### **MATHS**

## **BOOKS - VIKAS GUPTA MATHS (HINGLISH)**

### **SOLUTION OF TRIANGLES**

### **Exercise 1 Single Choice Problems**

1. In a 
$$\Delta ABC$$
 if  $9ig(a^2+b^2ig)=17c^2$  then the value of the  $\frac{\cot A+\cot B}{\cot C}$  is

A. 
$$\frac{13}{4}$$

B. 
$$\frac{7}{4}$$

$$\mathsf{C.}\,\frac{5}{4}$$

D. 
$$\frac{9}{4}$$

### **Answer: D**



**Watch Video Solution** 

**2.** Let H be the orthocenter of triangle ABC, then angle subtended by side BC at the centre of incircle of  $\Delta CHB$  is :

$$A. \frac{A}{2} + \frac{\pi}{2}$$

$$\operatorname{B.}\frac{B+C}{2}+\frac{\pi}{2}$$

$$\operatorname{C.}\frac{B-C}{2}+\frac{\pi}{2}$$

$$\operatorname{D.}\frac{B+C}{2}+\frac{\pi}{4}$$

#### **Answer: B**



**View Text Solution** 

**3.** Circumradius of a  $\Delta ABC$  is 3 units, let O be the circumcentre and H be the orthocentre then the value of  $\frac{1}{64} \big(AH^2 + BC^2\big) \big(BH^2 + AC^2\big) \big(CH^2 + AB^2\big) \ {
m equals}:$ 

A.  $3^4$ 

 $\mathsf{B.}\,9^3$ 

 $\mathsf{C.}\,27^6$ 

D.  $81^4$ 

#### **Answer: B**



**Watch Video Solution** 

**4.** The angles A, B and C of a triangle ABC are in arithmetic progression. If  $2b^2=3c^2$  then the angle A is :

- A.  $15^{\circ}$
- B.  $60^{\circ}$
- C.  $75^{\circ}$
- D.  $90^{\circ}$

### **Answer: C**



- **5.** In a triangle ABC if  $\tan$ .  $\frac{A}{2}\tan$ .  $\frac{B}{2}=\frac{1}{3}$  and ab = 4, then the value of c can be
  - **A.** 1
  - B. 2
  - C. 4

**Answer: B** 



**Watch Video Solution** 

6. In triangle ABC the expression a

 $a\cos B\cos C + b\cos C\cos A + c\cos A\cos B$  equals to :

A. 
$$\frac{rs}{R}$$

$$\mathrm{B.}\,\frac{r}{sR}$$

$$\operatorname{C.}\frac{R}{rs}$$

D. 
$$\frac{Rs}{r}$$

Answer: A



iew Text Solution

**7.** The set of all real numbers a such that  $a^2+2a,\,2a+3,\,anda^2+3a+8$  are the sides of a triangle is\_\_\_\_

A. 
$$(0, \infty)$$

$$\mathsf{C.}\left(-\frac{11}{3},\infty\right)$$

D. 
$$(5, \infty)$$

### Answer: D



**8.** In a 
$$\Delta ABC$$
,  $\angle B=\frac{\pi}{3}$  and  $\angle C=\frac{\pi}{4}$  let D divide BC internally in the ratio 1: 3, then  $\frac{\sin(\angle BAD)}{\sin(\angle CAD)}$  is equal to :

A. 
$$\frac{1}{\sqrt{6}}$$

B.  $\frac{1}{3}$ 

C. 
$$\frac{1}{\sqrt{3}}$$
 D.  $\frac{\sqrt{2}}{3}$ 

### Answer: A



## **Watch Video Solution**

- 9. Let AD, BE, CF be the lengths of internal bisectors of angles A,
- B, C respectively of triangle ABC. Then the harmonic mean of
  - A. Harmonic mean of sides of  $\Delta ABC$

 $AD\sec{\frac{A}{2}}, BE\sec{\frac{B}{2}}, CF\sec{\frac{C}{2}}$  is equal to :

- B. Geometric mean of sides of  $\Delta ABC$
- C. Arithmetic mean of sides of  $\Delta ABC$

D. Sum of reciprocals of the sides of  $\Delta ABC$ 

### **Answer: A**



**Watch Video Solution** 

**10.** In a triangle ABC, if 2b=a+c and A-C=90, then  $\sin B$  equals

A. 
$$\frac{\sqrt{7}}{5}$$

B. 
$$\frac{\sqrt{5}}{8}$$

$$\mathsf{C.}\,\frac{\sqrt{7}}{4}$$

D. 
$$\frac{\sqrt{5}}{3}$$

### **Answer: C**



**11.** In a triangle ABC, if  $2a\cos\left(\frac{B-C}{2}\right)=b+c$ , then secA is equal to :

A. 
$$\frac{2}{\sqrt{3}}$$

B.  $\sqrt{2}$ 

C. 2

D. 3

#### **Answer: C**



**Watch Video Solution** 

**12.** In a triangle ABC if BC=1 and AC=2, then what is the maximum possible value of angle A?

B.  $\frac{\pi}{4}$ 

C.  $\frac{\pi}{3}$ 

D.  $\frac{\pi}{2}$ 

## **Answer: A**



## **Watch Video Solution**

**13.**  $\Delta I_1 I_2 I_3$  is an excentral triangle of an equilateral triangle  $\Delta ABC$  such that  $I_1I_2=4$  unit, if  $\Delta DEF$  is pedal triangle of

$$\Delta ABC$$
 , then  $rac{Ar(\Delta I_1I_2I_3)}{Ar(\Delta DEF)}=$ 

A. 16

**B.** 4

C. 2

#### **Answer: A**



**Watch Video Solution** 

**14.** Let ABC be a triangle with  $\angle BAC = 2\pi/3$  and AB = xsuch that (AB) (AC) = 1. If x varies, then find the longest possible length of the angle bisector AD

- A.  $\frac{1}{3}$
- B.  $\frac{1}{2}$ C.  $\frac{2}{3}$
- D.  $\frac{\sqrt{2}}{3}$

### **Answer: B**



**15.** In a equilateral triangle r, R and  $r_1$  form (where symbols used have usual meaning)

A. an A.P.

B. a G.P.

C. an H.P.

D. none of these

**Answer: A** 



A. A.P.

B. G.P.

C. H.P.

D. none of these

### **Answer: A**



## **Watch Video Solution**

17. In 
$$\Delta ABC$$
,  $\tan A=2$ ,  $\tan B=\frac{3}{2}$  and  $c=\sqrt{65}$ , then circumradius of the triangle is :

A. 65

 $\operatorname{B.}\frac{65}{7}$ 

D. none of these

### **Answer: C**



**Watch Video Solution** 

**18.** If the sides a, b, c of a triangle ABC are the roots of the equation  $x^3-13x^2+54x-72=0$ , then the value of  $\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}$  is equal to :

A. 
$$\frac{61}{144}$$

B. 
$$\frac{61}{72}$$

c. 
$$\frac{169}{144}$$

D. 
$$\frac{59}{144}$$

**Answer: A** 

**19.** In 
$$\triangle ABC$$
, if  $\angle C=90^\circ$ , then  $\frac{a+c}{b}+\frac{b+c}{a}$  is equal to :

A. 
$$\frac{c}{r}$$

$$\mathrm{B.}\ \frac{1}{2Rr}$$

D. 
$$\frac{R}{r}$$

### **Answer: A**



- A.  $\angle A$  is obtuse
- $B. \angle A$  is acute
- $\mathsf{C}. \angle B$  is abtuse
- $\mathsf{D}.\, \angle A \text{ is right angle}$

### Answer: A



## **Watch Video Solution**

**21.** If R and R' are the circumradii of triangles ABC and OBC, where O is the orthocenter of triangle ABC, then:

A. 
$$R'=rac{R}{2}$$

$$\mathrm{B.}\,R^{\,\prime}=2R$$

$$\mathsf{C}.\,R^{\,\prime}=R$$

D. 
$$R'=3R$$

### **Answer: C**



**View Text Solution** 

**22.** The acute angle of a rhombus whose side is a mean proportional between its diagonals is

A.  $15^{\circ}$ 

B.  $20^{\circ}$ 

C.  $30^{\circ}$ 

D.  $60^{\circ}$ 

### **Answer: C**



**23.** In a  $\Delta ABC$  right angled at A, a line is drawn through A to meet BC at D dividing BC in  $2\!:\!1$ . If  $\tan(\angle ADC)=3$  then  $\angle BAD$  is :

A.  $30^{\circ}$ 

B.  $45^{\circ}$ 

C.  $60^{\circ}$ 

D.  $75^{\circ}$ 

#### **Answer: B**



**Watch Video Solution** 

**24.** A circle is cirumscribed in an equilateral triangle of side  $\ensuremath{'} l'.$ 

The area of any square inscribed in the circle is:

A. 
$$\frac{4}{3}l^2$$

B. 
$$\frac{2}{3}l^2$$

c. 
$$\frac{1}{3}l^2$$

## D. $l^2$

### **Answer: B**



- **25.** if the sides of a triangle are in the ratio  $2:\sqrt{6}:\sqrt{3}+1,$  then the largest ange of the trangle will be (1) 60 (3) 90 (2) 75 (4) 120
  - A.  $60^{\circ}$ 
    - B.  $72^{\circ}$
    - $\mathsf{C.\,75}^\circ$

D. 
$$90^{\circ}$$

### **Answer: C**



**Watch Video Solution** 

**26.** In a triangle ABC if a, b, c are in A.P. and  $C-A=120^{\circ}$  , then

$$\frac{s}{r}=$$
 (where notations have their usual meaning)

A. 
$$\sqrt{15}$$

B. 
$$2\sqrt{15}$$

$$C. 3\sqrt{15}$$

D. 
$$6\sqrt{15}$$

### Answer: C



**View Text Solution** 

**27.** If in 
$$\Delta ABC$$
,  $a=5, b=4$  and  $\cos(A-B)=\frac{31}{32}$ , then

A.  $\sqrt{6}$ 

 $\mathrm{B.}\,6\sqrt{6}$ 

C. 6

D.  $(216)^{1/4}$ 

#### **Answer: C**



**Watch Video Solution** 

**28.** If semiperimeter of a triangle is 15, then the value of  $(b+c)\cos(B+C)+(c+a)\cos(C+A)+(a+b)\cos(A+B)$  is equal to :

(where symbols used have usual meanings)

| A. | -60 |
|----|-----|
|    |     |

B. -15

C. -30

D. can not be determined

### **Answer: C**



**Watch Video Solution** 

**29.** Let triangle ABC be an isosceles with AB=AC. Suppose that the angle bisector of its angle B meets the side AC at a point D and that BC=BD+AD. Measure of the angle A in degrees, is :

A. 80

B. 100

D. 130

### **Answer: B**



# Watch Video Solution

 $A\!:\!B\!:\!C=1\!:\!2\!:\!4, \;\;\; ext{then} \;\; ig(a^2-b^2ig)ig(b^2-c^2ig)ig(c^2-a^2ig)=\lambda a^2b^2c^2$ 

(where notations have their usual meaning)

A. 1

, where  $\lambda =$ 

B. 2

C. 4

D. 9

### **Answer: A**



## **Watch Video Solution**

**31.** In a triangle ABC with altitude AD,

 $\angle BAC=45^{\circ}, DB=3 \,\, \mathrm{and} \,\, CD=2$  . The area of the triangle

ABC is:

- A. 6
- B. 15
- C.15/4
- D. 12

#### **Answer: B**



**View Text Solution** 

**32.** A triangle has base 10 cm long and the base angles of  $50^\circ$  and  $70^\circ$ . If the perimeter of the triangle is  $x+y\cos z^\circ$  where  $z\in(0,90)$  then the value of x+y+z equals :

- A. 60
- B. 55
- C. 50
- D. 40

#### Answer: D



**Watch Video Solution** 

**33.** Let H be the orthocenter of triangle ABC, then angle subtended by side BC at the centre of incircle of  $\Delta CHB$  is :

A. 
$$\frac{A}{2}+\frac{\pi}{2}$$

B. 
$$\dfrac{B+C}{2}+\dfrac{\pi}{2}$$
 $B-C$  $\pi$ 

C. 
$$\dfrac{B-C}{2}+\dfrac{\pi}{2}$$
 D.  $\dfrac{B+C}{2}+\dfrac{\pi}{4}$ 

## **Answer: B**



# **View Text Solution**

**34.** Triangle ABC is right angle at A. The points P and Q are on hypotenuse BC such that 
$$BP = PQ = QC$$
.if

$$AP=3 \,\, {
m and} \,\, AQ=4$$
, then length BC is equal to

A. 
$$\sqrt{27}$$

$$\mathsf{B.}\,\sqrt{36}$$

$$\mathsf{C.}\ \sqrt{45}$$

D. 
$$\sqrt{54}$$

### **Answer: C**



**Watch Video Solution** 

**35.** In a  $\Delta ABC$  if  $b=a\left(\sqrt{3}-1\right)$  and  $\angle C=30^\circ$  then the measure of the angle A is

A.  $15^{\circ}$ 

B.  $45^{\circ}$ 

C.  $75^{\circ}$ 

D.  $105^{\circ}$ 

### **Answer: D**



**36.** Through the centroid of an equilateral triangle, a line parallel to the base is drawn. On this line, an arbitrary point P is taken inside the triangle. Let h denote the perpendicular distance of P from the base of the triangle. Let  $h_1$  and  $h_2$  be the perpendicular distance of P from the other two sides of the triangle. Then:

A. 
$$h=rac{h_1+h_2}{2}$$

B. 
$$h=\sqrt{h_1h_2}$$

$$\mathsf{C.}\,h = \frac{2h_1h_2}{h_1+h_2}$$

D. 
$$h=rac{(h_1+h_2)\sqrt{3}}{4}$$

### Answer: A



**37.** The angles A, B and C of a triangle ABC are in arithmetic progression. AB=6 and BC=7. Then AC is:

- A.  $\sqrt{41}$
- B.  $\sqrt{39}$
- $C.\sqrt{42}$
- D.  $\sqrt{43}$

#### **Answer: D**



**Watch Video Solution** 

**38.** In  $\Delta ABC$ , if  $A-B=120^\circ$  and R=8r, then the value of  $\frac{1+\cos C}{1-\cos C}$  equals :

(All symbols used hav their usual meaning in a triangle)

- A. 12
- B. 15
- C. 21
- D. 31

### Answer: B



## Watch Video Solution

**39.** The lengths of the sides CB and CA of a triangle ABC are given by a and b and the angle C is  $\frac{2\pi}{3}$ . The line CD bisects the angle C and meets AB at D. Then the length of CD is :

A. 
$$\frac{1}{a+b}$$

$$\mathsf{B.}\,\frac{a^2+b^2}{a+b}$$

C. 
$$\dfrac{ab}{2(a+b)}$$

$$\frac{ab}{a+}$$

### **Answer: D**



# View Text Solution

- **40.** In  $\Delta ABC$ , angle A is  $120^{\circ}$  , BC+CA=20, and AB+BC=21 Find the length of the side BC
  - A. 13
  - B. 15
  - C. 17
  - D. 19

# Answer: A



**41.** A triangle has sides 6,7, and 8. The line through its incenter parallel to the shortest side is drawn to meet the other two sides at P and Q. Then find the length of the segment PQ.

- A.  $\frac{12}{5}$
- $\mathsf{B.}\ \frac{15}{4}$
- $\mathsf{C.}\,\frac{30}{7}$
- D.  $\frac{33}{9}$

**Answer: C** 



**42.** The perimeter of a  $\Delta ABC$  is 48 cm and one side is 20 cm.

Then remaining sides of  $\Delta ABC$  must be greater than :

- A. 8 cm
- B. 9 cm
- C. 12 cm
- D. 4 cm

#### **Answer: D**



**View Text Solution** 

**43.** In a equilateral triangle r, R and  $r_1$  form (where symbols used have usual meaning)

A. an A.P.

B. a G.P.

C. an H.P.

D. neither an A.P., G.P. nor H.P.

### **Answer: A**



**Watch Video Solution** 

**44.** The expression

$$\dfrac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4b^2c^2}$$
 is equal to

A.  $\cos^2 A$ 

 $\mathsf{B.}\sin^2A$ 

C.  $\cos A \cos B \cos C$ 

D.  $\sin A \sin B \sin C$ 

### **Answer: B**



**Watch Video Solution** 

**45.** Circumradius of an isosceles  $\Delta ABC$  with  $\angle A=\angle B$  is 4 times its in radius, then cosA is root of the equation :

A. 
$$x^2 - x - 8 = 0$$

B. 
$$8x^2 - 8x + 1 = 0$$

C. 
$$x^2 - x - 4 = 0$$

D. 
$$4x^2 - 4x + 1 = 0$$

### **Answer: B**



**46.** A is the orthocentre of  $\Delta ABC$  and D is reflection point of A w.r.t. perpendicualr bisector of BC, then orthocenter of  $\Delta DBC$  is :

A. D

B. C

C. B

D. A

### **Answer: A**



## View Text Solution

**47.** If  $a \neq b \neq c$  are all positive, then the value of the determinant  $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$  is

A. 
$$\geq 0$$

B. > 0

$$\mathsf{C.} \, \leq \, -1$$

D. < 0

# **Answer: D**



48.

# **Watch Video Solution**

In

triangle

ABC  $A\!:\!B\!:\!C=1\!:\!2\!:\!4, \;\;\; ext{then} \;\; ig(a^2-b^2ig)ig(b^2-c^2ig)ig(c^2-a^2ig)=\lambda a^2b^2c^2$ 

if

, where  $\lambda =$ 

A. 1

C. 3

 $D. \frac{1}{3}$ 

**Answer: A** 



Watch Video Solution

- **49.** In any triangle, the minimum value of  $r_1r_2r_3\,/\,r^3$  is equal to
  - A. 1
  - B. 3
  - C. 8
  - D. 27

**Answer: D** 



**Watch Video Solution** 

**50.** In  $\Delta ABC, \, a=3, \, b=4$  and c=5, then value of  $\sin A + \sin 2B + \sin 3C$  is

- A.  $\frac{24}{25}$
- $\mathsf{B.}\;\frac{14}{25}$
- c.  $\frac{64}{25}$

D. None

#### **Answer: B**



**Watch Video Solution** 

**51.** In any triangle ABC, the value of  $\frac{r_1 + r_2}{1 + \cos C}$  is equal to (where notation have their usual meaning):

B. 2r

C.R

D. 
$$\frac{2R^2}{r}$$

## Answer: A



# Watch Video Solution

**52.** In a triangle ABC, medians AD and BE are deawn. IF  $AD=4, \angle DAB=\frac{\pi}{6}$  and  $\angle ABE=\frac{\pi}{3},$  then the area of the triangle ABC is-

A. 
$$\frac{8}{3\sqrt{3}}$$
B.  $\frac{16}{2\sqrt{2}}$ 

$$\mathsf{C.} \; \frac{32}{3\sqrt{3}}$$

D. 
$$\frac{64}{3\sqrt{3}}$$

#### **Answer: C**



**Watch Video Solution** 

**53.** The sides of a triangle are  $\sin\alpha, \cos\alpha$  and  $\sqrt{1+\sin\alpha\cos\alpha}$  for some  $\alpha, 0<\alpha<\frac{\pi}{2}$ . Then the greatest angle of the triangle is

A. 
$$\frac{\pi}{3}$$

B. 
$$\frac{\pi}{2}$$

C. 
$$\frac{2\pi}{3}$$

D. 
$$\frac{5\pi}{6}$$

## Answer: C



**54.** Let ABC be a right with 
$$\angle BAC=rac{\pi}{2}$$
, then  $\left(rac{r^2}{2R^2}+rac{r}{R}
ight)$  is equal to :

(where symbols used have usual meaning in a striangle)

A. sinB sinC

B. tanB tanC

C. secB secC

D. cotB cotC

#### **Answer: A**



**Watch Video Solution** 

**55.** In a  $\Delta ABC$ , with usual notations, if b>c then distance between foot of median and foot of altitude both drawn from vertex A on BC is :

A. 
$$\frac{a^2-b^2}{2c}$$

B. 
$$\dfrac{b^2-c^2}{2a}$$

C. 
$$\displaystyle rac{b^2+c^2-a^2}{2a}$$

D. 
$$\displaystyle rac{b^2+c^2-a^2}{2c}$$

#### **Answer: B**



## **Watch Video Solution**

**56.** In a triangle ABC the expression  $a\cos B\cos C + b\cos A\cos B$  equals to :

A. 
$$\frac{rs}{R}$$

$$\mathrm{B.}\,\frac{r}{sR}$$

$$\operatorname{C.}\frac{R}{rs}$$

D. 
$$\frac{Rs}{r}$$

#### **Answer: A**



## **View Text Solution**

**57.** In a acute triangle ABC, altitudes from the vertices A, B and C meet the opposite sides at the points D, E and F respectively. If the radisu of the circumcircle of  $\Delta AFE, \Delta BFD, \Delta CED, \Delta ABC$  be respectively  $R_1, R_2, R_3$  and R. Then the maximum value of  $R_1 + R_2 + R_3$  is :

A. 
$$\frac{3R}{8}$$

$$\operatorname{B.}\frac{2R}{3}$$

$$\mathsf{C.}\,\frac{4R}{3}$$

$$\text{D.}\ \frac{3R}{2}$$

### **Answer: D**



# View Text Solution

# **Exercise 2 One Or More Than One Answer Is Are Correct**

and 
$$r$$
 it the radius of its incircle, then the root(s) of the equation  $x^2-r(r_1r_2+r_2r_3+r_3r_1)x+(r_1r_2r_3-1)=0$  is/are :

**1.** If  $r_1, r_2, r_3$  are radii of the escribed circles of a triangle ABC

A. 
$$r_1$$

B.  $r_2 + r_3$ 

C. 1

D.  $r_1 r_2 r_3 - 1$ 

## Answer: C::D



# View Text Solution

**2.** In  $\Delta ABC,$   $\angle A=60^{\circ},$   $\angle B=90^{\circ},$   $\angle C=30^{\circ}.$  Let H be its

orthocentre, then:

(where symbols used have usual meanings)

$$\mathsf{A.}\,AH=c$$

B. CH = a

 $\mathsf{C}.\,AH=a$ 

$$D.BH = 0$$

Answer: A::B::D



**Watch Video Solution** 

- 3. In an equilateral triangle, if inradius is a rational number then
  - A. circumradius is always rational
  - B. exradii are always rational
  - C. area is always ir-rational
  - D. perimeter is always rational

Answer: A::B::C



**Watch Video Solution** 

4. Let A, B, C be angles of a triangle ABC and let

$$D=rac{5\pi+A}{32}, E=rac{5\pi+B}{32}, F=rac{5\pi+C}{32}$$
 , then :

(where  $D,E,F
eq rac{n\pi}{2},n\in I,I$  denote set of integers)

A.  $\cot D \cot E + \cot E \cot F + \cot D \cot F = 1$ 

 $B. \cot D + \cot E + \cot F = \cot D \cot E \cot F$ 

C.  $\tan D \tan E + \tan E \tan F + \tan F \tan D = 1$ 

D.  $\tan D + \tan E + \tan F = \tan D \tan E \tan F$ 

#### Answer: B::C



**View Text Solution** 

**5.** In a triangle ABC, if a=4, b=8 and  $\angle C=60^{\circ}$  , then :

(where symbols used have usual meanings)

A. 
$$c=6$$

B. 
$$c=4\sqrt{3}$$

C. 
$$\angle A=30^{\circ}$$

D. 
$$\angle B = 90^\circ$$

### Answer: B::C::D



# **Watch Video Solution**

**6.** In a  $\Delta ABC$  if  $\dfrac{r}{r_1}=\dfrac{r_2}{r_3}$ , then which of the following is/are true ?

(where symbols used have usual meanings)

A. 
$$a^2 + b^2 + c^2 = 8R^2$$

B. 
$$\sin^2 A + \sin^2 B + \sin^2 C = 2$$

$$\mathsf{C.}\,a^2+b^2=c^2$$

D. 
$$\Delta = s(s+c)$$

### Answer: A::B::C



**View Text Solution** 

**7.** ABC is a triangle whose circumcentre, incentre and orthocentre are O, I and H respectively which lie inside the triangle, then:

A. 
$$\angle BOC = A$$

B. 
$$\angle BIC = \frac{\pi}{2} + \frac{A}{2}$$

C. 
$$\angle BHC = \pi - A$$

D. 
$$\angle BHC = \pi - \frac{A}{2}$$

## Answer: B::C



**8.** In a triangle ABC, tanA and tanB satisfy the inequality  $\sqrt{3}x^2-4x+\sqrt{3}<0$ , then which of the following must be correct?

(where symbols used have usual meanings)

A. 
$$a^2 + b^2 - ab < c^2$$

B. 
$$a^2 + b^2 > c^2$$

C. 
$$a^2 + b^2 + ab > c^2$$

D. 
$$a^2 + b^2 < c^2$$

#### Answer: A::C



**Watch Video Solution** 

**9.** If in  $\triangle ABC$ ,  $\angle C=\frac{\pi}{8}$ ,  $a=\sqrt{2}$  and  $b=\sqrt{2+\sqrt{2}}$  then find the measure of angle A (in degree).

- A.  $45^{\circ}$
- B.  $135^{\circ}$
- C.  $30^\circ$
- D.  $150^{\circ}$

#### **Answer: A**



**Watch Video Solution** 

**10.** In triangle ABC,  $a=3,\,b=4,\,c=2$ . Point D and E trisect the side BC. If  $\angle DAE=\theta$ , then  $\cot^2\theta$  is divisible by :

A. 2

- B. 3
- C. 5
- D. 7

## Answer: B::C



**Watch Video Solution** 

11. In a triangle ABC,  $3\sin A + 4\cos B = 6$  and  $4\sin B + 3\cos A = 1$ .

Find the measure of angle C.

- A.  $\frac{\pi}{4}$
- $\mathsf{B.}\;\frac{\pi}{6}$
- $\mathsf{C.}\,\frac{\pi}{3}$
- D.  $\frac{5\pi}{6}$

#### **Answer: B**



# **Watch Video Solution**

**12.** If the line joining the incentre to the centroid of a triangle ABC is parallel to the side BC. Which of the following are correct?

A. 
$$2b = a + c$$

$$\mathsf{B.}\,2a=b+c$$

$$\operatorname{C.\cot} \frac{A}{2} \cot \frac{C}{2} = 3$$

$$\mathrm{D.}\cot\frac{B}{2}\cot\frac{C}{2}=3$$

Answer: B::D



**View Text Solution** 

**13.** In a triangle the lengths of the two larger are 10 and 9 respectively.If the angles are in A.P., the , length of the third side can be (A)  $5-\sqrt{6}$  (B)  $3\sqrt{3}$  (C) 5 (D)  $5+\sqrt{6}$ 

A. 
$$5-\sqrt{6}$$

$$\mathsf{B.}\,5+\sqrt{6}$$

$$c.6 - \sqrt{5}$$

D. 
$$6+\sqrt{5}$$

#### **Answer: A::B**



**Watch Video Solution** 

**14.** If area of  $\Delta ABC(\Delta)$  and angle C are given and if c opposite to given angle is minimum, then

$$\sqrt{\frac{2\Delta}{\sin^2}}$$

A. 
$$a=\sqrt{rac{2\Delta}{\sin C}}$$
B.  $b=\left(rac{2\Delta}{\sin C}
ight)$ 

$$\mathsf{C.}\,a = \frac{4\Delta}{\sin C}$$

D.  $b=rac{4\Delta}{\sin^2 C}$ 

**Answer: A::B** 



# **Watch Video Solution**

a

In

triangle

 $an A = 2\sin 2C$  and  $3\cos A = 2\sin B\sin C$ , then C=

**ABC** 

if

15.

A.  $\frac{\pi}{8}$ 

B.  $\frac{\pi}{6}$ 

C.  $\frac{\pi}{4}$ 

D. 
$$\frac{\pi}{3}$$

Answer: C::D



**Watch Video Solution** 

# **Exercise 3 Comprehension Type Problems**

1. Let  $\angle A=23^\circ, \angle B=75^\circ \ \ {
m and} \ \ \angle C=82^\circ \ \ {
m be}$  the angles of  $\Delta ABC.$ 

The incircle of  $\Delta ABC$  touches the sides BC, CA, AB at points D, E, F respectively. Let  $r', r'_1$  respectively be the inradius, exradius opposite to vertex D of  $\Delta DEF$  and r be inradius of  $\Delta ABC$ ,

then

Q. 
$$\frac{r'}{r} =$$

 $\mathsf{A}.\sin\!\frac{A}{2}+\sin\!\frac{B}{2}+\sin\!\frac{C}{2}-1$ 

$$\mathsf{B.}\,1-\sin\!\frac{A}{2}+\sin\!\frac{B}{2}+\sin\!\frac{C}{2}$$

$$\mathsf{C.}\cos\frac{A}{2} + \cos\frac{B}{2} + \cos\frac{C}{2} - 1$$

$$\mathsf{D.}\,1-\cos\frac{A}{2}+\cos\frac{B}{2}+\cos\frac{C}{2}$$

### Answer: A



 $\Delta ABC$ .

# **View Text Solution**

**2.** Let 
$$\angle A=23^\circ, \angle B=75^\circ \ \ {
m and} \ \ \angle C=82^\circ \ \ {
m be}$$
 the angles of

The incircle of  $\Delta ABC$  touches the sides BC, CA, AB at points D, E, F respectively. Let  $r', r'_1$  respectively be the inradius, exradius

opposite to vertex D of  $\Delta DEF$  and r be inradius of  $\Delta ABC$ ,

Q.  $\frac{r_1'}{r} =$ 

then

A. 
$$\sin{\frac{A}{2}}+\sin{\frac{B}{2}}+\sin{\frac{C}{2}}-1$$
B.  $1-\sin{\frac{A}{2}}+\sin{\frac{B}{2}}+\sin{\frac{C}{2}}$ 

C. 
$$\cos{\frac{A}{2}}+\cos{\frac{B}{2}}+\cos{\frac{C}{2}}-1$$
D.  $1-\cos{\frac{A}{2}}+\cos{\frac{B}{2}}+\cos{\frac{C}{2}}$ 

# Answer: B

# View Text Solution

**3.** Internal bisectors of  $\triangle ABC$  meet the circumcircle at point D,

Area of  $\Delta DEF$  is

A. 
$$2R^2\cos^2\left(\frac{A}{2}\right)\cos^2\left(\frac{B}{2}\right)\cos^2\left(\frac{C}{2}\right)$$

B. 
$$2R^2\sin\left(\frac{A}{2}\right)\sin\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right)$$

C. 
$$2R^2\sin^2\left(\frac{A}{2}\right)\sin^2\left(\frac{B}{2}\right)\sin^2\left(\frac{C}{2}\right)$$

D. 
$$2R^2\cos\left(\frac{A}{2}\right)\cos\left(\frac{B}{2}\right)\cos\left(\frac{C}{2}\right)$$

## **Answer: D**



**Watch Video Solution** 

- **4.** Internal angle bisecotors of  $\Delta ABC$  meets its circum circle at
- Q. The ratio of area of triangle ABC and triangle DEF is:

D, E and F where symbols have usual meaning.

- - A. > 1
  - B.  $\leq 1$
  - c. > 1/2
  - D.  $\leq 1/2$

## Answer: B



5. Let triangle ABC is right triangle right angled at C such that

$$A < B$$
 and  $r = 8, R = 41$  .

Q. Area of  $\Delta ABC$  is :

A. 720

B. 1440

C. 360

D. 480

#### **Answer: A**



**View Text Solution** 

6. Let triangle ABC is right triangle right angled at C such that

A < B and r = 8, R = 41 . Q.  $an rac{A}{2} =$ 

A. 
$$\frac{1}{18}$$

B. 
$$\frac{1}{3}$$
C.  $\frac{1}{6}$ 

D.  $\frac{1}{9}$ 

## Answer: D



View Text Solution

**7.** Let the incircle of  $\Delta ABC$  touches the sides BC, CA, AB at  $A_1, B_1, C_1$  respectively. The incircle of  $\Delta A_1B_1C_1$  touches its sides of  $B_1C_1, C_1A_1$  and  $A_1B_1$  at  $A_2, B_2, C_2$  respectively

and so on.

Q. 
$$\lim_{n\to\infty} \angle A_n =$$

- A. 0
- $\mathsf{B.}\,\frac{\pi}{6}$
- $\operatorname{C.}\frac{\pi}{4}$
- D.  $\frac{\pi}{3}$

### Answer: D



# **View Text Solution**

**8.** Let the incircle of  $\Delta ABC$  touches the sides BC, CA, AB at  $A_1,B_1,C_1$  respectively. The incircle of  $\Delta A_1B_1C_1$  touches its sides of  $B_1C_1,C_1A_1$  and  $A_1B_1$  at  $A_2,B_2,C_2$  respectively

and so on.

Q. In  $\Delta A_4 B_4 C_4$ , the value of  $\angle A_4$  is:

A. 
$$\frac{3\pi + A}{6}$$

B. 
$$\frac{3\pi - A}{8}$$

$$\mathsf{C.}\,\frac{5\pi-A}{16}$$

D. 
$$\frac{5\pi + A}{16}$$

#### **Answer: D**



**View Text Solution** 

**9.** Let ABC be a given triangle. Points D and E are on sides AB and AC respectively and point F is on line segment DE. Let  $\frac{AD}{AB}=x, \frac{AE}{AC}=y, \frac{DF}{DE}=z.$  Let area of  $\Delta BDF=\Delta_1$ , Area

of  $\Delta CEF = \Delta_2$  and area of  $\Delta ABC = \Delta.$ 

Q. 
$$\frac{\Delta_1}{\Delta}$$
 is equal to :

A. xyz

 $\mathsf{B.}\,(1-x)y(1-z)$ 

C. (1-x)yz

D. x(1-y)z

#### Answer: C



and AC respectively and point F is on line segment DE. Let  $\frac{AD}{AB}=x, \frac{AE}{AC}=y, \frac{DF}{DE}=z.$  Let area of  $\Delta BDF=\Delta_1$ , Area

**10.** Let ABC be a given triangle. Points D and E are on sides AB

of  $\Delta CEF = \Delta_2$  and area of  $\Delta ABC = \Delta.$ 

Q.  $\frac{\Delta_2}{\Delta}$  is equal to :

A. 
$$(1-x)y(1-z)$$

$$\mathsf{B.}\,(1-x)(1-y)z$$

$$\mathsf{C.}\,x(1-y)(1-z)$$

D. (1 - x)yz

#### **Answer: C**



11. a, b, c ar the length of sides BC, CA, AB respectively of  $\Delta ABC$  satisfying  $\log\left(1+\frac{c}{a}\right)+\log a-\log b=\log 2$ . Also the quadratic equation  $a\left(1-x^2\right)+2bx+c\left(1+x^2\right)=0$  has two equal roots. Q. a, b, c are in :

- A. A.P.
- B. G.P.
- C. H.P.
- D. None

#### **Answer: A**



## **Watch Video Solution**

**12.** a, b, c ar the length of sides BC, CA, AB respectively of  $\Delta ABC$ 

satisfying  $\log \left(a + \frac{c}{a}\right) + \log a - \log b = \log 2$ .

Also the quadratic equation  $aig(1-x^2ig)+2bx+cig(1+x^2ig)=0$ 

has two equal roots.

Q. Measure of angle C is:

A.  $30^{\circ}$ 

B. 
$$45^{\circ}$$

C. 
$$60^{\circ}$$

D. 
$$90^{\circ}$$

#### **Answer: D**



# **Watch Video Solution**

**13.** If a,b,c are the sides of triangle ABC satisfying  $\log\left(1+\frac{c}{a}\right)+\log a-\log b=\log 2.$  Also  $a(1-x^2)+2bx+c(1+x^2)=0$  has two equal roots. Find the value of  $\sin A+\sin B+\sin C.$ 

A. 
$$\frac{5}{2}$$

B. 
$$\frac{12}{5}$$

$$\mathsf{C.}\,\frac{8}{3}$$

#### **Answer: B**



**Watch Video Solution** 

**14.** Let ABC be a triangle inscribed in a circle and let  $l_a=\frac{m_a}{M_a}, l_b=\frac{m_b}{M_b}, l_c=\frac{m_c}{M_c}$  where  $m_a,m_b,m_c$  are the lengths of the angle bisectors of angles A, B and C respectively, internal to the triangle and  $M_a,M_b$  and  $M_c$  are the lengths of these internal angle bisectors extended until they meet the circumcircle.

Q.  $l_a$  equals :

A. 
$$\frac{\sin A}{\sin \left(B + \frac{A}{2}\right)}$$

B. 
$$rac{\sin B \sin C}{\sin^2\left(rac{B+C}{2}
ight)}$$

C. 
$$rac{\sin B \sin C}{\sin^2 \left(B + rac{A}{2}
ight)}$$
D.  $rac{\sin B + \sin C}{\sin^2 \left(B + rac{A}{2}
ight)}$ 

#### **Answer: C**



The

maximum

Q.

## **View Text Solution**

**15.** Let ABC be a triangle inscribed in a circle and let  $l_a=\frac{m_a}{M_a}, l_b=\frac{m_b}{M_b}, l_c=\frac{m_c}{M_c}$  where  $m_a,m_b,m_c$  are the lengths of the angle bisectors of angles A, B and C respectively, internal to the triangle and  $M_a,M_b$  and  $M_c$  are the lengths of these internal angle bisectors extended until they meet the circumcircle.

value of

the

product

B. 
$$\frac{1}{64}$$
C.  $\frac{27}{64}$ 
D.  $\frac{27}{32}$ 

 $(l_a l_b l_c) imes \cos^2\!\left(rac{B-C}{2}
ight) imes rac{\cos^2(C-A)}{2}
ight) imes \cos^2\!\left(rac{A-B}{2}
ight)$ 

is equal to:

A.  $\frac{1}{8}$ 

Answer: C

**View Text Solution** 

**16.** Let ABC be a triangle inscribed in a circle and let  $l_a=\frac{m_a}{M_a},\, l_b=\frac{m_b}{M_b},\, l_c=\frac{m_c}{M_c}$  where  $m_a,m_b,m_c$  are the lengths of the angle bisectors of angles A, B and C respectively, internal to the triangle and  $M_a,\, M_b$  and  $M_c$  are the lengths of

these internal angle bisectors extended until they meet the circumcircle.

Q. The minimum value of the expression

$$rac{l_a}{\sin^2 A} + rac{l_b}{\sin^2 B} + rac{l_c}{\sin^2 C}$$
 is :

- A. 2
- B. 3
- C. 4
- D. none of these

**Answer: B** 



Exercise 5 Subjective Type Problems

**1.** If the median AD of triangle ABC makes an angle  $\frac{\pi}{4}$  with the side BC, then find the value of  $|\cot B - \cot C|$ .



2. In a  $\Delta ABC$ ,  $a=\sqrt{3}$ , b=3 and  $\angle C=\frac{\pi}{3}$ . Let internal angle bisectors of angle C intersects side AB at D and altitude from B meets the angle bisector CD at E. If  $Q_1$  and  $Q_2$  are incentres of  $\Delta BEC$  and  $\Delta BED$ . Find the distance between the vertex B and orthocentre of  $\Delta O_1EO_2$ .



3. In a  $\Delta ABC$ ; inscribed circle with centre I touches sides AB, AC and BCatD, E, F respectively.Let area of

quadrilateral ADIE is 5 units and area of quadrilteral BFID is 10 units. Find the value of  $\frac{\cos\left(\frac{C}{2}\right)}{\sin\left(\frac{A-B}{2}\right)}.$ 



**4.** If  $\Delta$  be area of incircle of a triangle ABC and  $\Delta_1,\Delta_2,\Delta_3$  be the area of excircles then find the least value of  $\frac{\Delta_1\Delta_2\Delta_3}{729\Delta^3}$ 



is equal to

**5.** In  $\Delta ABC$ , b=c,  $\angle A=106^{\circ}$ , M is an interior point such that

$$\angle MBA = 7^{\circ}, \angle MAB = 23^{\circ} \; ext{ and } \angle MCA = heta^{\circ}, \; \; ext{then } \; rac{ heta}{2}$$

(where notations have their usual meaning)

**6.** In an acute angled triangle ABC,  $\angle A=20^{\circ}$ , let DEF be the feet of altitudes through A, B, C respectively and H is the orthocentre of  $\Delta ABC$ . Find  $\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CE}$ .



**7.** Let  $\Delta ABC$  be inscribed in a circle having radius unity. The three internal bisectors of the angles A, B and C are extended to circumcircle of  $\triangle ABC$  at  $A_1B_1$  and  $C_1$ the respectively. Then  $rac{AA_1 ext{cos}rac{A}{2}BB_1 ext{cos}rac{B}{2}+CC_1 ext{cos}rac{C}{2}}{\sin A+\sin B+\sin C}=$ 



**View Text Solution** 

**8.** If the quadratic equation  $ax^2+bx+c=0$  has equal roots where a, b, c denotes the lengths of the sides opposite to vertex A, B and C of the  $\Delta ABC$  respectively then find the number of integers in the range of  $\frac{\sin A}{\sin C} + \frac{\sin C}{\sin A}$ 



**9.** If in the triangle ABC,  $\tan\frac{A}{2}$ ,  $\tan\frac{B}{2}$  and  $\tan\frac{C}{2}$  are in harmonic progression then the least value of  $\cot^2\frac{B}{2}$  is equal to



**10.** In  $\Delta ABC$ , if circumradius 'R' and inradius 'r' are connected by relation  $R^2-4Rr+8r^2-12r+9=0$ , then the greatest

integer which is less than the semiperimeter of  $\Delta ABC$  is :



11. Let a, b, c be sides of a triangle ABC and  $\Delta$  denotes its area . If a=2,  $\Delta=\sqrt{3}$  and  $a\cos C+\sqrt{3}a\sin C-b-c=0$ , then find the value of (b+c). (symbols used have usual meaning in  $\Delta ABC$ ).



**12.** Circumradius of  $\Delta ABC$  is 3 cm and its area is  $6cm^2$ . If DEF is the triangle formed by feet of the perpendicular drawn from A,B and C on the sides BC, CA and AB, respectively, then the perimeter of  $\Delta DEF$  (in cm) is \_\_\_\_

