

MATHS

BOOKS - VK JAISWAL MATHS (HINGLISH)

STRAIGHT LINES

Exercise 1 Single Choice Problems

1. The ratio in which the line segment joining (2, -3) and

(5,6) is divided by the x- axis is :

A. 3:1

 $\mathsf{B}.\,1\!:\!2$

 $\mathsf{C.}\,\sqrt{3}\!:\!2$

D. $\sqrt{2}$: 3

Answer: B

2. If is the line whose equation is ax + by = c. Let M be the reflection of 'L through the y-axis and let N be the reflection of L through the x-axis. Which of the following must be true about M and N for choices of a, b and c?

A. The x- intercepts of M and N are equal

B. The y- intercepts of M and N are equal

C. The slopes of M and N are equal

D. The slopes of M and N are reciprocal

Answer: C

Watch Video Solution

3. The complete set of real values of 'a' such that the point lies triangle $p(a, \sin a)$ lies inside the triangle formed by the lines x - 2y + 2 = 0; x + y = 0 and $x - y - \pi = 0$

A.
$$\left(0, \frac{\pi}{6}\right) \cup \left(\frac{\pi}{3}, \frac{\pi}{2}\right)$$

B. $\left(\frac{\pi}{2}, \pi\right) \cup \left(\frac{2\pi}{2}, 2\pi\right)$

C.
$$(0, \pi)$$

D. $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$

Answer: C

Watch Video Solution

4. Let m be a positive integer and let the lines 13x + 11y = 700 and y = mx - 1 intersect in a point whose coordinates are integer. Then m equals to :

A. 4

B. 5

C. 6

Answer: C

Watch Video Solution

5. If
$$P\equivigg(rac{1}{x_p},pigg), Q=igg(rac{1}{x_q},qigg), R=igg(rac{1}{x_r},rigg)$$

where $x_k
eq 0$, denotes the k^{th} terms of a H.P. for $k \in N$, then :

A. ar.

$$(\Delta PQR) = rac{p^2q^2r^2}{2}\sqrt{\left(p-q
ight)^2 + \left(q-r
ight)^2 + \left(r-p
ight)^2}$$

B. ΔPQR is a right angled triangle

C. the points P,Q, R are collinear

D. None of these

Answer: C

6. If the sum of the slopes of the lines given by $x^2 + 2cxy - y^2 = 0$ is four times their product, then c has the value

- A. 1
- B. -1
- C. 2

Answer: C

7. A piece of cheese is located at (12, 10) in a coordinate plane. A mouse is at (4,-2) and is running up the line y = -5x + 18. At the point (a, b), the mouse starts getting farther from the cheese rather than closer to it. The value of (a + b) is :

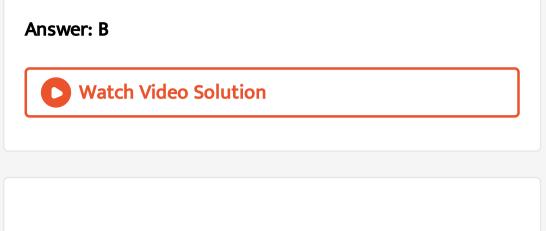
A. 6

B. 10

C. 18

D. 14

Answer: B


8. The vertex of the right angle of a right angled triangle lies on the straight line 2x - y - 10 = 0 and the two other vertices, at points (2, -3) and (4, 1) then the area of triangle in sq. units is-

A. $\sqrt{10}$

B. 3

C.
$$\frac{33}{5}$$

D. 11

9. Given a family of lines a(2x + y+4) + b(x-2y-3)=0 .The number of lines belonging to the family at a distance of $\sqrt{10}$ from point (2, -3) is

A. 0

B. 1

C. 2

D. ∞

Answer: B

10. Point $(0, \beta)$ lies on or inside the triangle fromed by the lines y = 0, x + y = 8 and 3x - 4y + 12 = 0. Then eta can be :

A. 2

B. 4

C. 8

D. 12

Answer: A

11. the lines x + y + 1 = 0; 4x + 3y + 4 = 0 and x + lpha y + eta = 0, where $lpha^2 + eta^2 = 2$, are concurrent A. $\alpha = 1, \beta = -1$ B. $\alpha = 1, \beta = \pm 1$ $\mathsf{C}.\,\alpha=\,-\,1,\,\beta=\,\pm\,1$ $\mathsf{D}.\,\alpha=~\pm\,1,\beta=1$

Answer: D

Watch Video Solution

12. A straight line through the origin o meets the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 points P and Q

respectively. Then the point o divides the segment PQ in the ratio: : (A) 1:2 (B) 3:2 (C) 2:1 D) 4:3

A. 1:2

B.4:3

C.2:1

D. 3:4

Answer: D

Watch Video Solution

13. If the points (2a, a), (a, 2a) and (a, a) enclose a triangle of area 72 units, then co-ordinates of the centroid of the triangle may be :

A. (4, 4)

- B.(-4,4)
- C. (12, 12)
- D. (16, 16)

Answer: D

Watch Video Solution

14. Let g(x) = ax + b, where a < 0 and g is defined from [1,3] onto [0,2] then the value of $\cot(\cos^{-1}(|\sin x| + |\cos x|) + \sin^{-1}(-|\cos x| - |\sin x|))$ is equal to : A. g(1)

B. g(2)

C. g(3)

 ${\sf D}.\,g(1)+g(3)$

Answer: C

Watch Video Solution

15. If the point P(x, y) be equidistant from the points A(a+b,a-b) and B(a-b,a+b) then

A.
$$ax+by=0$$

$$\mathsf{B.}\,ax-by=0$$

 $\mathsf{C}.\,bx + ay = 0$

D. x - y = 0

Answer: D

Watch Video Solution

16. If the equation $4y^3 - 8a^2yx^2 - 3ay^2x + 8x^3 = 0$ represents three straight lines, two of them are perpendicular, then sum of all possible values of a is equal to

A.
$$\frac{3}{8}$$

B. $\frac{-3}{4}$

$$\mathsf{C}.\,\frac{1}{4}$$

D. -2

Answer: B

17. The orthocentre of the triangle formed by the lines x - 7y + 6 = 0, 2x - 5y - 6 = 0 and 7x + y - 8 = 0 is

A. (8, 2) B. (0, 0) C. (1, 1) D.(2, 8)

Answer: C

Watch Video Solution

18. All the chords of the curve $2x^2 + 3y^2 - 5x = 0$ which

subtend a right angle at the origin are concurrent at :

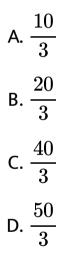
A. (0, 1)B. (1, 0)C. (-1, 1)D. (1, -1)

Answer: B

19. From a point P = (3, 4) perpendiculars PQ and PR are drawn to line 3x + 4y - 7 = 0 and a variable line y - 1 = m(x - 7) respectively then maximum area of triangle PQR is :

A. 10

B. 12


C. 6

D. 9

Answer: D

20. the equation of two adjacent sides of rhombus are given by y = x and y = 7x. the diagonals of the rhombus intersect each other at point of (1, 2).then the area of the rhombus is:

Answer: A

Watch Video Solution

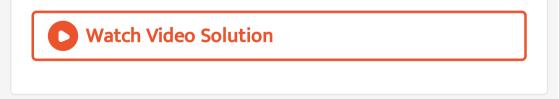
21. The point P(3, 3) is reflected across the line y = -x. Then it is translated horizontally 3 units to the left and vertically 3 units up. Finally, it is reflected across the line y = x. What are the coordinates of the point after these transformations ?

A. (0, -6)B. (0, 0)C. (-6, 6)D. (-6, 0)

Answer: A

22. The equation $x = t^3 + 9$ and $y = \frac{3t^3}{4} + 6$ represents a straight line where t is a parameter. Then y-intercept of the line is :

A. $-\frac{3}{4}$ B. 9 C. 6


D. 1

Answer: A

23. The combined equation of two adjacent sides of a formed in rhombus first quadrant is $7x^2 - 8xy + y^2 = 0$ then slope of its longer diagonal is A. $-\frac{1}{2}$ B. -2 C. 2 D. $\frac{1}{2}$

Answer: C

24. The number of integral point inside the triangle made by the line 3x + 4y - 12 = 0 with the coordinate axes which are equidistant from at least two sides is/are :

(an integral point is a point both of whose coordinates are integers.)

- A. 1
- B. 2
- C. 3
- D. 4

Answer: A

25. The area of triangle formed by the straight lines whose equations are y = 4x + 2, 2y = x + 3 and x = 0 is :

A.
$$\frac{25}{7\sqrt{2}}$$

B. $\frac{\sqrt{2}}{28}$
C. $\frac{1}{28}$
D. $\frac{15}{7}$

Answer: C

Watch Video Solution

26. in a triangle ABC, if A is (1, 2) and the equations of the medians through B and c are x + y = 5 and x = 4respectively then B must be:

A. (1, 4)B. (7, -2)C. (4, 1)D. (-2, 7)

Answer: B

27. The equation of image of pair of lines y = |x - 1| with respect to y-axis is :

A.
$$x^2 - y^2 - 2x + 1 = 0$$

B.
$$x^2-y^2-4x+4=0$$

C.
$$4x^2 - 4x - y^2 + 1 = 0$$

D.
$$x^2-y^2+2x+1=0$$

Answer: D

28. If P, Q and R are three points with coordinates (1, 4), (4, 5) and (m, m) respectively, then the value of

m for which PR + RQ is minimum, is :

A. 4

B. 3

C.
$$\frac{17}{8}$$

D. $\frac{7}{2}$

Answer: A

A(-1, -7), B(5, 1) and C(1, 4). The equation of the bisector of the angle ABC

A.
$$y + 2x - 11 = 0$$

B.
$$x - 7y + 2 = 0$$

C.
$$y - 2x + 9 = 0$$

D.
$$y+7x-36=0$$

Answer: B

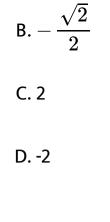
Watch Video Solution

30. If one of the lines given by $6x^2 - xy + 4cy^2 = 0$ is

3x+4y=0 , then c=

A. -3

C. 3


D. 1

Answer: A

31. The equations of L_1 and L_2 are y = mx and y = nx, respectively. Suppose L_1 make twice as large of an angle with the horizontal (measured counterclockwise from the positive x-axis) as does L_2 and that L_1 has 4 times the slope of L_2 . If L_1 is not horizontal, then the value of the product (mn) equals:

A. $\frac{\sqrt{2}}{2}$

Answer: C

32. Given A(0, 0) and B(x, y) with $x \in (0, 1)$ and y > 0. Let the slope of the line AB equals m_1 Point C lies on the line x = 1 such that the slope of BC equals m_2 where $0 < m_2 < m_1$ If the area of the triangle ABC can expressed as $(m_1 - m_2)f(x)$, then largest possible value of f(x) is: A. 1

B.
$$\frac{1}{2}$$

C. $\frac{1}{4}$
D. $\frac{1}{8}$

Answer: D

33. If a,b,c are in H.P., then the straight line $\frac{x}{a} + \frac{y}{b} + \frac{1}{c}$

= 0 always passes through a fixed point and that point is

A.
$$(-1, 2)$$

B.
$$(-1, -2)$$

C.
$$(1, -2)$$

D. $\left(1, \frac{1}{2}\right)$

Answer: C

Watch Video Solution

34. if
$$\frac{X^2}{a} + \frac{y^2}{b} + \frac{2xy}{h} = 0$$
 represent pair of straight lies and slope one line is twice the other line then $ab: h^2$.

A. 9:8

B. 8:9

C.1:2

D. 2:1

35. Statement-1: variable line drawn through a fixed point cuts the coordinate axes at A and B. The locus of midpoint of AB is a circle. because Statement 2: Through 3 non-collinear points in a plane, only one circle can be drawn.

A. Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.B. Statement-1 is true, statement-2 is true and statement-2 is not the correct explanation for

statement-1.

C. Statement-1 is true, statement-2 is false.

D. Statement-1 is false, statement-2 is true.

Answer: D

Watch Video Solution

36. A line passing through origin and is perpendicular to two given lines 2x + y + 6 = 0 and 4x + 2y - 9 = 0. The ratio in which the origin divides this line is

A. 1:2

B. 1:1

C.5:4

D. 3:4

Answer: D

37. If a vertex of a triangle is (1, 1) and the mid-points of two side through this vertex are (-1, 2) and (3, 2), then centroid of the triangle is

$$\begin{array}{l} \mathsf{A.}\left(\,-\,1,\,\frac{7}{3}\right)\\ \mathsf{B.}\left(\,-\,\frac{1}{3},\,\frac{7}{3}\right)\\ \mathsf{C.}\left(1,\,\frac{7}{3}\right)\end{array}$$

$$\mathsf{D}.\left(\frac{1}{3},\frac{7}{3}\right)$$

Answer: C

38. the diagonals of the parallelogram PQRS are along the lines x + 3y = 4 and 6x - 2y = 7 then PQRS is must be:

A. rectangle

B. square

C. rhombus

D. neither rhombus nor rectangle

Answer: C

39. The two points on the line x + y = 4 that lies at a unit perpendicular distance from the line 4x + 3y = 10 are (a_1, b_1) and (a_2, b_2) then $a_1 + b_1 + a_2 + b_2$ is equal to

A. 5

B. 6

C. 7

D. 8

Answer: D

40. The orthocenter of the triangle formed by lines x + y = 1, 2x + 3y = 6 and 4x - y + 4 = 0 lines in quadrant number

A. first quadrant

B. second quadrant

C. third quadrant

D. fourth quadrant

Answer: A

41. The equation of the line passing through the intersection of the lines 3x + 4y = -5, 4x + 6y = 6 and perpendicular to 7x - 5y + 3 = 0 is :

A.
$$5x+7y-2=0$$

B.
$$5x - 7y + 2 = 0$$

C.
$$7x - 5y + 2 = 0$$

D.
$$5x+7y+2=0$$

Answer: D

42. The point (2, 1), (8, 5) and (x, 7) lie on a straight line.

Then the value of x is :

A. 10

B. 11

C. 12

D. $\frac{35}{3}$

Answer: B

Watch Video Solution

43. In a parallelogram PQRS (taken in order), P is the point (-1, -1), Q is (8, 0) and R is (7, 5). Then S is the point :

A.
$$(-1, 4)$$

B. $(-2, 2)$
C. $\left(-2, \frac{7}{2}\right)$
D. $(-2, 4)$

Answer: D

Watch Video Solution

44. The area of triangle whose vertices are (a, a), (a + 1, a + 1), (a + 2, a) is : A. a^3

 $\mathsf{B.}\,2a$

C. 1

D. 2

Answer: C

Watch Video Solution

45. The equation $x^2 + y^2 - 2xy - 1 = 0$ represents :

A. two parallel straight lines

B. two perpendicular straight lines

C. a point

D. a circle

Answer: A

46. Let A (-2, 0) and B(2, 0), then the number of integral values of a, `a in [-10, 10] for which line segment AB subtends an acute angle at point C (a, a+1) is

A. 15

B. 17

C. 19

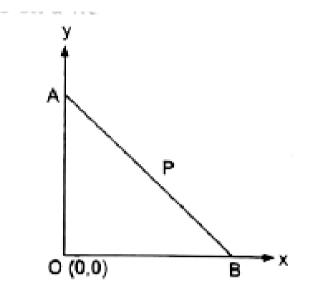
D. 21

Answer: C

47. The angle between sides of a rhombus whose v2 times sides is mean of its two diagonal, is equal to: $a)30^{\circ}(b)45^{\circ}(c)60^{\circ}(d)90^{\circ}$

A. 300°

B. 45°


C. 60°

D. 90°

Answer: D

48. A rod of AB of length 3 rests on a wall as follows :

P is a point on AB such that AP: PB = 1:2 If the rod slides along the wall, then the locus of P lies on

A.
$$2x+y+xy=2$$

B.
$$4x^2+xy+xy+y^2=4$$

C.
$$4x^2 + y^2 = 4$$

D.
$$x^2+y^2-x-2y=0$$

Answer: C

49. if
$$\frac{X^2}{a} + \frac{y^2}{b} + \frac{2xy}{h} = 0$$
 represent pair of straight

lies and slope one line is twice the other line then $ab: h^2$.

A. 8:9

B. 1:2

C.2:1

D. 9:8

Answer: D

50. locus of point of reflection of point (a, 0) w.r.t. the line $yt = x + at^2$ is given by:

A. x - a = 0

B. y - a = 0

C. x + a = 0

D.
$$y + a = 0$$

Answer: C

51. A light ray emerging from the point source placed at P(1, 3) is reflected at a point Q in the axis of x. If the reflected ray passes through the point R(6, 7), then the abscissa of Q is:

A.
$$\frac{5}{2}$$

B. 3

C.
$$\frac{7}{2}$$

D. 1

Answer: A

52. if the axes are rotated through 60 in the anticlockwise sense,find the transformed form of the equation $x^2 - y^2 = a^2$,

A.
$$X^2 + Y^2 - 3\sqrt{3}XY = 2a^2$$

B. $X^2 + Y^2 = a^2$
C. $Y^2 - X^2 - 2\sqrt{3}XY = 2a^2$
D. $X^2 - Y^2 + 2\sqrt{3}XY = 2a^2$

Answer: C

Watch Video Solution

53. The straight lines 3x + y - 4 = 0, x + 3y - 4 = 0

and x + y = 0 form a triangle which is :

A. equilateral

B. right- angled

C. acute- angled and isosceles

D. obtuse - angled and isosceles

Answer: D

54. if m and b are real numbers and mb > 0, then the line whose equation is y = mx + b cannot contain the

point

- A. (0, 2008)
- B. (2008, 0)
- C.(0, -2008)
- D. (20, -100)

Answer: B

55. The number of possible straight lines passing through point(2,3) and forming a triangle with coordiante axes whose area is 12 sq. unit is: a. one b. two c. three d. four

A. one

B. two

C. three

D. four

Answer: C

Watch Video Solution

56. If x_1, x_2, x_3 and y_1, y_2, y_3 are both in G. P. with the

same common ratio then the points $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3)

A. lie on a straight line

B. lie on a circle

C. are vertices of a triangle

D. None of these

Answer: A

Watch Video Solution

57. Locus of centroid of the triangle whose vertices are (a cos t, a sin t), (b sin t, - b cos t) and (1, 0), where is a

A.
$$\left(3x - 1
ight)^2 + \left(3y
ight)^2 = a^2 - b^2$$

B.
$$(3x - 1)^2 + (3y)^2 = a^2 + b^2$$

C.
$$(3x+1)^2 + (3y)^2 = a^2 + b^2$$

D.
$$\left(3x + 1
ight)^2 + \left(3y
ight)^2 = a^2 - b^2$$

Answer: B

Watch Video Solution

58. The equation of the straight line passing through the point (4, 3) and making intercepts on the co-ordinate axes whose sum is -1 is

A.
$$\frac{x}{2} + \frac{y}{3} = -1$$
 and $\frac{x}{-2} + \frac{y}{1} = -1$
B. $\frac{x}{2} - \frac{y}{3} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$
C. $\frac{x}{2} + \frac{y}{3} = 1$ and $\frac{x}{2} + \frac{y}{1} = 1$
D. $\frac{x}{2} - \frac{y}{3} = 1$ and $\frac{x}{-2} + \frac{y}{1} = 1$

Answer: D

59. Let A (3, 2) and B (5, 1). ABP is an equilateral triangle is constructed one the side of AB remote from the origin then the orthocentre of triangle ABP is:

A.
$$\left(4 - \frac{1}{2}\sqrt{3}, \frac{3}{2} - \sqrt{3}\right)$$

B. $\left(4 + \frac{1}{2}\sqrt{3}, \frac{3}{2} + \sqrt{3}\right)$
C. $\left(4 - \frac{1}{6}\sqrt{3}, \frac{3}{2} - \frac{1}{3}\sqrt{3}\right)$
D. $\left(4 + \frac{1}{6}\sqrt{3}, \frac{3}{2} + \frac{1}{3}\sqrt{3}\right)$

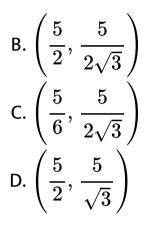
Answer: D

60. Area of the triangle formed by the lines through point (6, 0) and at a perpendicular distance of 5 from point (1, 3) and line y = 16 in square units is :

A. 160

B. 200

C. 240


D. 130

Answer: C

61. The orthocentre of the triangle with vertices $(5,0), (0,0), \left(\frac{5}{2}, \frac{5\sqrt{3}}{2}\right)$ is :

A.
$$(2, 3)$$

Answer: B

62. All chords of the curve $3x^2 - y^2 - 2x + 4y = 0$ which subtend a right angle at the origin, pass through

the fixed point

A. (1, 2)B. (1, -2)C. (2, 1)D. (-2, 1)

Answer: B

:

63. Let $P(-1,0), Q(0,0), R(3, 3\sqrt{3})$ be three points then the equation of the bisector of the angle $\angle PQR$ is

A.
$$rac{\sqrt{3}}{2}x+y=0$$

B. $x+\sqrt{3}y=0$
C. $\sqrt{3}x+y=0$

D.
$$x+rac{\sqrt{3}}{2}y=0$$

Answer: C

Watch Video Solution

Exercise 2 One Or More Than One Answer Is Are Correct

1. A line makes intercepts whose sum is 9 and product is 20 .If the x-intercept is greater,then the equation of the line is A. 4x + 5y - 20 = 0

B.
$$5x + 4y - 20 = 0$$

C.
$$4x-5y-20=0$$

D.
$$4x + 5y + 20 = 0$$

Answer: A::B

Watch Video Solution

2. The equation(s) of the medians of the triangle formed

by the points (4, 8), (3, 2) and 5, -6) is/are :

A.
$$x = 4$$

B.
$$x = 5y - 3$$

C.
$$2x + 3y - 12 = 0$$

D.
$$22x + 3y - 92 = 0$$

Answer: A::C::D

Watch Video Solution

3. The value(s) of t for which the lines 2x + 3y = 5, $t^2x + ty - 6 = 0$ and 3x - 2y - 1 = 0 are concurrent, can be :

A. t=2

B. t = -3

 $\mathsf{C}.\,t=\,-\,2$

 $\mathsf{D}.\,t=3$

Answer: A::B

4. If one of the lines given by the equation $ax^2 + 6xy + by^2 = 0$ bisects the angle between the coordinate axes, then value of (a + b) can be :

A. -6

B. 3

C. 6

D. 12

Answer: A::C

5. Suppose ABCD is a quadrilateral such that the coordinates of A, B and C are (1,3)(-2,6) and (5, -8) respectively. For what

choices of coordinates of D will make ABCD a trapezium ?

A. (3, -6)

B. (6, -9)

C. (0, 5)

D. (3, -1)

Answer: B::D

O Watch Video Solution

6. One diagonal of a square is the portion of the line $\sqrt{3}x+y=2\sqrt{3}$ intercepted by the axes. Obtain the extremities of the other diagonal is : (A) $ig(1+\sqrt{3},\ -1+\sqrt{3}ig)$ (B) $ig(1+\sqrt{3},\ 1+\sqrt{3}ig)$ (C) $ig(1-\sqrt{3},\ -1+\sqrt{3}ig)$ (D) $ig(1-\sqrt{3},1+\sqrt{3}ig)$ A. $(1 + \sqrt{3}, \sqrt{3} - 1)$ B. $(1 + \sqrt{3}, \sqrt{3} + 1)$ C. $(1 - \sqrt{3}, \sqrt{3} - 1)$ D. $(1 - \sqrt{3}, \sqrt{3} + 1)$

Answer: B::C

7. Two sides of a rhombus ABCD are parallel to the lines y = x + 2 and y = 7x + 3 If the diagonals of the rhombus intersect at the point (1, 2) and the vertex A is on the y-axis, then vertex A can be

A. $\left(0, \frac{5}{2}\right)$ B. (0, 0) C. (0, 5) D. (0, 3)

Answer: A::B

8. Find the equations of the sides of the triangle having (3, -1) as a vertex, x - 4y + 10 = 0 and 6x + 10y - 59 = 0 being the equations of an angle bisector and a median respectively drawn from different vertices.

A.
$$6x + 7y - 13 = 0$$

B.
$$2x + 9y - 65 = 0$$

$$\mathsf{C}.\,18x + 13y - 41 = 0$$

D.
$$6x - 7y - 25 = 0$$

Answer: B::C::D

9. A(1, 3) and C(5, 1) are two opposite vertices of a rectangle ABCD. If the slope of BD is 2, then the coordinates of B can be :

A. (4, 4)

B. (5, 4)

C. (2, 0)

D. (1, 0)

Answer: A::C

10. All the points lying inside the triangle formed by the points (1, 3), (5, 6), and (-1, 2) satisfy :

A.
$$3x+2y\geq 0$$

B.
$$2x + y + 1 \ge 0$$

$$\mathsf{C}.-2x+11\geq 0$$

D.
$$2x + 3y - 12 \ge 0$$

Answer: A::B::C::D

Watch Video Solution

11. The slope of a median, drawn from the vertex A of the triangle ABC is -2. The co-ordinates of vertices B and C are respectively (-1, 3) and (3, 5). If the area of the triangle be 5 square units, then possible distance of vertex A from the origin is/are.

A. 6

B. 4

 $\mathsf{C.}\,2\sqrt{2}$

D. $3\sqrt{2}$

Answer: A::C

The

 $A(0, 0), B(\cos \alpha, \sin \alpha)$ and $C(\cos \beta, \sin \beta)$ are the vertices of a right angled triangle if :

$$A. \sin\left(\frac{\alpha - \beta}{2}\right) = \frac{1}{\sqrt{2}}$$
$$B. \cos\left(\frac{\alpha - \beta}{2}\right) = -\frac{1}{\sqrt{2}}$$
$$C. \cos\left(\frac{\alpha - \beta}{2}\right) = \frac{1}{\sqrt{2}}$$
$$D. \sin\left(\frac{\alpha - \beta}{2}\right) = -\frac{1}{\sqrt{2}}$$

Answer: A::B::C

Exercise 3 Comprehension Type Problems

1. The equations of the sides AB and CA of a ΔABC are x+2y=0 and x-y=3 respectively. Given a fixed point P(2, 3).

Q. Let the equation of BC is x+py=q. Then the value of (p+q) if P be the centroid of the ΔABC is :

A. 14

B. -14

C. 22

D. -22

Answer: D

2. The equations of the sides AB and CA of a ΔABC are x+2y=0 and x-y=3 respectively. Given a fixed point P(2, 3).

Q. If P be orthocentre of ΔABC then equation of side BC is :

A. y + 5 = 0

B. y - 5 = 0

$$C.5y + 1 = 0$$

D. 5y - 1 = 0

Answer: A

Watch Video Solution

3. Consider a triangle ABC with vertex A(2, -4). The internal bisectors of the angle B and C are x + y = 2 and x - 3y = 6 respectively. Let the two bisectors meet at *I*.if (a, b) is incentre of the triangle ABC then (a + b) has the value equal to

A. 1

B. 2

C. 3

D. 4

Answer: B

4. If the line joining the points $(-x_1, y_1)$ and (x_2, y_2) subtends a right angle at the point (1,1), then $x_1 + x_2 + y_2 + y_2$ is equal to

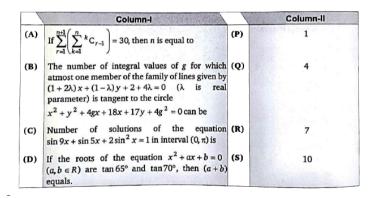
A. 4

B. 5

C. 6

D. 8

Answer: D



Exercise 4 Matching Type Problems

1	Column-I	1	Column-II
(A)	If a, b, c are in A.P., then lines $ax + by + c = 0$ are concurrent at:	(P)	(-4, -7)
(B)	A point on the line $x + y = 4$ which lies at a unit distance from the line $4x + 3y = 10$ is :	(Q)	(-7, 11)
(C)	Orthocentre of triangle made by lines $x + y = 1$, x - y + 3 = 0, $2x + y = 7$ is	(R)	(1, -2)
(D)	Two vertice of a triangle are $(5, -1)$ and $(-2, 3)$. If orthocentre is the origin then coordinates of the third vertex are	(S)	(–1, 2)
		(T)	(0, 0)

1.

View Text Solution

2.

	Column-l		Column-II
(A)	Exact value of $\cos 40^{\circ}(1 - 2\sin 10^{\circ}) =$	(P)	1
			4

3.

Marken					
4	(B)	Value of λ for which lines are concurrent $x + y + 1 = 0$, $3x + 2\lambda y + 4 = 0$, $x + y - 3\lambda = 0$ can be	(Q)	$\frac{1}{2}$	
	(C)	Points $(k, 2-2k)$, $(-k+1, 2k)$ and $(-4-k, 6-2k)$ are collinear then sum of all possible real values of 'k' is	(R)	3 2	
	(D)	Value of $\sum_{k=3}^{\infty} \sin^k \left(\frac{\pi}{6}\right) =$	(S)	$-\frac{1}{2}$	

View Text Solution

Exercise 5 Subjective Type Problems

1. If the area of the quadrilateral ABCD whose vertices are A(1, 1), B(7, -3), C(12, 2) and D(7, 21) is Δ . Find the sum of the digits of Δ .

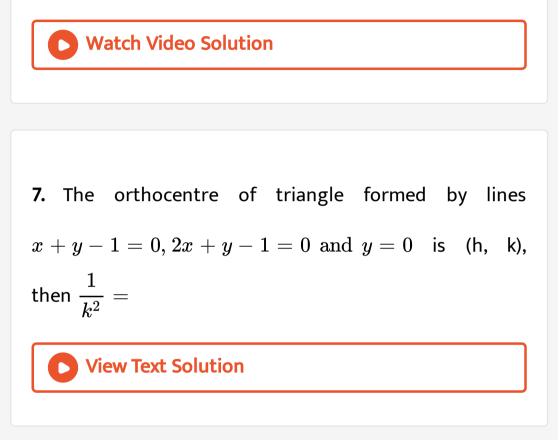
2. The equation of a line through the mid-point of the sides AB and AD of rhombus ABCD, whose one diagonal is 3x - 4y + 5 = 0 and one vertex is A(3, 1) is ax + by + c = 0. Find the absolute value of (a + b + c) where a, b, c are integers expressed in lowest form.

Watch Video Solution

3. If the point (α, α^4) lies on or inside the triangle formed by lines $x^2y + xy^2 - 2xy = 0$, then the largest value of α is .

4. The minimum value of
$$[x_1-x_2)^2+\left(12-\sqrt{1-(x_1)^2}-\sqrt{4x_2}
ight]^{rac{1}{2}}$$
 for all permissible values of x_1 and x_2 is equal to $a\sqrt{b}-c$

where $a, b, c \in N$, the find the value of a+b-c



5. The number of lines that can be drawn passing through point (2, 3) so that its perpendicular distance from (-1, 6) is equal to 6 is :

Watch Video Solution

6. The graph of $x^4 = x^2 y^2$ is a union of n different lines,

then the value of n is.

8. The point (-2,a) lies in the interior of the triangle formed by the lines y=x, y=-x and 2x+3y=6 the integral value of a is

9. Let $A \equiv (-1, 0), B \equiv (3, 0)$, and PQ be any line passing through (4, 1) having slope m. Find the range of m for which there exist two points on PQ at which ABsubtends a right angle.

Watch Video Solution

10. Given that the three points where the curve $y = bx^2 - 2$ intersects the x-axis and y-axis form an equilateral triangle. Find the value of 2b.

Watch Video Solution