



## MATHS

# BOOKS - VIKAS GUPTA MATHS (HINGLISH)

# **ELLIPSE**

**Exercise 1 Single Choice Problems** 

**1.** If CF be the perpendicular from the centre C of the ellipse  $rac{x^2}{12}+rac{y^2}{8}=1$ , on the tangent

at any point P and G is the point where the normal at P meets the major axis, then the value of  $(CF \cdot PG)$  equals to :

A. 5

B. 6

C. 8

D. None of these

#### Answer: C

Watch Video Solution

2. The minimum length of intercept on any tangent to the ellipse  $rac{x^2}{4}+rac{y^2}{9}=1$  cut by the circle  $x^2+y^2=25$  is :

A. 8

B. 9

C. 2

D. 11

#### Answer: A



**3.** Find a point on the curve  $x^2 + 2y^2 = 6$ , whose distance from the line x + y = 7, is minimum.

A. (2, 3)

B. (2, 1)

C. (1, 0)

D. None of these

#### **Answer: B**

Watch Video Solution

4. If lines 2x + 3y = 10 and 2x - 3y = 10are tangents at the extremities of a latus rectum of an ellipse, whose centre is origin, then the length of the latus rectum is :

A. 
$$\frac{110}{27}$$
  
B.  $\frac{98}{27}$   
C.  $\frac{100}{27}$   
D.  $\frac{120}{27}$ 

#### Answer: C



5. Prove that the area bounded by the circle  $x^2 + y^2 = a^2$  and the ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  is equal to the area of another ellipse having semi-axis a - b and b, a > b.

A. a + b and b

B.a - b and a

C. a and b

D. None of these

#### Answer: B



6. If  $F_1$  and  $F_2$  are the feet of the perpendiculars from the foci  $S_1 and S_2$  of the ellipse  $\frac{x^2}{25} + \frac{y^2}{16} = 1$  on the tangent at any point P on the ellipse, then prove that  $S_1F_1 + S_2F_2 \ge 8.$ 

#### A. $S_1F_1+S_2F_2\geq 2$

B.  $S_1F_1+S_2F_2\geq 3$ 

#### C. $S_1F_1+S_2F_2\geq 6$

D.  $S_1F_1+S_2F_2\geq 8$ 

#### Answer: D

Watch Video Solution

7. Consider the ellipse  $\frac{x^2}{f(k^2+2k+5)} + \frac{y^2}{f(k+11)} = 1$ . If f(x) is a positive decr4easing function, then the set of values of k for which the major axis is the x-axis is (-3, 2). the set of values of k for

which the major axis is the y-axis is  $(\,-\infty,\,2)$  . the set of values of k for which the major axis is the y-axis is  $(\,-\infty,\,-3)\cup(2,\infty)$  the set of values of k for which the major axis is the yaxis is  $(-3, -\infty, )$ A.  $k \in (-7, -5)$ B.  $k \in (-5, -3)$  $\mathsf{C}.\,k\in(\,-3,2)$ D. None of these Answer: C



8. If area of the ellipse  $rac{x^2}{16}+rac{y^2}{b^2}=1$ inscribed in a square of side length  $5\sqrt{2}$  is A, then  $\frac{A}{\pi}$  equals to : A. 12 B. 10 C. 8 D. 11

#### Answer: A

9. Any chord of the conic  $x^2 + y^2 + xy = 1$ passing through origin is bisected at a point (p, q), then (p + q + 12) equals to :

#### A. 13

B. 14

C. 11

D. 12

Answer: D



10. Tangents are drawn from the point (4, 2) to the curve  $x^2 + 9y^2 = 9$ , the tangent of angle between the tangents :

A. 
$$\frac{3\sqrt{3}}{5\sqrt{17}}$$
  
B.  $\frac{\sqrt{43}}{10}$   
C.  $\frac{\sqrt{43}}{5}$   
D.  $\sqrt{\frac{3}{17}}$ 

Answer: C

#### **Exercise 2 Comprehension Type Problems**

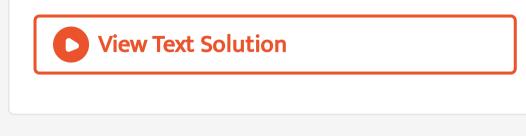
**1.** An ellipse has semi-major axis of length 2 and semi-minor axis of length 1. It sides between the co-ordinate axes in the first quadrant, while maintaining contact with both x-axis and y-axis.

Q. The locus of the centre of ellipse is :

A. 
$$x^2 + y^2 = 3$$

B. 
$$x^2 + y^2 = 5$$
  
C.  $(x-2)^2 + (y-1)^2 = 5$   
D.  $(x-2)^2 + (y-1)^2 = 3$ 

#### Answer: B


View Text Solution

**2.** An ellipse has semi-major axis of length 2 and semi-minor axis of length 1. It sides between the co-ordinate axes in the first quadrant, while maintaining contact with both x-axis and y-axis.

Q. The locus of the foci of the ellipse is :

A. 
$$x^2 + y^2 + \frac{1}{x^2} + \frac{1}{y^2} = 16$$
  
B.  $x^2 + y^2 + \frac{1}{x^2} - \frac{1}{y^2} = 2\sqrt{3} + 4$   
C.  $x^2 + y^2 - \frac{1}{x^2} - \frac{1}{y^2} = 2\sqrt{3} + 4$   
D.  $x^2 - y^2 + \frac{1}{x^2} - \frac{1}{y^2} = 2\sqrt{3} + 4$ 

#### Answer: A



**3.** Comprehension- I A coplanar beam of light emerging from a point source have equation  $\lambda x-y+2(1+\lambda)=0, \lambda\in R.$  The rays of the beam strike an elliptical surface and get reflected. The reflected rays form another convergent beam having equation  $\mu x-y+2(1-\mu)=0,\,\mu\in R.$  Foot of the perpendicular from the point (2, 2) upon any tangent to the ellipse lies on the circle  $x^2 + y^2 - 4y - 5 = 0$  The eccentricity of the ellipse is equal to

A. 
$$\frac{1}{3}$$
  
B.  $\frac{1}{\sqrt{3}}$   
C.  $\frac{2}{3}$   
D.  $\frac{1}{2}$ 

#### Answer: C

### Watch Video Solution

# 4. A coplanar beam of light emerging from a point surce have the equation $\lambda x-y+2(1+\lambda)-0,\ orall \lambda\in R:$ the rays of

beam strike an elliptical surface and get reflected inside the ellipse. The reflected rays form another convergent beam having the equation  $\mu x - y + 2(1-\mu) = 0, \ \forall \mu \in R.$ Further it is found that the foot of the perpendicular from the point (2, 2) upon any tangent to the ellipse lies on the circle  $x^2 + y^2 - 4y - 5 = 0$ 

Q. The area of the largest that an incident ray and corresponding reflected ray can enclose with the major axis of the ellipse is equal to :

A. 
$$4\sqrt{5}$$

B.  $\sqrt{5}$ 

C.  $3\sqrt{5}$ 

D.  $2\sqrt{5}$ 

#### Answer: D

View Text Solution

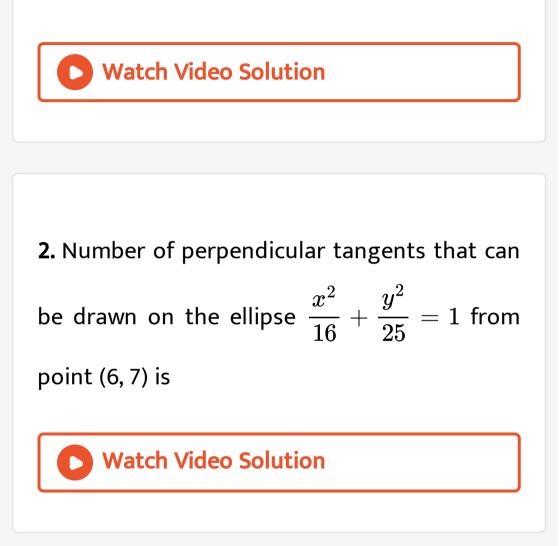
5. A coplanar beam of light emerging from a point surce have the equation  $\lambda x - y + 2(1 + \lambda) - 0, \ orall \lambda \in R:$  the rays of beam strike an elliptical surface and get reflected inside the ellipse. The reflected rays form another convergent beam having the equation  $\mu x - y + 2(1 - \mu) = 0, \forall \mu \in R.$ Further it is found that the foot of the perpendicular from the point (2, 2) upon any tangent to the ellipse lies on the circle  $x^2 + y^2 - 4y - 5 = 0$ 

Q. The least value of total distance travelled by an incident ray and the corresponding reflected ray is equal to :

#### A. 6

D.  $2\sqrt{5}$ 

#### Answer: A




#### **Exercise 4 Subjective Type Problems**

**1.** For the ellipse 
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
. Let O be the centre and S and S' be the foci. For any point P on the ellipse the value of  $\frac{PS. PS'd^2}{9}$  (where

d is the distance of O from the tangent at P) is

equal to

