© ${ }^{\text {T doubtnut }}$

MATHS

BOOKS - VIKAS GUPTA MATHS (HINGLISH)

HYPERBOLA

Exercise 1 Single Choice Problems

1. The normal to curve $x y=4$ at the point $(1,4)$ meets curve again at :
A. $(-4,-1)$
B. $\left(-8,-\frac{1}{2}\right)$
C. $\left(-16,-\frac{1}{4}\right)$
D. $(-1,-4)$

Answer: C

- Watch Video Solution

2. Let $P Q: 2 x+y+6=0$ is a chord of the curve $x^{2}-4 y^{2}=4$. Coordinates of the point $R(\alpha, \beta)$ that satisfy $\alpha^{2}+\beta^{2}-1 \leq 0$, such that area of triangle $P Q R$ is minimum, are given by :
A. $\left(\frac{-2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$
B. $\left(\frac{-2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right)$
C. $\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$
D. $\left(\frac{2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right)$

Answer: B

D View Text Solution

3. If $y=m x+c$ be a tangent to hyperbola $\frac{x^{2}}{\lambda^{2}}-\frac{y^{2}}{\left(\lambda^{3}+\lambda^{2}+\lambda\right)^{2}}=1$, then least value of $16 m^{2}$ equals to :
A. 0
B. 1
C. 4
D. 9

Answer: D

- View Text Solution

4. Let the couble ordinate pp^{\prime} of the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{3}=1$ is produced both sides to meet asymptotes of hyperbola in Q and Q^{\prime}. The product $(P Q)(P Q)$ ' is equal to :
A. 3
B. 4
C. 1
D. 5

Answer: A

- View Text Solution

5. If eccentricity of conjugate hyperbola of the given hyperbola :
$\left|\sqrt{(x-1)^{2}+(y-2)^{2}}-\sqrt{(x-5)^{2}+(y-5)^{2}}\right|=3$
is e^{\prime}, then value of $8 e^{\prime}$ is :
A. 12
B. 14
C. 17
D. 10

Answer: D

- View Text Solution

6. A normal to the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{1}=1$ has equal intercepts on positive x and positive y-axes. If this normal touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then $3\left(a^{2}+b^{2}\right)$ is equal to :
A. 5
B. 25
C. 16
D. None of these

Answer: B

D View Text Solution
7. Locus of a point, w hose chord of contact with respect to the circle $x^{2}+y^{2}=4$ is a tangent to the hyperbola $x y=1$ is a/an :
A. ellipse
B. circle
C. hyperbola
D. parabola

Answer: C

- View Text Solution

8. If the chord $x \cos \alpha+y \sin \alpha=p$ of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{18}=1$ subtends a right angle at the center, and the diameter of the circle, concentric with the hyperbola, to which the given
chord is a tangent is d, then the value of $\frac{d}{4}$ is
A. 4
B. 5
C. 6
D. 7

Answer: C

- Watch Video Solution

9. If the tangent and the normal to a rectangular hyperbola $x y=c^{2}$, at a point, cuts off intercepts a_{1} and a_{2} on the x -axis and $b_{1} b_{2}$ on the y -axis, then $a_{1} a_{2}+b_{1} b_{2}$ is equal to
A. 2
B. $\frac{1}{2}$
C. 0
D. -1

Answer: C

Exercise 2 One Or More Than One Answer Is Are Correct

1. A common tangent to $9 x^{2}-16 y^{2}=144$ and $x^{2}+y^{2}=9$, is

$$
\begin{aligned}
& \text { A. } y=\frac{3}{\sqrt{7}} x+\frac{15}{\sqrt{17}} \\
& \text { B. } y=3 \sqrt{\frac{2}{\sqrt{17}}} x+\frac{25}{\sqrt{7}} \\
& \text { C. } y=2 \sqrt{\frac{3}{7}} x+15 \sqrt{7} \\
& \text { D. } y=-3 \sqrt{\frac{2}{\sqrt{7}}} x+\frac{25}{\sqrt{7}}
\end{aligned}
$$

Answer: B::D

2. The tangent to the hyperbola $x^{2}-y^{2}=3$ are parallel to the straight line $2 x+y+8=0$ at the following points
A. $(2,1)$
B. $(2,-1)$
C. $(-2,-1)$
D. $(-2,-1)$

Answer: B::D
3. If the line $a x+b y+c=0$ is a normal to the curve $x y=1$, then $a>0, b>0 \quad a>0, b<0$ $a\langle 0, b\rangle 0$ (d) $a<0, b<0$ none of these
A. $a>0, b>0$
B. $a>0, b<0$
C. $b<0, a<0$
D. $a<0, b>0$

Answer: B::D

4. A circle cuts the rectangular hyperbola $x y=1$ in the points $\left(x_{1}, y_{1}\right), r=1,2,3,4$.

Prove that $x_{1} x_{2} x_{3} x_{4}=y_{1} y_{2} y_{3} y_{4}=1$
A. $y_{1} y_{2} y_{3} y_{4}=1$
B. $x_{1} x_{2} x_{3} x_{4}=$
C. $x_{1} x_{2} x_{3} x_{4}=y_{1} y_{2} y_{3} y_{4}=-1$
D. $y_{1} y_{2} y_{3} y_{4}=0$

Answer: A: B

1. A point P moves such that sum of the slopes of the normals drawn from it to the hyperbola $x y=16$ is equal to the sum of the ordinates of the feet of the normals. Let 'P' lies on the curve C, then : Q. The equation of ' C ' is :
A. $x^{2}=4 y$
B. $x^{2}=16 y$
C. $x^{2}=12 y$
D. $y^{2}=8 x$

Answer: B

- View Text Solution

2. A point P moves such that sum of the slopes of the normals drawn from it to the hyperbola $x y=16$ is equal to the sum of the ordinates of the feet of the normals. Let 'P' lies on the curve C, then :
Q. If tangents are drawn to the curve C , then the locus of the midpoint of the portion of tangent intercepted between the co-ordinate axes, is :

$$
\text { A. } x^{2}=4 y
$$

B. $x^{2}=2 y$
C. $x^{2}+2 y=0$
D. $x^{2}+4 y=0$

Answer: C

- View Text Solution

3. A point P moves such that sum of the slopes of the normals drawn from it to the hyperbola $x y=16$ is equal to the sum of the ordinates of the feet of the normals. Let 'P' lies on the curve C, then : Q. Area of the equilateral triangle, inscribed in the
curve C, and having one vertex same as the vertex of C is :
A. $768 \sqrt{3}$

B. $776 \sqrt{3}$

C. $760 \sqrt{3}$
D. None of these

Answer: A

- View Text Solution

Exercise 4 Subjective Type Problems

1. Let $y=m x+c$ be a common tangent to $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ and $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$, then find the value of $m^{2}+c^{2}$.

D Watch Video Solution

2. The maximum number of normals that can be drawn to an ellipse/hyperbola passing through a given point is :

- View Text Solution

3. Tangents at P to rectangular hyperbola $x y=2$
meets coordinate axes at A and B, then area of triangle $O A B$ (where O is origin) is :

- View Text Solution

