

MATHS

BOOKS - VIKAS GUPTA MATHS (HINGLISH)

AREA UNDER CURVES

Axercise Single Choice Problems

1. The area enclosed by the curve

$$[x+3y]=[x-2]$$
 where $x\in[3,4]$ is :

(where[.] denotes greatest integer function)

- A. $\frac{2}{3}$
- B. $\frac{1}{3}$
- $\mathsf{C.}\,\frac{1}{4}$
- D. 1

Watch Video Solution

- **2.** The area of the region enclosed by $y=x^2 \, ext{ and } \, y=\sqrt{|x|}$ is
 - A. $\frac{1}{3}$
 - $\mathsf{B.}\,\frac{2}{3}$
 - $\mathsf{C.}\,\frac{4}{3}$
 - $\mathsf{D.}\,\frac{16}{3}$

Answer: B

Watch Video Solution

3. Find the area enclosed by the figure described by the equation $x^4+1=2x^2+y^2.$

- B. $\frac{16}{3}$
- c. $\frac{8}{3}$ D. $\frac{4}{3}$

Answer: C

Watch Video Solution

4. The area defined by $|y| \leq e^{\|x\|} - \frac{1}{2}$ in cartesian co-ordinate system,

- is:
 - A. $(2 2 \ln 2)$
 - B. $(4 \ln 2)$
 - $C.(2 \ln 2)$
 - D. $(2 2 \ln 2)$

Answer: D

5. For each positive integer $n>a,\,A_n$ represents the area of the region restricted to the following two inequalities :

$$rac{x^2}{n^2}+y^2 ext{ and } x^2+rac{y^2}{n^2}<1.$$
 Find $\lim_{n o\infty}\,A_n.$

A. 4

B. 1

C. 2

D. 3

Answer: A

Watch Video Solution

6. Find the ratio in which the area bounded by the curves $\frac{12mam dm^2}{m^2}$ 12w is divided by the line $\frac{12mam dm^2}{m^2}$

 $y^2=12xandx^2=12y$ is divided by the line x=3.

B.
$$15:49$$

Watch Video Solution

7. The value of positive real parameter 'a' such that area of region blunded by parabolas $y=x-ax^2,\,ay=x^2$ attains its maximum value is equal to :

A.
$$\frac{1}{2}$$

$$\mathsf{C.}\,\frac{1}{3}$$

Answer: D

Watch Video Solution

- **8.** For 0 < r < 1, let n_r dennotes the line that is normal to the curve $y = x^{\circledR}$ at the point (1,1) Let S_r denotes the region in the first quadrant bounded by the curve $y = x^r$,the x-axis and the line n_r ' Then the value of r the minimizes the area of S_r is :
 - A. $\frac{1}{\sqrt{2}}$
 - B. $\sqrt{2} 1$
 - $\mathsf{C.}\,\frac{\sqrt{2}-1}{2}$
 - D. $\sqrt{2}-rac{1}{2}$

Answer: B

Watch Video Solution

9. The area bounded by $|x|=1-y^2 \,\, ext{and} \,\, |x|+|y|=1$ is:

A.
$$\frac{1}{3}$$
B. $\frac{1}{2}$

B.
$$\frac{1}{2}$$

D. 1

Answer: C

Watch Video Solution

where x>0. Point B has the coordinates (x,0). If O' is the origin, then the maximum area of the $\triangle AOB$ is

10. Point A lies on the curve $y=e^{x^2}$ and has the coordinate $\left(x,e^{-x^2}
ight)$

A.
$$\frac{1}{\sqrt{8}e}$$

B.
$$\frac{1}{\sqrt{4}e}$$
C. $\frac{1}{\sqrt{2}e}$

$$\sqrt{2}e$$

D.
$$\frac{1}{\sqrt{\epsilon}}$$

Answer: A

Watch Video Solution

- 11. lf the area enclosed between the curves $y=ax^2 and x=ay^2 (a>0)$ is 1 square unit, then find the value of $a\cdot$
 - A. $\frac{1}{\sqrt{3}}$ B. $\frac{1}{2}$
 - C. 1
 - D. $\frac{1}{3}$

Answer: D

Watch Video Solution

12. Let $f(x) = x^3 - 3x^2 + 3x + 1$ and g be the inverse of it , then area bounded by the curve y=g(x) wirth x-axis between x=1 to x=2 is

A.
$$\frac{1}{2}$$

(in square units):

B. $\frac{1}{4}$ $C. \frac{3}{4}$

D. 1

Answer: B

Watch Video Solution

13. Area bounded by $x^2y^2+y^4-x^2-5y^2+4=0$ is equal to :

A.
$$rac{4\pi}{2}+\sqrt{2}$$

B.
$$\frac{4\pi}{3}-\sqrt{2}$$

c.
$$\frac{4\pi}{3}-\sqrt{2}$$

D. none of these

Answer: C

View Text Solution

- **14.** Let R41QEES f(x): $RR^{\to +}$ is an invertible function such that f'(x)>0 and $f^x>0$ $\forall x\in [1,5]$. If f(1)=1 and f(5)=5 and area under the curve y=f(x) on x-axis from $x=1\to x=5is8$ sq. units, then area bounded by $y=f^{-1}(x)$ on x-axis from $x=1\to x=5$ is 8 b. 12 c. 16 d. 20
 - A. 12
 - B. 16
 - C. 18
 - D. 20

15. A circel centered at origin and having radius π units is divided by the curve $y=\sin x$ in two parts. Then area of the upper part equals to

A.
$$\frac{\pi^2}{2}$$

:

B.
$$\frac{\pi^3}{4}$$

C.
$$\frac{\pi^3}{2}$$

D.
$$\frac{\pi^3}{8}$$

Answer: C

Watch Video Solution

A.
$$\int_0^1 \sqrt{x-x^4} dx$$

$$J_0$$
B. $2\int_0^1 \sqrt{x-x^4}dx$

$$\mathsf{C.} \int_{-1}^{1} \sqrt{x - x^4} dx$$

D.
$$4{\int_0^{1/2}\sqrt{x-x^4}dx}$$

Watch Video Solution

17. If
$$f(x)=\min\left[x^2,\sinrac{x}{2},(x-2\pi)^2
ight],$$
 the area bounded by the

curve
$$y=f(x), \,\, ext{x-axis,} \, x=0 \,\,\, ext{and} \,\, x=2\pi$$
 is given by

Note:
$$x_1$$
 is the point of intersection of the curves x^2 and $\sin \frac{x}{2}, x_2$ is

the point of intersection of the curves sin $rac{x}{2}$ and $(x-2\pi)^2$

A.
$$\int_{-\infty}^{x_1} \left(\sin^{-x} \right) dx + \int_{-\infty}^{\pi} \left(\sin^{-x} \right) dx + \int_{-\infty}^{x_2} \left(\sin^{-x} \right) dx$$

$$\int_0^{x_1} \Bigl(\sinrac{x}{2}\Bigr) dx + \int_{x_1}^{\pi} x^2 dx + \int_{\pi}^{x_2} (x-2\pi)^2 dx + \int_{x_2}^{2\pi} \Bigl(\sinrac{x}{2}\Bigr) dx$$

$$\operatorname{and}$$

B. $(6\pi - 8)$ se. units

C. $(3\pi - 4)$ se. units

View Text Solution

The

Answer: B

18.

A.
$$(6\pi-4)$$
 sq. units

$$|x|+|y|\geq 2$$
 and $y^2=4igg(1-rac{x^2}{9}igg)$ is :

$$y^2 =$$

enclosed

$$\operatorname{and}$$

 $\mathsf{B.} \int_0^{x_1} x^2 dx + \int^{x_3} \Bigl(\sin\frac{x}{2}\Bigr) dx + \int^{2\pi} (x-2\pi)^2 dx,$

C. $\int_0^{x_1} x^2 dx + \int_0^{x_2} \sin\Bigl(rac{x}{2}\Bigr) dx + \int_0^{2\pi} (x-2\pi)^2 dx,$

$$egin{aligned} \int_0^{-x} dx + \int_{x_1}^{-x} \sin\left(rac{2}{2}
ight) dx + \int_{x_2}^{-x} x_1 & \in\left(rac{\pi}{2},rac{2\pi}{3}
ight) ext{ and } x_2 \in (\pi,2\pi) \end{aligned}$$

D. $\int_0^{x_1} x^2 dx + \int_0^{x_2} \sin\Bigl(rac{x}{2}\Bigr) dx + \int_0^{2\pi} (x-2\pi)^2 dx$,

 $x_1 \in \left(rac{\pi}{3}, rac{\pi}{2}
ight) ext{ and } x_2 \in \left(rac{3\pi}{2}, 2\pi
ight)$

 $x_1 \in \left(0, rac{\pi}{3}
ight) ext{ and } x_2 \in \left(rac{5\pi}{3}, 2\pi
ight)$

between

the

where

where

where

curves

D. $(3\pi-2)$ sq. units

Answer: B

Watch Video Solution

Axercise One Or More Than One Answer Is Are Correct

1.
$$T_n=\sum_{r=2n}^{3n-1}rac{r}{r^2+n^2}, S_n=\sum_{r=2n+1}^{3n}rac{r}{r^2+n^2}, ext{ then } orall n\in\{1,2,3...\}$$
 :

A.
$$T_n>rac{1}{2}{\ln 2}$$

B.
$$S_n < rac{1}{2} {
m ln} \, 2$$

C.
$$T_n < rac{1}{2} {
m ln} \, 2$$

D.
$$S_n > rac{1}{2} {
m ln} \, 2$$

Answer: A::D

View Text Solution

2. If a curve $y=a\sqrt{x}+bx$ passes through point (1,2) and the area bounded by curve, line x=4 and x-axis is 6, then :

A.
$$a=rac{15}{4}$$

$${\sf B}.\,b=3$$

$$C. a = -1$$

D.
$$b=-rac{7}{4}$$

Answer: A::D

Watch Video Solution

3. Area enclosed by the curves $y=x^{2+1}$ and a normal drawn to it with gradient -1, is equal to:

A.
$$\frac{2}{3}$$

$$\mathsf{B.}\,\frac{1}{3}$$

C.
$$\frac{3}{4}$$
D. $\frac{4}{3}$

Answer: D

Watch Video Solution

Axercise Comprehension Type Problems

1. Let
$$f\colon A o Bf(x)=rac{x+a}{bx^2+cx+2},$$
 where A represent domain set and B represent range set of function $f(x)$ a,b,c $\in R, f(-1)=0$ and $y=1$ is an asymptote of $y=f(x)$ and $y=g(x)$ is the inverse of $f(x)$.

g (0) is equal to:

$$\mathsf{A.}-1$$

$$B.-3$$

$$\mathsf{C.}-\frac{5}{2}$$

D.
$$-\frac{3}{2}$$

Answer: A

View Text Solution

2. Let $f\colon A\to Bf(x)=\dfrac{x+a}{bx^2+cx+2},$ where A represent domain set and B represent range set of function f(x) a,b,c $\in R, f(-1)=0$ and y=1 is an asymptote of y=f(x) and y=g(x) is the inverse of f(x).

Area bounded between the curves y = f(x) and y = g(x) is:

$$\begin{aligned} &\mathsf{A.}\,2\sqrt{5}+\ln\!\left(\frac{3-\sqrt{5}}{5+\sqrt{5}}\right) \\ &\mathsf{B.}\,2\sqrt{5}+2\ln\!\left(\frac{3+\sqrt{5}}{3-\sqrt{5}}\right) \\ &\mathsf{C.}\,3\sqrt{5}+4\ln\!\left(\frac{3-\sqrt{5}}{3+\sqrt{5}}\right) \\ &\mathsf{D.}\,3\sqrt{5}+2\ln\!\left(\frac{3-\sqrt{5}}{3+\sqrt{5}}\right) \end{aligned}$$

Answer: D

3. Let $f\colon A o Bf(x)=rac{x+a}{bx^2+cx+2},$ where A represent domain set

and B represent range set of function f(x) a,b,c

 $f(x)\in R, \ f(x)=0 \ ext{and} \ y=1 \ ext{is} \ ext{an} \ ext{asymptote}$ of $y=f(x) \ ext{and} \ y=g(x)$ is the inverse of f(x) .

Area of region enclosed by asymptotes of curves y=f(x) and y=g(x) is:

B. 9

C. 12

D. 25

Answer: B

View Text Solution

- **4.** For $j=0,1,2\ldots n$ let S_j be the area of region bounded by the x-axis
- and the curve $ye^x=\sin x$ for $f\pi \leq x \leq (j+1)\pi$

The value of S_o is :

A.
$$\frac{1}{2}(1+e^x)$$

$$\mathsf{B.}\,\frac{1}{2}\big(1+e^{-\pi}\big)$$

$$\mathsf{C.}\,\frac{1}{2}\big(1-e^{-\pi}\big)$$

D.
$$\frac{1}{2}(e^{\pi}-1)$$

Answer: B

View Text Solution

- **5.** For $j=0,1,2.\ldots n$ let S_j be the area of region bounded by the x-axis
- and the curve $ye^x=\sin x$ for $j\pi \leq x \leq (j+1)\pi$

The ratio $\frac{S_{2009}}{S_{2010}}$ equals :

A.
$$e^{-x}$$

B.
$$e^{\pi}$$

$$\mathsf{C.}\,\frac{1}{2}e^x$$

D.
$$2e^\pi$$

Watch Video Solution

6. For j=0,1,2. ...n let S_j be the area of region bounded by the x-axis and the curve $ye^x=\sin x$ for $j\pi \leq x \leq (j+1)\pi$

The value of $\sum_{i=0}^{\infty} S_j$ equals to :

A.
$$\dfrac{e^x(1+e^x)}{2(e^\pi-1)}$$

$$\mathsf{B.}\,\frac{1+e^\pi}{2(e^\pi-1)}$$

C.
$$\frac{1+e^\pi}{e^\pi-1}$$

D.
$$\frac{e^{\pi}(1+e^{\pi})}{(e^{\pi}-1)}$$

Watch Video Solution

Axercise Subjective Type Problems

- 1. Let f be a differentiable function satisfying the condition $f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)}(y\neq 0,f(y)\neq 0)\, \forall x,y\in R \ {
 m and} \ f'(1)=2.$ If the smaller area enclosed by $y=f(x),x^2+y^2=2$ is A, then findal [A], where [.] represents the greatest integer function.
 - 0

Watch Video Solution

2. Let f (x) be a function which satisfy the equation f(xy)=f(x)+f(y) for all $x>0,\,y>0$ such that f'(1)=2. Let A be the area of the region bounded by the curves

y=f(x), $y=\left|x^3-6x^2+11x-6\right|$ and x=0, then find value of $\frac{28}{17}A$.

3. If the area bounded by circle $x^2+y^2=4$, the parabola $y=x^2+x+1$ and the curve $y=\left[\sin^2\frac{x}{4}+\cos\frac{x}{4}\right]$, (where [] denotes the greats integer function) and x-axis is $\left(\sqrt{3}+\frac{2\pi}{3}-\frac{1}{k}\right)$, then the numerical quantitity is should be :

4. Let the function $f\colon [-4,4] o [-1,1]$ be defined impicity by the equatin $x+5y-y^5=0$ If the area of triangle formed by tangent and normal to f(x)atx=0 and the line y=5 is A, find $\frac{A}{13}$.

5. Area of the region bounded by $\left[x\right]^2=\left[y\right]^2, \quad \text{if} \quad x\in[1,5],$ where [] denotes the greatest integer function is:

6. Consider $y=x^2$ and f(x)where f (x), is a differentiable function satisfying

$$f(x+1)+f(z-1)=f(x+z)\, \forall x,z\in R \ ext{and} \ f(0)=0,f'(0)=4.$$
 If area bounded by curve $u=x^2$ and $u=f(x)$ is Δ , find the value of

If area bounded by curve $y=x^2 \ {
m and} \ y=f(x)$ is $\Delta, \ {
m find}$ the value of $\left(\frac{3}{16}\Delta\right)$.

7. The least integer which is greater than or equal to the area of region in x-y plane satisfying $x^6-x^2+y^2\leq 0$ is:

8. The set of points (x,y) in the plnae satisfying $x^{2/5} + |y| = 1$ form a curve enclosing a region of area $\frac{p}{q}$ square units, when p and q are relatively prime positive intergers. Find p-q.

View Text Solution