

MATHS

BOOKS - VIKAS GUPTA MATHS (HINGLISH)

STRAIGHT LINES

Exercise 1 Single Choice Problems

1. The ratio in which the line segment joining (2, -3) and (5,6) is divided by the x- axis is :

A. 3:1

B. 1:2

- C. $\sqrt{3}:2$
- D. $\sqrt{2}:3$

Answer: B

Watch Video Solution

2. If is the line whose equation is ax + by = c. Let M be the reflection of 'L through the y-axis and let N be the reflection of L through the x-axis. Which of the following must be true about M and N for choices of a, b and c?

- A. The x- intercepts of M and N are equal
- B. The y- intercepts of M and N are equal

- C. The slopes of M and N are equal
- D. The slopes of M and N are reciprocal

Watch Video Solution

3. The complete set of real values of a such that the point $p(a,\sin a)$ lies inside the triangle formed by the lines x-2y+2=0; x+y=0 and $x-y-\pi=0$ is:

A.
$$\left(0, \frac{\pi}{6}\right) \cup \left(\frac{\pi}{3}, \frac{\pi}{2}\right)$$

B.
$$\left(\frac{\pi}{2},\pi\right)\cup\left(\frac{2\pi}{2},2\pi\right)$$

C. $(0, \pi)$

D.
$$\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$$

Watch Video Solution

4. Let m be a positive integer and let the lines 13x+11y=700 and y=mx-1 intersect in a point whose coordinates are integer. Then m equals to :

A. 4

B. 5

C. 6

D. 7

Watch Video Solution

5. If
$$P\equiv igg(rac{1}{x_p},pigg), Q=igg(rac{1}{x_q},qigg), R=igg(rac{1}{x_r},rigg)$$

where $x_k
eq 0$, denotes the k^{th} terms of a H.P. for $k \in N$,

then:

A. ar.

$$(\Delta PQR) = rac{p^2q^2r^2}{2}\sqrt{{(p-q)}^2+{(q-r)}^2+{(r-p)}^2}$$

B. ΔPQR is a right angled triangle

C. the points P,Q, R are collinear

D. None of these

View Text Solution

- **6.** If the sum of the slopes of the lines given by $x^2-2cxy-7y^2=0$ is four times their product , then the value of c is
 - A. 1
 - B. -1
 - C. 2
 - D. -2

Answer: C

7. A piece of cheese is located at (12, 10) in a coordinate plane. A mouse is at (4,-2) and is running up the line y=-5x+18. At the point (a, b), the mouse starts getting farther from the cheese rather than closer to it. The value of (a+b) is :

A. 6

B. 10

C. 18

D. 14

Answer: B

8. The vertex of the right angle of a right angled triangle lies on the straight line 2x-y-10=0 and the two other vertices, at points $(2,\,-3)$ and $(4,\,1)$, then the area of triangle in sq. units is-

A.
$$\sqrt{10}$$

B. 3

$$\mathsf{C.}\ \frac{33}{5}$$

D. 11

Answer: B

9. Given a family of lines a(2x +y+4) + b(x-2y-3)=0 .The number of lines belonging to the family at a distance of $\sqrt{10}$ from point (2, -3) is

- **A.** 0
- B. 1
- C. 2
- D. ∞

Answer: B

10. Point $(0,\beta)$ lies on or inside the triangle fromed by the lines y=0, x+y=8 and 3x-4y+12=0. Then β can be :

- A. 2
- B. 4
- C. 8
- D. 12

Answer: A

11. the lines x+y+1=0; 4x+3y+4=0 and $x+\alpha y+\beta=0,$ where $\alpha^2+\beta^2=2,$ are concurrent

A.
$$\alpha = 1, \beta = -1$$

B.
$$\alpha = 1$$
, $\beta = \pm 1$

C.
$$\alpha = -1, \beta = \pm 1$$

D.
$$\alpha = \pm 1, \beta = 1$$

Answer: D

Watch Video Solution

12. A straight line through the origin 'O' meets the parallel lines 4x+2y=9 and 2x+y=-6 at points

P and Q respectively. Then the point 'O' divides the segment PQ in the ratio

- A. 1:2
- B. 4:3
- C. 2:1
- D. 3:4

Answer: D

Watch Video Solution

13. If the points (2a, a), (a, 2a) and (a, a) enclose a triangle of area 72 units, then co-ordinates of the centroid of the triangle may be:

A. (4, 4)

B. (-4, 4)

C.(12, 12)

D. (16, 16)

Answer: D

14. Let
$$g(x)=ax+b$$
 , where $a<0$ and g is defined from [1,3] onto [0,2] then the value of
$$\cot\left(\cos^{-1}(|\sin x|+|\cos x|)+\sin^{-1}(\,-|\cos x|-|\sin x|)\right)$$
 is equal to :

A.
$$g(1)$$

$$\mathsf{B.}\,g(2)$$

C.
$$g(3)$$

$$\mathsf{D}.\,g(1)+g(3)$$

Watch Video Solution

15. If any point P is at the equal distances from points

A(a+b,a-b) and B(a-b,a+b), then locus of a point is

$$A. ax + by = 0$$

$$B. ax - by = 0$$

$$\mathsf{C.}\,bx + ay = 0$$

D.
$$x - y = 0$$

Answer: D

Watch Video Solution

16. If the equation $4y^3-8a^2yx^2-3ay^2x+8x^3=0$ represents three straight lines, two of them are perpendicular, then sum of all possible values of a is equal to

A.
$$\frac{3}{8}$$

B.
$$\frac{-3}{4}$$

c.
$$\frac{1}{4}$$

D. -2

Answer: B

Watch Video Solution

17. The orthocentre of the triangle formed by the lines

$$x - 7y + 6 = 0$$
, $2x - 5y - 6 = 0$ and $7x + y - 8 = 0$

is

A. (8, 2)

B. (0, 0)

C.(1,1)

D.(2,8)

Answer: C

Watch Video Solution

18. All the chords of the curve $2x^2 + 3y^2 - 5x = 0$ which subtend a right angle at the origin are concurrent at :

- A. (0, 1)
- B.(1,0)
- $\mathsf{C.}\,(\,-1,1)$
- D. (1, -1)

Answer: B

19. From a pointP=(3,4) perpendiculars PQ and PRare drawn to line 3x + 4y - 7 = 0 and a variable line y-1=m(x-7) respectively then maximum area of triangle PQR is :

A. 10

B. 12

C. 6

D. 9

Answer: D

20. the equation of two adjacent sides of rhombus are given by y=x and y=7x. the diagonals of the rhombus intersect each other at point of (1,2).then the area of the rhombus is:

- A. $\frac{10}{3}$
- B. $\frac{20}{3}$
- c. $\frac{40}{3}$
- D. $\frac{50}{3}$

Answer: A

21. The point P(3, 3) is reflected across the line $y=\,-\,x$.

Then it is translated horizontally 3 units to the left and vertically 3 units up. Finally, it is reflected across the line y=x. What are the coordinates of the point after these transformations ?

- A. (0, -6)
- B.(0,0)
- C. (-6, 6)
- D. (-6,0)

Answer: A

22. The equation $x=t^3+9$ and $y=\frac{3t^3}{4}+6$ represents a straight line where t is a parameter. Then y-intercept of the line is :

$$\mathsf{A.}-\frac{3}{4}$$

Answer: A

23. The combined equation of two adjacent sides of a rhombus formed in first quadrant is

 $7x^2 - 8xy + y^2 = 0$, then slope of its longer diagonal is

A.
$$-\frac{1}{2}$$

B. -2

C. 2

D. $\frac{1}{2}$

Answer: C

24. The number of integral point inside the triangle made by the line 3x+4y-12=0 with the coordinate axes which are equidistant from at least two sides is/are :

(an integral point is a point both of whose coordinates are integers.)

A. 1

B. 2

C. 3

D. 4

Answer: A

25. The area of triangle formed by the straight lines whose equations are $y=4x+2,\,2y=x+3$ and x=0 is :

- A. $\dfrac{25}{7\sqrt{2}}$
- B. $\frac{\sqrt{2}}{28}$
- $\mathsf{C.}\ \frac{1}{28}$
- D. $\frac{15}{7}$

Answer: C

26. in a triangle ABC, if A is (1,2) and the equations of the medians through B and c are x+y=5 and x=4 respectively then B must be:

- A. (1, 4)
- B. (7, -2)
- C.(4,1)
- D. (-2, 7)

Answer: B

27. The equation of image of pair of lines $y=\left|x-1\right|$ with respect to y-axis is :

A.
$$x^2 - y^2 - 2x + 1 = 0$$

B.
$$x^2 - y^2 - 4x + 4 = 0$$

C.
$$4x^2 - 4x - y^2 + 1 = 0$$

D.
$$x^2 - y^2 + 2x + 1 = 0$$

Answer: D

Watch Video Solution

28. If P, Q and R are three points with coordinates (1,4),(4,5) and (m,m) respectively, then the value of

m for which PR+RQ is minimum, is :

- A. 4
- B. 3
- c. $\frac{17}{8}$
- D. $\frac{7}{2}$

Answer: A

Watch Video Solution

29. The vertices of a triangle are (A(-1,-7),B(5,1), and C(1,4). The equation of the bisector of $\angle ABC$ is ____

A.
$$y + 2x - 11 = 0$$

B.
$$x - 7y + 2 = 0$$

C.
$$y - 2x + 9 = 0$$

D.
$$y + 7x - 36 = 0$$

Answer: B

Watch Video Solution

30. If one of the lines given by $6x^2 - xy + 4cy^2 = 0$ is

$$3x + 4y = 0$$
, then $c =$

C. 3

D. 1

Answer: A

Watch Video Solution

31. The equations of L_1 and L_2 are y=mx and y=nx, respectively. Suppose L_1 make twice as large of an angle with the horizontal (measured counterclockwise from the positive x-axis) as does L_2 and that L_1 has 4 times the slope of L_2 . If L_1 is not horizontal, then the value of the product (mn) equals:

A.
$$\frac{\sqrt{2}}{2}$$

$$\mathsf{B.} - \frac{\sqrt{2}}{2}$$

C. 2

D. -2

Answer: C

Watch Video Solution

32. Given A(0,0) and B(x,y)with $x\varepsilon(0,1)$ and y>0. Let the slope of the line AB equals m_1 Point C lies on the line x=1 such that the slope of BC equals m_2 where $0 < m_2 < m_1$ If the area of the triangle ABC can expressed as $(m_1-m_2)f(x)$, then largest possible value of f(x) is:

- A. 1
- B. $\frac{1}{2}$
- c. $\frac{1}{4}$
- D. $\frac{1}{8}$

Answer: D

Watch Video Solution

33. If a,b,c are in harmonic progression, then the straight line $\left(\left(\frac{x}{a}\right)\right)_{\frac{y}{b}}+\left(\frac{l}{c}\right)=0$ always passes through a fixed point. Find that point.

A.
$$(-1, 2)$$

B.
$$(-1, -2)$$

C.
$$(1, -2)$$

D.
$$\left(1, \frac{1}{2}\right)$$

Watch Video Solution

34. if
$$\dfrac{X^2}{a}+\dfrac{y^2}{b}+\dfrac{2xy}{h}=0$$
 represent pair of straight

lies and slope one line is twice the other line then ab: h^2 .

- A. 9:8
- B. 8:9
- C. 1: 2

Answer: A

Watch Video Solution

35. Statement-1: variable line drawn through a fixed point cuts the coordinate axes at A and B. The locus of midpoint of AB is a circle. because Statement 2: Through 3 non-collinear points in a plane, only one circle can be drawn.

A. Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.

- B. Statement-1 is true, statement-2 is true and statement-2 is not the correct explanation for statement-1.
- C. Statement-1 is true, statement-2 is false.
- D. Statement-1 is false, statement-2 is true.

Answer: D

Watch Video Solution

36. A line passing through origin and is perpendicular to two given lines 2x+y+6=0 and 4x+2y-9=0.

The ratio in which the origin divides this line is

- A. 1:2
- B. 1:1
- C.5:4
- D. 3:4

Answer: D

Watch Video Solution

37. If a vertex of a triangle is (1, 1) and the mid-points of two side through this vertex are (-1, 2) and (3, 2), then centroid of the triangle is

A.
$$\left(-1, \frac{7}{3}\right)$$

$$\mathsf{B.}\left(-\frac{1}{3},\frac{7}{3}\right)$$

$$\mathsf{C.}\left(1,\frac{7}{3}\right)$$

D.
$$\left(\frac{1}{3}, \frac{7}{3}\right)$$

Watch Video Solution

38. The diagonals of a parallelogram PQRS are along the

lines x+3y = 4 and 6x-2y = 7, Then PQRS must be:

A. rectangle

B. square

C. rhombus

D. neither rhombus nor rectangle

Answer: C

Watch Video Solution

39. The two points on the line x+y=4that at a unit perpendicular distance from the line lie 4x+3y=10 are (a_1,b_1) and (a_2,b_2) , then $a_1+b_1+a_2+b_2$

A. 5

B. 6

C. 7

D. 8

Answer: D

Watch Video Solution

- **40.** The orthocenter of the triangle formed by lines $x+y=1, 2x+3y=6 \ {
 m and} \ 4x-y+4=0 \ {
 m lines}$ in quadrant number
 - A. first quadrant
 - B. second quadrant
 - C. third quadrant
 - D. fourth quadrant

Answer: A

41. The equation of the line passing through the intersection of the lines 3x+4y=-5, 4x+6y=6 and perpendicular to 7x-5y+3=0 is :

A.
$$5x + 7y - 2 = 0$$

B.
$$5x - 7y + 2 = 0$$

C.
$$7x - 5y + 2 = 0$$

D.
$$5x + 7y + 2 = 0$$

Answer: D

42. The point (2, 1), (8, 5) and (x, 7) lie on a straight line.

Then the value of x is:

- A. 10
- B. 11
- C. 12
- D. $\frac{35}{3}$

Answer: B

Watch Video Solution

43. In a parallelogram PQRS (taken in order), P is the point (-1, -1), Q is (8, 0) and R is (7, 5). Then S is the point :

A.
$$(-1, 4)$$

B.
$$(-2, 2)$$

C.
$$\left(-2, \frac{7}{2}\right)$$

D.
$$(-2, 4)$$

Answer: D

Watch Video Solution

44. The area of triangle whose vertices are (a,a), (a+1,a+1), (a+2,a) is :

A.
$$a^3$$

- C. 1
- D. 2

Answer: C

- **45.** The equation $x^2 + y^2 2xy 1 = 0$ represents :
 - A. two parallel straight lines
 - B. two perpendicular straight lines
 - C. a point
 - D. a circle

Answer: A

Watch Video Solution

46. Let A (-2, 0) and B(2, 0), then the number of integral values of a, `a in [-10, 10] for which line segment AB subtends an acute angle at point C (a, a+1) is

- A. 15
- B. 17
- C. 19
- D. 21

Answer: C

47. The angle between sides of a rhombus whose v2 times sides is mean of its two diagonal, is equal to: $a)30^{\circ}(b)45^{\circ}(c)60^{\circ}(d)90^{\circ}$

- A. 300°
- B. 45°
- C. 60°
- $D.90^{\circ}$

Answer: D

48. A rod of AB of length 3 rests on a wall as follows:

P is a point on AB such that $AP\!:\!PB=1\!:\!2$ If the rod slides along the wall, then the locus of P lies on

A.
$$2x + y + xy = 2$$

B.
$$4x^2 + xy + xy + y^2 = 4$$

C.
$$4x^2 + y^2 = 4$$

D.
$$x^2 + y^2 - x - 2y = 0$$

Answer: C

Watch Video Solution

49. if $\dfrac{X^2}{a}+\dfrac{y^2}{b}+\dfrac{2xy}{h}=0$ represent pair of straight

lies and slope one line is twice the other line then $ab: h^2$.

- A. 8:9
- B. 1: 2
- C. 2:1
- D. 9:8

Answer: D

50. locus of point of reflection of point (a,0) w.r.t. the

line $yt = x + at^2$ is given by:

A.
$$x - a = 0$$

B.
$$y - a = 0$$

$$C. x + a = 0$$

D.
$$y + a = 0$$

Answer: C

51. A light ray emerging from the point source placed at P(1,3) is reflected at a point Q in the axis of x. If the reflected ray passes through the point R(6,7), then the abscissa of Q is:

- A. $\frac{5}{2}$
- B. 3
- c. $\frac{7}{2}$
- D. 1

Answer: A

52. if the axes are rotated through 60 in the anticlockwise sense, find the transformed form of the equation $x^2-y^2=a^2$,

A.
$$X^2 + Y^2 - 3\sqrt{3}XY = 2a^2$$

$$\mathsf{B.}\,X^2+Y^2=a^2$$

C.
$$Y^2 - X^2 - 2\sqrt{3}XY = 2a^2$$

D.
$$X^2-Y^2+2\sqrt{3}XY=2a^2$$

Answer: C

53. The straight lines 3x+y-4=0, x+3y-4=0 and x+y=0 form a triangle which is :

- A. equilateral
- B. right- angled
- C. acute- angled and isosceles
- D. obtuse angled and isosceles

Answer: D

Watch Video Solution

54. if m and b are real numbers and mb>0, then the line whose equation is y=mx+b cannot contain the

point

- A. (0, 2008)
- B. (2008, 0)
- C. (0, -2008)
- D. (20, -100)

Answer: B

Watch Video Solution

55. The number of possible straight lines passing through (2,3) and forming a triangle with the coordinate axes, whose area is 12 sq. units, is one (b) two (c) three (d) four

- A. one
- B. two
- C. three
- D. four

Answer: C

Watch Video Solution

56. If x_1, x_2, x_3 and y_1, y_2, y_3 are both in G. P. with the same common ratio then the points $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3)

A. lie on a straight line

B. lie on a circle

C. are vertices of a triangle

D. None of these

Answer: A

Watch Video Solution

57. Locus of centroid of the triangle whose vertices are $(a\cos t, a\sin t), (b\sin t - b\cos t)and(1,0),$ where t is a parameter is: $(3x-1)^2 + (3y)^2 = a^2 - b^2$ $(3x-1)^2 + (3y)^2 = a^2 + b^2$

$$(3x+1)^2 + (3y)^2 = a^2 + b^2$$

$$(3x+1)^2 + (3y)^2 = a^2 - b^2$$

A.
$$(3x-1)^2+(3y)^2=a^2-b^2$$

$$\mathsf{B.} \left(3x - 1 \right)^2 + \left(3y \right)^2 = a^2 + b^2$$

$$\mathsf{C.} \, (3x+1)^2 + (3y)^2 = a^2 + b^2$$

D.
$$(3x+1)^2 + (3y)^2 = a^2 - b^2$$

Answer: B

Watch Video Solution

58. The equation of the straight line passing through the point $(4.\ 3)$ and making intercepts on the co ordinate axes whose sum is -1, is

A.
$$\dfrac{x}{2}+\dfrac{y}{3}={}-1$$
 and $\dfrac{x}{-2}+\dfrac{y}{1}={}-1$

B.
$$\dfrac{x}{2}-\dfrac{y}{3}={}-1$$
 and $\dfrac{x}{-2}+\dfrac{y}{1}={}-1$

C.
$$\frac{x}{2}+\frac{y}{3}=1$$
 and $\frac{x}{2}+\frac{y}{1}=1$

D.
$$\frac{x}{2}-\frac{y}{3}=1$$
 and $\frac{x}{-2}+\frac{y}{1}=1$

Answer: D

Watch Video Solution

59. Let A (3,2) and B (5,1). ABP is an equilateral triangle is constructed one the side of AB remote from the origin then the orthocentre of triangle ABP is:

A.
$$\left(4-rac{1}{2}\sqrt{3},rac{3}{2}-\sqrt{3}
ight)$$

$$\mathsf{B.}\left(4+\frac{1}{2}\sqrt{3},\frac{3}{2}+\sqrt{3}\right)$$

C.
$$\left(4-rac{1}{6}\sqrt{3},rac{3}{2}-rac{1}{3}\sqrt{3}
ight)$$
D. $\left(4+rac{1}{6}\sqrt{3},rac{3}{2}+rac{1}{3}\sqrt{3}
ight)$

Answer: D

Watch Video Solution

60. Area of the triangle formed by the lines through point (6, 0) and at a perpendicular distance of 5 from point (1, 3) and line y=16 in square units is :

A. 160

B. 200

C. 240

Answer: C

View Text Solution

61. The orthocentre of the triangle with vertices $(5,0),(0,0),\left(\frac{5}{2},\frac{5\sqrt{3}}{2}\right)$ is :

A.
$$(2, 3)$$

$$B.\left(\frac{5}{2}, \frac{5}{2\sqrt{3}}\right)$$

$$\mathsf{C.}\left(\frac{5}{6}, \frac{5}{2\sqrt{3}}\right)$$

D.
$$\left(\frac{5}{2}, \frac{5}{\sqrt{3}}\right)$$

Answer: B

Watch Video Solution

62. All chords of the curve $3x^2-y^2-2x+4y=0$ which subtend a right angle at the origin, pass through the fixed point

- A. (1, 2)
- B. (1, -2)
- C.(2,1)
- D. (-2, 1)

Answer: B

63. Let $P(-1,0), Q(0,0), R(3,3\sqrt{3})$ be three points then the equation of the bisector of the angle $\angle PQR$ is

A.
$$\frac{\sqrt{3}}{2}x+y=0$$

$$B. x + \sqrt{3}y = 0$$

C.
$$\sqrt{3}x + y = 0$$

$$\operatorname{D.} x + \frac{\sqrt{3}}{2}y = 0$$

Answer: C

Exercise 2 One Or More Than One Answer Is Are Correct

1. A line makes intercepts whose sum is 9 and product is 20 .If the x-intercept is greater, then the equation of the line is

A.
$$4x + 5y - 20 = 0$$

B.
$$5x + 4y - 20 = 0$$

C.
$$4x - 5y - 20 = 0$$

D.
$$4x + 5y + 20 = 0$$

Answer: A::B

2. The equation(s) of the medians of the triangle formed by the points (4, 8), (3, 2) and 5, -6) is/are:

A.
$$x = 4$$

B.
$$x = 5y - 3$$

$$C. 2x + 3y - 12 = 0$$

$$D. 22x + 3y - 92 = 0$$

Answer: A::C::D

Watch Video Solution

3. The value(s) of t for which the lines

$$2x + 3y = 5$$
, $t^2x + ty - 6 = 0$ and $3x - 2y - 1 = 0$

are concurrent, can be:

A.
$$t=2$$

$$\mathsf{B.}\,t=\,-\,3$$

$$C. t = -2$$

$$\mathsf{D}.\,t=3$$

Answer: A::B

Watch Video Solution

4. If one of the lines given by the equation $ax^2+6xy+by^2=0$ bisects the angle between the coordinate axes, then value of (a+b) can be :

- A. -6
- B. 3
- C. 6
- D. 12

Answer: A::C

Watch Video Solution

5. Suppose ABCD is a quadrilateral such that the coordinates of A, B and C are (1,3)(-2,6) and (5,-8) respectively. For what choices of coordinates of D will make ABCD a trapezium?

$$D.(3,-1)$$

Answer: B::D

Watch Video Solution

6. One diagonal of a square is the portion of the line $\sqrt{3}x+y=2\sqrt{3}$ intercepted by the axes. Obtain the extremities of the other diagonal is : (A) $(1+\sqrt{3},\ -1+\sqrt{3})$ (B) $(1+\sqrt{3},1+\sqrt{3})$ (C) $(1-\sqrt{3},\ -1+\sqrt{3})$ (D) $(1-\sqrt{3},1+\sqrt{3})$

A.
$$(1+\sqrt{3},\sqrt{3}-1)$$

B.
$$(1+\sqrt{3},\sqrt{3}+1)$$

C.
$$(1-\sqrt{3},\sqrt{3}-1)$$

D.
$$\left(1-\sqrt{3},\sqrt{3}+1\right)$$

Answer: B::C

Watch Video Solution

7. Two sides of a rhombus ABCD are parallel to the lines y = x + 2 and y = 7x + 3 If the diagonals of the rhombus intersect at the point (1, 2) and the vertex A is on the y-axis, then vertex A can be

A.
$$\left(0, \frac{5}{2}\right)$$

B. (0, 0)

C. (0, 5)

D. (0, 3)

Answer: A::B

Watch Video Solution

8. Find the equations of the sides of the triangle having (3, -1) as a vertex, x-4y+10=0 and 6x+10y-59=0 being the equations of an angle bisector and a median respectively drawn from different vertices.

A.
$$6x + 7y - 13 = 0$$

B.
$$2x + 9y - 65 = 0$$

$$\mathsf{C.}\, 18x + 13y - 41 = 0$$

D.
$$6x - 7y - 25 = 0$$

Answer: B::C::D

Watch Video Solution

9. A(1, 3) and C(5, 1) are two opposite vertices of a rectangle ABCD. If the slope of BD is 2, then the coordinates of B can be:

A.(4,4)

B. (5, 4)

C. (2, 0)

D. (1, 0)

Answer: A::C

Watch Video Solution

10. All the points lying inside the triangle formed by the points (1, 3), (5, 6), and (-1, 2) satisfy:

A.
$$3x+2y\geq 0$$

B.
$$2x + y + 1 \ge 0$$

$$\mathsf{C.} - 2x + 11 \geq 0$$

D.
$$2x + 3y - 12 \ge 0$$

Answer: A::B::C

Watch Video Solution

11. The slope of a median, drawn from the vertex A of the triangle ABC is -2. The co-ordinates of vertices B and C are respectively (-1, 3) and (3, 5). If the area of the triangle be 5 square units, then possible distance of vertex A from the origin is/are.

A. 6

B. 4

 $\mathsf{C.}\,2\sqrt{2}$

D.
$$3\sqrt{2}$$

Answer: A::C

Watch Video Solution

12. The points $A(0,0), B(\cos\alpha,\sin\alpha) \text{ and } C(\cos\beta,\sin\beta)$ are the vertices of a right angled triangle if :

A.
$$\sin\!\left(rac{lpha-eta}{2}
ight)=rac{1}{\sqrt{2}}$$

$$\mathsf{B.}\cos\!\left(\frac{\alpha-\beta}{2}\right) = \,-\,\frac{1}{\sqrt{2}}$$

$$\mathsf{C.}\cos\!\left(\frac{\alpha-\beta}{2}\right) = \frac{1}{\sqrt{2}}$$

$$\operatorname{D.sin}\!\left(rac{lpha-eta}{2}
ight)= \ -rac{1}{\sqrt{2}}$$

Answer: A::B::C

Watch Video Solution

Exercise 3 Comprehension Type Problems

1. The equations of the sides AB and CA of a ΔABC are x+2y=0 and x-y=3 respectively. Given a fixed point P(2, 3).

Q. Let the equation of BC is x+py=q. Then the value of (p+q) if P be the centroid of the ΔABC is :

A. 14

B. -14

C. 22

D. -22

Answer: D

Watch Video Solution

2. The equations of the sides AB and CA of a ΔABC are x+2y=0 and x-y=3 respectively. Given a fixed point P(2, 3).

Q. If P be orthocentre of ΔABC then equation of side BC is :

A. y + 5 = 0

B. y - 5 = 0

$$C.5y + 1 = 0$$

D.
$$5y - 1 = 0$$

Answer: A

Watch Video Solution

3. Consider a triangle ABC with vertex A(2,-4). The internal bisectors of the angle B and C are x+y=2 and x-3y=6 respectively. Let the two bisectors meet at I.if (a, b) is incentre of the triangle ABC then (a+b) has the value equal to

A. 1

B. 2

C. 3

D. 4

Answer: B

Watch Video Solution

4. Consider a triangle ABC with vertex $A(2,\,-4)$. The internal bisectors of the angle B and C are x+y=2 and x-3y=6 respectively. Let the two bisectors meet at I.

If (x_1,y_1) and (x_2,y_2) are the co-ordinates of the point B and C respectively, then the value of $(x_1x_2+y_1y_2)$ is equal to :

- A. 4
- B. 5
- C. 6
- D. 8

Answer: D

Watch Video Solution

Exercise 5 Subjective Type Problems

1. If the area of the quadrilateral ABCD whose vertices are A(1, 1), B(7, -3), C(12, 2) and D(7, 21) is Δ . Find the sum of the digits of Δ .

2. The equation of a line through the mid-point of the sides AB and AD of rhombus ABCD, whose one diagonal is 3x-4y+5=0 and one vertex is A(3, 1) is ax + by + c = 0. Find the absolute value of (a + b + c)

where a, b, c are integers expressed in lowest form.

Watch Video Solution

3. If the point (α, α^4) lies on or inside the triangle formed by lines $x^2y + xy^2 - 2xy = 0$, then the largest value of α is .

4. The minimum value of $[x_1-x_2)^2+\left(12-\sqrt{1-\left(x_1
ight)^2}-\sqrt{4x_2}
ight]^{\frac{1}{2}}$ for all permissible values of x_1 and x_2 is equal to $a\sqrt{b}-c$ where $a,b,c\in N$, the find the value of a+b-c

Watch Video Solution

5. The number of lines that can be drawn passing through point (2, 3) so that its perpendicular distance from (-1, 6) is equal to 6 is:

6. The graph of $x^4=x^2y^2$ is a union of n different lines, then the value of n is.

Watch Video Solution

7. The orthocentre of triangle formed by lines x+y-1=0, 2x+y-1=0 and y=0 is (h, k), then $\frac{1}{k^2}=$

8. The point (-2,a) lies in the interior of the triangle formed by the lines y=x, y=-x and 2x+3y=6 the integral value of a is

9. Let $A\equiv (-1,0), B\equiv (3,0),$ and PQ be any line passing through (4, 1) having slope m. Find the range of m for which there exist two points on PQ at which AB subtends a right angle.

10. Given that the three points where the curve $y=bx^2-2$ intersects the x-axis and y-axis form an equilateral triangle. Find the value of 2b.

