3 \sqrt{3}}$
D. $\frac{64}{3 \sqrt{3}}$

Answer: C

D Watch Video Solution

53. The sides of the triangle are $\sin \alpha, \cos \alpha$ and $\sqrt{1+\sin \alpha \cos \alpha}$ for some $0<\alpha<\frac{\pi}{2}$. Then the greatest angle of the triangle is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\frac{2 \pi}{3}$
D. $\frac{5 \pi}{6}$

Answer: C

- Watch Video Solution

54. Let ABC be a right with $\angle B A C=\frac{\pi}{2}$, then $\left(\frac{r^{2}}{2 R^{2}}+\frac{r}{R}\right)$ is equal to :
(where symbols used have usual meaning in a striangle)
A. $\sin B \sin C$
B. $\tan B \tan C$
C. secB secC
D. $\cot B \cot C$

Answer: A

55. Find the radius of the circle escribed to the triangle $A B C$ (Shown in the figure below) on the side BC if $\angle N A B=30^{\circ}, \angle B A C=30^{\circ}, A B=A C=5$.

A. $\frac{(10 \sqrt{2}+5 \sqrt{3}-5)(2-\sqrt{3})}{2 \sqrt{2}}$
B. $\frac{(10 \sqrt{2}+5 \sqrt{3}+5)}{2 \sqrt{2}}(2-\sqrt{3})$
C. $\frac{(10 \sqrt{2}+5 \sqrt{3}-5)}{2 \sqrt{2}}(2+\sqrt{3})$
D. $\frac{(10 \sqrt{2}+5 \sqrt{2}+1)}{2 \sqrt{3}}(\sqrt{3}-1)$

Answer: A

- View Text Solution

56. In a $\triangle A B C$, with usual notations, if $b>c$ then distance between foot of median and foot of altitude both drawn from vertex A on $B C$ is :
A. $\frac{a^{2}-b^{2}}{2 c}$
B. $\frac{b^{2}-c^{2}}{2 a}$
C. $\frac{b^{2}+c^{2}-a^{2}}{2 a}$
D. $\frac{b^{2}+c^{2}-a^{2}}{2 c}$

- Watch Video Solution

57. In a triangle $A B C$ the expression
$a \cos B \cos C+b \cos A \cos B$ equals to :
A. $\frac{r s}{R}$
B. $\frac{r}{s R}$
C. $\frac{R}{r s}$
D. $\frac{R s}{r}$

Answer: A

D View Text Solution
58. In a acute triangle $A B C$, altitudes from the vertices A, B and C meet the opposite sides at the points D, E and F respectively. If the radisu of the circumcircle of
$\triangle A F E, \triangle B F D, \triangle C E D, \triangle A B C$ be
respectively
R_{1}, R_{2}, R_{3} and R. Then the maximum value of $R_{1}+R_{2}+R_{3}$ is :
A. $\frac{3 R}{8}$
B. $\frac{2 R}{3}$
C. $\frac{4 R}{3}$
D. $\frac{3 R}{2}$

Answer: D

59. A circle of area 20 sq. units is entered at the point O. Suppose $\triangle A B C$ is inscribed in that circle and has area 8 sq. units. The central angles α, β and γ are as shown in the figure.

The value of $(\sin \alpha+\sin \beta+\sin \gamma)$ is equal to :

A. $\frac{4 \pi}{5}$
B. $\frac{3 \pi}{4}$
C. $\frac{2 \pi}{5}$
D. $\frac{\pi}{4}$

Answer: A

D View Text Solution

Exercise 2 One Or More Than One Answer Is Are Correct

1. If r_{1}, r_{2}, r_{3} are radii of the escribed circles of a triangle ABC and r it the radius of its incircle, then the root(s) of the equation

$$
x^{2}-r\left(r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}\right) x+\left(r_{1} r_{2} r_{3}-1\right)=0
$$

is/are :
A. r_{1}
B. $r_{2}+r_{3}$
C. 1
D. $r_{1} r_{2} r_{3}-1$

Answer: C::D

D View Text Solution

2. In $\triangle A B C, \angle A=60^{\circ}, \angle B=90^{\circ}, \angle C=30^{\circ}$. Let H be its orthocentre, then :
(where symbols used have usual meanings)
A. $A H=c$
B. $C H=a$
C. $A H=a$
D. $B H=0$

(D) Watch Video Solution

3. In an equilateral triangle, if inradius is a rational number then
A. circumradius is always rational
B. exradii are always rational
C. area is always ir-rational
D. perimeter is always rational

Answer: A::B::C

D Watch Video Solution

4. Let A, B, C be angles of a triangle $A B C$ and let
$D=\frac{5 \pi+A}{32}, E=\frac{5 \pi+B}{32}, F=\frac{5 \pi+C}{32}$, then :
(where $D, E, F \neq \frac{n \pi}{2}, n \in I, I$ denote set of integers)
A. $\cot D \cot E+\cot E \cot F+\cot D \cot F=1$
B. $\cot D+\cot E+\cot F=\cot D \cot E \cot F$
C. $\tan D \tan E+\tan E \tan F+\tan F \tan D=1$
D. $\tan D+\tan E+\tan F=\tan D \tan E \tan F$

Answer: B::C

D View Text Solution

5. In a triangle ABC , if $\mathrm{a}=4, \mathrm{~b}=8$ and $\angle C=60^{\circ}$, then :
(where symbols used have usual meanings)
A. $c=6$
B. $c=4 \sqrt{3}$
C. $\angle A=30^{\circ}$
D. $\angle B=90^{\circ}$

Answer: B::C::D

D Watch Video Solution

6. Find the perimeter of an equilateral triangle with side 9 cm .

- Watch Video Solution

7. $A B C$ is a triangle whose circumcentre, incentre and orthocentre are O, I and H respectively which lie inside the

triangle, then :

A. $\angle B O C=A$
B. $\angle B I C=\frac{\pi}{2}+\frac{A}{2}$
C. $\angle B H C=\pi-A$
D. $\angle B H C=\pi-\frac{A}{2}$

Answer: B::C

- Watch Video Solution

8. In a triangle $A B C$, tan A and $\tan B$ satisfy the inequality $\sqrt{3} x^{2}-4 x+\sqrt{3}<0$, then which of the following must be correct ?
(where symbols used have usual meanings)

$$
\text { A. } a^{2}+b^{2}-a b<c^{2}
$$

B. $a^{2}+b^{2}>c^{2}$
C. $a^{2}+b^{2}+a b>c^{2}$
D. $a^{2}+b^{2}<c^{2}$

Answer: A::C

D Watch Video Solution

9. If in $\triangle A B C, \angle C=\frac{\pi}{8}, a=\sqrt{2}$ and $b=\sqrt{2+\sqrt{2}}$ then find the measure of angle A (in degree).
A. 45°
B. 135°
C. 30°
D. 150°

- Watch Video Solution

10. In triangle $\mathrm{ABC}, a=3, b=4, c=2$. Point D and E trisect the side BC . If $\angle D A E=\theta$, then $\cot ^{2} \theta$ is divisible by :
A. 2
B. 3
C. 5
D. 7

Answer: B::C

- Watch Video Solution

11. In a $\quad \triangle A B C, 3 \sin A+4 \cos B=6$ and
$3 \cos A+4 \sin B=1$, then $\angle C$ can be
A. $\frac{\pi}{4}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{3}$
D. $\frac{5 \pi}{6}$

Answer: B

- Watch Video Solution

12. If the line joining the incentre to the centroid of a triangle
$A B C$ is parallel to the side $B C$. Which of the following are correct
A. $2 b=a+c$
B. $2 a=b+c$
C. $\cot \frac{A}{2} \cot \frac{C}{2}=3$
D. $\cot \frac{B}{2} \cot \frac{C}{2}=3$

Answer: B::D

- View Text Solution

13. In a triangle the lengths of the two larger are 10 and 9 respectively.If the angles are in A.P., the , length of the third side can be (A) $5-\sqrt{6}$ (B) $3 \sqrt{3}$ (C) 5 (D) $5+\sqrt{6}$
A. $5-\sqrt{6}$
B. $5+\sqrt{6}$
C. $6-\sqrt{5}$
D. $6+\sqrt{5}$

Answer: A::B

- Watch Video Solution

14. If area of $\Delta A B C(\Delta)$ and angle C are given and if c opposite to given angle is minimum, then
A. $a=\sqrt{\frac{2 \Delta}{\sin C}}$
B. $b=\left(\frac{2 \Delta}{\sin C}\right)$
C. $a=\frac{4 \Delta}{\sin C}$
D. $b=\frac{4 \Delta}{\sin ^{2} C}$

Answer: A::B

15.

In
a
triangle
ABC,
$\tan A=2 \sin 2 C$ and $3 \cos A=2 \sin B \sin C$ then possible values of C is/are
A. $\frac{\pi}{8}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

Answer: C::D

- View Text Solution

Exercise 3 Comprehension Type Problems

1. Let $\angle A=23^{\circ}, \angle B=75^{\circ}$ and $\angle C=82^{\circ}$ be the angles of

$\triangle A B C$.

The incircle of $\triangle A B C$ touches the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ at points D ,

E, F respectively. Let $r^{\prime}, r_{1}^{\prime}$ respectively be the inradius, exradius opposite to vertex D of $\triangle D E F$ and r be inradius of $\triangle A B C$, then
Q. $\frac{r^{\prime}}{r}=$
A. $\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2}-1$
B. $1-\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2}$
C. $\cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2}-1$
D. $1-\cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2}$

Answer: A

2. Let $\angle A=23^{\circ}, \angle B=75^{\circ}$ and $\angle C=82^{\circ}$ be the angles of $\triangle A B C$.

The incircle of $\triangle A B C$ touches the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ at points D , E, F respectively. Let $r^{\prime}, r_{1}^{\prime}$ respectively be the inradius, exradius opposite to vertex D of $\triangle D E F$ and r be inradius of $\triangle A B C$, then
Q. $\frac{r_{1}^{\prime}}{r}=$
A. $\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2}-1$
B. $1-\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2}$
C. $\cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2}-1$
D. $1-\cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2}$

Answer: B
3. Internal bisectors of $\triangle A B C$ meet the circumcircle at point D , E, and F

Area of $\triangle D E F$ is
A. $2 R^{2} \cos ^{2}\left(\frac{A}{2}\right) \cos ^{2}\left(\frac{B}{2}\right) \cos ^{2}\left(\frac{C}{2}\right)$
B. $2 R^{2} \sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right) \sin \left(\frac{C}{2}\right)$
C. $2 R^{2} \sin ^{2}\left(\frac{A}{2}\right) \sin ^{2}\left(\frac{B}{2}\right) \sin ^{2}\left(\frac{C}{2}\right)$
D. $2 R^{2} \cos \left(\frac{A}{2}\right) \cos \left(\frac{B}{2}\right) \cos \left(\frac{C}{2}\right)$

Answer: D

D Watch Video Solution

4. Internal angle bisecotors of $\triangle A B C$ meets its circum circle at
D, E and F where symbols have usual meaning.
Q. The ratio of area of triangle $A B C$ and triangle DEF is :
A. ≥ 1
B. ≤ 1
C. $\geq 1 / 2$
D. $\leq 1 / 2$

Answer: B

D View Text Solution

5. Let triangle $A B C$ is right triangle right angled at C such that $A<B$ and $r=8, R=41$.
Q. Area of $\triangle A B C$ is :
A. 720
B. 1440
C. 360

Answer: A

- View Text Solution

6. Let triangle $A B C$ is right triangle right angled at C such that $A<B$ and $r=8, R=41$.
Q. $\tan \frac{A}{2}=$
A. $\frac{1}{18}$
B. $\frac{1}{3}$
C. $\frac{1}{6}$
D. $\frac{1}{9}$
7. Let the incircle of $\triangle A B C$ touches the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ at A_{1}, B_{1}, C_{1} respectively. The incircle of $\Delta A_{1} B_{1} C_{1}$ touches its sides of $B_{1} C_{1}, C_{1} A_{1}$ and $A_{1} B_{1}$ at A_{2}, B_{2}, C_{2} respectively and so on.
Q. $\lim _{n \rightarrow \infty} \angle A_{n}=$
A. 0
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

Answer: D

8. Let the incircle of $\triangle A B C$ touches the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ at A_{1}, B_{1}, C_{1} respectively. The incircle of $\Delta A_{1} B_{1} C_{1}$ touches its sides of $B_{1} C_{1}, C_{1} A_{1}$ and $A_{1} B_{1}$ at A_{2}, B_{2}, C_{2} respectively and so on.
Q. In $\Delta A_{4} B_{4} C_{4}$, the value of $\angle A_{4}$ is:
A. $\frac{3 \pi+A}{6}$
B. $\frac{3 \pi-A}{8}$
C. $\frac{5 \pi-A}{16}$
D. $\frac{5 \pi+A}{16}$

Answer: D

9. Let $A B C$ be a given triangle. Points D and E are on sides $A B$ and $A C$ respectively and point F is on line segment $D E$. Let $\frac{A D}{A B}=x, \frac{A E}{A C}=y, \frac{D F}{D E}=z$. Let area of $\Delta B D F=\Delta_{1}$, Area of $\triangle C E F=\Delta_{2}$ and area of $\triangle A B C=\Delta$.
Q. $\frac{\Delta_{1}}{\Delta}$ is equal to :
A. $x y z$
B. $(1-x) y(1-z)$
C. $(1-x) y z$
D. $x(1-y) z$

Answer: C

10. Let $A B C$ be a given triangle. Points D and E are on sides $A B$ and $A C$ respectively and point F is on line segment $D E$. Let $\frac{A D}{A B}=x, \frac{A E}{A C}=y, \frac{D F}{D E}=z$. Let area of $\Delta B D F=\Delta_{1}$, Area of $\triangle C E F=\Delta_{2}$ and area of $\triangle A B C=\Delta$.
Q. $\frac{\Delta_{2}}{\Delta}$ is equal to :
A. $(1-x) y(1-z)$
B. $(1-x)(1-y) z$
C. $x(1-y)(1-z)$
D. $(1-x) y z$

Answer: C

11. $\mathrm{a}, \mathrm{b}, \mathrm{c}$ ar the length of sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ respectively of $\triangle A B C$ satisfying $\log \left(1+\frac{c}{a}\right)+\log a-\log b=\log 2$.
Also the quadratic equation $a\left(1-x^{2}\right)+2 b x+c\left(1+x^{2}\right)=0$ has two equal roots.
Q. a, b, c are in :
A. A.P.
B. G.P.
C. H.P.
D. None

Answer: A

12. $\mathrm{a}, \mathrm{b}, \mathrm{c}$ ar the length of sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ respectively of $\triangle A B C$ satisfying $\log \left(a+\frac{c}{a}\right)+\log a-\log b=\log 2$.
Also the quadratic equation $a\left(1-x^{2}\right)+2 b x+c\left(1+x^{2}\right)=0$ has two equal roots.
Q. Measure of angle C is :
A. 30°
B. 45°
C. 60°
D. 90°

Answer: D

13. If a, b, c are the sides of triangle $A B C$ satisfying $\log \left(1+\frac{c}{a}\right)+\log a-\log b=\log 2$.

Also
$a\left(1-x^{2}\right)+2 b x+c\left(1+x^{2}\right)=0$ has two equal roots. Find the value of $\sin A+\sin B+\sin C$.
A. $\frac{5}{2}$
B. $\frac{12}{5}$
C. $\frac{8}{3}$
D. 2

Answer: B

- Watch Video Solution

14. Let $A B C$ be a triangle inscribed in a circle and let $l_{a}=\frac{m_{a}}{M_{a}}, l_{b}=\frac{m_{b}}{M_{b}}, l_{c}=\frac{m_{c}}{M_{c}} \quad$ where $\quad m_{a}, m_{b}, m_{c} \quad$ are the
lengths of the angle bisectors of angles A, B and C respectively, internal to the triangle and M_{a}, M_{b} and M_{c} are the lengths of these internal angle bisectors extended until they meet the circumcircle.
Q. l_{a} equals :
A. $\frac{\sin A}{\sin \left(B+\frac{A}{2}\right)}$
B. $\frac{\sin B \sin C}{\sin ^{2}\left(\frac{B+C}{2}\right)}$
C. $\frac{\sin B \sin C}{\sin ^{2}\left(B+\frac{A}{2}\right)}$
D. $\frac{\sin B+\sin C}{\sin ^{2}\left(B+\frac{A}{2}\right)}$

Answer: C

15. Let $A B C$ be a triangle inscribed in a circle and let $l_{a}=\frac{m_{a}}{M_{a}}, l_{b}=\frac{m_{b}}{M_{b}}, l_{c}=\frac{m_{c}}{M_{c}} \quad$ where $\quad m_{a}, m_{b}, m_{c}$ are the lengths of the angle bisectors of angles A, B and C respectively, internal to the triangle and M_{a}, M_{b} and M_{c} are the lengths of these internal angle bisectors extended until they meet the circumcircle.
Q. The maximum value of the product
$\left.\left(l_{a} l_{b} l_{c}\right) \times \cos ^{2}\left(\frac{B-C}{2}\right) \times \frac{\cos ^{2}(C-A)}{2}\right) \times \cos ^{2}\left(\frac{A-B}{2}\right)$
is equal to :
A. $\frac{1}{8}$
B. $\frac{1}{64}$
C. $\frac{27}{64}$
D. $\frac{27}{32}$

- View Text Solution

16. Let $A B C$ be a triangle inscribed in a circle and let $l_{a}=\frac{m_{a}}{M_{a}}, l_{b}=\frac{m_{b}}{M_{b}}, l_{c}=\frac{m_{c}}{M_{c}} \quad$ where $\quad m_{a}, m_{b}, m_{c}$ are the lengths of the angle bisectors of angles A, B and C respectively, internal to the triangle and M_{a}, M_{b} and M_{c} are the lengths of these internal angle bisectors extended until they meet the circumcircle.
Q. The minimum value of the expression $\frac{l_{a}}{\sin ^{2} A}+\frac{l_{b}}{\sin ^{2} B}+\frac{l_{c}}{\sin ^{2} C}$ is :
A. 2
B. 3
C. 4
D. none of these

Answer: B

- View Text Solution

Exercise 4 Matching Type Problems

1. Consider a right angled triangle $A B C$ right angled at C with integer sides. List-I gives inradius. List-II gives the number of triangles.

	Column-1		Column-II
(A)	3	(P)	6
(B)	4	(Q)	7
(C)	6	(R)	8
(D)	9	(S)	10
		(T)	12

D View Text Solution

3. In $\triangle A B C$, If $r_{1}=21, r_{2}=24, r_{3}=28$, then

	Column-1						Column-II
(A)	$a=$	(P)	8				
(B)	$b=$	(Q)	12				
(C)	$s=$	(R)	26				

(D)	$r=$	(S)	28
		(T)	42

	Column-1	Column-II
(A)	(P)	$\sin \frac{A}{2}$
$\frac{r_{1}\left(r_{2}+r_{3}\right)}{\sqrt{r_{2} r_{3}+r_{3} r_{1}+r_{1} r_{2}}}$	(Q)	$4 R$
$\frac{r_{1}}{\sqrt{\left(r_{1}+r_{2}\right)\left(r_{1}+r_{3}\right)}}$	(R)	
(C)	$r_{1}+r_{2}+r_{3}-r$	(S)

4.

D View Text Solution

Exercise 5 Subjective Type Problems

1. If the median $A D$ of triangle $A B C$ makes an angle $\frac{\pi}{4}$ with the side BC , then find the value of $|\cot B-\cot C|$.

- Watch Video Solution

2. In a $\triangle A B C, a=\sqrt{3}, b=3$ and $\angle C=\frac{\pi}{3}$. Let internal angle bisectors of angle C intersects side $A B$ at D and altitude from B meets the angle bisector CD at E. If Q_{1} and Q_{2} are incentres of $\triangle B E C$ and $\triangle B E D$. Find the distance between the vertex B and orthocentre of $\Delta O_{1} E O_{2}$.

D View Text Solution

3. In a $\triangle A B C$; inscribed circle with centre I touches sides $A B, A C$ and $B C a t D, E, F \quad$ respectively.Let area of quadrilateral ADIE is 5 units and area of quadrilteral BFID is 10 units. Find the value of

$$
\cos \left(\frac{C}{2}\right)
$$

$$
\overline{\sin \left(\frac{A-B}{2}\right)}
$$

- Watch Video Solution

4. If Δ be area of incircle of a triangle ABC and $\Delta_{1}, \Delta_{2}, \Delta_{3}$ be the area of excircles then find the least value of $\frac{\Delta_{1} \Delta_{2} \Delta_{3}}{729 \Delta^{3}}$

- Watch Video Solution

5. In $\triangle A B C, b=c, \angle A=106^{\circ}, \mathrm{M}$ is an interior point such that
$\angle M B A=7^{\circ}, \angle M A B=23^{\circ}$ and $\angle M C A=\theta^{\circ}$, then $\frac{\theta}{2}$ is equal to
(where notations have their usual meaning)

- View Text Solution

6. In an acute angled triangle $\mathrm{ABC}, \angle A=20^{\circ}$, let DEF be the feet of altitudes through A, B, C respectively and H is the
orthocentre of $\triangle A B C$. Find $\frac{A H}{A D}+\frac{B H}{B E}+\frac{C H}{C F}$.

- View Text Solution

7. Let $\triangle A B C$ be inscribed in a circle having radius unity. The three internal bisectors of the angles A, B and C are extended to intersect the circumcircle of $\triangle A B C$ at $A_{1} B_{1}$ and C_{1} respectively. Then $\frac{A A_{1} \cos \frac{A}{2} B B_{1} \cos \frac{B}{2}+C C_{1} \cos \frac{C}{2}}{\sin A+\sin B+\sin C}=$

- View Text Solution

8. If the quadratic equation $a x^{2}+b x+c=0$ has equal roots where a, b, c denotes the lengths of the sides opposite to vertex
A, B and C of the $\triangle A B C$ respectively then find the number of integers in the range of $\frac{\sin A}{\sin C}+\frac{\sin C}{\sin A}$
9. if ABC is a triangle and $\tan \left(\frac{A}{2}\right), \tan \left(\frac{B}{2}\right), \tan \left(\frac{C}{2}\right)$ are in H.P. Then find the minimum value of $\cot \left(\frac{B}{2}\right)$

- Watch Video Solution

10. In $\Delta A B C$, if circumradius ' R ' and inradius ' r ' are connected by relation $R^{2}-4 R r+8 r^{2}-12 r+9=0$, then the greatest integer which is less than the semiperimeter of $\triangle A B C$ is :

D View Text Solution

11. Sides $A B$ and $A C$ in an equilateral triangle $A B C$ with side length 3 is extended to form two rays from point A as shown in the figure. Point P is chosen outside the triangle $A B C$ and
between the two rays such that $\angle A B P+\angle B C P=180^{\circ}$. If the maximum length of CP is M , then $M^{2} / 2$ is equal to :

- View Text Solution

12. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be sides of a triangle ABC and Δ denotes its area .

If $a=2, \Delta=\sqrt{3}$ and $a \cos C+\sqrt{3} a \sin C-b-c=0$, then
find the value of $(b+c)$.
(symbols used have usual meaning in $\triangle A B C$).

- View Text Solution

13. Circumradius of $\triangle A B C$ is 3 cm and its area is $6 \mathrm{~cm}^{2}$. If DEF is the triangle formed by feet of the perpendicular drawn from A, B and C on the sides $B C, C A$ and $A B$, respectively, then the perimeter of $\triangle D E F($ in cm$)$ is \qquad

- Watch Video Solution

