

MATHS

BOOKS - VIKAS GUPTA MATHS (HINGLISH)

HYPERBOLA

Exercise 1 Single Choice Problems

1. The normal to curve xy = 4 at the point (1,4)

meets curve again at :

A.
$$(-4, -1)$$

$$\begin{array}{l} \mathsf{B.}\left(-8,\ -\frac{1}{2}\right)\\ \mathsf{C.}\left(-16,\ -\frac{1}{4}\right)\\ \mathsf{D.}\left(-1,\ -4\right)\end{array}$$

Answer: C

2. Let PQ: 2x + y + 6 = 0 is a chord of the curve $x^2 - 4y^2 = 4$. Coordinates of the point $R(\alpha, \beta)$ that satisfy $\alpha^2 + \beta^2 - 1 \le 0$, such that area of triangle PQR is minimum, are given by :

$$A. \left(\frac{-2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$$
$$B. \left(\frac{-2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right)$$
$$C. \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$$
$$D. \left(\frac{2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right)$$

Answer: B

3. If
$$y = mx + c$$
 be a tangent to hyperbola $rac{x^2}{\lambda^2} - rac{y^2}{\left(\lambda^3 + \lambda^2 + \lambda
ight)^2} = 1$, then least value of $16m^2$ equals to :

B. 1

C. 4

D. 9

Answer: D

4. Let the couble ordinate pp' of the hyperbola $\frac{x^2}{4} - \frac{y^2}{3} = 1$ is produced both sides to meet
asymptotes of hyperbola in Q and Q'. The product
(PQ)(PQ)' is equal to :

B. 4

C. 1

D. 5

Answer: A

5. If eccentricity of conjugate hyperbola of the given hyperbola :

$$\left| \sqrt{\left(x-1
ight)^2 + \left(y-2
ight)^2} - \sqrt{\left(x-5
ight)^2 + \left(y-5
ight)^2}
ight| = 3$$

is e', then value of 8e' is :

B. 14

C. 17

D. 10

Answer: D

6. A normal to the hyperbola $\frac{x^2}{4} - \frac{y^2}{1} = 1$ has equal intercepts on positive x and positive y-axes. If this normal touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then $3(a^2 + b^2)$ is equal to :

B. 25

C. 16

D. None of these

Answer: B

7. Locus of a point, w hose chord of contact with respect to the circle $x^2 + y^2 = 4$ is a tangent to the hyperbola xy = 1 is a/an : A. ellipse

B. circle

C. hyperbola

D. parabola

Answer: C

View Text Solution

8. If the chord $x \cos \alpha + y \sin \alpha = p$ of the hyperbola $\frac{x^2}{16} - \frac{y^2}{18} = 1$ subtends a right angle at the center, and the diameter of the circle, concentric with the hyperbola, to which the given

chord is a tangent is *d*, then the value of $\frac{d}{4}$ is_____ A. 4 B. 5 C. 6

D. 7

Answer: C

9. If the tangent and the normal to a rectangular hyperbola $xy = c^2$, at a point , cuts off intercepts a_1 and a_2 on the x- axis and b_1b_2 on the y- axis, then $a_1a_2 + b_1b_2$ is equal to

 $\mathsf{B}.\,\frac{1}{2}$

C. 0

D. -1

Answer: C

Exercise 2 One Or More Than One Answer Is Are Correct

1. A common tangent to $9x^2 - 16y^2 = 144$ and $x^2 + y^2 = 9$, is

A.
$$y = rac{3}{\sqrt{7}}x + rac{15}{\sqrt{17}}$$

B. $y = 3\sqrt{rac{2}{\sqrt{17}}x + rac{25}{\sqrt{7}}}$
C. $y = 2\sqrt{rac{3}{7}x + 15\sqrt{7}}$
D. $y = -3\sqrt{rac{2}{\sqrt{7}}x + rac{25}{\sqrt{7}}}$

Answer: B::D

2. The tangent to the hyperbola $x^2 - y^2 = 3$ are parallel to the straight line 2x + y + 8 = 0 at the following points

A. (2, 1)

- B. (2, -1)
- C. (-2, -1)
- D. (-2, -1)

Answer: B::D

3. If the line ax+by+c=0 is a normal to the curve xy=1, then a>0, b>0 a>0, b<0 a<0, b<0 (d) a<0, b<0 none of these

A. a > 0, b > 0

B. a > 0, b < 0

C. b < 0, a < 0

D. a < 0, b > 0

Answer: B::D

Watch Video Solution

4. A circle cuts the rectangular hyperbola xy=1 in

the points $(x_1, y_1), r = 1, 2, 3, 4$.

Prove that $x_1x_2x_3x_4=y_1y_2y_3y_4=1$

A. $y_1y_2y_3y_4 = 1$

B. $x_1 x_2 x_3 x_4 =$

C. $x_1x_2x_3x_4 = y_1y_2y_3y_4 = -1$

D.
$$y_1y_2y_3y_4=0$$

Answer: A::B

Watch Video Solution

1. A point P moves such that sum of the slopes of the normals drawn from it to the hyperbola xy = 16 is equal to the sum of the ordinates of the feet of the normals. Let 'P' lies on the curve C, then : Q. The equation of 'C' is :

A.
$$x^2=4y$$

B.
$$x^2=16y$$

$$\mathsf{C.}\,x^2=12y$$

D.
$$y^2=8x$$

Answer: B

2. A point P moves such that sum of the slopes of the normals drawn from it to the hyperbola xy = 16 is equal to the sum of the ordinates of the feet of the normals. Let 'P' lies on the curve C, then : Q. If tangents are drawn to the curve C, then the locus of the midpoint of the portion of tangent intercepted between the co-ordinate axes, is :

A.
$$x^2 = 4y$$

B.
$$x^2=2y$$

C. $x^2+2y=0$
D. $x^2+4y=0$

Answer: C

View Text Solution

3. A point P moves such that sum of the slopes of the normals drawn from it to the hyperbola xy = 16 is equal to the sum of the ordinates of the feet of the normals. Let 'P' lies on the curve C, then : Q. Area of the equilateral triangle, inscribed in the curve C, and having one vertex same as the vertex

of C is :

- A. $768\sqrt{3}$
- B. $776\sqrt{3}$
- C. $760\sqrt{3}$
- D. None of these

Answer: A

Exercise 4 Subjective Type Problems

1. Let y=mx+c be a common tangent to $rac{x^2}{16}-rac{y^2}{9}=1$ and $rac{x^2}{4}+rac{y^2}{3}=1$, then find the value of m^2+c^2 .

Watch Video Solution

2. The maximum number of normals that can be drawn to an ellipse/hyperbola passing through a given point is :

View Text Solution

3. Tangents at P to rectangular hyperbola xy = 2 meets coordinate axes at A and B, then area of triangle OAB (where O is origin) is :

