

India's Number 1 Education App

MATHS

BOOKS - VIKAS GUPTA MATHS (HINGLISH)

COMPLEX NUMBERS

Exercise 1 Single Choice Problems

1. Let t_1, t_2, t_3 be the three distinct points on circle |t|=1. if θ_1, θ_2 and θ_3

be the arguments of t_1, t_2, t_3 respectively then

$$\cos(heta_1- heta_2)+\cos(heta_2- heta_3)+\cos(heta_3- heta_1)$$

A.
$$\geq -\frac{3}{2}$$

B.
$$\leq -\frac{3}{2}$$

$$\mathsf{C.} \, \geq \frac{3}{2}$$

D.
$$\leq 2$$

Answer: A

Watch Video Solution

2. The number of points of intersection of the curves represented by

$$arg(z-2-7i)=\cot^{-1}(2)$$
 and $arg\left(rac{z-5i}{z+2-i}
ight)=\ \pm rac{\pi}{2}$

- A. 0
- B. 1
- C. 2
- D. None of these

Answer: A

Watch Video Solution

3. All three roots of $az^3+bz^2+cz+d=0$, z being complex number.

Further , assume that the origin, z_1 and z_2 form an equilateral triangle,

then:

A. All a,b,c,d have the same sign

B. a,b,c have same sign

C. a,b,d have same sign

D. b,c,d have same sign

Answer: C

View Text Solution

4. Let z_1 and z_2 be theroots of the equation $z^2+az+b=0$ z being compex. Further, assume that the origin z_1 and z_2 form an equilatrasl triangle then (A) $a^2=4b$ (B) $a^2=b$ (C) $a^2=2b$ (D) `a^2=3b

A.
$$a^2 = b$$

$$\mathsf{B.}\,a^2=2b$$

$$C. a^2 = 3b$$

D.
$$a^2=4b$$

Watch Video Solution

- **5.** Let Z and w be two complex number such that |zw|=1 and $arg(z)=\pi/2$ then
 - A. 1
 - B. 1
 - C. i
 - $\mathsf{D.}-i$

Answer: D

6. If ω is a complex nth root of unity, then $\sum_{i=1}^{n}{(a+b)\omega^{r-1}}$ is equal to

$$\frac{n(n+1)a}{2}$$
 b. $\frac{nb}{1+n}$ c. $\frac{na}{\omega-1}$ d. none of these

A.
$$\frac{n(n+1)a}{2\omega}$$

B.
$$\frac{nb}{1-n}$$

C.
$$\frac{na}{\omega-1}$$

D. None of these

Answer: C

Watch Video Solution

7. If α and β are complex numbers then the maximum value of $\alpha \bar{\beta} + \bar{\alpha} \beta$

$$rac{lphaar{eta}+\overline{lpha}\,eta}{|lphaeta|}= ext{ (A) 1 (B) 2 (C) gt2 (D) lt1}$$

B. 2

C. greater than 2

D. less than 1

Answer: B

Watch Video Solution

8. let z_1, z_2, z_3 and z_4 be the roots of the equation $z^4 + z^3 + 2 = 0$,

then the value of $\prod_{r=1}^4 \left(2z_r+1
ight)$ is equal to :

- A. 28
- B. 29
- C. 30
- D. 31

Answer: D

9. If
$$\operatorname{arg}\left(\frac{z-6-3i}{z-3-6i}\right)=\frac{\pi}{4}$$
 , then maximum value of $|\mathsf{z}|$:

A.
$$6\sqrt{2}+3$$

$$\mathrm{B.}\,6\sqrt{3}+3$$

C.
$$\sqrt{2} + 3$$

Answer: A

Watch Video Solution

10. If $z_1 \neq -z_2$ and $|z_1+z_2| = \left|\frac{1}{z_1} + \frac{1}{z_2}\right|$ then :

A. at least one of $z_1,\,z_2$ is unimodular

B. both $z_1,\,z_2$ are unimodular

C. z_1 . z_2 is unimodular

D. z_1-z_2 is unimodular

Watch Video Solution

11. If $|\mathsf{z}\text{-}\mathsf{i}| \leq$ 2 and $z_0 = 5 + 3i$, the maximum value of $|iz + z_0|$ is

A.
$$5+\sqrt{13}$$

B.
$$5+\sqrt{2}$$

C. 7

D. 8

Answer: C

Watch Video Solution

12. If z_1,z_2,z_3 are vertices of a triangle such that $|z_1-z_2|=|z_1-z_3|$, then arg $\left(\frac{2z_1-z_2-z_3}{z_3-z_2}\right)$ is :

A.
$$\pm \frac{\pi}{3}$$

$$\mathsf{C.}\pm\frac{\pi}{2}$$

D.
$$\pm \frac{\pi}{6}$$

- **13.** It is given that complex numbers z_1 and z_2 satisfy $|z_1|$ =2 and $|z_2|$ =3 . If the included angle of their corresponding vectors is 60° , then $\left|\frac{z_1+z_2}{z_1-z_2}\right|$ can be expressed as $\frac{\sqrt{n}}{\sqrt{7}}$, where 'n' is a natural number then n=
 - A. 126
 - B. 119
 - C. 133
 - D. 19

Watch Video Solution

14. If all the roots oif $z^3+az^2+bz+c=0$ are of unit modulus, then (A)

 $|a| \leq 3$ (B) $|b| \leq 3$ (C) |c| = 1 (D) none of these

- A. |a| < 3
- $|b| \leq 3$
- |c| = 1
- D. All of the above

Answer: D

Watch Video Solution

15. Let z be a complex number satisfying $\frac{1}{2} \le |z| \le 4$, then sum of greatest and least values of $\left|z+\frac{1}{z}\right|$ is :

 $\mathsf{B.}\;\frac{65}{16}$ c. $\frac{17}{4}$

A. $\frac{65}{4}$

D. 17

Answer: C

Watch Video Solution

16. if $|z-2i| \leq \sqrt{2}$, then the maximum value of |3+i(z-1)| is :

- A. $\sqrt{2}$
- B. $2\sqrt{2}$
- $\mathsf{C.}\,2+\sqrt{2}$
- D. $3+2\sqrt{2}$

Answer: B

17. Let
$$x-\frac{1}{x}=\left(\sqrt{2}\right)i$$
 where $i=\sqrt{-1}$. Then the value of $x^{2187}-\frac{1}{x^{2187}}$ is :

A.
$$i\sqrt{2}$$

$$\mathrm{B.}-i\sqrt{2}$$

$$\mathsf{C.}-2$$

D.
$$\frac{i}{\sqrt{2}}$$

Answer: A

Watch Video Solution

18. If $z=re^{i\theta}$ (r gt 0 & $0\leq \theta<2\pi$) is a root of the equation $z^8-z^7+z^6-z^5+z^4-z^3+z^2-z+1=0$ then number of value of ' θ ' is :

A. 6

- B. 7
- C. 8
- D. 9

Watch Video Solution

19. Let P and Q be two points on the circle |w|=r represented by w_1 and w_2 respectively, then the complex number representing the point of intersection of the tangents of P and Q is :

- A. $\dfrac{w_1w_2}{2(w_1+w_2)}$
- B. $\dfrac{2w_1\overline{w}_2}{w_1+w_2}$
- C. $\frac{2w_1w_2}{w_1+w_2}$
- D. $rac{2\overline{w}_1w_2}{w_1+w_2}$

Answer: C

20. If
$$z_1,z_2,z_3$$
 are complex number , such that $|z_1|=2,|z_2|=3,|z_3|=4$, the maximum value $|z_1-z_2|^2+|z_2-z_3|^2+|z_3-z_1|^2$ is :

D. None of these

Answer: C

Watch Video Solution

21. If $Z=rac{7+i}{3+4i}$, then find Z^{14} .

$$\mathsf{A.}\ 2^7$$

B. $(-2)^7$

 $\mathsf{C.}\left(2^7\right)i$

D. $ig(-2^7ig)i$

Answer: C

Watch Video Solution

minimum values of |Z| is:

22. If |Z-4| + |Z+4|=10, then the difference between the maximum and the

A. 2

B. 3

C. $\sqrt{41}-5$

D. 0

Answer: A

Exercise 2 One Or More Than One Answer Is Are Correct

1. Let Z_1 and Z_2 are two non-zero complex number such that $|Z_1+Z_2|=|Z_1|=|Z_2|$, then $rac{Z_1}{Z_2}$ may be :

A. $1 + \omega$

B.
$$1 + \omega^2$$

C.
$$\omega$$

D.
$$\omega^2$$

Answer: C::D

Watch Video Solution

2. Let z_1, z_2 and z_3 be three distinct complex numbers , satisfying

$$|z_1|=|z_2|=|z_3|=1$$
. Which of the following is/are true :

B.
$$|z_1z_2+z_2z_3+z_3z_1|=|z_1+z_2+z_3|$$

D. If
$$|z_1-z_2|=\sqrt{2}|z_1-z_3|=\sqrt{2}|z_2-z_3|$$
, then $\mathsf{Re}igg(rac{z_3-z_1}{z_3-z_2}igg)=0$

3. The triangle formed by complex numbers z, iz, i^2z is Equilateral (b)

A. If $\arg\left(\frac{z_1}{z_2}\right) = \frac{\pi}{2}$ then $\arg\left(\frac{z-z_1}{z-z_2}\right) > \frac{\pi}{4}$ where |z| gt 1

C. $lmigg(rac{(z_1+z_2)(z_2+z_3)(z_3+z_1)}{z_1.\,z_2.\,z_3}igg)=0$

Answer: B::C::D

View Text Solution

- - A. equilateral

Isosceles Right angle (d) Scalene

- B. isosceles
- C. right angled
- D. isosceles but not right angled

Answer: B::C

4. if $A(z_1), B(z_2), C(z_3), D(z_4)$ lies on $|{\sf z}|$ =4 (taken in order) , where $z_1+z_2+z_3+z_4=0$ then :

B. Max. area of quadrilateral ABCD=16

C. The triangle ΔABC is right angled

D. The quadrilateral ABCD is rectangle

Answer: A::C::D

Watch Video Solution

5. Let z_1, z_2 and z_3 be three distinct complex numbers satisfying

$$|z_1|=|z_2|=|z_3|=1$$
. Which of the following is/are true ?

A. If
$$\operatorname{arg}\left(\frac{z_1}{z_2}\right)=\frac{\pi}{2}$$
 then $\operatorname{arg}\left(\frac{z-z_1}{z-z_2}\right)>\frac{\pi}{4}$ where $|\mathsf{z}|$ gt 1

 $\mathsf{B}.\,|z_1z_2+z_2z_3+z_3z_1|=|z_1+z_2+z_3|$

C.
$$\lim \left(\frac{(z_1+z_2)(z_2+z_3)(z_3+z_1)}{z_1. z_2. z_3} \right) = 0$$

D. If
$$|z_1.z_2.z_3|=\sqrt{2}|z_1-z_3|=\sqrt{2}|z_2-z_3|$$
, then Re $\left(rac{z_3-z_1}{z_2-z_2}
ight)$ = 0

Answer: B::C::D

View Text Solution

6. If $z_1=a+ib$ and $z_2=c+id$ are two complex numbers where a,b,c,d

$$\in$$
 R and $|z_1|=|z_2|=1$ and Im $(z_1ar{z}_2)=0.$ If $w_1=a+ic$ and

$$w_2 = b + id$$
, then :

A.
$$lm(w_1\overline{w}_2)=0$$

B.
$$lm(\overline{w}_1w_2)=0$$

C.
$$lm\Bigl(rac{(z_1+z_2)(z_2+z_3)(z_3+z_1)}{z_1.\ z_2.\ z_3}\Bigr)=0$$

D. Re $\Bigl(rac{w_1}{w_2}\Bigr)=0$

Answer: A::B::C

7. The solutions of the equation $z^4+4iz^3-6z^2-4iz-i=0$ represent vertices of a convex polygon in the complex plane. The area of the polygon is :

A.
$$2^{1/2}$$

B.
$$2^{3/2}$$

$$\mathsf{C.}\,2^{5\,/\,2}$$

D.
$$2^{5/4}$$

Answer: D

Watch Video Solution

8. Least positive argument of the 4^{th} root of the complex number

$$2-i\sqrt{12}$$
 is :

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{12}$$

$$\mathsf{C.}\ \frac{5\pi}{12}$$

D.
$$\frac{7\pi}{12}$$

- **9.** Let ω be the imaginary cube root of unity and $\left(a+b\omega+c\omega^2\right)^{2015}=\left(a+b\omega^2+c\omega\right)$ where a,b,c are unequal real numbers . Then the value of $a^2+b^2+c^2-ab-bc-ca$ equals.
 - A. 0
 - B. 1
 - C. 2
 - D. 3

Answer: B

Watch Video Solution

- **10.** Let n be a positive integer and a complex number with unit modulus is a solution of the equation $Z^n+Z+1=0$, then the value of n can be
 - A. 62
 - B. 155
 - C. 221
 - D. 196

Answer: A::B::C

Watch Video Solution

Exercise 3 Comprehension Type Problems

1. Let f(z) is of the form $\alpha z + \beta$, where α, β, z are complex numbers such

that $|\alpha| \neq |\beta|$.f(z) satisfies following properties :

- (i)If imaginary part of z is non zero, then $f(z)+\overline{f(z)}=f(ar{z})+\overline{f(z)}$
- (ii)If real part of of z is zero , then $f(z)+\overline{f(z)}=0$
- (iii)If z is real , then $\overline{f(z)}f(z)>\left(z+1\right)^2 orall z\in R$

$$rac{4x^2}{\left(f(1)-f(\,-1)
ight)^2}+rac{y^2}{\left(f(0)
ight)^2}=1, x,y\in R$$
, in (x,y) plane will represent

A. hyperbola

B. circle

C. ellipse

D. pair of line

Answer: A

View Text Solution

2. Let f(x) is of the form αz_{β} , where α,β are constants and α,β,z are

complex numbers such that $|\alpha| \neq |\beta|$.f(x) satisfies following properties :

- (i)If imaginary part of z is non zero, then $f(x)+\overline{f(z)}=f(ar{z})+\overline{f(z)}$
- (ii)If real part of of z is zero , then $f(z)+\overline{f(x)}=0$
- (iii)If z is real , then $\overline{f(x)}f(x) > (x+1)^2\, orall z \in R$

Consider ellipse S : $\dfrac{x^2}{\left(Re(lpha)\right)^2}+\dfrac{y^2}{\left(Im(eta)\right)^2}
ight)$ =1 , x, y $\,\in\,\,$ R in (x,y) plane ,

then point (1,1) will lie:

A. outside the ellipse S

B. inside the ellipse S

C. on the ellipse S

D. none of these

Answer: B

View Text Solution

3. Let z_1 and z_2 be complex numbers such that $z_1^2-4z_2=16+20i$ and the roots α and β of $x^2+z_1x+z_2+m=0$ for some complex number m satisfies $|\alpha-\beta|=2\sqrt{7}.$

The locus of the complex number m is a curve

- A. a square with side 7 and centre (4,5)
- B. a circle with radius 7 and centre (4,5)
- C. a circle with radius 7 and centre (-4,5)
- D. a square with side 7 and centre (-4,5)

Answer: B

- **4.** Let z_1 and z_2 be complex numbers such that $z_1^2-4z_2=16+20i$ and the roots α and β of $x^2+z_1x+z_2+m=0$ for some complex number m satisfies $|\alpha-\beta|=2\sqrt{7}$.
- The maximum value of $\left|m\right|$ is

A.
$$5\sqrt{21}$$

B.
$$5+\sqrt{23}$$

$$\mathsf{C.}\,7+\sqrt{43}$$

D.
$$7+\sqrt{41}$$

Answer: D

Watch Video Solution

5. Let z_1 and z_2 be complex numbers such that $z_1^2-4z_2=16+20i$ and the roots lpha and eta of $x^2+z_1x+z_2+m=0$ for some complex number m satisfies $|lpha-eta|=2\sqrt{7}.$

The locus of the complex number m is a curve

A.
$$7-\sqrt{41}$$

B.
$$7-\sqrt{43}$$

C.
$$5-\sqrt{23}$$

D.
$$5+\sqrt{21}$$

Answer: A

Watch Video Solution

6. Let $z_1=3$ and $z_2=7$ represent two points A and B respectively on complex plane . Let the curve C_1 be the locus of pint P(z) satisfying $|z-z_1|^2+|z-z_2|^2=10$ and the curve C_2 be the locus of point P(z) satisfying $|z-z_1|^2+|z-z_2|^2=16$

Least distance between curves C_1 and C_2 is :

- A. 4
- B. 3
- C. 2
- D. 1

Answer: D

7. Let $z_1=3$ and $z_2=7$ represent two points A and B respectively on complex plane . Let the curve C_1 be the locus of pint P(z) satisfying $|z-z_1|^2+|z-z_2|^2=10$ and the curve C_2 be the locus of point P(z) satisfying $|z-z_1|^2+|z-z_2|^2=16$

The locus of point from which tangents drawn to C_1 and C_2 are perpendicular, is:

- A. |z-5|=4
- B. |z-3|=2
- C. |z-5|=3
- D. $|z-5| = \sqrt{5}$

Answer: D

Watch Video Solution

8. In an Agrad plane z_1,z_2 and z_3 are, respectively, the vertices of an isosceles trinagle ABC with AC= BC and $\angle CAB=\theta$. If z_4 is incentre of

triangle, then

The value of $AB imes AC/(IA)^2$ is

$$egin{aligned} \mathsf{A.} & \left| rac{(Z_2 - Z_1)(Z_1 - Z_3)}{(Z_4 - Z_1)}
ight| \ \mathsf{B.} & \left| rac{(Z_2 - Z_1)(Z_3 - Z_1)}{(Z_4 - Z_1)}
ight| \ \mathsf{C.} & \left| rac{(Z_2 - Z_1)(Z_3 - Z_1)}{(Z_4 - Z_1)^2}
ight| \ \mathsf{D.} & \left| rac{(Z_2 - Z_1)(Z_3 - Z_1)}{(Z_4 + Z_1)}
ight| \end{aligned}$$

Answer: C

Watch Video Solution

9. In an Agrad plane z_1,z_2 and z_3 are, respectively, the vertices of an isosceles trinagle ABC with AC= BC and $\angle CAB=\theta$. If z_4 is incentre of triangle, then

The value of $(z_4-z_1)^2(\cos heta+1){\sec heta}$ is

B.
$$rac{(Z_2-Z_1)(Z_3-Z_1)}{Z_4-Z_1}$$

A. $(Z_2 - Z_1)(Z_3 - Z_1)$

1. Let complex number 'z' satisfy the inequality $2 \le |x| \le 4$. A point P is selected in this region at random. The probability that argument of P lies

C. $rac{(Z_2-Z_1)(Z_3-Z_1)}{{(Z_4-Z_1)}^2}$

D. $(Z_2 - Z_1)(Z_3 - Z_1)^2$

Answer: A

 $|Z-1| \le |Z-3|, |Z-3| \le |Z-5|, |Z+i| \le |Z-i|, |Z-i| \le |Z-5i|$

. Then area of region in which Z lies is A square units, Where A is equal to :

3. Complex number z_1 and z_2 satisfy z+ar z=2|z-1| and arg $(z_1-z_2)=rac{\pi}{4}$. Then the value of ${
m Im}(z_1+z_2)$ is

If

4.

5. If
$$|z_1|$$
 and $|z_2|$ are the distance of points on the curve $5zar z-2iig(z^2-ar z^2ig)-9=0$ which are at maximum and minimum

 $|z_1=1,|z_2|=2,|z_3|=3 \,\, ext{and} \,\, |z_1+z_2+z_3|=1, then |9z_1z_2+4z_3z_1+z_2|$

distance from the origin, then the value of $\left|z_{1}
ight|+\left|z_{2}
ight|$ is equal to :

6. Let $\frac{1}{a_1+\omega}+\frac{1}{a_2+\omega}+\frac{1}{a_3+\omega}+\ldots+\frac{1}{a_n+\omega}=i$ where a_1,a_2,a_3 $a_n\in R$ and ω is imaginary cube root of unity , then evaluate $\sum_{r=1}^n\frac{2a_r-1}{a_r^2-a_r+1}$.

7. If $|z_1|=2, |z_2|=3, |z_3|=4$ and $|2z_1+3z_2+4z_3|=9$, then value of

 $\left|8z_{2}z_{3}+27z_{3}z_{1}+64z_{1}z_{2}
ight|^{1/3}$ is :

- **8.** The sum of maximum and minimum modulus of a complex number z satisfying $|z-25i|\leq 15,$ $i=\sqrt{-1}$ is S , then $\frac{S}{10}$ is :
 - Watch Video Solution

