

India's Number 1 Education App

MATHS

BOOKS - VIKAS GUPTA MATHS (HINGLISH)

LOGARITHMS

Exercise 1 Single Choice Problems

1. Solution set of the in equality

 $\log_{10^2} x - 3(\log_{10} x)(\log_{10} (x-2)) + 2\log_{10^2} (x-2) < 0$, is :

A.(0,4)

B. $(-\infty, 1)$

 $C.(4,\infty)$

D.(2,4)

Answer: C

2. The number of real solution(s) of the equation
$$9^{\log_3(\log_e x)} = \log_e x - (\log_e x)^2 + 1$$
 is equal to

B. 1

C. 2

D. 3

Answer: B

Watch Video Solution

3. If a, b, c are positive numbers such that $a^{\log_3 7} = 27, b^{\log_7 11} = 49, c^{\log_{11} 25} = \sqrt{11}$, then the sum of digits of $S = a^{\left(\log_3 7\right)^2} + b^{\left(\log_7 11\right)^2} + c^{\left(\log_{11} 25\right)^2}$ is :

Answer: C
Watch Video Solution

4. Least positive integral value of 'a' for
$$\log_{\left(x+\frac{1}{x}\right)}\left(a^2-3a+3\right)>0, (x>0)$$
:

A. 1

B. 2

C. 3

D. 4

Answer: C

which

A. 15

B. 17

C. 19

D. 21

5. Let
$$P=rac{5}{rac{1}{\log_2 x}+rac{1}{\log_3 x}+rac{1}{\log_4 x}+rac{1}{\log_5 x}}$$
 and $(120)^P=32$, then the value of x be :

D. 4

Answer: B

Watch Video Solution

6. Let x,y,z be positive real numbers such that $\log_{2x}z=3,\log_{5y}z=6$ and $\log_{xy}z=rac{2}{3}$ then the value of z is

$$\frac{1}{5}$$

Watch Video Solution

 $\log_x(\log_3(\log_x y)) = 0$ and $\log_y 27 = 1$ is :

 $\mathsf{C.}\,\frac{3}{5}$

D. $\frac{4}{9}$

Answer: B

7.

Sum

A. 27

of values of x and y satisfying

Answer: B

8.
$$\log_{0.01} 1000 + \log_{0.1} 0.0001$$
 is equal to :

$$C. - 5/2$$

$$\mathsf{D.}\,5/2$$

Answer: D

Watch Video Solution

9. If $(\log)_{12}27=a, ext{ then find } (\log)_616 \int\!\!ermsofa$

A.
$$2\left(\frac{3-a}{3+a}\right)$$

$$\mathsf{B.}\, 3\bigg(\frac{3-a}{3+a}\bigg)$$

$$\mathsf{C.}\,4\bigg(\frac{3-a}{3+a}\bigg)$$

D. None of these

Answer: C

Watch Video Solution

10. If $\log_2(\log_2(\log_3 x)) = \log_2(\log_3(\log_2 y)) = 0$, then the value of (x+y) is

- A. 17
- B. 9
- C. 21
- D. 19

Answer: A

Watch Video Solution

11. Suppose that a and b are positive real numbers such that $\log_{27} a + \log_9(b) = rac{7}{2}$ and $\log_{27} b + \log_9 a = rac{2}{3}$.Then the value of the ab

equals A. 81 B. 243 C. 27 D. 729 **Answer: B** Watch Video Solution **12.** If $2^a = 5$, $5^b = 8$, $8^c = 11$ and $11^d = 14$, then the value of 2^{abcd} is : A. 1 B. 2 C. 7 D. 14 **Answer: D**

13. Which of the following conditions necessarily imply that the real number x is rational, I x^2 is rational II x^3 and x^5 are rational III x^2 and x^3 are rational

A. I and II only

B. I and III only

C. II and III only

D. III only

Answer: C

Watch Video Solution

14. The value of $\frac{\log_8 17}{\log_9 23} - \frac{\log_{2\sqrt{2}} 17}{\log_3 23}$ is equal to

A. -1

B. 0

 $\mathsf{C.}\ \frac{\log_2 17}{\log_3 23}$

 $\mathsf{D.} \; \frac{4(\log_2 17)}{3(\log_3 23)}$

Answer: B

Watch Video Solution

15. The true solution set of inequality $\log_{(2x-3)}(3x-4)>0$ is equal to :

A. $\left(\frac{4}{3},\frac{5}{3}\right)\cup(2,\infty)$

B. $\left(\frac{3}{2},\frac{5}{3}\right)\cup(2,\infty)$

 $\mathsf{C.}\left(\frac{4}{3},\frac{3}{2}\right)\cup(2,\infty)$

D. $\left(rac{2}{3},rac{4}{3}
ight)\cup(2,\infty)$

Answer: B

16. If P is the number of natural numbers whose logarithms to the base 10 have the the charecteristic p and Q is the numbers of natural numbers logarithms of whose reciprocal to the base 10 have the charecteristics -q. then find the value of $\log_{10}P-\log_{10}Q$

A.
$$p-q+1$$

$$B. p - q$$

C.
$$p + q - 1$$

D.
$$p - q - 1$$

Answer: A

Watch Video Solution

17. If $2^{2010}=a_n10^n+a_{n-1}10^{n-1}+\ldots\ldots+a_210^2+a_1\cdot 10+a_0$, where $a_i\in\{0,1,2,\ldots,9\}$ for all $i=0,1,2,3,\ldots,n$, then n=

A. 603 B. 604 C. 605 D. 606 **Answer: C** View Text Solution 18. The number of zeros after decimal before the start of any significant digit in the number $N=\left(0.15\right)^{20}$ are : A. 15 B. 16 C. 17 D. 18 **Answer: B**

19. $\log_2 \bigl[\log_4 \bigl(\log_{10} 16^4 + \log_{10} 25^8 \bigr) \bigr]$ simplifies to :

A. an irrational

B. an odd prime

C. a composite

D. unity

Answer: D

Watch Video Solution

20. The sum of all the solutions to the equations

 $2\log_{10}x - \log_{10}(2x - 75) = 2$

A. 30

B. 350

D. 200

Answer: D

Watch Video Solution

21. $x^{(\log_x)\log_a y\log_y z}$ is equal to

A. x

В. у

C. z

D. x^x

Answer: C

22. Number of solution(s) of the equation
$$x^{x\sqrt{x}} = \left(x\sqrt{x}\right)^x$$
 is/are :

A. 0

B. 1

C. 2

D. 3

Answer: C

23. The difference of roots of the equation $\left((\log)_{27}x^3\right)^2=(\log)_{27}x^6$ is

- A. $\frac{2}{3}$
 - B. 1
 - C. 9
 - D. 8

Answer: D

Watch Video Solution

24. If $\log_{10} x + \log_{10} y = 2, x - y = 15$ then :

A. (x,y) lies on the line y=4x+3

B. (x, y) lies on $y^2 = 4x$

C. (x, y) lies on x = 4y

D. (x, y) lies on 4x = y

Answer: C

25.
$$\sqrt{2^x \left(4^x (0.\ 125)^{rac{1}{x}}
ight)^{rac{1}{3}}} = 4.\left(2^{rac{1}{3}}
ight)$$

A.
$$\frac{14}{5}$$

$$\mathsf{C.} - \frac{1}{5}$$

$$\mathsf{D.}-\frac{3}{5}$$

Answer: D

Watch Video Solution

26. Sum of all values of x satisfying the equation $25^{2x-x^2+1}+9^{2x-x^2+1}=34\Big(15^{2x-x^2}\Big)$ is:

- A. 1
- B. 2
- C. 3
- D. 4

Answer: D

27. If
$$a^x=b^y=c^z=d^w$$
, show that $\log_a(bcd)=x\Big(rac{1}{y}+rac{1}{z}+rac{1}{w}\Big).$

$$A. z \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{w}\right)$$

$$\mathsf{B.}\, y \bigg(\frac{1}{x} + \frac{1}{z} + \frac{1}{w} \bigg)$$

$$\mathsf{C.}\,x\bigg(\frac{1}{y}+\frac{1}{z}+\frac{1}{w}\bigg)$$

D.
$$\frac{xyz}{w}$$

Answer: C

Watch Video Solution

28. If $x=rac{4}{(5^{0.5}+1)(5^{0.25}+1)(5^{0.125}+1)(x^{0.0625}+1)}$.Then the value

of $(1+x)^{48}$,is.

A. 5

B. 25

C. 125

D. 625

Answer: C

Watch Video Solution

- **29.** If $\log_x \log_{18} \left(\sqrt{2} + \sqrt{8} \right) = rac{1}{3}$, then the value of 32x =
 - A. 2
 - B. 4
 - C. 6
 - D. 8

Answer: B

30. Let $n \in N, f(n) = \left\{ egin{array}{ll} \log_8 n & ext{is integer} \\ 0 & ext{otherwise} \end{array}
ight.$, then the valud of

$$\sum_{n=1}^{2011} f(n)$$
 is :

A. 2011

B. 2011×1006

C. 6

 $D. 2^{2011}$

Answer: C

Watch Video Solution

31. If the equation $\frac{\log_{12}(\log_8(\log_4 x))}{\log_5\Big(\log_4\Big(\log_y(\log_2 x)\Big)\Big)}=0$ has a solution for 'x'

when $c < y < b, y \neq a$, where 'b' is as large as possible, then the value of (a+b+c) is equals to :

A. 18

B. 19

C. 20

D. 21

Answer: B

Watch Video Solution

32. If $(\log)_{0.3}(x-1) < (\log)_{0.09}(x-1)$, then x lies in the interval $(2,\infty)$ (b) (1,2) $(\,-2,\,-1)$ (d) None of these

 $A.(2,\infty)$

B.(1,2)

C. (-2, -1)

D. $\left(1, \frac{3}{2}\right)$

Answer: A

33. Number of solutions of equation $\sqrt{7^{2x^{2-5x-6}}} = \left(\sqrt{2}\right)^{3\log_2 49}$

A. 2

B. 1

C. 4

D. 5

Answer: C

Watch Video Solution

34. Let $1 \le x \le 256$ and M be the maximum value of $(\log_2 x)^4 + 16(\log_2 x)^2 \log_2 \left(\frac{16}{x}\right)$. The sum of the digits of M is :

A. 9

B. 11

C. 13

Answer: C

Watch Video Solution

- 35. Number of real solution(s) of the equation $9^{\log_3(\log x)} \, = lnx - (\ln x)^2 + 1$ is :
 - A. 0
 - B. 1
 - C. 2
 - D. 3

Answer: c

36. The number of real values of the parameter k for which $(\log_{16} x)^2 - (\log)_{16} x + (\log)_{16} k = 0$ with real coefficients will have exactly one solution is 2 (b) 1 (c) 4 (d) none of these

- A. 1
- B. 2
- C. 3
- D. 4

Answer: A

Watch Video Solution

- **37.** A rational number which is 50 times its own logarithm to the base 10,
 - **A.** 1

is

B. 10

C. 100

D. 1000

Answer: C

Watch Video Solution

38. If $x = \log_5(1000)$ and $y = \log_7(2058)$,then

A. x>y

B. x < y

 $\mathsf{C}.\,x=y$

D. none of these

Answer: A

39. The value of
$$7\log\left(\frac{16}{15}\right)+5\log\left(\frac{25}{24}\right)+3\log\left(\frac{81}{80}\right)=$$

A. 0

B. 1

C. log 2

D. log 3

Answer: C

Watch Video Solution

- **40.** $\log_{10} \tan 1^\circ + \log_{10} \tan 2^\circ + \ldots + \log_{10} \tan 89^\circ$ is equal to :
 - A. 0

B. 1

- C. 27
- D. 81

Answer: A

Watch Video Solution

- 41. $\log_7 \log_7 \sqrt{7 \left(\sqrt{7\sqrt{7}}\right)} =$
 - A. $3\log_2 7$
 - $\mathsf{B.}\, 3\log_7 2$
 - $\mathsf{C.}\,1 3\log_7 2$
 - D. $1 3\log_2 7$

Answer: C

- **42.** If $4^{\log_9(3)} + 9^{\log_2(4)} = 10^{\log_x(83)}$ then x =
 - A. 2

- B. 3
- C. 10
- D. 30

Answer: C

Watch Video Solution

43. $x^{\log_{10}\left(\frac{y}{z}\right)}$. $y^{\log_{10}\left(\frac{z}{x}\right)}$. $z^{\log_{10}\left(\frac{x}{y}\right)}$ is equal to :

- A. 0
- B. 1
- C. -1
- D. 2

Answer: B

44. Solve $(\log)_x 2(\log)_{2x} 2 = (\log)_{4x} 2$.

A.
$$\left\{2^{-\sqrt{2}},2^{\sqrt{2}}
ight\}$$

B.
$$\{1/2, 2\}$$

C.
$$\left\{1/4,2^2\right\}$$

D. None of these

Answer: A

Watch Video Solution

45. The least value of the expression $2(\log)_{10}x-(\log)_x(0.01)$, for x>1, is (1980, 2M) 10 (b) 2 (c) -0.01 (d) None of these

A. 2

B. 4

C. 6

D. 8

Answer: B

Watch Video Solution

46. If $\sqrt{(\log)_2 x} - 0.5 = (\log)_2 \sqrt{x}$, then x equals odd integer (b) prime number composite number (d) irrational

A. odd integer

B. prime number

C. composite number

D. irrational

Answer: B

Watch Video Solution

47. If x_1andx_2 are the roots of the equation $e^2x^{\ln x}=x^3$ with $x_1>x_2,$ then $x_1=2x_2$ (b) $x_1=x22$ $2x_1=x22$ (d) $x_1=x23$

A.
$$x_1 = 2x_2$$

B.
$$x_1=x_2^2$$

C.
$$2x_1=x_2^2$$

D.
$$x_1^2=x_2^2$$

Answer: B

Watch Video Solution

- **48.** Let M denote antilog $_{32}$ 0.6 and N denote the value of $49^{(\,1-\log_72\,)}\,+5^{\,-\log_54}\!.$ Then M.N is :
 - A. 100
 - B. 400
 - C. 50
 - D. 200

Answer: A

49. If $\log_2(\log_2(\log_3 x)) = \log_3(\log_3(\log_2 y)) = 0$, then x-y is equal to :

A. 0

B. 1

C. 8

D. 9

Answer: B

Watch Video Solution

50. $|\log_{\frac{1}{2}} 10 + |\log_4 625 - |\log_{\frac{1}{2}} 5||| =$

A. $\log_{1/2} 2$

 $B. \log_2 5$

 $\mathsf{C.}\log_2 2$

Answer: C

Watch Video Solution

- **51.** If $(\log)_4 5 = aand(\log)_5 6 = b$, then $(\log)_3 2$ is equal to $\frac{1}{2a+1}$ (b) $\dfrac{1}{2b+1}$ (c) 2ab+1 (d) $\dfrac{1}{2ab-1}$

 - A. $\frac{1}{2a+1}$
 - B. $\frac{1}{2b+1}$
 - $\mathsf{C.}\,2ab+1$
 - D. $\frac{1}{2ab-1}$

Answer: D

52. If $x = \log_a bc$, $y = \log_b ac$ and $z = \log_c ab$ then which of the following is equal to unity?

A.
$$x + y + z$$

B. xyz

C.
$$\frac{1}{1+x} + \frac{1}{1+y} + \frac{1}{1+z}$$

D.
$$(1+x) + (1+y) + (1+z)$$

Answer: C

Watch Video Solution

53. $x^{(\log_x)\log_a y\log_y z}$ is equal to

A. x

B. y

C. z

D. a

Answer: C

Watch Video Solution

- **54.** Number of value(s) of 'x' satisfying the equation $x^{\log_{\sqrt{x}}(\,x\,-\,3\,)}=9$ is/are
 - A. 0
 - B. 1
 - C. 2
 - D. 6

Answer: B

Watch Video Solution

55. $\log_{0.01} 1000 + \log_{0.1} 0.0001$ is equal to :

B. 3

 $C. - \frac{5}{2}$

D. $\frac{5}{2}$

Answer: D

Watch Video Solution

56. Find the value of 7 $\log\Bigl(\frac{16}{15}\Bigr) + 5\log\Bigl(\frac{25}{24}\Bigr) + 3\log\Bigl(\frac{81}{80}\Bigr)$.

A. $2^{1/8}$

 $C. (30)^{1/8}$

B. $(10)^{1/8}$

D. 1

Answer: A

57.
$$\log_8(128) - \log_9\cot\left(\frac{\pi}{3}\right) =$$

$$\mathsf{A.}\ \frac{31}{12}$$

$$\mathsf{B.}\ \frac{19}{12}$$

c.
$$\frac{13}{12}$$

D.
$$\frac{11}{12}$$

Answer: A

58. Evaluate
$$\left\{ \left(\frac{1}{\sqrt{27}} \right)^{2 - \left[\frac{\log_5 13}{2\log_5 9} \right]} \right\}^{\frac{1}{2}}$$

A.
$$\frac{5\sqrt{2}}{27}$$

B.
$$\frac{\sqrt{2}}{27}$$

$$\mathsf{C.}\ \frac{4\sqrt{2}}{27}$$

$$\cdot \frac{2\sqrt{2}}{27}$$

Answer: D

Watch Video Solution

- sum of all the roots of the equation 59. The $\log_2(x-1) + \log_2(x+2) - \log_2(3x-1) = \log_2 4$
 - A. 12
 - C. 10

B. 2

D. 11

Answer: D

$$\textbf{60.} \ \frac{(\log_{100} 10)(\log_2(\log_4 2)) \left(\log_4 \log_2^2 \left(256\right)^2\right)}{\log_4 8 + \log_8 4} =$$

$$A. - \frac{6}{13}$$

$$B. - \frac{1}{2}$$

C.
$$-\frac{8}{13}$$
D. $-\frac{12}{13}$

Answer: D

Watch Video Solution

61. If $P = \log_5(\log_5 3) \mathrm{and} 3^C + 5^{\,(\,-P\,)} \, = 405$ then C is equal to

- A. 3

B. 5

- C. 4
 - D. 6

Answer: C

Watch Video Solution

62. A circle has radius $\log_{10}(a^2)$ and a circumference of $\log_{10}(b^4)$. Then the value of $\log_a b$ is equal to :

- A. $\frac{1}{4\pi}$
- B. $\frac{1}{\pi}$
- $\mathsf{C.}\,2\pi$
- D. π

Answer: D

63. If
$$2^x=3^y=6^{-z}$$
 find the value of $\left(rac{1}{x}+rac{1}{y}+rac{1}{z}
ight)$

Answer: A Watch Video Solution **64.** The value of $\log_{\left(\sqrt{2}-1\right)}\left(5\sqrt{2}-7\right)$ is : A. 0 B. 1 C. 2 D. 3 **Answer: D** Watch Video Solution

A. 0

B. 1

C. 2

D. 3

65. Compute $\log_{ab}\left(\sqrt[3]{a}\,/\,\sqrt{b}\right)$ if $\log_{ab}a=4$.

- A. 2
- B. $\frac{13}{6}$
- c. $\frac{15}{6}$
- D. $\frac{17}{6}$

Answer: D

Watch Video Solution

66. Identify the correct option

- A. $\log_2 3 < \log_{1/4} 5$
- $\mathsf{B.}\log_{5}7 < \log_{8}3$
- C. $\log_{\sqrt[3]{2}}\sqrt{3} < \log_{\sqrt[3]{2}}\sqrt{5}$

D.
$$2^{rac{1}{4}} > \left(rac{3}{2}
ight)^{1/3}$$

Answer: C

Watch Video Solution

- 67. Sum of all values of x satisfying the system of equations
- $5\Bigl(\log_y x + \log_x y\Bigr) = 26, xy = 64$ is :
 - A. 42
 - - C. 32

B. 34

D. 2

Answer: B

68. The product of all values of x satisfying the equations

 $\log_3 a - \log_x a = \log_{x/3} a$ is :

A. 3

B. $\frac{3}{2}$

C. 18

D. 27

Answer: D

Watch Video Solution

69. Solve for x, y, z.

 $\log_2 x + \log_4 y + \log_4 z = 2$

 $\log_3 y + \log_9 z + \log_9 x = 2$

 $\log_4 z + \log_{16} x + \log_{16} y = 2$

B.
$$\frac{349}{24}$$

c.
$$\frac{353}{24}$$

$$\mathrm{D.}\ \frac{112}{3}$$

Answer: C

Watch Video Solution

70. Find the value of $\left(rac{1}{49}
ight)^{1+\log_7 2} + 5^{-\log_{(1/5)}{(7)}}.$

A.
$$7\frac{1}{196}$$

$$\operatorname{B.}7\frac{3}{196}$$

$$\mathsf{C.}\,7\frac{5}{196}$$

D.
$$7\frac{1}{98}$$

Answer: A

71. Solve the equation
$$\log_2(3-x)-\log_2igg(rac{\sinrac{3\pi}{4}}{5-x}igg)=rac{1}{2}+\log_2(x+7)$$

A. O

72. if $\log_k x.\log_5 k = \log_x 5$, k
eq 1, k > 0 , then find the value of x

B. 1

C. 2

D. 3

Answer: B

B.
$$\frac{24}{5}$$

c.
$$\frac{26}{5}$$

D.
$$\frac{37}{5}$$

Answer: C

Watch Video Solution

73. The set of real values of x satisfying the equation $|x-1|^{\log_3\left(x^2\right)-2\log_x\left(9\right)}=(x-1)^7$

- A. 162
- $\text{B.}\ \frac{162}{\sqrt{3}}$
- c. $\frac{81}{\sqrt{3}}$
- D. 81

Answer: A

Watch Video Solution

74. The number of values of x satisfying the equation $\log_2 \left(9^{x-1}+7\right)=2+\log_2 \left(3^{x-1}+1\right)$ is :

- A. 1
- B. 2
- C. 3
- D. 0

Answer: B

Watch Video Solution

75. Which is the correct order for a given number $\alpha > 1$ in increasing order

- A. $\log_2 \alpha < \log_3 \alpha < \log_e \alpha < \log_{10} \alpha$
- B. $\log_{10} \alpha < \log_3 \alpha < \log_e \alpha < \log_2 \alpha$
- $\mathsf{C.}\log_{10}lpha<\log_{e}lpha<\log_{2}lpha<\log_{3}lpha$
- D. $\log_3 lpha < \log_e lpha < \log_2 lpha < \log_{10} lpha$

Answer: B

76. If
$$T_r = \dfrac{1}{\log_{2^r} 4}$$
 (where $r \in N$), then the value of $\displaystyle \sum_{r=1}^4 T_r$ is :

77. In which of the following intervals does $\dfrac{1}{\log_{1/2}(1/3)}+\dfrac{1}{\log_{1/5}(1/3)}$

C. 5

Answer: C

Watch Video Solution

A. (1, 2)

lies

B. (2, 3)

C.(3,4)

D. (4, 5)

Answer: B

Watch Video Solution

78. If $\sin\theta=rac{1}{2}igg(a+rac{1}{a}igg)$ and $\sin3\theta=rac{k}{2}igg(a^3+rac{1}{a^3}igg)$, then k+6 is

equal to:

A. 3

B. 4

C. 5

D. -4

Answer: C

79. Complete set of real values of x for which $\log_{(2x-3)}\left(x^2-5x-6\right)$ is defined is :

A.
$$\left(rac{3}{2},\infty
ight)$$

B. $(6,\infty)$

$$\mathsf{C.}\left(\frac{3}{2},6\right)$$

D. $\left(rac{3}{2},2
ight)\cup\left(2,\infty
ight)$

Answer: B

Exercise 2 One Or More Than One Answer Is Are Correct

1. Solve the equation
$$\dfrac{1-2\Bigl(\log x^2\Bigr)^2}{\log x-2\bigl(\log x\bigr)^2}=1$$

A.
$$\frac{1}{\sqrt{10}}$$

$$B. \frac{1}{\sqrt{20}}$$

C.
$$\sqrt[3]{10}$$

D. $\sqrt{10}$

Answer: A::C

Watch Video Solution

are rational, then x can be rational.

2. If $(\log)_a x = b$ for permissible values of aandx, then identify the statement(s) which can be correct. If aandb are two irrational numbers, then x can be rational. If a is rational and b is irrational, then x can be rational. If a is irrational and b is rational, then x can be rational. If aandb

A. If a and b are two irrational numbers then x can be rational.

B. If a rational and b irrational then x can be rational.

C. If a irrational and b rational then x can be rational.

D. If a rational and b rational then x can be rational.

Answer: A::B::C::D

3. Consider the quadratic equation
$$(\log_{10}8)x^2-(\log_{10}5)x=2(\log_210)^{-1}-x.$$
 Which of the following quantities are irrational.

A. Sum of the roots

B. Product of the roots

C. Sum of the coefficients

D. Discriminant

Answer: C::D

Watch Video Solution

4. Let D. $\log_{(2A-B)} A > 1$

 $(\log)_{\,(\,2B-A\,)}\,A < 1$ (d) $(\log)_{\,(\,2A-B\,)}\,A > 1$

A. $\log_{\left(B-A\right)}\left(A+B
ight)$ is not defined

 $(\log)_{\,(B-A)}\,(A+B)$ is not defined A+B=13

Answer: A::B::C::D

B.A + B = 13

 $C. \log_{(2B-A)} A < 1$

then:

Exercise 3 Comprehension Type Problems

1. Let $\log_3 N = \alpha_1 + \beta_1$

 $\log_5 N = \alpha_2 + \beta_2$

 $\log_7 N = \alpha_3 + \beta_3$

where $\alpha_1, \alpha_2 \ \ {\rm and} \ \ \alpha_3$ are integers and $\beta_1, \beta_2, \beta_3 \in [0, 1)$.

Q. Number of integral values of N if $\alpha_1=4$ and $\alpha_2=2$:

B. 45

C. 44

D. 47

Answer: C

Watch Video Solution

2. Let
$$\log_3 N = lpha_1 + eta_1$$

$$\log_5 N = lpha_2 + eta_2$$

 $\log_7 N = \alpha_3 + \beta_3$

Q. Largest integral value of N if $lpha_1=5, \, lpha_2=3 \, ext{ and } \, lpha_3=2.$

where $\alpha_1, \alpha_2 \ \ {\rm and} \ \ \alpha_3$ are integers and $\beta_1, \beta_2, \beta_3 \in [0, 1)$.

A. 342

B. 343

C. 243

Answer: A

Watch Video Solution

3. Let
$$\log_3 N = lpha_1 + eta_1$$

$$\log_5 N = lpha_2 + eta_2$$

$$\log_7 N = lpha_3 + eta_3$$

where $\alpha_1, \alpha_2 \, \text{ and } \, \alpha_3$ are integers and $\beta_1, \beta_2, \beta_3 \in [0, 1)$.

if

Q. Difference of largest and smallest values of

 $\alpha_1 = 5, \alpha_2 = 3 \text{ and } \alpha_3 = 2.$

A. 97

B. 100

C. 98

D. 99

Answer: D

If 4. $\log_{10} \left| x^3 + y^3
ight| - \log_{10} \left| x^2 - xy + y^2
ight| + \log_{10} \left| x^3 - y^3
ight| - \log_{10} \left| x^2 + xy + y^2
ight|$. wherex, y are integers , then (i) if x=111 then y can be: (ii) if y=2then

value of x can be:

A.
$$\pm\,111$$

B.
$$\pm 2$$

$$\mathsf{C.}\pm110$$

 $D.\pm 109$

. Where x, y are integers, then

Q. If y = 2, then value of x can be :

A.
$$\pm\,111$$

 ${\rm B.}\pm15$

 $\mathsf{C}.\pm 2$

D. ± 110

Answer: B

Watch Video Solution

6. Given a right triangle ABC right angled at C and whose legs are given

 $1 + 4\log_{p^2}(2p), 1 + 2^{\log_2(\log_2 p)}$ and hypotenuse is given to be

 $1+\log_2(4p).$ The are of ΔABC and circle circumscribing it are

 $\Delta_1 \ {
m and} \ \Delta_2$ respectively, then

Q. $\Delta_1 + rac{4\Delta_2}{\pi}$ is equal to :

A. 31

$$\mathsf{C.}\,3+\frac{1}{\sqrt{2}}$$

D. 199

Answer: A

- 7. Given a right triangle ABC right angled at C and whose legs are given $1 + 4\log_{p^2}(2p), 1 + 2^{\log_2(\log_2(p))}$ and hypotenuse is given $1+\log_2(4p).$ The area of $trian \leq ABC$ and circle circumscribing it are Δ_1 and Δ_2 respectively.
 - A. $\frac{1}{2}$

 - B. $\frac{1}{\sqrt{2}}$ C. $\frac{\sqrt{3}}{2}$
 - D. 1

Answer: C

Watch Video Solution

Exercise 5 Subjective Type Problems

1. The number $N=6^{\log_{10}40}.\,5^{\log_{10}36}$ is a natural number ,Then sum of digits of N is:

Watch Video Solution

2. The minimum value of 'c' such that $\log_big(a^{\log_2 b}ig)=\log_aig(b^{\log_2 b}ig) \ ext{ and } \ \log_a\Bigl(c-(b-a)^2\Bigr)=3$, where $a,b\in N$ is:

- **3.** How many positive integers b have the property that $\log_b 729$ is a positive integer ?
 - Watch Video Solution

- **4.** The number of negative integral values of x satisfying the inequality $\log_{\left(x+\frac{5}{2}\right)}\left(\frac{x-5}{2x-3}\right)^2<0$ is :
 - Watch Video Solution

5.

- $\frac{6}{5}a^{(\log_a x)\,(\log_{10} a)\,(\log_a 5)}-3^{\log_{10}\left(\frac{x}{10}\right)}=9^{\log_{100} x+\log_4 2}(\text{where }\ a>0, a\neq 1)$, then $\log_3 x=\alpha+\beta, \alpha$ is integer, $\beta\in[0,1)$, then $\alpha=$
 - Watch Video Solution

- 7. Let a,b,c,d be positive integers such that $(\log)_a b = \frac{3}{2} and (\log)_c d = \frac{5}{4}$. If (a-c)=9, then find the value of (b-d).
 - Watch Video Solution

8. The number of real values of x satisfying the equation

$$\log_{10}\sqrt{1+x} + 3\log_{10}\sqrt{1-x} = 2 + \log_{10}\sqrt{1-x^2}$$
 is :

Watch Video Solution

9. The ordered pair (x,y) satisfying the equation

$$x^2 = 1 + 6\log_4 y$$
 and $y^2 = 2^x y + 2^{2x+1}$

and (x_1,y_1) and (x_2,y_2) , then find the value of $\log_2|x_1x_2y_1y_2|$.

11. The number of ordered pair(s) of (x, y) satisfying the equations

13. If $\log_y x + \log_x y = 2$, $x^2 + y = 12$, then the value of xy is

 $\log_{(1+x)}\left(1-2y+y^2
ight) + \log_{(1-y)}\left(1+2x+x^2
ight) = 4 \,\, ext{and}\,\,\,\log_{(1+x)}\left(1+2x+x^2
ight)$ Watch Video Solution

Watch Video Solution

, then a+b=

 $\log_7 \log_7 \sqrt{7\sqrt{7}} = 1 - a \log_7 2 \, ext{ and } \, \log_{15} \sqrt{15} \sqrt{15\sqrt{15}} = 1 - a \log_7 2 \, ext{ and } \, \log_{15} \sqrt{15} \sqrt{15} = 1 - a \log_7 2 \, ext{ and } \, \log_{15} \sqrt{15} = 1 - a \log_7 2 \, ext{ and } \, \log$

If

14. If x, y satisfy the equation,
$$y^x=x^y \ ext{ and } \ x=2y$$
, then $x^2+y^2=$

15. Find the number of real values of x satisfying the equation.

$$\log_2 \! \left(4^{x+1} + 4
ight) \cdot \log_2 \! \left(4^x + 1
ight) = \log_{1/\sqrt{2}} \sqrt{rac{1}{8}}$$

16. If $x_1, x_2(x_1 > x_2)$ are the two solutions of the equation

$$3^{\log_2 x}-12ig(x^{\log_{16} 9}ig)=\log_3ig(rac{1}{3}ig)^{3^3}$$
 , then the value of x_1-2x_2 is :

17. Find the number or real values of x satisfying the equation

$$9^{2\log_9 x} + 4x + 3 = 0.$$

18. If
$$\log_{16}\Bigl(\log_{\sqrt[4]{3}}\Bigl(\log_{\sqrt[3]{5}}(x)\Bigr)\Bigr)=rac{1}{2}$$
 , find x.

19. The value
$$\left[\frac{1}{6} \left(\frac{2 \log_{10}(1728)}{1 + \frac{1}{2} \log_{10}(0.36) + \frac{1}{3} \log_{10} 8} \right)^{1/2} \right]^{-1}$$
 is :

