

MATHS

BOOKS - VIKAS GUPTA MATHS (HINGLISH)

ELLIPSE

Exercise 1 Single Choice Problems

1. If CF be the perpendicular from the centre C

of the ellipse $\frac{x^2}{12} + \frac{y^2}{8} = 1$, on the tangent

at any point P and G is the point where the normal at P meets the major axis, then the value of $(CF \cdot PG)$ equals to :

- A. 5
- B. 6
- C. 8
- D. None of these

Answer: C

2. The minimum length of intercept on any tangent to the ellipse $\frac{x^2}{4}+\frac{y^2}{9}=1$ cut by the circle $x^2+y^2=25$ is :

- A. 8
- B. 9
- C. 2
- D. 11

Answer: A

View Text Solution

3. Find a point on the curve $x^2+2y^2=6$, whose distance from the line x+y=7, is minimum.

- A.(2,3)
- B.(2,1)
- C.(1,0)
- D. None of these

Answer: B

4. If lines 2x + 3y = 10 and 2x - 3y = 10 are tangents at the extremities of a latus rectum of an ellipse, whose centre is origin, then the length of the latus rectum is :

A.
$$\frac{110}{27}$$

$$\mathsf{B.}\;\frac{98}{27}$$

c.
$$\frac{100}{27}$$

$$\mathsf{D.}\;\frac{120}{27}$$

Answer: C

5. Prove that the area bounded by the circle $x^2+y^2=a^2$ and the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ is equal to the area of another ellipse having semi-axis a-b and b,a>b .

A. a + b and b

B. a - b and a

C. a and b

D. None of these

Answer: B

Watch Video Solution

6. If F_1 and F_2 are the feet of the perpendiculars from the foci $S_1 and S_2$ of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ on the tangent at any point P on the ellipse, then prove that $S_1F_1 + S_2F_2 \geq 8$.

A.
$$S_1F_1+S_2F_2\geq 2$$

B.
$$S_1F_1 + S_2F_2 \geq 3$$

C.
$$S_1F_1+S_2F_2\geq 6$$

D.
$$S_1F_1 + S_2F_2 \ge 8$$

Answer: D

7. Consider the ellipse
$$\frac{x^2}{f(k^2+2k+5)}+\frac{y^2}{f(k+11)}=1.$$
 If $f(x)$ is a positive decr4easing function, then the set of values of k for which the major axis is the x-axis is $(-3,2)$. the set of values of k for

which the major axis is the y-axis is $(-\infty,2)$ the set of values of k for which the major axis

the set of values of k for which the major axis is the y-axis is $(-\infty, -3) \cup (2, \infty)$ the set of values of k for which the major axis is the y-axis is $(-3, -\infty,)$

A.
$$k \in (-7, -5)$$

B. $k \in (-5, -3)$

C.
$$k\in(\,-3,2)$$

D. None of these

Answer: C

Watch Video Solution

8. If area of the ellipse
$$\dfrac{x^2}{16}+\dfrac{y^2}{b^2}=1$$
 inscribed in a square of side length $5\sqrt{2}$ is A,

then $\frac{A}{\pi}$ equals to :

Answer: A

9. Any chord of the conic $x^2+y^2+xy=1$ passing through origin is bisected at a point (p, q), then (p+q+12) equals to :

A. 13

B. 14

C. 11

D. 12

10. Tangents are drawn from the point (4, 2) to the curve $x^2+9y^2=9$, the tangent of angle between the tangents :

A.
$$\frac{3\sqrt{3}}{5\sqrt{17}}$$

$$B. \frac{\sqrt{43}}{10}$$

$$\mathsf{C.} \; \frac{\sqrt{43}}{5}$$

D.
$$\sqrt{\frac{3}{17}}$$

Answer: C

Exercise 2 Comprehension Type Problems

- 1. An ellipse has semi-major axis of length 2 and semi-minor axis of length 1. It sides between the co-ordinate axes in the first quadrant, while maintaining contact with both x-axis and y-axis.
- Q. The locus of the centre of ellipse is:

A.
$$x^2 + y^2 = 3$$

$$\mathtt{B.}\,x^2+y^2=5$$

C.
$$(x-2)^2 + (y-1)^2 = 5$$

D.
$$(x-2)^2 + (y-1)^2 = 3$$

Answer: B

View Text Solution

2. An ellipse has semi-major axis of length 2 and semi-minor axis of length 1. It sides between the co-ordinate axes in the first quadrant, while maintaining contact with both

x-axis and y-axis.

Q. The locus of the foci of the ellipse is:

A.
$$x^2 + y^2 + \frac{1}{x^2} + \frac{1}{y^2} = 16$$

B.
$$x^2+y^2+rac{1}{x^2}-rac{1}{y^2}=2\sqrt{3}+4$$

C.
$$x^2+y^2-rac{1}{x^2}-rac{1}{y^2}=2\sqrt{3}+4$$

D.
$$x^2-y^2+rac{1}{x^2}-rac{1}{y^2}=2\sqrt{3}+4$$

Answer: A

View Text Solution

3. Comprehension- I A coplanar beam of light emerging from a point source have equation $\lambda x - y + 2(1 + \lambda) = 0, \lambda \in R$. The rays of the beam strike an elliptical surface and get reflected. The reflected rays form another convergent beam having equation $\mu x-y+2(1-\mu)=0, \mu\in R.$ Foot of the perpendicular from the point (2, 2) upon any tangent to the ellipse lies on the circle $x^2+y^2-4y-5=0$ The eccentricity of the ellipse is equal to

A.
$$\frac{1}{3}$$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{2}{3}$

D.
$$\frac{1}{2}$$

Answer: C

Watch Video Solution

 $\lambda x - y + 2(1+\lambda) - 0, \ orall \lambda \in R:$ the rays of

beam strike an elliptical surface and get reflected inside the ellipse. The reflected rays form another convergent beam having the equation $\mu x - y + 2(1-\mu) = 0, \ orall \mu \in R.$ Further it is found that the foot of the perpendicular from the point (2, 2) upon any tangent to the ellipse lies on the circle $x^2 + y^2 - 4y - 5 = 0$

Q. The area of the largest that an incident ray and corresponding reflected ray can enclose with the major axis of the ellipse is equal to:

A. $4\sqrt{5}$

B.
$$\sqrt{5}$$

C.
$$3\sqrt{5}$$

D.
$$2\sqrt{5}$$

Answer: D

View Text Solution

5. A coplanar beam of light emerging from a point surce have the equation $\lambda x - y + 2(1+\lambda) - 0, \ \forall \lambda \in R : \text{the rays of}$ beam strike an elliptical surface and get

reflected inside the ellipse. The reflected rays form another convergent beam having the equation $\mu x - y + 2(1 - \mu) = 0, \ \forall \mu \in R.$ Further it is found that the foot of the perpendicular from the point (2, 2) upon any tangent to the ellipse lies on the circle $x^2 + y^2 - 4y - 5 = 0$

Q. The least value of total distance travelled by an incident ray and the corresponding reflected ray is equal to:

A. 6

B. 3

C. $\sqrt{5}$

D. $2\sqrt{5}$

Answer: A

View Text Solution

Exercise 4 Subjective Type Problems

1. For the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$. Let O be the centre and S and S' be the foci. For any point P on the ellipse the value of $\frac{PS.\ PS'd^2}{\Omega}$ (where

d is the distance of O from the tangent at P) is equal to

Watch Video Solution

2. Number of perpendicular tangents that can be drawn on the ellipse $rac{x^2}{16}+rac{y^2}{25}=1$ from point (6, 7) is

