

MATHS

BOOKS - VIKAS GUPTA MATHS (HINGLISH)

HYPERBOLA

Exercise 1 Single Choice Problems

1. The normal to curve xy=4 at the point (1,4) meets curve again at :

A.
$$(-4, -1)$$

B.
$$\left(-8, -\frac{1}{2}\right)$$

$$\mathsf{C.}\left(\,-\,16,\;-\,\frac{1}{4}\,\right)$$

D.
$$(-1, -4)$$

Answer: C

Watch Video Solution

2. Let
$$PQ\colon 2x+y+6=0$$
 is a chord of the curve $x^2-4y^2=4$. Coordinates of the point $R(lpha,eta)$

that satisfy $\alpha^2 + \beta^2 - 1 \leq 0$, such that area of triangle PQR is minimum, are given by:

A.
$$\left(\frac{-2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$$
B. $\left(\frac{-2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right)$
C. $\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$

D. $\left(\frac{2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right)$

View Text Solution

3. If
$$y=mx+c$$
 be a tangent to hyperbola $\frac{x^2}{\lambda^2}-\frac{y^2}{(\lambda^3+\lambda^2+\lambda)^2}=1$, then least value of $16m^2$ equals to :

A. 0

B. 1

C. 4

D. 9

Answer: D

View Text Solution

4. Let the couble ordinate pp' of the hyperbola $\frac{x^2}{4} - \frac{y^2}{3} = 1$ is produced both sides to meet asymptotes of hyperbola in Q and Q'. The product (PQ)(PQ)' is equal to :

B. 4

C. 1

D. 5

Answer: A

is e', then value of 8e' is:

5. If eccentricity of conjugate hyperbola of the given hyperbola :

$$\left| \sqrt{\left(x-1
ight)^2 + \left(y-2
ight)^2} - \sqrt{\left(x-5
ight)^2 + \left(y-5
ight)^2}
ight| = 3$$

A. 12

B. 14

C. 17

D. 10

Answer: D

View Text Solution

6. A normal to the hyperbola $\frac{x^2}{4}-\frac{y^2}{1}=1$ has equal intercepts on positive x and positive y-axes. If this normal touches the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$, then $3(a^2+b^2)$ is equal to :

- A. 5
- B. 25
- C. 16
- D. None of these

Answer: B

View Text Solution

7. Locus of a point, w hose chord of contact with respect to the circle $x^2+y^2=4$ is a tangent to the hyperbola xy=1 is a/an :

A. ellipse

B. circle

C. hyperbola

D. parabola

Answer: C

View Text Solution

8. If the chord $x\cos\alpha+y\sin\alpha=p$ of the hyperbola $\frac{x^2}{16}-\frac{y^2}{18}=1$ subtends a right angle at the center, and the diameter of the circle, concentric with the hyperbola, to which the given

chord is a tangent is d, then the value of $\frac{d}{4}$ is _____

D. 7

B. 5

C. 6

Answer: C

9. If the tangent and the normal to a rectangular hyperbola $xy=c^2$, at a point , cuts off intercepts a_1 and a_2 on the x- axis and b_1b_2 on the y- axis, then $a_1a_2+b_1b_2$ is equal to

A. 2

B. $\frac{1}{2}$

C. 0

D. -1

Answer: C

Exercise 2 One Or More Than One Answer Is Are Correct

1. A common tangent to $9x^2-16y^2=144$ and

$$x^2 + y^2 = 9$$
, is

A.
$$y=rac{3}{\sqrt{7}}x+rac{15}{\sqrt{17}}$$

$$\texttt{B.}\,y = 3\sqrt{\frac{2}{\sqrt{17}}}x + \frac{25}{\sqrt{7}}$$

C.
$$y=2\sqrt{rac{3}{7}}x+15\sqrt{7}$$

D.
$$y=\ -3\sqrt{rac{2}{\sqrt{7}}}x+rac{25}{\sqrt{7}}$$

Answer: B::D

2. The tangent to the hyperbola $x^2-y^2=3$ are parallel to the straight line 2x+y+8=0 at the following points

A.(2,1)

B.(2,-1)

C. (-2, -1)

D. (-2, -1)

Answer: B::D

3. If the line ax+by+c=0 is a normal to the curve xy=1, then a>0, b>0 a>0, b<0 a<0, b>0 (d) a<0, b<0 none of these

$$\mathrm{A.}\,a>0,b>0$$

B.
$$a > 0, b < 0$$

C.
$$b < 0, a < 0$$

D.
$$a < 0, b > 0$$

Answer: B::D

4. A circle cuts the rectangular hyperbola xy=1 in

the points $(x_1, y_1), r = 1, 2, 3, 4$.

Prove that $x_1x_2x_3x_4 = y_1y_2y_3y_4 = 1$

A. $y_1y_2y_3y_4 = 1$

B. $x_1 x_2 x_3 x_4 =$

 $\mathsf{C.}\, x_1x_2x_3x_4 = y_1y_2y_3y_4 = \ -1$

D. $y_1y_2y_3y_4 = 0$

Answer: A::B

Exercise 3 Comprehension Type Problems

1. A point P moves such that sum of the slopes of the normals drawn from it to the hyperbola xy=16 is equal to the sum of the ordinates of the feet of the normals. Let 'P' lies on the curve C, then :

Q. The equation of 'C' is:

$$A. x^2 = 4y$$

$$\mathsf{B.}\,x^2=16y$$

$$\mathsf{C.}\,x^2=12y$$

D.
$$y^2 = 8x$$

Answer: B

2. A point P moves such that sum of the slopes of the normals drawn from it to the hyperbola xy=16 is equal to the sum of the ordinates of the feet of the normals. Let 'P' lies on the curve C, then: Q. If tangents are drawn to the curve C, then the locus of the midpoint of the portion of tangent intercepted between the co-ordinate axes, is:

A. $x^2=4y$

$$\mathsf{B.}\,x^2=2y$$

$$\mathsf{C.}\,x^2+2y=0$$

D.
$$x^2 + 4y = 0$$

Answer: C

View Text Solution

3. A point P moves such that sum of the slopes of the normals drawn from it to the hyperbola xy=16 is equal to the sum of the ordinates of the feet of the normals. Let 'P' lies on the curve C, then : Q. Area of the equilateral triangle, inscribed in the

curve C, and having one vertex same as the vertex of C is:

A.
$$768\sqrt{3}$$

B.
$$776\sqrt{3}$$

$$\mathsf{C.}\ 760\sqrt{3}$$

D. None of these

Answer: A

View Text Solution

1. Let y=mx+c be a common tangent to $rac{x^2}{16}-rac{y^2}{9}=1$ and $rac{x^2}{4}+rac{y^2}{3}=1$, then find the value of m^2+c^2 .

2. The maximum number of normals that can be drawn to an ellipse/hyperbola passing through a given point is :

3. Tangents at P to rectangular hyperbola xy=2 meets coordinate axes at A and B, then area of triangle OAB (where O is origin) is :

