

India's Number 1 Education App

MATHS

BOOKS - VIKAS GUPTA MATHS (HINGLISH)

FUNCTION

Single Choice Problems

1. Range of the function $f(x) = \log_{\sqrt{2}} ig(2 - \log_2 16 \sin^2 x + 1 ig)$ is:

A. [0, 1]

B. $(-\infty, 2]$

C.[-1,1]

D. $(-\infty, \infty)$

Answer: B

Marial Vide a Calcutan

2. The values of lpha and eta for which $\left|e^{|x-eta|}-lpha\right|=2$ has four distinct solutions are

A.
$$a\in (\,-2,\infty), b=0$$

B.
$$a\in(2,\infty), b=0$$

C.
$$a\in(3,\infty),b\in R$$

D.
$$a\in(2,\infty)b=0$$

Answer: C

Watch Video Solution

3. The range of the function $: f(x) = an^{-1} x + rac{1}{2} \sin^{-1} x$

A.
$$(-\pi/2,\pi/2)$$

B.
$$[\,-\pi/2,\pi/2]-\{0\}$$

C.
$$[-\pi/2,\pi/2]$$

D.
$$(-3\pi/4, 3\pi/4)$$

Answer: C

Watch Video Solution

4. Find the number of real ordered pair(s) (x, y) for which:

$$16^{x^2+y} + 16^{x+y^2} = 1$$

A. 0

B. 1

C. 2

D. 3

Answer: B

5. The range of values of 'a' such that $\left(\frac{1}{2}\right)^{|x|}=x^2-a$ is satisfied for maximum number of values of 'x'

A.
$$(-\infty, -1)$$

B.
$$(-\infty,\infty)$$

$$C.(-1,1)$$

D.
$$(-1, \infty)$$

Answer: D

Watch Video Solution

6. For a real number $x, \ \$ let [x] denote the greatest integer less than or equal to x. Let $f: \mathsf{R} \to \mathsf{R}$ be defined as $f(x) = 2x + [x] + \sin x \cos x$, then f is

A. One-one but not onto

B. onto but not one-one

C. Both one-one and onto

D. Neither one-one nor onto

Answer: A

Watch Video Solution

7. The maximum value of $\sec^{-1}\!\left(\frac{7-5\big(x^2+3\big)}{2(x^2+2)}\right)$ is:

A.
$$\frac{5\pi}{6}$$

$$\mathsf{B.}\;\frac{5\pi}{12}$$

$$\operatorname{C.}\frac{7\pi}{12}$$

D.
$$\frac{2\pi}{3}$$

Answer: D

8. Number of ordered pair (a,b) the set $A=\{1,2,3,4,5\}$ so that the functon $f(x)=rac{x^3}{3}+rac{a}{2}x^2+bx+10$ is an injective mapping $\, orall \, x\in R$:

B. 14

C. 15

D. 16

Answer: C

Watch Video Solution

9. let A be the greatest value of the function $f(x) = \log_x[x]$, (where [.] denotes gratest integer function) and B be the least value of the function $g(x) = |\sin x| + |\cos x|$, then :

A.
$$A>B$$

 $\operatorname{B.} A < B$

$$\mathsf{C}.\,A=B$$

D.
$$2A + B = 4$$

Answer: C

Watch Video Solution

10. The function $f\colon (a,\infty) o R$ where R denotes the range corresponding to the given domain, with rule $f(x)=2x-3x^2+6$, will have an inverse provided

A.
$$a=1,B=[5,\infty)$$

B.
$$a=2, B=[10,\infty)$$

C.
$$a,0,B=[6,\infty)$$

$$\mathsf{D}.\,a=\,-\,1,B=[1,\infty)$$

Answer: A

11. Solution of the inequation $\{x\}(\{x\}-1)(\{x\}+2)\geq 0$

where $\{.\}$ denots fractin part function) is :

A. $x\in (\,-2,1)$

B. $x \in I$ (I denote set of integers)

 $\mathsf{C.}\,x\in[0,1)$

D. $x \in [\,-2,0)$

Answer: B

Watch Video Solution

12. Let f(x), g(x) be two real valued functions then the function

 $h(x) = 2 \max \{f(x) - g(x), 0\}$ is equal to :

A. f(x)-g(x)-|g(x)-f(x)|

B. f(x) + g(x) - |g(x) - f(x)|

$$\mathsf{C}.\, f(x) - g(x) + |g(x) - f(x)|$$

D.
$$f(x) + g(x) + |g(x) - f(x)|$$

Answer: C

Watch Video Solution

13. Let $R = \{(1,3), (4,2), (2,4), (2,3), (3,1)\}$ be a relation the set

 $A = \{1, 2, 3, 4\}$. The relation R is

A. a function

B. reflexive

C. not symmetric

D. transitive

Answer: C

14. The true set of valued of 'K' for which $\sin^{-1}\!\left(\frac{1}{1+\sin^2x}\right)=\frac{k\pi}{6}$ may

have a solution is :

A.
$$\left[\frac{1}{4}, \frac{1}{2}\right]$$

B.[1, 2]

$$\mathsf{C.}\left[\frac{1}{6},\frac{1}{2}\right]$$

D. [2, 4]

Answer: B

15. A ral valued functin f(x) satisfies the functional equation $f(x-y)=f(x)f(y)-f(a-x)f(a+y) \ \text{where 'a' is a given constant}$ and $f(0)=1,\,f(2a-x)$ is equal to :

$$\mathsf{A.}-f(x)$$

B. f(x)

$$\mathsf{C.}\, f(a) + f(a-x)$$

D.
$$f(-x)$$

Answer: A

Watch Video Solution

16. Let $g\colon R \to R$ be given by g(x)=3+4x if $g^n(x)=\operatorname{gogogo.....}$ or times. Then inverse of $g^n(x)$ is equal to :

A.
$$(x+1-4^n)$$
. 4^{-n}

B.
$$(x-1+4^n)4^{-n}$$

C.
$$(x+1+4^n)4^{-n}$$

D. None of these

Answer: A

17. Let $f\colon D\to R$ bge defined as $:f(x)=rac{x^2+2x+a}{x^2+4x+3a}$ where D and R denote the domain of f and the set of all the real numbers respectively. If f is surjective mapping. Then the complete range of a is :

A.
$$0 < a \le 1$$

B.
$$0 < a \le 1$$

$$\mathsf{c.}\,0 \le a < 1$$

D.
$$0 < a < 1$$

Answer: D

Watch Video Solution

$$f(x)=4x-x^2.$$
 Then, $f^{-1}(x)$ is

Let $f\colon (-\infty,2] o (-\infty,4]$ be a function

defined

bν

A.
$$2-\sqrt{4-x}$$

B.
$$2+\sqrt{4-x}$$

$$\mathsf{C.} - 2 + \sqrt{4-x}$$

D.
$$-2 - \sqrt{4 - x}$$

Answer: A

Watch Video Solution

19. IF $[5\sin x]+[\cos x]+6=0$, then range of $f(x)=\sqrt{3}\cos x+\sin x$ corresponding to solution set of the given equation is: (where [.] denotes greatest integer function)

A.
$$[\,-2,\,-1]$$

$$\mathsf{B.}\left(-\frac{3\sqrt{3}+2}{5},\;-1\right)$$

C.
$$\left[-2, -\sqrt{3}\right)$$

D.
$$\left(-\frac{3\sqrt{3}+4}{5}, -1\right)$$

Answer: D

20. If $f\colon R \to R$ where $f(x) = ax + \cos x$ is an invertible function, then

A.
$$(-2, -1] \cup [1, 2)$$

B.
$$[-1, 1]$$

C.
$$(-\infty, -1] \cup [1, \infty)$$

D.
$$(\,-\infty,\,-2]\cup[2,\infty)$$

Answer: C

$$f(x)=[1+\sin x]+\left[2+s\inrac{2}{x}
ight]+\left[3+s\inrac{x}{3}
ight]+\left.+\left[n+s\inrac{x}{n}
ight]orall x$$
 , where $[.]$ denotes the greatest integer function, is,

$$\left\{rac{n+n-2^2}{2},rac{n(n+1)}{2}
ight\} \ \left\{rac{n^2+n-2^\square}{2},rac{n(n+1)}{2}rac{n^2+n+2}{2}
ight\} \left[rac{n(n+1)}{2},rac{n^2+n+2}{2}
ight]$$

 $C.(0,\infty)$

Answer: D

Answer: D

A. $\left\{ \frac{n^2 + n - 2}{2}, \frac{n(n+1)}{2} \right\}$

D. $\left\{ \frac{n(n+1)}{2}, \frac{n^2+n-2}{2} \right\}$

Watch Video Solution

such that f(x) is onto, is

A. $(-\infty, \infty)$

B. $(-\infty,0)$

c. $\left\{ \frac{n(n+1)}{2}, \frac{n^2+n+2}{2}, \frac{n^2+n+4}{2} \right\}$

22. $f: R \to R$, where $f(x) = \frac{x^2 + ax + 1}{x^2 + x + 1}$ Complete set of values of 'a'

 $\mathsf{B.}\left\{\frac{n(n+1)}{2}\right\}$

23. If
$$f(x)$$
 and $g(x)$ are two function such that $f(x)=[x]+[-x]$ and $g(x)=\{x\}\, \forall x\in R$ and $h(x)=f(g(x),$ then which of the following is incorrect ? [.] denotes greatest integer

A. f(x) and h(x) are identical functions

function and {. } denotes fractional part function)

B.
$$f(x) = g(x)$$
 has no solution

C.
$$f(x) + h(x) > 0$$
 has no solution

D.
$$f(x) - h(x)$$
 is a periodic function

Answer: B

Watch Video Solution

24. Find the number of values of $f(x) = \left[\frac{x}{15}\right] \left[-\frac{15}{x}\right]$ can take where $x \in (0, 90)$ whete [.] =GIF

- A. 5
- B. 6
- C. 7
- D. Infinite

Answer: B

Watch Video Solution

25. The graph of function f(x) is shown below :

Then the graph of $g(x)=rac{1}{f(|x|)}$ is:

A.

В.

C.

D.

Answer: C

26. Which of the following function is homogeneous?

A.
$$f(x) = x \sin y + y \sin x$$

$$\mathtt{B.}\, g(x) = xz\frac{{}^y}{x} + ye\frac{x}{y}$$

$$\mathsf{C.}\,h(x) = \frac{xy}{x+y^2}$$

D.
$$\phi(x) = rac{x - y \cos x}{y \sin x + y}$$

Answer: B

- 27. Let $f(x)=egin{array}{cccc} 2x+3 & x>1 & \text{if range of } f(x)=R & \text{(set of real numbers)} & \text{then number or integral value(s), which } \alpha & \text{any take :} \end{array}$
 - A. 2
 - B. 3
 - C. 4
 - D. 5

Answer: C

Watch Video Solution

- **28.** The maximum integral values of x in the domain of $f(x) = \log_{10} \Bigl(\log_{1/3} (\log_4 (x-5))$ is :
 - A. 5
 - B. 7
 - C. 8
 - D. 9

Answer: C

Watch Video Solution

29. Range of the function f(x)= $\log_2\!\left(\frac{4}{\sqrt{x+2}+\sqrt{2-x}}\right)$ is

C. [1, 2]D. $\left[\frac{1}{4},1\right]$

A. $(0, \infty)$

 $\mathsf{B.}\left[\frac{1}{2},1\right]$

Answer: B

Watch Video Solution

30. $\left| x^{2}+5x \right| + \left| x-x^{2} \right| = \left| 6x \right|$ is:

A. 3

B. 5

Number of

integers stastifying the

equation

C. 7

D. 9

Answer: C

31. Which of the following is not an odd function?

A. In
$$\left(rac{x^4+x^2+1}{\left(x^2+x+1
ight)^2}
ight)$$

B. sgn (sgn(x))

C. sin (tan x)

D. f(x),

$$f(x)+figg(rac{1}{x}igg)=f(x)figg(rac{1}{x}igg)orall x\in R-\{0\} \, ext{ and }\, f(2)=33$$

where

Answer: D

?

Watch Video Solution

32. Which of the following function is periodic with fundamental period π

A.
$$f(x) = \cos x \left| rac{\sin x}{2}
ight|, ext{ where } [.\,]$$
 denotes greatest integer function

 $\mathsf{B.}\,g(x) = \frac{\sin x + \sin 7x}{\cos x + \cos 7x} + |\sin x|$

C. $h(x) = \{x\} + |\cos x|$, where $\{.\}$ denotes functional part function

D. $\phi(x) = |\cos x| + \ln(\sin x)$

Answer: B

Watch Video Solution

33. Let $f\colon N o Z$ and $f(x)=\left[egin{array}{cc} rac{x-1}{2} & ext{when x is odd} \ -rac{x}{2} & ext{when x is even} \end{array} ight.$, then:

A. f (x) is bijective

B. f (x) is injective but not surjective

C. f (x) is not injective but surjective

D. f (x) is neither injective nor subjective

Answer: A

34. Let g(x) be the inverse of $f(x)=rac{2^{x+1}-2^{1-x}}{2^x+2^{-x}}$ then g (x) be :

A.
$$\frac{1}{2}\log_2\left(\frac{2+x}{2-x}\right)$$

$$\mathsf{B.} - \frac{1}{2} \mathrm{log}_2 \bigg(\frac{2+x}{2-x} \bigg)$$

$$\mathsf{C.}\log_2\!\left(rac{2+x}{2-x}
ight)$$

D.
$$\log_2\left(\frac{2-x}{2+x}\right)$$

Answer: C

Watch Video Solution

35. Which of the following is the graph of the curve $\sqrt{|y|}=x$ is ?

D.

Answer: B

Watch Video Solution

36. Range of $f(x) = \log_{(x)} \left(9 - x^2 \right)$, where $[.\,]$ denotes G.I.E.` is :

A. $\{1, 2\}$

B. $(-\infty, 2)$

C. $(-\infty, \log_2 5]$

D. $[\log)_{2}5, 3$

Answer: C

Watch Video Solution

37. if $e^x + e^{f(x)} = e$ then for f(x)

A. Domain is $(-\infty,1)$

B. Range is $(-\infty, 1]$

C. Domain is $(\,-\infty,0]$

D. Range is $(-\infty, 0]$

Answer: A

38. A lion moves in the region given by the graph y-|y|-x+|x|=0. curve a person can move so that he does not encounter lion -

A.
$$y = x^2$$

$$\mathsf{B.}\, y = sgn\big(-e^2\big)$$

C.
$$y = \log_{1/3} x$$

D.
$$y=m+|x|, m>3$$

Answer: D

Watch Video Solution

39. If $\left|f(x)+6-x^2\right|=\left|f(x)\right|+\left|4-x^2\right|+2$, then f(x) is necessarily non-negaive for

A.
$$x \in [\,-2,2]$$

B.
$$xn(\,-\infty,\,-2)\cup(2,\infty)$$

C.
$$x \in ig[-\sqrt{6},\sqrt{6}ig]$$

D.
$$x \in [\,-5,\,-2] \cup [2,5]$$

Answer: A

Watch Video Solution

- **40.** Let $f(x) = \cos(px) + \sin x$ be periodic, then p must be :
 - A. Positive real number
 - B. Negative real number
 - C. Rational
 - D. Prime

Answer: C

41. The domain of f(x)is(0,1). Then the domain of $(f(e^x)+f(1n|x|))$ is

$$(1,e)$$
 (b) $(1,e)$ $(e,1)$ (d) $(e,1)$

A.
$$\left(\frac{1}{e}, 1\right)$$

B.
$$(-e, 1)$$

 $C.\left(-1,-\frac{1}{e}\right)$

D.
$$(-e,-1)\cup(1,e)$$

Answer: B

Watch Video Solution

 $A = \{1, 2, 3, 4\} \text{ and } f: A \rightarrow A$ 42. Let satisfy f(1)=2, f(2)=3, f(3)=4, f(4)=1. Suppose $g\colon A o A$ satisfies

$$g(1)=3 \,\, {
m and} \,\, fog=gof, \,\, {
m then} \,\, {
m g}$$
 =

A.
$$\{(1,3), (2,1), (3,2), (4,4)\}$$

B.
$$\{(1,3), (2,4), (3,1), (4,2)\}$$

C.
$$\{(1,3), (2,2), (3,4), (4,3)\}$$

D.
$$\{(1,3),(2,4),(3,2),(4,1)\}$$

Answer: B

Watch Video Solution

43. Number of solutions of the equation, $[y+[y]]=2\cos x$ is: (where $y=1/3)[\sin x+[\sin x+[\sin x]]]$ and []= greatest integer function) 0

(b) 1 (c) 2 (d) ∞

A. 0

B. 1

C. 2

D. Infinite

Answer: A

44. The function
$$f(x)=\left\{rac{\left(x^{2n}
ight)}{\left(x^{2n}sgnx
ight)^{2n+1}}igg(rac{e^{rac{1}{x}}-e^{-rac{1}{x}}}{e^{rac{1}{x}}+e^{-rac{1}{x}}}
ight)\!x
eq0n\in N$$

A. Odd function

is:

B. Even function

C. Neither odd nor even function

D. Constant function

Answer: B

45.
$$f(1) = 1$$
 and $f(n) = 2\sum_{r=1}^{n-1} f(r)$. Then $\sum_{r=1}^{m} f(n)$ is equal to (A)

$$3^m - 1$$
 (B) 3^m (C) 3^{m-1} (D)none of these

A.
$$\frac{3^m - 1}{2}$$

$$B.3^m$$

C.
$$3^{m-1}$$

D.
$$\frac{3^{m-1}-1}{2}$$

Answer: C

Watch Video Solution

46. Let
$$f(x) = \frac{x}{\sqrt{1+x^2}}$$
 then n times(fo fo foof)(x) `is:

A.
$$\dfrac{x}{\sqrt{1+\left(\sum_{r=1}^n r\right) x^2}}$$

B.
$$\dfrac{x}{\sqrt{1+\left(\sum_{r=1}^{n}1\right)x^2}}$$
 C. $\left(\dfrac{x}{\sqrt{1+x^2}}\right)^n$

C.
$$\left(\frac{x}{\sqrt{1+x^2}}\right)^n$$

D.
$$\frac{n\pi}{\sqrt{1+\pi x^2}}$$

Answer: B

47. Let $f: R \to R$, then $f(x) = 2x + |\cos x|$ is

A. One-one into

B. One-one and onto

C. May-one and into

D. Many-one and onto

Answer: B

Watch Video Solution

48. Let $f\!:\!R o R$ be a function defined by $f(x)=x^3+x^2+3x+\sin x.$

Then f is

A. One-one end into

B. One-one and onto

C. Many-one and into

D. many-one and onto

Answer: B

Watch Video Solution

49. If $f(x)=\{x\}+\{x+1\}+\{x+2\}.....\{x+99\}$, then the value of $\left[f\left(\sqrt{2}\right)\right]$ is, where (.) denotes fractional part function & [.] denotes the greatest integer function

A. 5050

B. 4950

C. 41

D. 14

Answer: C

50. If $|\cot x + \cos ecx| = |\cot x| + \cos ecx|, \, x \in |[0,2\pi], \,$ then complete set of values of x is :

A.
$$[0,\pi]$$

B.
$$\left(0, \frac{\pi}{2}\right]$$

C.
$$\left(0, \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2}, 2\pi\right)$$

D.
$$\left(\pi, \, rac{3\pi}{2}
ight] \cup \left[rac{7\pi}{4}, \, 2\pi
ight]$$

Answer: C

Watch Video Solution

51. The funcrtin f(x)=0 has eight distinvt real solution and f also satisfy f(4+x)=f(4-x). The sum of all the eight solution of f(x)=0 is :

A. 12

B. 32

- C. 16
- D. 15

Answer: B

Watch Video Solution

52. Let f(x) polynomial of degree 5 with leading coefficient unity such that

f(1)=5, f(2)=4,f(3)=3,f(4)=2,f(5)=1, then f(6) is equal to

- A. 0
- B. 24
- C. 120
- D. 720

Answer: C

53. Let $f\!:\!A o B$ be a function such that $f(x)=\sqrt{x-2}+\sqrt{4-x,}$ is

invertible, then which of the following is not possible?

$$\mathsf{A.}\,A=[3,4]$$

B.
$$A=[2,3]$$

C.
$$A=\left[2,2\sqrt{3}
ight]$$

D.
$$\{2, 2\sqrt{2}\}$$

Answer: C

Watch Video Solution

54. Find the number of positive integral values of x satisfying

$$\left[\frac{x}{9}\right] = \left[\frac{x}{11}\right]$$
 is where [.] -=Gl.F)

Answer: D

Watch Video Solution

55. The domain of function $f(x)=\log_{\left\lfloor x+\frac{1}{2}\right\rfloor}\left(2x^2+x-1\right),$ where $[.\,]$ denotes the greatest integer function is :

A.
$$\left[rac{3}{2}, \infty
ight)$$

B.
$$(2, \infty)$$

$$\mathsf{C.}\left(-\frac{1}{2},\infty\right)-\left\{\frac{1}{2}\right\}$$

D.
$$\left(rac{1}{2},1
ight)\cup\left(1,\infty
ight)$$

Answer: A

56. The solution set of the equation $[x]^2 + [x+1] - 3 = 0$, where [.]

represents greatest integeral function is:

A.
$$[-1,o)\cup[1,2)$$

$$\text{B.}\,[\,-2,\,-1)\cup[1,2]$$

D.
$$[\,-3,\,-2)\cup[2,3)$$

Answer: B

Watch Video Solution

57. Which among the following relations is a function?

A.
$$x^2+y^2=r^2$$

B.
$$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=r^2$$

$$\mathsf{C.}\, y^2 = 4ax$$

D.
$$x^2=dxy$$

Answer: D

Watch Video Solution

58. A function $f\!:\!R o R$ is defined as $f(x)=3x^2+1.$ then $f^{-1}(x)$ is :

A.
$$\frac{\sqrt{x-1}}{3}$$

B.
$$\left(\frac{1}{2}\sqrt{x}-1\right)$$

C. f^{-1} does not exist

D.
$$\sqrt{\frac{x-1}{3}}$$

Answer: C

Watch Video Solution

59. If $f(x)=\left\{egin{array}{ll} 2+x, & x\geq 0 \ 4-x, & x<0 \end{array}
ight.$ then f(f(x)) is given by :

A.
$$f(f(x)) = \left\{egin{array}{ll} 4+x, & x\geq 0 \ 6-x, & x<0 \end{array}
ight.$$

B. $f(f(x)) = \left\{egin{array}{ll} 4+x, & x\geq 0 \ x, & x<0 \end{array}
ight.$

C.
$$f(f(x))=egin{cases} 4-x,&x\geq 0\ x,&x<0 \end{cases}$$

D. $f(f(x))=egin{cases} 4-x,&x\geq 0\ x+2x,&x<0 \end{cases}$

Answer: A

A. One ot one buty not onto

60. The function $f\colon R o R$ defined as $f(x) = rac{3x^2 + 3x - 4}{3+3x-4x^2}$ is :

B. Onto but not one to one

C. Both one to one and onto

D. Neither one to one nor onto

Answer: B

61. The number of solutions of the equation $e^x - \log |x| = 0$ is : A. 0 B. 1 C. 2 D. 5 **Answer: B** Watch Video Solution **62.** If complete solution set of $e^{-x} \leq 4-x$ is [lpha,eta] then [lpha]+[eta] is equal to: (where [.] denotes greatest integer function) A. 0 B. 2 C. 1 D. 4

Answer: C

Watch Video Solution

- **63.** Range of $f(x) = \sqrt{\sin(\log_7(\cos(\sin x)))}$ is:
 - $\mathsf{A.}\left[0,\,1\right]$
 - B. $\{0, 1\}$
 - $\mathsf{C.}\left\{ 0\right\}$
 - D. [1, 7]

Answer: C

Watch Video Solution

64. If the domain of y=f(x)is[-3,2], then find the domain of g(x)=f(|[x]|), wher[] denotes the greatest integer function.

A.
$$[-3, 2]$$

B.
$$[-2, 3]$$

C.
$$[-3, 3]$$

D.
$$[-2, 3]$$

Answer: B

65. Range of the function
$$f(x)=\cot^{-1}\{-x\}+\sin^{-1}\{x\}+\cos^{-1}\{x\},$$
 where {.} denotes fractional part function:

A.
$$\left(\frac{3\pi}{4},\pi\right)$$

B.
$$\left[\frac{3\pi}{4},\pi\right)$$

C.
$$\left[\frac{3\pi}{4}, \pi\right]$$

D.
$$\left(\frac{3\pi}{4},\pi\right]$$

Answer: D

66.

Watch Video Solution

Let $f{:}R - \left\{rac{3}{2}
ight\} o R, f(x) = rac{3x+5}{2x-3}. \ Let f_1(x) = f(x), f_n(x) = f(f_{n-1}(x))$

for
$$\pi \geq 2,$$
 $n \in N,$ then $f_{2008}(x)+f_{2009}(x)=$

A. $\frac{2x^2+5}{2x-3}$ B. $\frac{x^2+5}{2x-3}$

c. $\frac{2x^2-5}{2x-3}$

D. $\frac{x^2-5}{2x-3}$

Answer: A

- A. $[0, \infty]$
- $\mathrm{B.}\left[2,\infty\right]$
- $C. [4, \infty]$
 - D. $[6, \infty]$

Answer: D

Watch Video Solution

is

A. Many one and onto

68. The function $f\!:\!(\,-\infty,3] o \left(o,e^7
ight]$ defined by $f(x)=e^{x^3-3x^2-9x+2}$

B. Many one and into

C. One to one and onto

D. One to one and into

Answer: A

69. If
$$f(x)=\sin(\log)_e\bigg\{\frac{\sqrt{4-x^2}}{1-x}\bigg\}$$
 , then the domain of $f(x)$ is ____ and its range is ____.

A.
$$[-1, 1]$$

B.
$$[0, 1]$$

D. None of these

Answer: A

Watch Video Solution

70. Set of values of 'a' for which the function $f\!:\!R o R$, given by $f(x)=x^3+(a+2)x^2+3ax+10$ is one-one is given by :

A.
$$(-\infty,1]\cup[4,\infty)$$

B. [1, 4]

 $C. [1, \infty]$

D. $[-\infty, 4]$

Answer: B

Watch Video Solution

71. If the range of the function $F(x)= an^{-1}ig(3x^2+bx+cig)$ is $\Big[0,rac{\pi}{2}\Big)$; (domain in R) then:

A.
$$b^2=3c$$

 $B. b^2 = 4c$

 $C. b^2 = 12c$

D. $b^2 = 8c$

Answer: C

72. Let $f(x)=\sin^{-1}x-\cos^{-1},\,$ x, then the set of values of k for which of |f(x)|=k has exactly two distinct solutions is :

A.
$$\left(0, \frac{\pi}{2}\right]$$

$$\mathrm{B.}\left(0,\frac{\pi}{2}\right]$$

$$\mathsf{C.}\left[\frac{\pi}{2},\frac{3\pi}{2}\right)$$

D. $\left[\pi, \frac{3\pi}{2}\right]$

Answer: A

Watch Video Solution

73. Let $f\colon R o R$ is defined by $f(x)=egin{cases} (x+1)^3 & x\le 1 \\ \ln x+\left(b^2-3b+10\right) & x>1 \end{cases}$ If f (x) is invertible, then the set of all values of 'b' is :

A.
$$\{1, 2\}$$

B.
$$\phi$$

 $C. \{2, 5\}$

D. None of these

Answer: A

74.

Watch Video Solution

$$|f(x)|\leq 1,\ orall x\in R\ \ ext{and}\ \ g(x)=rac{e^{f(x)}-e^{-|f(x)|}}{e^{f(x)}+e^{-|f(x)|}},$$
 then range of g(x) is

such

that

If f(x) is continuous

A.
$$[0, 1]$$

B.
$$\left[0, \frac{e^2+1}{e^2-1}\right]$$
C. $\left[0, \frac{e^2-1}{e^2+1}\right]$

c.
$$\left[0, \frac{1}{e^2 + 1}\right]$$

D. $\left[\frac{e^2 + 1}{e^2 + 1}, 0\right]$

Answer: D

75. Consider all function $f\colon \{1,2,3,4\} o \{1,2,3,4\}$ which are one-one, onto and satisfy the following property:

If f(k) is odd then f(k+1) is even, $K=1,\,2,\,3.$ The number of such function is:

Consider the function $f{:}\,R-\{1\} o R-\{2\}$ given

by

B. 8

C. 12

D. 16

Answer: C

Watch Video Solution

 $f\{x\}=rac{2x}{x-1}.$ Then

A. f is one-one but not onto

B. f is onto but not one-one

C. f is neither one-one nor onto

D. f is one-one and onto

Answer: D

Watch Video Solution

77. If rang of fraction f(x) whose domain is set of all real numbers is

$$[\,-2,4], ext{ then range of function} g(x)=rac{1}{2}f(2x+1) ext{ is equal to :}$$

A.
$$[-2, 4]$$

B.
$$[-1, 2]$$

$$\mathsf{C.}\,[\,-3,9]$$

D.
$$[-2,2]$$

Answer: B

78. Let
$$f\colon R o$$
 and $f(x)=rac{xig(x^4+1ig)(x+1)+x^4+2}{x^2+x+1},$ then $f(x)$ is

D. Mny one, into

Answer: D

Watch Video Solution

79. Let f (x) be defined as

$$f(x) = \left\{ egin{array}{ll} |x| & 0 \leq x < 1 \ |x-1| + |x-2| & 1 \leq x < 2 \ |x-3| & 2 \leq x < 3 \end{array}
ight.$$

The range of function $g(x) = \sin(7(f(x)))$ is :

A.
$$[0, 1]$$

B.
$$[-1, 0]$$

$$\mathsf{C.}\left[-\frac{1}{2},\frac{1}{2}\right]$$

$$\mathsf{D.}\left[-1,1\right]$$

Answer: D

Watch Video Solution

80. If $[x]^2 - 7[x] + 10 < 0$ and $4[y]^2 - 16[y] + 7 < 0$, then [x + y]

cannot be ([.]' denotes greatest integer function):

A. 7

B. 8

C. 9

D. both (b) and (c)

Answer: C

81. Let
$$f\colon R o R$$
 be a function defined by, $f(x)$ = $\dfrac{e^{\,|x\,|}\,-e^{\,-x}}{e^x\,+e^{\,-x}}$ then

C. f (x) is decreasing function
$$\, orall \, n \in R$$

D.
$$f(x)$$
 is bijective function

Answer: B

82. The function
$$f(x)$$
 satisfy the equation

$$f(1-x)+2f(x)=3x\,orall x\in R,$$
 then $f(0)=$

$$A.-2$$

$$B. -1$$

C. 0

D. 1

Answer: B

Watch Video Solution

83. Let $f:[0,5] \to [0,5)$ be an invertible function defined by $f(x)=ax^2+bx+C,$ where $a,b,c\in R,abc
eq 0,$ then one of the root of the equation $cx^2 + bx + a = 0$ is:

A. a

B.b

C. c

 $\mathsf{D}.\,a+b+c$

Answer: A

84. Let $f(x)=x^2+\lambda x+\mu\cos x,\lambda$ being an integer and μ is a real number. The number of ordered pairs (λ,μ) for which the equation f(x)=0 and f(f(x))=0 have the same (non empty) set of real roots is:

- A. 2
- B. 3
- C. 1
- D. 6

Answer: C

Watch Video Solution

85. Consider all function $f\colon\{1,2,3,4\}\to\{1,2,3,4\}$ which are one-one, onto and satisfy the following property :

If f(k) is odd then f(k+1) is even, $K=1,\,2,\,3.$ The number of such function is:

A. 4

B. 8

C. 12

D. 16

Answer: C

86.

Watch Video Solution

 $y = \tan(\sin x), x > 0$?

Which of the following is closest to the graph of

В.

C.

Answer: B

Watch Video Solution

87. Consider the function $f \colon R - \{1\} o R - \{2\}$ given by $f(x)=rac{2x}{x-1}.$ Then

$$f(x) = rac{2x}{x-1}$$
. Ther

A. f is one-one but not onto

B. f is onto but not one-one

C. f is one-one nor onto

D. f is both one-one and onto

Answer: D

Watch Video Solution

88. If rang of fraction f(x) whose domain is set of all real numbers is

$$[\,-2,4], ext{ then range of function} g(x)=rac{1}{2}f(2x+1) ext{ is equal to :}$$

A. [-2, 4]

B. [-1, .2]

C.[-3, 9]

D. [-2, 2]

Answer: B

89. Let $f\colon R o$ and $f(x)=rac{xig(x^4+1ig)(x+1)+x^4+2}{x^2+x+1},$ then f(x) is

A. One-one, into

:

B. Many one, onto

C. One-one, onto

D. Many one, into

Answer: D

Watch Video Solution

90. Let f (x) be defined as

$$f(x) = \left\{ egin{array}{ll} |x| & 0 \leq x < 1 \ |x-1| + |x-2| & 1 \leq x < 2 \ |x-3| & 2 \leq x < 3 \end{array}
ight.$$

The range of function $g(x) = \sin(7(f(x)))$ is :

A.
$$[0, 1]$$

B.
$$[-1,0]$$
C. $\left[-rac{1}{2},rac{1}{2}
ight]$

Answer: D

Watch Video Solution

91. Number of integral values of x in the domain of function

$$f(x) = \sqrt{\ln(|\ln x|)} + \sqrt{7|x| - (|x|)^2 - 10}$$
 is equal to

- A. 5
- B. 6
- C. 7
- D. 8

Answer: B

92. The complete set of values of x in the domain of function $f(x) = \sqrt{\log_{x+2\{x\}} \left([x]^2 - 5[x] + 7 \right)} \text{ where [.] denote greatest integer}$ function and $\{.\}$ denote fraction pert function) is :

A.
$$\left(-rac{1}{3},0
ight)\cup\left(rac{1}{3},1
ight)\cup(2,\infty)$$

 $\mathtt{B.}\,(0,1)\cup(1,\infty)$

C.
$$\left(-rac{2}{3},0
ight)\cup\left(rac{1}{3},1
ight)\cup(1,\infty)$$

D.
$$\left(-rac{1}{3},0
ight)\cup\left(rac{1}{3},1
ight)\cup(1,\infty)$$

Answer: D

Watch Video Solution

93. The number of integral ordered pair (x,y) that satisfy the system of equatin |x+y-4|=5 and |x-3|+|y-1|=5 is/are:

A. 2

B. 4

C. 6

D. 12

Answer: D

Watch Video Solution

94. $f{:}R o R$, where $f(x) = \dfrac{x^2 + ax + 1}{x^2 + x + 1}$ Complete set of values of 'a' such that f(x) is onto, is

A.
$$(-\infty,\infty)$$

B.
$$(-\infty,0)$$

 $C.(0,\infty)$

D. Empty set

Answer: D

95. If A={1,2,3,4} and f : A->A, then total number of invertible functions, f', such that $f(2) \neq 2$, $f(4) \neq 4$, f(1) = 1 is equal to:

A. 1

B. 2

C. 3

D. 4

Answer: C

Watch Video Solution

96. The domian of definition of $f(x) = \log_{\left(x^2 - x + 1\right)}\left(2x^2 - 7x + 9\right)$ is :

A.R

 $\mathrm{B.}\,R-\{0\}$

C. $R - \{0, 1\}$

D.
$$R - \{1\}$$

Answer: C

Watch Video Solution

- **97.** If $A=\{1,2,3,4\}B=\{1,2,3,4,5,6\}$ and $f\colon A\to B$ is an injective mapping satisfying $f(i)\neq I$, then number of such mappings are :
 - A. 182
 - B. 181
 - C. 183
 - D. None of these

Answer: B

View Text Solution

98. Let $f(x0 = x^2 - 2x - 3, x \ge 1 \text{ and } g(x) = 1 + \sqrt{x+4}, x \ge -4$

then the number of real solution os equation f(x)=g(x) is/are

- A. 0
- B. 1
- C. 2
- D. 4

Answer: B

One Or More Than One Answe Is Are Correct

- 1. f (x) is an even periodic function with period 10 In
- $[0,5], f(x) = egin{cases} 2x & 0 \leq x < 2 \ 3x^2 8 & 2 \leq x < 4 \,. ext{ Then:} \ 10x & 4 \leq x \leq 5 \end{cases}$

A.
$$f(-4) = 40$$

Answer: A::B::D

Answer: A::B::C::D

?

D. Range of f(x) is [0, 50]

Watch Video Solution

B. $\frac{f(-13) - f(11)}{f(13) + f(-11)} = \frac{17}{21}$

C. f(5) is not defined

2. Let $f(x) = \left|\left|x^2 - 4x + 3\right| - 2\right|$. Which of the following is/are correct

A. $f(x) = \mathsf{m}$ has exactly two real solutios of different sign $\, orall \, m > 2 \,$

B. f(x)=m has exactly two real solution $\,\,orall\, m\in(2,\infty)\cup\{0\}$

D. f(x) = m has four distinct real solution $\, orall \, m \in (0,1)$

C. f(x) = m has no solutions $\, orall \, m < 0$

3. Let
$$f(x)=\cos^{-1}\!\left(rac{1- an^2(x/2)}{1+ an^2(x/2)}
ight)$$
 Which of the following statement (s) is/are correct about $f(x)$?

B. Range is
$$[0,\pi]$$

C.
$$f(x)$$
 is even

D.
$$f(x)$$
 is derivable in $(\pi, 2\pi)$

Answer: A::B::C::D

4.
$$|\log_e |x|| = |k-1| - 3$$
 has four distict roots then k satisfies : (where

$$|x| < d^2, x
eq 0 ig)$$

A.
$$(-4, -2)$$

B.(4,6)

C. (e^{-1}, e)

D. (d^{-2}, e^{-1})

Answer: A::B

Watch Video Solution

denotes greatest integer function)

5. Which of the following functions are defined for all $x \in R$? (Where[.] =

A.
$$f(x) = \sin[x] + \cos[x]$$

$$\mathsf{B.}\, f(x) = \sec^{-1}\bigl(1+\sin^2x\bigr)$$

C.
$$f(x) = \sqrt{rac{9}{8} + \cos x + \cos 2x}$$

D.
$$f(x) = an(ln(1+|x|))$$

Answer: A::B::C

$$\int x^2 \qquad 0 < x < 2$$

6. Let
$$f(x) = \begin{cases} x^2 & 0 < x < 2 \\ 2x - 3 & 2 \leq x < 3 \end{cases}$$
 then the tuue equations: $x + 2 & x > 3$

A.
$$f\!\left(f\!\left(f\!\left(\frac{3}{2}\right)\right) = f\!\left(\frac{3}{2}\right)$$

$$\mathrm{B.}\,1 + f\!\left(f\!\left(f\!\left(\frac{5}{2}\right)\right)\right) = f\!\left(\frac{5}{2}\right)$$

$$\mathsf{C.}\, f(f(f(2))) = f(1)$$

D.
$$f(f(f(.....f(4))...)) = 2012$$

Answer: A::B::C

7. Let
$$f: \left[\frac{2\pi}{3}, \frac{5\pi}{3}\right] \to [0, 4]$$
 be a function defined as

$$f(x) = \sqrt{3}\sin x - \cos x + 2$$
, then:

A.
$$f^{-1}(1)=rac{4\pi}{3}$$

B.
$$f^{-1}(1) = \pi$$

Answer: A::D

Watch Video Solution

domain of f(x), then :

 $\mathsf{C}.\,f^{-1}(2)=rac{5\pi}{6}$

D. $f^{-1}(2) = \frac{7\pi}{6}$

8. Let f(x) be invertible function and let $f^{-1}(x)$ be is inverse. Let equation $fig(f^{-1}(x)ig) = f^{-1}(x)$ has two real roots lpha and eta (with in

A. f(x) = x also have same two rreal roots

B. $f^{-1}(x) = x$ also have same two real roots

C. $f(x) = f^{-1}(x)$ also have same two real roots

D. Area of triangle formed by $(0,0), (\alpha,f(\alpha)), \text{ and } (\beta,f(\beta))$ is 1

Answer: A::B::C

unit

9. In function
$$f(x) = \cos^{-1}x + \cos^{-1}\left(rac{x}{2} + rac{\sqrt{3-3x^2}}{2}
ight)$$
 , then Range

of
$$f(x)$$
 is $\left[\frac{\pi}{3},\frac{10\pi}{3}\right]$ Range of $f(x)$ is $\left[\frac{\pi}{3},5\pi\right]$ $f(x)$ is one-one for $x\in\left[-1,\frac{1}{2}\right]$ $f(x)$ is one-one for $x\in\left[\frac{1}{2},1\right]$

A. Range of
$$f(x)isigg[rac{\pi}{3},rac{10\pi}{3}igg]$$

B. Rang
$$f(x)is\left[\frac{\pi}{3},\,\frac{5\pi}{3}\right]$$

C. f (x) is one-one for
$$x \in \left[-1, \frac{1}{2}\right]$$

D. f (x) is one-one for $x \in \left[\frac{1}{2}, 1\right]$

Answer: B::C

Watch Video Solution

10. Let $f: R \to R$ defined by $f(x) = \cos^{-1}(-\{-x\})$, where {x} denotes fractional part of x. Then, which of the following is/are correct?

A. f is many coe but not even function

B. Eange of f contains two prime numbers

C. f is a periodic

D. Graph of f does not lie below x-axis

Answer: A::B::D

Watch Video Solution

11. Which option (s) is/are ture?

A. $f\!:\!R o R, f(x)=e^{\,|x\,|}-e^{\,-x}$ is many-one into function

B. $f\colon R \to R, \, f(x) = 2x + |\sin x|$ is one-one onto

C. $f\!:\!R o R, f(x)=rac{x^2+4x+30}{x^2-8x+18}$ is many-one onto

D. $f\!:\!R o R, f(x)=rac{2x^2-x+5}{7x^2+2x+10}$ is many-one into

Answer: A::B::D

12. If
$$f(x) = \left\lceil \frac{\ln(x)}{e} + \left\lceil \frac{\ln(e)}{x} \right\rceil \right\rceil$$
, where [.] denotes greatest interger

function, the which of the following are ture?

A. range of $h(x)is\{-1,0\}$

B. If h(x) = -1, then x can be rational as well as irractional

C. If h(x) = -1, then x can be rational as well as irrational

D. h(x) is periodic function

Answer: A::C

Watch Video Solution

13. If
$$f(x)=\left\{egin{array}{ll} x^3 & x\in Q \ -x^3 & x
otin Q, \end{array}
ight.$$
 then :

A. f (x) is periodic

B. f (x) is many-one

C. f (x) is one-one

D. range of the function is R

Answer: C::D

Watch Video Solution

14. Let f(x) be a real valued function such that $f(0)=\frac{1}{2}$ and $f(x+y)=f(x)f(a-y)+f(y)f(a-x), \forall x,y\in R$, then for some real a,

A. f (x) is perodic function

B. f (x) is a constant function

$$\mathsf{C.}\, f(x) = \frac{1}{2}$$

$$\mathsf{D}.\,f(x)=\frac{\cos x}{2}$$

Answer: A::B::C

15. f (x) is an even periodic function with period 10 Ir

$$[0,5], f(x) = egin{cases} 2x & 0 \leq x < 2 \ 3x^2 - 8 & 2 \leq x < 4 \,. ext{ Then:} \ 10x & 4 \leq x \leq 5 \end{cases}$$

A.
$$f(-4) = 40$$

B.
$$rac{f(-13)-x(11)}{f(13)+f(-11)}=rac{17}{21}$$

 $\mathsf{C}.\,f(5)$ is not defined

D. Range of f(x) is $\left[0,50\right]$

Answer: A::B::D

16. For the equation $\frac{e^{-x}}{x+1}$ which of the following statement(s) is/are correct?

A. when $\lambda \in (0,\infty)$ equation has 2 real and distinct roots

B. when $\lambda \in \left(-\infty, \ -e^2
ight)$ equation has 2 real anddistinct roots

C. when $\lambda \in (0, \infty)$ equatio has 1 real root

D. when $\lambda \in (\,-e,0)$ equation has no real root

Answer: B::C::D

Watch Video Solution

17. For $x\in R^+, \quad \text{if} \quad x, [x], \{x\}$ are in harmonic progression then the value of x can not be equal to (where [*] denotes greatest integer function, {*} denotes fractional part function)

A.
$$\frac{1}{\sqrt{2}} \tan \frac{\pi}{8}$$

$$B. \frac{1}{\sqrt{2}} \cot \frac{\pi}{8}$$

$$C. \frac{1}{\sqrt{2}} \tan \frac{\pi}{12}$$

D.
$$\frac{1}{\sqrt{2}}\cot\frac{\pi}{12}$$

Answer: A::C::D

18. The equation $||x-1|+a|=4, a\in R, \,\, \mathsf{has}:$

A. 3 distinct real roots for unique value of a.

B. 4 distinct real roots for $a\in (-\infty, -4)$

C. 2 distinct real roots for |a| < 4

D. no rela roots for a>4

Answer: A::B::C::D

Watch Video Solution

19. Let $f_n(x) = (\sin x)^{1/\pi}, x \in R,$ then:

A.
$$f_2(x)>1$$
 for all $x\in \Big(2k\pi, (4k+1)rac{\pi}{2}\Big), k\in I$

B.
$$f_2(x)=1$$
 for $x=2k\pi, k\in I$

C.
$$f_2(x) > f_3(x)$$
 for all $x \in \Big(2k\pi, (4k+1)rac{\pi}{2}\Big), k \in I$

D.
$$f_3(x) \geq f_5(x)$$
 for all $x \in \Big(3k\pi(4k+1)rac{\pi}{2}\Big), k \in I$

Answer: A::B

View Text Solution

20. If the domain of $f(x)=rac{1}{\pi}\cos^{-1}\left[\log_3\left(rac{x^3}{3}
ight)
ight]$ where, x>0 is [a,b] and the range of f(x) is [c,d], then :

A. a,b are the roots of the equation $x^4-3x^4-3xc^3-x+3=0$

B. a,b are the roots of the equatin $x^4-x^3+x^2-2x+1=0$

C. $a^3 + d^3 = 1$

D. $a^2 + b^2 + c^2 = 11$

Answer: A::D

Watch Video Solution

21. The number of real values of x satisfying the equation $; \left\lceil \frac{2x+1}{3} \right\rceil + \left\lceil \frac{4x+5}{6} \right\rceil = \frac{3x-1}{2} \text{ are greater than or equal to } \{[*]$

denotes greatest integer function):

A. 7

B. 8

C. 9

D. 10

Answer: A::B::C

22. Let
$$f\left(x=\sin^6\left(\frac{x}{4}\right)+\cos^6\left(\frac{x}{4}\right)$$
. $Iff^n(x)$ denotes n^{th} derivative of f evaluated at x. Then which of the following hold ?

A.
$$f^{2014}(0)= -rac{3}{8}$$

B.
$$f^{2015}(0)=rac{3}{8}$$

C.
$$f^{2010}\Bigl(rac{\pi}{2}\Bigr)=0$$

D.
$$f^{2011}\Bigl(rac{\pi}{2}\Bigr)=rac{3}{8}$$

Answer: A::C::D

Watch Video Solution

23. Which of the following is (are) incorrect?

В.

A. If
$$f(x) = \sin x \; ext{and} \; g(x) = \; ext{in x then range of} \; g(f(x)) \; ext{is} \; [\, -1, 1]$$

C. If $f(x) = \left(2011 - x^{2012}\right)^{\frac{1}{2012}}$ then $f(f(2)) = \frac{1}{2}$ D. The function $f\colon R o R$ defined as $f(x) = rac{x^2 + 4x + 30}{x^2 - 8x + 18}$ is not surjective.

Answer: A::B

View Text Solution

24. If [x] denotes the integral part of x for real x, and $S = \left[\frac{1}{4}\right] + \left[\frac{1}{4} + \frac{1}{200}\right] + \left[\frac{1}{4} + \frac{1}{100}\right] + \left[\frac{1}{4} + \frac{3}{200}\right] \dots + \left[\frac{1}{4} + \frac{199}{200}\right]$ then S is

Watch Video Solution

25. Let $f(x) = \log_{\{x\}}[x]$

$$g(x) = \log_{\{x\}} - \{x\}$$

$$h(x){\log_{\{x\}}}\{x\}$$

where $[],\{\}$ denotes the greatest integer function and fractional part

function respectively.

For $x \in (1,5) the f(x)$ is not defined at how many points :

A. 5

B. 4

C. 3

D. 2

Answer: C

Comprehension Type Problems

1. Let $f(x) = \log_{\{x\}}[x]$

 $g(x) = \log_{\{x\}} - \{x\}$

 $h(x)\log_{\{x\}}\{x\}$

where $[],\{\}$ denotes the greatest integer function and fractional part

function respectively.

If $A = \{x \colon x \in \text{ domine of } f(x))\}$ and $B\{x \colon x \text{ domine of } g(x)\}$ then

 $\forall x \in (1,5), A-B$ will be :

A. (2, 3)

B. (1, 3)

C.(1,2)

D. None of these

Answer: D

2. Let
$$f(x) = \log_{\{x\}}[x]$$

$$g(x) = \log_{\{x\}} - \{x\}$$

$$h(x)\log_{\{x\}}\{x\}$$

where $[], \{\}$ denotes the greatest integer function and fractional part function respectively.

Domine of h(x) is :

A.
$$[2,\infty)$$

B.
$$[1, \infty)$$

C.
$$[2,\infty)-\{I\}$$

D.
$$R^+-\{I\}$$

Answer: C

Watch Video Solution

3. θ is said to be well behaved if it lies in interval $\left[0,\frac{\pi}{2}\right]$. They are intelligent if they make domain of f+g and g equal. The value of θ for

which $h(\theta)$ is defined are handosome. Let

$$f(x)=\sqrt{ heta x^2-2ig(heta^2-3ig)x-12 heta,}\,g(x)=\lnig(x^2-49ig),$$

$$h(\theta) \ln \left[\int_0^{\theta} 4\cos^2 t dt - \theta^2 \right]$$
, where θ is in radians.

Complete set of vlaues of θ which are well behaved as well as intellignent is:

A.
$$\left[\frac{3}{4}, \frac{\pi}{2}\right]$$

B.
$$\left[\frac{3}{5}, \frac{7}{8}\right]$$
C. $\left[\frac{5}{6}, \frac{\pi}{2}\right]$

D.
$$\left[\frac{6}{7}, \frac{\pi}{2}\right]$$

Answer: D

View Text Solution

4. θ is said to be well behaved if it lies in interval $\left[0,\frac{\pi}{2}\right]$. They are intelligent if they make domain of f+g and g equal. The value of θ for which $h(\theta)$ is defined are handosome. Let

$$h(heta) \mathrm{ln} igg[\int_0^ heta 4 \cos^2 t dt - heta^2 igg], \, \, ext{where} \, heta \, ext{is in radians.}$$

 $f(x) = \sqrt{\theta x^2 - 2(\theta^2 - 3)x - 12\theta}, g(x) = \ln(x^2 - 49),$

Complete set of alues of θ which are intelligent is :

A.
$$\left[\frac{6}{7}, \frac{7}{2}\right]$$
B. $\left(0, \frac{\pi}{3}\right)$

C.
$$\left[rac{1}{4},rac{6}{7}
ight]$$

Answer: A

D. $\left[\frac{1}{2}, \frac{\pi}{2}\right]$

5.
$$\theta$$
 is said to be well behaved if it lies in interval $\left[0,\frac{\pi}{2}\right]$. They are intelligent if they make domain of $f+g$ and g equal. The value of θ for which $h(\theta)$ is defined are handosome. Let

$$f(x)=\sqrt{ heta x^2-2ig(heta^2-3ig)x-12 heta,} g(x)=\lnig(x^2-49ig),$$
 $h(heta)\lnigg[\int_0^ heta 4\cos^2tdt- heta^2igg],$ where $heta$ is in radians.

Complete set of values of θ which are well behaved, intelligent adn handsome is:

A.
$$\left(0, \frac{\pi}{2}\right]$$

B.
$$\left[\frac{6}{7}, \frac{\pi}{2}\right]$$
C. $\left[\frac{3}{4}, \frac{\pi}{2}\right]$

D.
$$\left[\frac{3}{5}, \frac{\pi}{2}\right]$$

Answer: B

View Text Solution

- **6.** Let $f(x)=2-|x-3|, 1\leq x\leq 5$ and for rest of the values f(x) can be obtained by using the relation $f(5x) = lpha f(x) \, orall \, x \in R$ The maximum value of f(x) in $\left[5^4,5^5\right]$ for lpha=2 is
 - A. 16
 - B. 32
 - C. 64

Answer: B

Watch Video Solution

7. Let $f(x)=2-|x-3|, 1\leq x\leq 5$ and for rest of the values f (x) can be obtained by unsing the relation $f(5x)=\alpha f(x)$ $orall x\in R.$

The vlaue of f (2007), taking $lpha=5,\;$ is :

- A. 1118
- B. 2007
- C. 1050
- D. 132

Answer: A

View Text Solution

8. An even periodic functin $f\colon R o R$ with period 4 is such that

$$f(x) = egin{bmatrix} \max \ . \ ig(|x|, x^2ig) & 0 \leq x < 1 \ x & 1 \leq x \leq 2 \end{bmatrix}$$

The value of $\{f(5.12)\}$ (where $\{.\}$ denotes fractional part function), is :

- A. $\{f(3.26)\}$
- B. $\{f(7.88)\}$
- C. $\{f(2.12)\}$
- D. $\{f(5.88)\}$

Answer: B

Watch Video Solution

9. An even periodic functin $f\colon R \to R$ with period 4 is such that

$$f(x) = egin{bmatrix} \max \ . \ ig(|x|, x^2ig) & 0 \leq x < 1 \ x & 1 \leq x \leq 2 \end{bmatrix}$$

The number of solution of $f(x)|3\sin x|$ for $x\in(-6,6)$ are :

A. 5

B. 3

C. 7

D. 9

Answer: C

Watch Video Solution

10. Let $f(x)=rac{2|x|-1}{x-3}$ Range of f(x):

A. $R - \{3\}$

B.
$$\Big(-\infty, rac{1}{3}\Big] \cup (2, \infty)$$

C.
$$\left(-2, \frac{1}{3}\right]$$
 uu (2,00)`

D.R

Answer: B

11. Let
$$f(x)=rac{2|x|-1}{x-3}$$

Range of the values of 'k' for which f(x)=k has exactly two distinct solutions:

A.
$$\left(-2, \frac{1}{3}\right)$$

B.
$$(-2, 1]$$

 $\mathsf{C.}\left(0,\frac{2}{3}\right]$

D.
$$(-\infty, -2)$$

Answer: A

distinct

Watch Video Solution

12. Let f(x) be a continuous function (define for all x) which satisfies $f^3(x)-5f^2(x)+10f(x)-12\geq 0, f^2(x)+3\geq 0$ and $f^2(x)-5f(x)+10f(x)$

number $b_1, b_2 \text{ and } b_3$ ar in G.P.

 $f(1) + \ln b_{91}), f(2) + \ln b_2, f(3) + \ln b_3$ are in :

positive

B. G.P.

C. H. P.

D. A. G. P.

Answer: A

Watch Video Solution

13. Let f(x) be a continuous function (define for all x) which satisfies

 $f^3(x) - 5f^2(x) + 10f(x) - 12 \geq 0, f^2(x) + 3 \geq 0 \,\, ext{and} \,\, f^2(x) - 5f(x) + 10f(x) = 0$ The equation of tangent that can be drawn from (2,0) on the curve

 $y = x^2 f(\sin x)$ is :

A.
$$y=24(x+2)$$

C.
$$y = 24(x - 2)$$

B. y = 12(x + 2)

$$\mathsf{D}.\,y=12(x-2)$$

Watch Video Solution

14. Let $f\colon [2,\infty) o \{1,\infty)$ defined by

$$f(x)=2^{x^4-4x^3}$$
 and $g\!:\!\left[rac{\pi}{2},\pi
ight] o A$ defined by $g(x)=rac{\sin x+4}{\sin x-2}$ be

two invertible functions, then

$$f^{-1}(x)$$
 is equal to

A.
$$\sqrt{2+\sqrt{4-\log_2 x}}$$

$$\operatorname{B.}\sqrt{2+\sqrt{4+\log_2 x}}$$

$$\operatorname{C.}\sqrt{4+\sqrt{4+\log_2 x}}$$

D.
$$\sqrt{4-\sqrt{2+\log_2 x}}$$

Answer: B

15.

$$x^4$$
 —

The set "A" equals to

A. [5, 2]

B. [-2, 5]

C.[-5,2]

Answer: D

D. [-5, -2]

Watch Video Solution

1. Let $f(x) = \left\{ egin{array}{ll} 1+x, & 0 \leq x \leq 2 \ 3-x, & 2 < x \leq 3 \end{array}
ight.$

Matching Type Problems

find (fof) (x).

$$f(x)=2^{x^4-4x^3}$$
 and $g\!:\!\left[rac{\pi}{2},\pi
ight] o A$ defined by $g(x)=rac{\sin x+4}{\sin x-2}$ be

 $f{:}\left[2,\infty
ight)
ightarrow \left\{1,\infty
ight)$ defined

by

two invertible functions, then

Subjective Type Problems

1. Let f(x) be a polynomial of degree 6 with leading coefficient 2009. Suppose further that f(1) = 1, f(2) = 3, f(3) = 5, f(4) = 7, f(5) = 9, f'(2) = 2. Then the sum of all the digits of f(6) is

2. If $f(x)=x^3-3x+1$, then the number of distinct real roots of the equation f(f(x))=0 is

3. If
$$f(x+y+1)=\left\{\sqrt{f(x)}+\sqrt{f(y)}
ight\}^2$$
 and $f(0)=1\,orall x,y\in R, determ\in ef(n),n\in N$.

4. If the domain of
$$f(x)=\sqrt{12-3^x-3^{3-x}}+\sin^{-1}igg(rac{2x}{3}igg)is[a,b],$$

then $a = \dots$.

5. The number of elements in the range of functions: $y=\sin^{-1}\left[x^2+\frac{5}{9}\right]+\cos^{-1}\left[x^2-\frac{4}{9}\right] \text{ where where [.] denotes the greatest integer function is:}$

6. The number of integers in the range of function $f(x)=[\sin x]+[\cos x]+[\sin x+\cos x]$ is (where [.]= denotes greatest integer function)

7. If P(x) is polynomial of degree 4 such than P(-1)=P(1)=5 and P(-2)=P(0)=P(2)=2 find the maximum vaue of P (x).

Watch Video Solution

- **8.** The number of integral value (s) of k for which the curve $y=\sqrt{-x^2-2x}$ and x+y-k=0 intersect at 2 distinct points is/are
 - Watch Video Solution

9. Let the solution set of the equation $\sqrt{\left[x+\left[\frac{x}{2}\right]\right]}+\left[\sqrt{\{x\}}+\left[\frac{x}{3}\right]\right]=3 \text{ is } [a,b). \text{ Find the product ab.}$ (where $[\cdot]$ and $\{\cdot\}$ denote greatest integer and fractional part function, respectively).

10. For the real number x, let $f(x)=rac{1}{2011\sqrt{1-x^{2011}}}.$ Find the number of

$$f(f(\ldots,(f(x))\ldots))=(\{-x\}$$

where f is applies 2013 times and {.} denotes fractional part function.

Watch Video Solution

11. Find the number of elements contained in the range of the function $f(x)=\left[rac{x}{6}
ight]\left[rac{-6}{x}
ight] orall x\in(0,30)$] where $[.\,]$ denotes greatest integer function)

Watch Video Solution

12. Let $f(x,y)=x^2-y^2$ and g(x,y)=2xy. such that $\left(f(x,y)\right)^2-\left(g(x,y)\right)^2=rac{1}{2}$ and f(x,y). $G(x,y)=rac{\sqrt{3}}{4}$ Find the number of ordered pairs (x,y) ?

13. Let $f(x)=\dfrac{x+5}{\sqrt{x^2+1}}, \,$ then the smallest integral value of k for which $f(x) \leq k \, orall x \in R$ is

14. The number of integral values of m for which $f\colon R \to R, f(x) = rac{x^2}{3} + (m-1)x^2 + (m+5)x + n$ is bijective is :

15. The number of roots of equation $\frac{(x-1)(x-3)}{(x-2)(x-4)} - e^x \frac{(x+1)(x+3)e^x}{(x+2)(x+4)} - 1 (x^3 - \cos x) = 0:$

16. Let $f(x)=x^2-bx+c, b$ is an odd positive integer. Given that f(x)=0 has two prime numbers as roots and b+c=35. If the least value of

Watch Video Solution

 $f(x)\, orall x\in R$ is $\lambda,$ then $\left\lceil \left|rac{\lambda}{3}
ight|
ight
ceil$ is equal to (where [.] denotes

Let f(x) be a continuous function

 $f(x) = 4x^3 - x^2 - 2x + 1 \, ext{ and } \, g(x) = \left\{ egin{array}{ll} \min \left\{ f(t) \colon 0 \leq t \leq x
ight\} & 0 \leq x \ 3 - x & 1 > x \end{array}
ight.$

f(0)=1 and $f(x)=f\Bigl(rac{x}{7}\Bigr)=rac{x}{7}\,orall x\in R,$ then f(42) is

such

that

If

greatest integer function)

18.

17.

and if
$$\lambda=gigg(rac{1}{4}igg)+gigg(rac{3}{4}igg)+gigg(rac{5}{4}igg),\,\,$$
then $2\lambda=$

19. If
$$x=10\sum_{100}^{100}\frac{1}{(r^2-4)}$$
, then $[x]=$

(where [.] denotes gratest integer function)

Watch Video Solution

- **20.** Let $fx=\frac{ax+b}{xa+d}$, where a,b,c d are non zero If f(7)=7, f(11)=11 and f(f(x))=x for all x expect $-\frac{d}{c}$. The unique number which is not is the range of f is
 - Watch Video Solution

21. Let $A=\left\{x\mid x^2-4x+3<0,x\in R\right\}$ $B=\left\{x\mid 2^{1-x}+p\leq 0;x^2-2(p+7)x+5\leq 0\right\}$ If $A\subset B$, then the range of real number $p\in [a,b]$ where, a,b are integers. Find the value of (b-a).

22. Let the maximum value of expression $y=\frac{x^4-x^2}{x^6+2x^3-1}$ for $x>1is\frac{p}{q},$ where p and q are relatively prime natural numbers, then p+q=

23. If f(x) is an even function then find the number of distinct real numbers x such that $f(x)=f\Big(\frac{x+1}{x+2}\Big).$

24. The least integral value of m, m $\in R$ for which the range of function $f(x)=rac{x+m}{x^2+1}$ contains the interval [0,1] is :

25. Let x_1, x_2, x_3 satisfying the equation $x^3 - x^2 + \beta x + \gamma = 0$ are in GP where $(x_1,x_2,x_3>0)$, then the maximum value of $[eta]+[\gamma]+2$ is, [.]

Watch Video Solution

is greatest integer function.

26. The value of $\sum_{r=1}^{1024} [\log_2 r]$ is equal to, ([.] denotes the greatest integer function)

Watch Video Solution

27. Let $f(x) = \dfrac{ax+b}{cx+d}$, where a,b,c d are non zero f(7)=7, f(11)=11 and f(f(x))=x for all x except $-rac{d}{x^2}$. The unique number which is not is the range of f is

28. It is pouring down rain and the amount of rain hitting point (x,y) is given by $f(x,y)=\left|x^3+2x^2y-5xy^2-6y^3\right|$. If Mr. 'A' starts at (0,0), find number of possible value (s) for 'm' such that y= mx is a line along which Mr.' A could walk without any rain falling on him.

29. Let P (x) be a cubic polynomical with leading co-efficient unity. Let the remainder when P (x) is divided by x^2-5x+6 equals 2 times the remainder when P (x) is divided by x^2-5x+4 . If P(0)=100, find the sum of the digits of P(5),

30. Let $f(x) = x^2 + 10x + 20$. Find the number of real solution of the equation f(f(f(f(x)))) = 0

31. If range of $f(x)=rac{(\ln x)\Big(\ln x^2\Big)+\ln x^3+3}{\ln^2 x+\ln x^2+2}$ can be expressed as

$$\ln^2 x + \ln x^2 + 2$$

$$\left[\frac{a}{b}, \frac{c}{d}\right]$$
 where a,b,c and d are prime numbers (not nacessarily distinct) then find the value of $\frac{(a+b+c+d)}{2}$.

- **32.** Polynomial P(x) contains only terms of aodd degree. when P(x) is divided by (x-3), the ramainder is 6. If P(x) is divided by (x^2-9) then remainder is g(x). Then find the value of g(2).
 - Watch Video Solution

- **33.** The equation $2x^3-3x^2+p=0$ has three real roots. Then find the minimum value of p.
 - Watch Video Solution

34. Find the number of integers in the domain of $f(x) = rac{1}{\sqrt{\ln \cos^{-1} x}}$

