

MATHS

BOOKS - VIKAS GUPTA MATHS (HINGLISH)

APPLICATION OF DERIVATIVES

Exercise Single Choice Problems

- **1.** The difference between the maximum and minimum value of the function $f(x) = 3 \sin^4 x \cos^6 x$ is :
 - A. $\frac{3}{2}$
 - B. $\frac{5}{2}$
 - C. 3
 - D. 4

Answer: D

Watch Video Solution

2. A function y=f(x) has a second order derivative f(x)=6(x-1). If its graph passes through the point (2,1) and at that point the tangent to the graph is y=3x-5 then the function is

A.
$$(x-1)^2$$

B.
$$(x-1)^3$$

C.
$$(x+1)^3$$

D.
$$(x+1)^2$$

Answer: B

3. If the subnormal at any point on the curve $y=3^{1-k}$. x^k is of constant length the k equals to:

A.
$$\frac{1}{2}$$

B. 1

C. 2

D. 0

Answer: A

Watch Video Solution

4. If $x^5-5qx+4r$ is divisible by $\left(x-c
ight)^2$ then which of the following must hold true

A.
$$q=r$$

$$\mathtt{B.}\,q+r=0$$

$$\operatorname{C.}q^5+r=0$$

D.
$$q^4=r^5$$

Answer: C

Watch Video Solution

- **5.** A spherical iron ball 10 cm in radius is coated with a layer of ice of unirform thichness that melts at a rate of $50cm^3$ /min. when the thickness of ice is 5 cm, then the rate at which the thickness of ice decreases, is
 - A. $\frac{1}{36\pi}cm/\min$
 - B. $\frac{1}{18\pi}cm/\min$
 - C. $\frac{1}{54\pi}cm/\min$
 - D. $\frac{5}{6\pi}cm/\min$

Answer: B

6. If
$$f(x)=rac{(x-1)(x-2)}{(x-3)(x-4)}$$
, then number of local externas for g (x),

where g(x) = f(|x|):

A. 3

B. 4

C. 5

D. None of these

Answer: C

Watch Video Solution

7. Two straight roads OA and OB intersect at an angle 60° . A car approaches O from A, where OA=700m at a uniform speed of 20 m/s, Simultaneously, a runner starts running from O towards B at a uniform speed of 5 m/s. The time after start when the car and the runner are closest is :

B. 15 sec

C. 20 sec

D. 30 sec

Answer: D

Watch Video Solution

8. Let $f(x)=\left\{egin{array}{ll} a-3x & -2\leq x<0 \ 4x\pm 3 & 0\leq x<1 \end{array} ight.$ if f(x) has smallest

valueat x = 0, then range of a, is

A.
$$(-\infty,3)$$

C.
$$(3, \infty)$$

B. $(-\infty, 3]$

D.
$$(-3, \infty)$$

Answer: D

9. If
$$f(x)=\left\{3+|x-k|,x\leq ka^2-2+rac{sn(x-k)}{x-k},x>k
ight.$$
 has minimum at $x=k, ext{ then }a\in R ext{ b. }|a|<2 ext{ c. }|a|>2 ext{ d. }1<|a|<2$

A.
$$a \in R$$

B.
$$|a| < 2$$

C.
$$|a|>2$$

D.
$$1 < |a| < 2$$

Answer: C

Watch Video Solution

10. For a certain curve $\frac{d^2y}{dx^2}=6x-4$ and curve has local minimum values 5atx = 1, Let the global maximum and global minimum values, where $0 \le x \le 2$, are M and m. Then the value of (M-m) equals to :

- A.-2
- B. 2
- C. 12
- D. 12

Answer: B

Watch Video Solution

11. The tangent to $y=ax^2+bx+rac{7}{2}at(1,2)$ is parallel to the normal at the point $(\,-2,2)$ on the curve $y=x^2+6x+10.$ Then the vlaue of

- - A. 2

 $\frac{a}{2}-b$ is:

- B. 0
- C. 3
- D. 1

Answer: C

Watch Video Solution

12. If (a,b) be the point on the curve $9y^2=x^3$ where normal to the curve make equal intercepts with the axis, then the value of (a+b) is:

A. 0

B. $\frac{10}{3}$

c. $\frac{20}{3}$

D. None of these

Answer: C

Watch Video Solution

13. For a certain curve y=f(x) satisfying

$$rac{d^2y}{dx^2}=6x-4,\,$$
 f(x) has a local minimum value 5 when x=1, Find the

equation of the curve and also the gobal maximum and global minimum values of f(x) given that $0 \le x \le 2$.

A. 1

B. 0

C. 5

D. None of these

Answer: C

14. Let Α be the point where the curve $5lpha^2x^3+10lpha x^2+x+2y-4=0 (lpha\in R,lpha
eq0)$ meets the y-axis, then the equation of tangent to the curve at the point where normal at A meets the curve again, is:

A.
$$x-\alpha y+2lpha=0$$

B.
$$lpha x + y - 2 = 0$$

C.
$$2x - y + 2 = 0$$

D.
$$x + 2y - 4 = 0$$

Answer: C

Watch Video Solution

15. The difference between the greatest and the least value of the function $f(x)=\cos x+rac{1}{2}\cos 2x-rac{1}{3}\cos 3x$

A.
$$\frac{11}{5}$$

B.
$$\frac{13}{6}$$

$$\mathsf{C.}\,\frac{9}{4}$$

$$\mathsf{D.}\,\frac{7}{3}$$

Answer: C

16. The ordinate of point on the curve $y=\sqrt{x}$ which is closest to the point (2,1) is

A.
$$\frac{2+\sqrt{3}}{2}$$

B.
$$\frac{1+\sqrt{2}}{2}$$

$$\mathsf{C.}\,\frac{-1+\sqrt{3}}{2}$$

D. 1

Answer: A

Watch Video Solution

17. The tangent at a point P on the curve $y=\ln\!\left(rac{2+\sqrt{4-x^2}}{2-\sqrt{4-x^2}}
ight)-\sqrt{4-x^2}$ meets the y-axis at T, then PT^2

equals to :

A. 2

B. 4

C. 8

D. 16

Answer: B

Watch Video Solution

18.

Let

 $f(x) = \int_{x^2}^{x^3} rac{dt}{\ln t}$

for

x > 1 and $g(x) = \int_{1}^{x} (2t^{2} - \ln t) f(t) dt(x > 1)$, then:

A. g is increasing on $(1, \infty)$

B. g is decreasing on $(1, \infty)$

C. g is increasing on (1, 20) and decreasing on (2, 00)

D. g is decreasing on (1, 2) and increasing on $(2, \infty)$

Answer: A

19. Let
$$f(x) = x^3 + 6x^2 + ax + 2$$
, if $(-3, -1)$ is the largest possible interval for which $f(x)$ is decreasing function, then $a =$

$$\mathsf{C.}-2$$

Answer: B

Watch Video Solution

20. Let
$$f\left(x-\frac{1-x}{1+x}\right)$$
. Then difference of the greatest and

least value of f(x) on [0, 1] is:

A.
$$\pi/2$$

B.
$$\pi/4$$

 $C. \pi$

D. $\pi/3$

Answer: B

Watch Video Solution

21. The number of integral values of a for which

$$f(x) = x^3 + (a+2)x^2 + 3ax + 5$$
 is monotonic in $\,orall \, x \in R$

A. 2

B. 4

C. 6

D. 7

Answer: B

22. The number of critical points of
$$f(x)=\left(\int_0^x\left(\cos^2t-{}^3\sqrt{t}\right)dt\right)+rac{3}{4}x^{4/3}-rac{x+1}{2}$$
 in $(0,6\pi]$ is:

23. Let $f(x)=\min\left[rac{1}{2}-3rac{x^2}{4},5rac{x^2}{4}
ight]$, for $0\leq x\leq 1$ then maximum

C. 6

B. 8

D. 12

Answer: D

Watch Video Solution

B. $\frac{5}{64}$

value of f(x) is

$$C. \frac{5}{4}$$

D.
$$\frac{5}{16}$$

Answer: D

Watch Video Solution

24. Let
$$f(x)=\left\{egin{array}{ll} 2-\left|x^2+5x+6
ight|& x
eq -2 \ b^2+1& x=-2 \end{array}
ight.$$

Has relative maximum at x=-2, then complete set of values b can take is:

A.
$$|b| > 1$$

B.
$$|b| < 1$$

$$\mathsf{C}.\,b>1$$

$$\mathsf{D}.\,b < 1$$

Answer: A

25. Let for function
$$f(x)=egin{pmatrix}\cos^{-1}x&-1\leq x\leq 0\\mx+c&0< x\leq 1\end{pmatrix}$$
, Lagrange's

mean value theorem is applicable in [-1,1] then ordered pair (m,c) is:

A.
$$\left(1, -\frac{\pi}{2}\right)$$

$$\mathrm{B.}\left(1,\,\frac{\pi}{2}\right)$$

C.
$$\left(-1, -\frac{\pi}{2}\right)$$

D.
$$\left(-1, \frac{\pi}{2}\right)$$

Answer: D

Watch Video Solution

26. Tangents are drawn from the origin to the curve $y = \cos X$. Their points of contact lie on

A.
$$\displaystyle rac{1}{x^2} = rac{1}{u^2} + 1$$

B.
$$\dfrac{1}{x^2}=\dfrac{1}{y^2}-2$$

C.
$$\frac{1}{u^2} = \frac{1}{x^2} + 1$$

D.
$$\displaystyle rac{1}{y^2} = rac{1}{x^2} - 2$$

Answer: C

Watch Video Solution

- **27.** The least natural number a for which $x+ax^{-2}>2\,orall\,x\in(0,\infty)$ is
- 1 (b) 2 (c) 5 (d) none of these
 - A. 1
 - B. 2

C. 5

D. None of these

Answer: B

28. Angle between the tangents to the curve $y=x^2-5x+6$ at the points (2,0) and (3,0) is : (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{6}$ (d) $\frac{\pi}{4}$

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{4}$$

C.
$$\frac{\pi}{3}$$

D.
$$\frac{\pi}{2}$$

Answer: D

Watch Video Solution

29. Difference between the greatest and least values opf the function $f(x)=\int_0^x \left(\cos^2 t + \cos t + 2\right) {
m d}t$ in the interval $[0,2\pi]$ is $K\pi$, then K is equal to:

C. 5

D. None of these

Answer: C

Watch Video Solution

30. The range of the function $f(\theta)=rac{\sin heta}{ heta}+rac{ heta}{ an heta}, heta \in \left(0,rac{\pi}{2}
ight)$ is equal to :

A.
$$(0, \infty)$$

B.
$$\left(\frac{1}{\pi}, 2\right)$$

C.
$$(2, \infty 0)$$

D.
$$\left(\frac{2}{\pi},2\right)$$

Answer: D

31. Number of integers in the range of 'c' so that the equation

$$x^3-3x+c=0$$
 has all its roots real and distinct is

- A. 2
- В. 3
- C. 4
- D. 5

Answer: B

Watch Video Solution

32. Let $f(x) = \int e^x (x-1)(x-2) dx$, then f(x) decrease in the interval

A.
$$(2,\infty)$$

B.
$$(-2, -1)$$

D.
$$(-\infty,1)ii(2,\infty)$$

Answer: C

Watch Video Solution

33. If the cubic polymomial $y=ax^3+bx^2+cx+d(a,b,c,d\in R)$ has only one critical point in its entire domain and ac=2, then the value of |b| is:

- A. $\sqrt{2}$
- B. $\sqrt{3}$
- C. $\sqrt{5}$
- D. $\sqrt{6}$

Answer: D

34. On the curve $y=\dfrac{1}{1+x^2}, ext{ the point at which } \left|\dfrac{dy}{dx}\right|$ is greatest in the

first quadrant is :

A.
$$\left(\frac{1}{2}, \frac{4}{5}\right)$$

$$\mathsf{B.}\left(1,\frac{1}{4}\right)$$

C.
$$\left(\frac{1}{\sqrt{2}}, \frac{2}{3}\right)$$
D. $\left(\frac{1}{\sqrt{3}}, \frac{3}{4}\right)$

Answer: D

35. If
$$f_1(x)=2x,$$
 $f_2(x)=3\sin x-x\cos x$ then for $x\in\left(0,rac{\pi}{2}
ight)$

A.
$$f(x) > g(x)$$

$$\mathsf{B.}\, f(x) < g(x)$$

C.
$$f(x) = g(x)$$
 has exactly one real root.

D. f(x) = g(x) has exactly two real roots

Answer: A

Watch Video Solution

- **36.** let $f(x) = \sin^{-1} \left(\frac{2g(x)}{1 + {q(x)}^2} \right)$, then which are correct ?
- (i) f (x) is decreasing if g(x) is increasig and ert g(x)>1
- (ii) f(x) is an increasing function if g(x) is increasing and $|g(x)| \leq 1$
- (iii) f (x) is decreasing function if f(x) is decreasing and |g(x)|>1
 - A. (i) and (iii)
 - B. (i) and (ii)
 - C. (i) (ii) and (iii)
 - D. (iii)

Answer: B

37. The graph of the function y=f(x) has a unique tangent at the point $(e^a,0)$ through which the graph passes then $\varliminf (x\to e^a)\frac{\log_e\{1+7f(x)\}-\sin f(x)}{3f(x)}$

- **A.** 1
- B. 3
- C. 2
- D. 7

Answer: C

Watch Video Solution

38. Let f(x) be a function such that $f'(x) = \log_{1/3}(\log_3(\sin x + a)).$

The complete set of values of 'a' for which f(x) is strictly decreasing for all real values of ${\bf x}$ is:

A.
$$[4, \infty)$$

B. [3, 4]

C.
$$(-\infty,4)$$

D. $[2, \infty)$

Answer: A

Watch Video Solution

39. If $f(x) = a \ln |x| + bx^2 + x$ has extremas at x = 1 and x = 3 then:

A.
$$a = \frac{3}{4}, b = -\frac{1}{8}$$

$$\operatorname{B.} a = \frac{3}{4}, b = \frac{1}{8}$$

C.
$$a = -\frac{3}{4}, b = -\frac{1}{8}$$

D.
$$a = -\frac{3}{4}, b = \frac{1}{8}$$

Answer: C

40. Let
$$f(x)=\left\{egin{array}{ll} 1+\sin x & x<0 \ x^2-x+1 & x\geq 0 \end{array}
ight.$$

A. f has a local maximum at x=0

B. f has a local minimum at x=0

C. f is increasing everywhere

D. f is decreasing everywhere

Answer: A

Watch Video Solution

41. If m and n are positive integers and $f(x)=\int_{1}^{x}{(t-a)^{2n}(t-b)^{2m+1}dt}, a
eq b$, then

A. x=b is a point of local minimum

B. x=b is a point of local maximum

 $\mathsf{C.}\,x=a$ is a point of local minimum

D. x=a is a point of local maximum

Answer: A

Watch Video Solution

- **42.** For any the real hetathe maximum value of $\cos^2(\cos heta) + \sin^2(\sin heta)$ is
 - A. 1
 - $\mathsf{B.}\,1+\sin^21$
 - $\mathsf{C.}\,1+\cos^21$
 - D. Does not exist

Answer: B

43. If the tangentat P of the curve $y^2=x^3$ intersect the curve again at Q and the straigta line OP,OQ have inclinations α and β where O is origin, then $\frac{\tan\alpha}{\tan\beta}$ has the value equals to

44. If x+4y=14 is a normal to the curve $y^2=\alpha x^3-\beta$ at (2,3), then

A.
$$-1$$

$$B.-2$$

D.
$$\sqrt{2}$$

Answer: B

the value of
$$lpha+eta$$
 is 9 (b) -5 (c) 7 (d) -7

$$B.-5$$

D. - 7

Answer: A

Watch Video Solution

- **45.** The tangent to the curve $y=e^{kx}$ at a point (0,1) meets the x-axis at (a,0), where $a\in[\,-2,\,-1]$. Then $k\in\left[\,-rac{1}{2},0
 ight]$ (b) $\left[\,-1,\,-rac{1}{2}
 ight]$

$$[0,1]$$
 (d) $\left[rac{1}{2},1
ight]$

A.
$$\left[-\frac{1}{2},0\right]$$

$$\mathsf{B.}\left[-1-\frac{1}{2}\right]$$

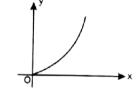
$$\mathsf{C.}\ [0,\,1]$$

D.
$$\left|\frac{1}{2}, 1\right|$$

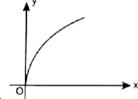
Answer: D

46. Which of the following graph represent the function

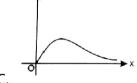
$$f(x)=\int_0^{\sqrt{x}}e^{rac{u^2}{x}}\,\mathsf{d}\mathsf{u}$$
, for $x>0\, ext{ and }\,f(0)=o$



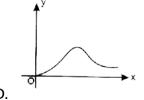
A.



B.



C.



47. Let f(x)=(x-a)(x-b)(x-c) be a ral vlued function where $a< bc(a,b,c\in R)$ such that $f''(\alpha)=0$. Then if $\alpha\in (c_1,c_2)$, which one of the following is correct ?

A.
$$\alpha < c_1 < b \text{ and } b < c_2 < c$$

B.
$$lpha < c_1, c_2 < b$$

C.
$$b < c_1, c_2 < c$$

D. None of these

Answer: A

Watch Video Solution

48. $f(x)=x^6-x-1, x\in [1,2].$ Consider the following statements :

A. f is increasing on $\left[1,2\right]$

B. f has a root in [1, 2]

C. f is decreasing on [1, 2]

D. f has no root in [1, 2]

Answer: A

Watch Video Solution

49. Which one of the following curves is the orthogonal trajectory of straight lines passing through a fixed point (a,b)?

A. x - a = k(y - b)

B. (x-a)(y-b) = k

C. $(x-a)^2 = k(y-b)$

D. $(x-a)^2 + (y-b)^2 = k$

Answer: D

50. The function $f(x)=\sin^3 x-m\sin x$ is defined on open interval $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ and if assumes only 1 maximum value and only 1 minimum value on this interval. Then, which one of the must be correct?

A.
$$0 < m < 3$$

B.
$$-3 < m < 0$$

$$\mathsf{C}.\,m>3$$

D.
$$m < -3$$

Answer: A

Watch Video Solution

51. The greatest of the numbers $2^{\frac{1}{2}}$, $3^{\frac{1}{3}}$, $4^{\frac{1}{4}}$, $5^{\frac{1}{5}}$, $6^{\frac{1}{6}}$ and $7^{\frac{1}{7}}$ is

A.
$$2^{1/2}$$

B.
$$3^{1/3}$$

C. $7^{1/7}$

D. $6^{1/6}$

Answer: B

Watch Video Solution

- **52.** Let I be the line through (0,0) an tangent to the curve $y=x^3+x+16$. Then the slope of I equal to :
 - A. 10
 - B. 11
 - C. 17
 - D. 13

Answer: D

53. The slope of the tangent at the point of inflection of $y=x^3-3x^2+6x+2009$ is equal to :

A. 2

B. 3

C. 1

D. 4

Answer: B

Watch Video Solution

54. Let f be a real valued function with (n+1) derivatives at each point of R. For each pair of real numbers $a,b,a< b,\,$ such that

$$\ln \left[rac{f(b)+f(b)+.....+f^{\,(n)}\,(b)}{f(a)+f^{\,\prime}(a)+.....+f^{\,(n)}\,(a)}
ight]$$

Statement-1 : There is a number $c \in h(a,b)$ for which $f^{\,(\,n\,+\,1\,)}\,(c) = f(c)$

because

Statement-2: If h(x) be a derivable function such that h(p) = h(q) then

by Rolle's theorem $h^{\,\prime}(d)=9, d\in(p,q)$

A. Statement-1 is true, statemet-2 is true and statement-2 is correct explanation for statement-1

B. Statement-1 is true, statement-2 is true and statement-2 is not correct explanation for statement-1

C. Statement-1 is true, statement-2 is false

D. Statement-1 is false, statement-2 is true

Answer: A

55. If f(x) is a differentiable real valued function satisfying $f''(x)-3f'(x)>3\, \forall x\geq 0 \ {
m and} \ f'(0)=-1,$ then $f(x)+x\, \forall x>0$ is

- A. strictly increasing
- B. strictly decreasing
- C. non monotonic
- D. data insufficient

Answer: A

Watch Video Solution

- **56.** If the line joining the points (0,3) and (5,-2) is a tangent to the curve $y=rac{C}{x+1}$, then the value of c is 1 (b) -2 (c) 4 (d) none of these
 - A. 2
 - C. 4

B. 3

- D. 5
- Answer: C

57. Number of solutions (s) of in
$$|\sin x|=-x^2$$
 if $x\in\left[-\frac{\pi}{2},\frac{3\pi}{2}\right]$ is/are:

D. 8

Answer: B

Watch Video Solution

58. Find the value of a for which $\sin^{-1}x = |x-a|$ will have at least one solution.

A.
$$[-1, 1]$$

B.
$$\Big[-rac{\pi}{2},rac{\pi}{2}\Big]$$

C.
$$\left[1-\dfrac{\pi}{2},1+\dfrac{\pi}{2}\right]$$

D. $\left[\dfrac{\pi}{2}-1,\dfrac{\pi}{2}+1\right]$

Answer: C

Watch Video Solution

59. For any ral number b, let f (b) denotes the maximum of $\left|\sin x + rac{2}{3+\sin x} + b
ight| orall imes x \in R.$ Then the minimum valur of

A.
$$\frac{1}{2}$$

$$\frac{1}{2}$$

 $f(b) \, \forall b \in R$ is:

$$\mathsf{B.}\;\frac{3}{4}$$

c.
$$\frac{1}{4}$$

D. 1

Answer: B

60. Which of the following are correct

A.
$$x^4+2x^2-6x+2=0$$
 has exactly four real solution

B. $x^3 + 5x + 1 = 0$ has exactly three real solutions

C. $x^n + ax + b = 0$ where n is an even natural number has atmost

two real solution a, b, in R.

D.
$$x^3-3x+c=0, x>0$$
 has two real solutin for $x\in(0,1)$

Answer: C

61. For any real number b, let f (b) denotes the maximum of $\left|\sin x + \frac{2}{3+\sin x} + b\right| \, \forall x \in R.$ Then the minimum value of $f(b) \, \forall b \in R$ is:

B.
$$\frac{3}{4}$$

B.
$$\frac{1}{4}$$

A. $\frac{1}{2}$

Answer: B

Watch Video Solution

62. Find the coordinates of the point on the curve $y = \frac{x}{1+x^2}$ where

A.
$$(0, 0)$$

B.
$$\left(\sqrt{3}, \frac{\sqrt{3}}{4}\right)$$
C. $\left(-\sqrt{3}, -\frac{\sqrt{3}}{4}\right)$

D.
$$\left(1, \frac{1}{2}\right)$$

Answer: A

63. Let $f\colon [0,2p] o [-3,3]$ be a given function defined at $f(x)=\cos\frac{\pi}{2}.$ The slope of the tangent to the curve $y=f^{-1}(x)$ at the point where the curve crosses the y-axis is:

A.
$$-1$$

$$\mathsf{B.}-\frac{2}{3}$$

$$\mathsf{C.} - \frac{1}{6}$$

D.
$$-\frac{1}{3}$$

Answer: B

Watch Video Solution

64. Number of stationary points in [0,po] for the function $f(x) = \sin x + \tan x - 2x$ is:

- A. 0
- B. 1
- C. 2
- D. 3

Answer: C

Watch Video Solution

65. If a,b,c d $\in R$ such that $\frac{a+2c}{b+3d}+\frac{4}{3}=0$, then the equation $ax^3 + bx^3 + cx + d = 0$ has

- A. atleast one root in (-1,0)
- B. at least one root in (0, 1)
- C. no root in $(\,-1,1)$
- D. no root in (0, 2)

Answer: B

66. If
$$f'(x)\phi(x)(x-2)^2$$
. Were $\phi(2) \neq 0$ and $\phi(x)$ is continuous at

67. If the functio $f(x)^3 - 6x^2 + ax + b$ satisfies Rolle's theorem in the

A. f is increasing if
$$\phi(2) < 0$$

B. f is decreasing if
$$\phi(2)>0$$

x=2 then in the neighbouhood of x=2

D. f is increasin if
$$\phi(2)>0$$

Answer: D

Watch Video Solution

interval [1,3] and
$$f'\left(rac{2\sqrt{3}+1}{\sqrt{3}}
ight)=0$$
, then

A.
$$a = -11, b = 5$$

B. a = -11, b = -6

C. $a=11,b\in R$

D. 1 = 22, b = -6

Answer: C

Watch Video Solution

68. For which of the following function 9s) Lagrange's mean value theorem is not applicable in [1, 2]?

A.
$$f(x)=\left\{egin{array}{ll} rac{3}{2}-x, & x<rac{3}{2}\ \left(rac{3}{2}-x
ight)^2, & x\geqrac{3}{2} \end{array}
ight.$$

$$extstyle extstyle ext$$

C.
$$f(x) = (x-1)|x+1|$$

D.
$$f(x) = |x - 1|$$

Answer: A

69. If the curves $\frac{x^2}{a^2} + \frac{y^2}{4} = 1$ and $y^2 = 16x$ intersect at right angles, then:

70. If the line $x\cos lpha + y\sin lpha = P$ touches the curve $4x^3 = 27ay^2$,

A.
$$a=\pm 1$$

B.
$$a=\pm\sqrt{3}$$

$$\mathsf{C}.\,a=\,\pm\,\sqrt{3}$$

D.
$$a=\pm\sqrt{2}$$

Answer: D

Watch Video Solution

then $\frac{P}{a} =$

A. $\cot^2 \alpha \cos \alpha$

B. $\cot^2 \alpha \sin \alpha$

C. $tna^2\alpha\cos\alpha$

D. $\tan^2 \alpha \sin \alpha$

Answer: A

Watch Video Solution

Exercise One Or More Than Answer Is Are Correct

1. common tangent to
$$y=x^3$$
 and $x=y^3$

A.
$$x-y=rac{1}{\sqrt{3}}$$

B.
$$x-y=-rac{1}{\sqrt{3}}$$

B.
$$x-y=-rac{1}{\sqrt{3}}$$
C. $x-y=rac{2}{3\sqrt{3}}$

D.
$$x-y=rac{-2}{3\sqrt{3}}$$

Answer: C::D

2. Let
$$f\colon [0,8] o R$$
 be differentiable function such that $f(0)=0, f(4)=1, f(8)=1,$ then which of the following hold(s) good?

A. There exist some
$$c_1 \in (0,8)$$
 where $f(c_1) = rac{1}{4}$

B. There exist some $x \in (0,8)$ where $f'(c) = \dfrac{1}{12}$

C. There exist $c_1, c_2 \in [0,8]$ where $8f'(c_1)f(c_2) = 1$

D. There exist some
$$lpha, eta = (0,2)$$
 such that

$$\int_0^8 f(t)dt = 3ig(lpha^2 fig(lpha^3ig) + eta^2ig(eta^3ig)ig)$$

Answer: A::C::D

Watch Video Solution

3. If $f(x) = \{\sin^{-1}(\sin x), x > 0\}$

$$rac{\pi}{2},x=0, then\cos^{-1}(\cos x),x<0$$

A. x=0 is a point of maxima

B. f(x) is continous $\, orall \, x \in R$

C. glolab maximum vlaue of $f(x)\, orall x \in R$ is π

D. global minimum vlaue of f(x) $orall x \in R$ is 0

Answer: A::C::D

then

Watch Video Solution

4. A function $f{:}R o R$ is given by $f(x)=\left\{egin{array}{cc} x^4\Big(2+\sinrac{1}{x}\Big) & x
eq 0 \ 0 & x=0 \end{array}
ight.,$

A. f has a continous derivative $\, orall \, x \in R$

B. f is a bounded function

C. f has an global minimum at x=0

D. f" is continous $\, orall x \in R$

Answer: A::C::D

View Text Solution

5. If $f''(x) \mid \leq 1 \, \forall x \in R$, and f(0) = 0 = f'(0), then which of the following can not be true?

A.
$$figg(-rac{1}{2}igg)=rac{1}{6}$$

B.
$$f(2) = -4$$

C.
$$f(-2) = 3$$

$$\mathsf{D.}\,f\!\left(\frac{1}{2}\right) = \frac{1}{5}$$

Answer: A::B::C::D

Watch Video Solution

6. Let $f\colon [-3,4]\to R$ such that $f'\,'(x)>0$ for all $x\in [-3,4],$ then which of the following are always true ?

A. f (x) has a relative minimum on $(\,-3,4)$

B. f (x) has a minimum on $[\,-3,4]$

C. f (x) has a maximum on $[\,-3,4]$

D. if $f(3)=f(4), ext{ then } f(x) ext{ has a critical point on } [\,-3,4]$

Answer: B::C::D

Watch Video Solution

7. Let f (x) be twice differentialbe function such that f''(x) > 0 in [0,2]. Then:

A.
$$f(0)+f(2)=2f(x), ext{ for atleast one } c,c\in(0,2)$$

$$\mathtt{B.}\ f(0) + f(2) < 2f(1)$$

C.
$$f(0) + f(2) > 2f(1)$$

D.
$$2f(0)+f(2)>3f\Bigl(rac{2}{3}\Bigr)$$

Answer: C::D

then

Watch Video Solution

- **8.** Let g(x) be a cubic polnomial having local maximum at x=-1 and ${\sf g}$ '(x) has a local minimum at x=1, Ifg(-1)=10g, (3)=-22,
 - A. perpendicular distance between its two horizontal tangents is 12
 - B. perpendicular distance betweent its two horizontal tangents is 32
 - C. g(x)=0 has atleast one real root lying in interval $(\,-2,0)$
 - D. g(x)=0, has 3 distinict real roots

Answer: B::D

Watch Video Solution

9. Let S be the set of real values of parameter λ for which the equation $f(x) = 2x^3 - 3(2+\lambda)x^2 + 12\lambda \ \, x \ \, \text{has exactly one local maximum and exactly one local minimum. Then S is a subset of }$

A.
$$\lambda \in (\,-4,\infty)$$

B.
$$\lambda \in (\,-\infty,0)$$

C.
$$\lambda \in (\,-3,3)$$

D.
$$\lambda \in (1,\infty)$$

Answer: A::B::C::D

Watch Video Solution

10. The function $f(x) = 1 + x \ln \Bigl(x + \sqrt{1 + x^2} \Bigr) - \sqrt{1 - x^2}$ is:

A. strictly increasing $Ax \in (0,1)$

B. strictly decrreasing $\, orall x \in (\,-1,0)$

C. strictly decreasing for $x \in (-1,0)$

D. strictly decreasing for $x \in (0,1)$

Answer: A::C::D

Watch Video Solution

11. Let m and n bwe positive integers and x,y>0 and x+y=k, where k is constnat. Let $f(x,y)=x^my^n,$ then:

A.
$$f(x,y)$$
 is maximum when $x=\dfrac{mk}{m+n}$

B. f(x, y) is maximulm wheere x = y

C. maximum value of
$$f(x,y)israc{m^nn^mk^{m+n}}{\left(m+n
ight)^{m+n}}$$

D. maximum vauue of f(x,y) is $\frac{k^{m+n}m^mn^n}{(m+n)^{m+n}}$

Answer: A::D

Watch Video Solution

12. Determine the equation of straight line which is tangent at one point and normal at any point of the curve $x=3t^2,\,y=2t^3$

A.
$$y+\sqrt{3}(x-1)=0$$

$$\mathsf{B.}\,y-\sqrt{3}(x-1)=0$$

C.
$$y+\sqrt{2}(x-2)=0$$

D.
$$y-\sqrt{2}(x-2)=0$$

Answer: C::D

13. A curve is such that the ratio of the subnomal at any point to the sum of its co-ordinates is equal to the ratio of the ordinate of this point to its abscissa. If the curve passes through M(1,0), then possible equation of the curve is(are)

A.
$$y = x \ln x$$

B.
$$y=rac{\ln x}{x}$$
C. $y=rac{2(x-1)}{x^2}$

D.
$$y=rac{1-x^2}{2x}$$

Answer: A::D

Watch Video Solution

14. Number of A parabola of the form $y=ax^2+bx+c$ with a>0intersection (s)of these graph of $f(x)=rac{1}{x^2-4}$.number of a possible

distinct intersection(s) of these graph is

A. 0

B. 2

D. 4

C. 3

Answer: B::C::D

15. Find the gradient of the line passing through the point (2,8) and touching the curve $y = x^3$.

B. 6

C. 9

D. 12

Answer: A::D

Watch Video Solution

16. The equation $x + \cos x = a$ has exactly one positive root. Complete set of values of a' is

A.
$$a\in(0,1)$$

B.
$$a\in(2,3)$$

$$\mathsf{C}.\,a\in(1,\infty)$$

D.
$$a\in (-\infty,1)$$

Answer: B::C

Watch Video Solution

17. Given that f(x) is a non-constant linear function. Then the curves :

A.
$$y=f(x) \ ext{and} \ y=f^{-1}(x)$$
 are orthogonal

B.
$$y = f(x)$$
 and $y = f^{-1}(-x)$ are orthogonal

C.
$$y = f(-x)$$
 and $y = f^{-1}(x)$ are orthogonal

D.
$$y=f(\,-\,x)\;\;{
m and}\;\;y=f^{\,-\,1}(\,-\,x)$$
 are orthogonal

Answer: B::C

Watch Video Solution

18.
$$f(x) = \int_0^x e^{t^3} (t^2 - 1)(t+1)^{2011} dt (x>0)$$
 then :

- A. The number of point iof inflections is atleast 1
- B. The number of point of inflectins is 0
- C. The number of point of local maxima is 1
- D. The number of point of local minima is 1

Answer: A::D

Watch Video Solution

19. Let $f(x)=\sin x+ax+b$. Then which of the following is/are true? f(x)=0 has only one real root which is positive if a>1, b<0. f(x)=0 has only one real root which is negative if a>1, b<0. f(x)=0 has only one real root which is negative if a>1, b>0. none of these

A. only one real root which is positive if $a>1,\,b<0$

B. only one real root which is negative if $a>1,\,b>0$

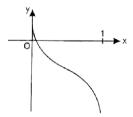
C. only one real root which is negative if a < -1, b < 0

D. only one real root which is positive if $a<\,-1,\,b<0$

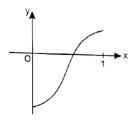
Answer: A::B::C

Watch Video Solution

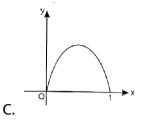
20. Which of the following graphs represent function whose derivatives have a maximum in the interval (0,1) ?

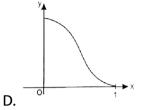


A.



В.





Answer: A::B

Watch Video Solution

- **21.** Consider $f(x)=\sin^5 x-1, x\in \left[0,\frac{\pi}{2}\right],$ which of the following is/are correct ?
 - A. f is strictly decreasing in $\left[0, \, \frac{\pi}{4} \right]$
 - B. f is strictly increasing in $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
 - C. There exist a numbe 'c' in $\left(0, \frac{\pi}{2}\right)$ such that f(c) = 0
 - D. The equation f(x)=0 has only two roots in $\left[0,rac{\pi}{2}
 ight]$

Answer: A::B::C::D

Watch Video Solution

22. If $f(x) = x^a \log x$ and f(0) = 0 then the value of lpha for which

Rolle's theorem can be applied in [0,1] is

A.
$$-\frac{1}{2}$$

$$\mathsf{B.}-\frac{1}{3}$$

$$\mathsf{C.} - \frac{1}{4}$$

D. -1

Answer: B::C

Watch Video Solution

of the following is/are true for the function **23.** Which $f(x) = \int_0^x \frac{\cos t}{t} dt (x > 0) ?$

A. f (x) is monotonically increasing in

$$\left((4n-1),rac{\pi}{2},(4n+1)rac{\pi}{2}
ight)orall n\in N$$

B. f (x) has a local minima at $x=(4n-1)rac{\pi}{2}\, orall n\in N$

C. The point of infection of the curve y=f(x) lie on the curve

$$x\tan x + 1 = 0$$

D. Number of critiacal points of y=f(x) in $(0,10\pi)$ are 19

Answer: A::B::C

Watch Video Solution

24. Let $F(x)=(f(x))^2+(f'(x))^2, F(0)=6$, where f (x) is a thrice differentiable function such that $|f(x)| \mid \leq 1 \, \forall x \in [-1,1]$, then choose the correct statement (s)

A. there is atleast one point in each of the intervals (-1,0) and (0,1) where $|f'(x)| \leq 2$

B. there is atleast one point in each of the intervals

$$(\,-1,0)\, ext{ and }(0,1)$$
 where $F(x)\leq 5$

C. there is no poin tof local maxima of F(x) in (-1, 1)

D. for some $c \in (-1,1), F(c) \geq 6, F'(c) = 0 \, ext{ and } \, f''(c) \leq 0$

Answer: A::B::D

View Text Solution

25. Let
$$f(x) = \begin{cases} x^3 + x^2 - 10x & -1 \le x < 0 \\ \sin x & 0 \le x < x/2 \text{ then } f(x) \text{ has } \\ 1 + \cos x & \pi/2 \le x \le \pi \end{cases}$$

A. local maximum at
$$x=rac{\pi}{2}$$

B. local minimum at
$$x=rac{\pi}{2}$$

C. absolute minimum at
$$x=0,\pi$$

D. absolute maximum at
$$x=rac{\pi}{2}$$

Answer: A::C::D

$$y^2=x-1$$
 and $x^2=x-1$ and $x^2=y-1$ is equal to :

A.
$$\frac{\sqrt{2}}{4}$$

$$\text{B. } \frac{3\sqrt{2}}{4}$$

$$\mathsf{C.}\ \frac{5\sqrt{2}}{4}$$

D.
$$\frac{7\sqrt{2}}{4}$$

Answer: B

Watch Video Solution

27. For the equation $\frac{e^{-x}}{x+1}$ which of the following statement(s) is/are correct ?

A. When $\lambda \in (0,\infty)$ equation has 2 real and distinct roots

B. When $\lambda, \ \in \left(\ -\infty, \ -e^2
ight)$ equation has 2 real and istinct roots

C. When $\lambda \in (0,\infty)$ equation hs 1 real root

D. When $\lambda \in (\,-e,0)$ equation has no real root

Answer: B::C::D

28. If
$$y=mx+5$$
 is a tangent to the curve $x^3y^3=ax^3+by^3atP(1,2)$, then

A.
$$a+b=rac{18}{5}$$

B. a > b

 $\mathsf{C}.\,a < b$

D.
$$a + b = \frac{19}{5}$$

Answer: B::D

29. If
$$(f(x)-1)(x^2+x+1)^2-(f(x)+1)(x^4+x^2+1)=0$$

 $orall x \in R-\{0\} \ ext{and} \ f(x)
eq \pm 1, \quad ext{then} \quad ext{which} \quad ext{of} \quad ext{the following}$ statement (s) is/are correct ?

A.
$$|f(x)\geq 2\,orall\,x\in R-\{0\}$$

B. f(x) has a local maximum at $x=\,-\,1$

C. f(x) has a local minimum at x=1

D.
$$\int_{-\pi}^{\pi} (\cos x) f(x) dx = 0$$

Answer: A::B::C::D

Watch Video Solution

Exercise Comprehension Type Problems

Let
$$y=f(x)$$
 such

n that

that

$$xy = x + y + 1, x \in R - \{1\} \text{ and } g(x) = xf(x)$$

The minimum value of g(x) is:

A.
$$3-\sqrt{2}$$

B.
$$3+\sqrt{2}$$

C.
$$3-2\sqrt{2}$$

D.
$$3+2\sqrt{2}$$

Answer: D

Watch Video Solution

2. Let y=f(x) such $xy=x+y+1, x\in R-\{1\} ext{ and } g(x)=xf(x)$

There exist two values of x, x_1 and x_2 where $g'(x) = \frac{1}{2}$, then

$$|x_1| + |x_2| =$$

- A. 1
- B. 2
- C. 4
- D. 5

Answer: C

Watch Video Solution

3. Let
$$f(x)=egin{bmatrix} 1-x & 0\leq x\leq 1 \ 0 & 1< x\leq 2 \ ext{and} \ g(x)=\int_0^x f(t)dt. \ (2-x)^2 & 2< x\leq 3 \end{bmatrix}$$

Let the tangent to the curve y=g(x) at point P whose abscissa is $\frac{5}{2}$ cuts x-axis in point Q.

Let the pependiculat from point Q on x-axis meets the curve y=g(x) in point R.

$$g(1) =$$

A. 0

B.
$$\frac{1}{2}$$

C. 1

D. 2

Answer: B

Watch Video Solution

4. Let
$$f(x)=egin{bmatrix} 1-x & 0\leq x\leq 1\ 0 & 1< x\leq 2 \ ext{and}\ g(x)=\int_0^x f(t)dt.\ (2-x)^2 & 2< x\leq 3 \end{bmatrix}$$

$$\lfloor (z-x) \qquad \quad z < x \leq 1$$

Let the tangent to the curve y=g(x) at point P whose abscissa is $\frac{5}{2}$ cuts x-axis in point Q.

caes x axis in point g

Let the pependiculat from point Q on x-axis meets the curve y=g(x) in point R.

Rquation of tangent to the curve y=g(x)atP is:

A.
$$3y = 12x - 1$$

B.
$$3y = 12x - 1$$

$$C. 12y = 3x - 1$$

D.
$$12y = 3x + 1$$

Answer: C

Watch Video Solution

5. Let
$$f(x)=egin{bmatrix} 1-x & 0\leq x\leq 1\ 0 & 1< x\leq 2 \ ext{and}\ g(x)=\int_0^x f(t)dt.\ (2-x)^2 & 2< x\leq 3 \end{bmatrix}$$

Let the tangent to the curve y=g(x) at point P whose abscissa is $\frac{5}{2}$ cuts x-axis in point Q.

Let the pependiculat from point Q on x-axis meets the curve y=g(x) in point R.

If $'\theta'$ be the angle between tangents to the curve y=g(x) at point P and R, then $\tan\theta$ equals to :

A.
$$\frac{5}{6}$$

B.
$$\frac{5}{14}$$

C.
$$\frac{5}{7}$$

Answer: B

Watch Video Solution

6. Let
$$f(x)<0\ \forall x\in(\ \equiv\infty,0)$$
 and $f(x)>0\ \forall x\in(0,\infty)$ also $f(0)=o,$ Again $f'(x)<0\ \forall x\in(-\infty,-1)$ and $f'(x)>\forall x\in(-1,\infty)$ also

and

f'(-1)=0 given $\lim_{x\to\infty}\,f(x)=0$ and $\lim_{x\to\infty}\,f(x)=\infty$ function is twice differentiable.

If $f'(x) < 0 \, orall x \in (0,\infty)$ and f'(0) = 1 then number of solutions of equatio $f(x) = x^2$ is :

- A. 2
- B. 3
- C. 4

D. None of these

Answer: D

Watch Video Solution

Let $f(x) < 0 \, \forall x \in (\equiv \infty, 0) \text{ and } f(x) > 0 \, \forall x \in (0, \infty)$ f(0) = o,**Again** $f'(x) < 0 \,\forall x \in (-\infty, -1) \text{ and } f'(x) > \forall x \in (-1, \infty)$ also f'(-1)=0 given $\lim_{x\to\infty}f(x)=0$ and $\lim_{x\to\infty}f(x)=\infty$ and function is twice differentiable.

If $f'(x) < 0 \, \forall x \in (0, \infty)$ and f'(0) = 1 then number of solutions of equatin $f(x) = x^2$ is :

A. 1

B. 2

C. 3

D. 4

Answer: B

Watch Video Solution

function is twice differentiable.

8. Let $f(x)<0\ \forall x\in(-\infty,0)$ and $f(x)>0\ \forall x\in(0,\infty)$ also f(0)=0, Again $f'(x)<0\ \forall x\in(-\infty,-1)$ and $f'(x)>\forall x\in(-1,\infty)$ also f'(-1)=0 given $\lim_{x\to\infty}f(x)=0$ and $\lim_{x\to\infty}f(x)=\infty$ and

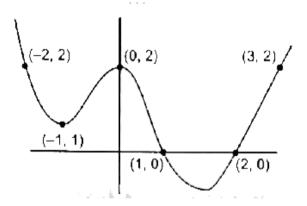
The minimum number of points where f'(x) is zero is:

- **A.** 1
- B. 2
- C. 3
- D. 4

Answer: A

9. In the given figure graph of:

$$y = p(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$$
 is given.



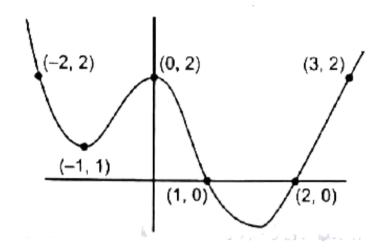
The product of all imaginary roots of p(x) = 0 is:

- A.-2
- B.-1
- C. -1/2
- D. noen of these

Answer: D

10. In the given figure graph of:

$$y = p(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$$
 is given.



If p(x)+k=0 has 4 distinct real roots $\alpha,\beta,\gamma,\delta$ then $[\alpha]+[\beta]+[\gamma]+[\delta],$ (where [.] denotes greatest integer function) is equal to:

A.
$$-1$$

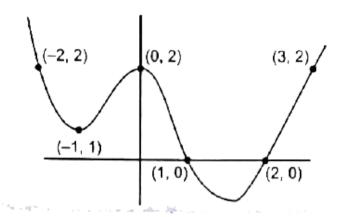
$$\mathsf{B.}-2$$

D. 1

Answer: A

11. In the given figure graph of:

$$y = p(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$$
 is given.



The minimum number of real roots of equation $\left(p^{\,\prime}(x)
ight)^2+p(x)p^{\,\prime\,\prime}(x)=0$ are:

A. 3

B. 4

C. 5

D. 6

Watch Video Solution

12. The differentiable function y=f(x) has a property that the chord joining any two points $A(x_1,f(x_1) \ {
m and} \ B(x_2,g(x_2))$ always intersects y-axis at $(0,2x_1,x_2)$. Given that f(1)=-1. then:

$$\int_0^{1/2} f(x) dx$$
 is equal to :

- A. $\frac{1}{6}$
- B. $\frac{1}{8}$
- $\mathsf{C.}\,\frac{1}{12}$
- D. $\frac{1}{24}$

Answer: D

13. The differentiable function y=f(x) has a property that the chord joining any two points $A(x_1,f(x_1) \ {
m and} \ B(x_2,g(x_2))$ always intersects y-axis at $(0,2x_1,x_2)$. Given that f(1)=-1. then:

The largest interval in whichy f(x) is monotonically increasing, is :

A.
$$\left(-\infty, rac{1}{2}
ight]$$

B.
$$\left[\frac{-1}{2},\infty\right)$$

C.
$$\left(-\infty, \frac{1}{4}\right]$$

D.
$$\left[\frac{-1}{4}, \infty\right)$$

Answer: C

Watch Video Solution

14. The differentiable function y=f(x) has a property that the chord joining any two points $A(x_1,f(x_1) \ {
m and} \ B(x_2,g(x_2))$ always intersects y-axis at $(0,2x_1,x_2)$. Given that f(1)=-1. then:

In which of the following intervals, the Rolle's theorem is applicable to

the function F9x) = f(x) + x?

A.
$$0 - 1, 0$$

B. [0, 1]

C.[-1,1]

D. [0, 2]

Answer: B

Watch Video Solution

15. Let $f(x)=1+\int_0^1(xe^y+ye^x)f(y)dy$ where x and y

independent vartiables.

If complete solution set of 'x' for which function h(x)=f(x)+3x is strictly increasing is $(-\infty,k)$ then $\left\lceil (4)e^{rac{k}{3}}
ight
ceil$ equals to: (where [.] denotes greatest integer function):

A. 1

- B. 2
- C. 3
- D. 4

Answer: C

View Text Solution

16. Let $f(x)=1+\int_0^1 (xe^y+ye^x)f(y)dy$ where x and y are independent vartiables.

If acute ange of intersection of the curves x = u = 1

$$rac{x}{2}+rac{y}{3}+rac{1}{5}=0 \ ext{ and } \ y=f(b)be heta$$
 then $an heta,$ equals to:

- A. $\frac{8}{25}$
- B. $\frac{16}{25}$
- $\frac{1.4}{25}$
- c. $\frac{14}{25}$
- $\mathsf{D.}\;\frac{4}{5}$

Answer: A

View Text Solution

Exercise Mathcing Type Problems

- **1.** The function $f(x)=\sqrt{\left(ax^3+bx^2+cx+a\right)}$ ha sits non-zero local minimum and local maximum values at x-2 and x=2, respectively. It 'a is a root of $x^2-x-6=0$

Watch Video Solution

Exercise Subjective Type Problems

- **1.** A conical vessel is to be prepared out of a circular sheet of gold of unit radius. How much sectorial area is to be removed from the sheet so that the vessel has maximum volume?
 - Marie Wiles Coloris

2. On $[1,e],\,$ then least and greatest vlaues of $f(x)=x^2\ln x$ are m and M respectively, then $\left[\sqrt{M+m}
ight]$ is : (where [] denotes greatest integer function)

3. If $f(x) = \frac{px}{e^x} - \frac{x^2}{2} + x$ is a decreasing function for every $x \leq 0$.

Find the least value of p^2 .

4. Let $f(x)=\left\{egin{array}{ll} xe^{ax}, & x\leq 0 \\ x+ax^2-x^3, & x>0 \end{array}
ight.$ Where a is a positive constnat .

The interval in which f '(x) is increasing is $\left\lceil \frac{k}{a}, \frac{a}{l} \right\rceil$, Then k+l is equal

to

5. Find sum of all possible values of the real parameter b, if the difference between the largest and smallest values of the function $f(x)=x^2-2bx+1$ in the interval [0,1] is 4.

Watch Video Solution

6. Let $'\theta'$ be the angle in radians between the curves $\frac{x^2}{36}+\frac{y^2}{4}=1$ and $x^2+y^2=12$. If $\theta=\tan^{-1}\left(\frac{a}{\sqrt{3}}\right)$, Find the value of a.

7. Let set of all possible values of λ such that $f(x)=e^{2x}-(\lambda+1)e^x+2x$ is monotonically increasing for $orall x\in R$ is $(-\infty,k]$. Find the value of k.

- **8.** Let a,b,c and d be non-negative real number such that $a^5+b^5 \leq 1$ and $c^5+d^5 \leq 1$. Find the maximum value of $a^2c^3+b^2d^3$.
 - Watch Video Solution

- **9.** There is a point (p,q) on the graph of $f(x)=x^2$ and a point (r,s) on the graph of $g(x)=\frac{-8}{x}, where p>0 and r>0$. If the line through (p,q)and(r,s) is also tangent to both the curves at these points, respectively, then the value of P+r is ______.
 - Watch Video Solution

- **10.** $f(x) = \max |2\sin y x|$ where $y \in R$ then determine the minimum value of f(x).
 - Watch Video Solution

11. Let $f(x) = \int_0^x \left((a-1) \left(t^2 + t + 1 \right)^2 - (a+1) \left(t^4 + t^2 + 1 \right) \right) dt$.

Then the total numbr of integral values of 'a' for which $f^{\prime}(x)=0$ has no rel roots is

12. The numbr of real roots of the equation $x^{2013} + e^{20144x} = 0$ is

13. Let the maximum value of expression $y=\frac{x^4-x^2}{x^6+2x^3-1}$ for $x>1is\frac{p}{1},$ where p and 1q are relatively prime natural numbers, then p+q=

14. The least positive integral value of $\ 'k'$ for which there exists at least one line that the tangent to the graph of the curve $y=x^3-kx$ at one point and normal to the graph at another point is

Watch Video Solution

15. Let $f(x)=x^2+2x-t^2$ and f(x)=0 has two root $\alpha(t)$ and $\beta(t)(\alpha<\beta)$ where t is a real parameter. Let $I(t)=\int_{\alpha}^{\beta}f(x)$ dx. If the maximum value of I(t) be λ and $|\lambda|=\frac{p}{q}$ where p and q are relatively prime positive integers. Find the product (pq).

Watch Video Solution

16. A tank contains 100 litres of fresh water. A solution containing 1 gm/litre of soluble lawn fertilizeruns into the tank the of 1 lit/min and the mixture pumped out of the tank at the rate of at rate of f 3

litres/min. Find the time when the amount of fertilizer in the tank is maximum.

17. If f (x) is continous and differentiable in [3,9) and $f'(x) \in [-2,8] \, \forall x \in (-3,9)$. Let N be the number of divisors of the greatest possible value of f(9)-f(-3), then find the

sum of digits of N.

18. It is given that f 9x) is difined on R satisfyinf f(1)=1 and for $orall x\in R,$ $f(x+5)\geq f(x)+5$ and $f(x+1)\leq f(x)+1$. Ifg(x)=f(x)+1-x, then g (2002)=

19. The number of normals to the curve $3y^3=4x$ which passes through the point (0, 1) is

Watch Video Solution

20. Find the number of real root (s) of the equation $ae^x=1+x+\frac{x^2}{2}$, where a is positive constant.

Watch Video Solution

Let $f(x) = ax + \cos 2x + \sin x + \cos x$ is defined 21. for $orall x \in R \ ext{and} \ a \in R$ and is strictely increasing function. If the range of a is $\left[\frac{m}{n},\infty\right)$, then find the minimum value of (m-n).

22. If p_1 and p_2 are the lengths of the perpendiculars from origin on the tangent and normal drawn to the curve $x^{2/3}+y^{2/3}=6^{2/3}$ respectively. Find the value of $\sqrt{4p_1^2+p_2^2}$.

