©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CHETAN MATHS (TAMIL ENGLISH)

GEOMETRIC CONSTRUCTION

Practice Set 41

1.

$\triangle A B C A B=5.5, B C=6 \mathrm{~cm}$ and $C A=4.5 \mathrm{~cm}$.
$\triangle A B C$ and $\triangle L M N$, such that $\frac{B C}{M N}=\frac{5}{4}$.

- Watch Video Solution

2.

$\Delta R S T \sim \Delta X Y Z$.
$\Delta R S T, R S==4.5 \mathrm{~cm}, \angle R S T=40^{\circ}, S T=5.7 \mathrm{~cm}$.
$\Delta R S T$ and $\Delta X Y Z$, such that $\frac{R S}{X Y}=\frac{3}{5}$.

- Watch Video Solution

3.

$\triangle P Q R \sim \Delta L T R$.
$\triangle P Q R, P Q=4.2 \mathrm{~cm}, Q R=5.4 \mathrm{~cm}, P R=4.8 \mathrm{~cm}$.
$\triangle P Q R$ and $\triangle L T S$, such that $\frac{P Q}{L T}=\frac{3}{4}$.

- Watch Video Solution

4.

$\Delta L M T \sim \Delta A H E$
In
$\Delta L M T, L M=6.3 \mathrm{~cm}, \angle T L M=50^{\circ}$, and $L T=5.6 \mathrm{~cm} . \frac{L M}{A H}=\frac{7}{5}$.
Construct $\triangle A H E$ and $\triangle L M T$.

- Watch Video Solution

1. Construct a tangent to a circle with centre P and radius 3.2 cm at any point M on it.

Watch Video Solution

2. Draw a circle of radius 2.7 cm . Draw a tangent to the circle at any point it.

- Watch Video Solution

3. Draw a circle of radius 3.3 cm . Draw a chord PQ of length 6.6 cm . Draw tangents to the circle at points P and Q . Write your observation about the tangents.

- Watch Video Solution

4. Draw a circle with radius 3.4 cm . Draw a chord MN of length 5.7 cm . in it. Construct tangent at point M and N to the circle.

Watch Video Solution

5. Draw a circle of radius 3.6 cm . Draw a tangent to the circle at any point on it without using the centre.

- Watch Video Solution

6. Draw a circle P and radius 3.4 cm . Take point Q at a distance 5.5 cm .

From the centre. Construct tangents to the circle from point Q .

- Watch Video Solution

7. Draw a circle with radius 4.1 cm . Construct tangents to the circle from a point at a distance 7.3 cm from the centre.

Problem Set 4

1.

$\Delta A B C \sim \Delta L M N$.

$\triangle A B C, A B=5.1 \mathrm{~cm}, \angle B=40^{\circ}, B C=4.8 \mathrm{~cm}, \frac{A C}{L N}=\frac{4}{7}$. Construct $\triangle A B C$ and $\triangle L M N$.

- Watch Video Solution

$$
\begin{array}{lcc}
\text { 2. Construct } & \triangle P R Q & \text { such } \\
P R=6.3 \mathrm{~cm}, R Q=7.2 \mathrm{~cm}, P Q=5.8 \mathrm{~cm} . & \text { If } & \frac{Y Z}{R Q}=\frac{6}{5},
\end{array} \text { that } \text { then }
$$ construct $\triangle X Y Z$ similar to $\triangle P R Q$.

- Watch Video Solution

3. Draw a circle with centre P. Draw an arc AB of 100° measure. Draw tangents to the circle at points A and point B.

- Watch Video Solution

4. Draw any circle. Take any point A on it and construct tangent at A without using the centre of the circle.

- Watch Video Solution

5. Draw a circle with centre O and radius 3.5 cm . Take a point P at a distance 5.7 cm from the centre. Draw tangent ot the circle from point P.

- Watch Video Solution

6. Draw a circle of diameter 6.4 cm . Take a point R at a distance equal to its diameter form the center. Draw tangents from point R.

- Watch Video Solution

7. Draw a circle of radius 3.4 cm and centre E . Take a point F on the circle.

Take point A such that E-F-A and FA-4.1 cm. Draw tangents to the circle from point A .

- Watch Video Solution

Mcqs

1. The number of tangents that can be drawn to a circle at a point on the circle is
A. 3
B. 2
C. 1
D. 0

Answer: C

2. The maximum number of tangents that can be drawn to a circle from a point outside it is
A. 2
B. 1
C. one and only one
D. 0

Answer: A

- Watch Video Solution

3. $\triangle A B C \sim \triangle P Q R, \frac{A B}{P Q}=\frac{7}{5}$ then
A. $\triangle A B C$ is bigger
B. $\triangle P Q R$ is bigger
C. both triangles will be equal
D. Can not be decided.

Answer: A

- Watch Video Solution

4.Number of tangents can be drawn from a point inside the circle.
A. 0
B. 1
C. 2
D. Infinite

Answer: A

5. The length of the two tangent segment drawn to a circle from an external point are.
A. Equal
B. Unequal
C. Infinite
D. Can't say

Answer: A

- Watch Video Solution

6. Tangents drawn at the endpoints of a diameter of a circle are.
A. Equal
B. Perpendicular
C. Parallel
D. Intersecting each other

- Watch Video Solution

7. In $\triangle A B C \sim \triangle P Q R 1, \quad A B: P Q=2: 3$ If $B C=4$, then $Q R=\ldots \ldots \ldots \ldots$.
A. 4
B. 6
C. 9
D. 8

Answer: B

- Watch Video Solution

8. If $A B: B C=3: 5$, then into how many equal parts seg $A C$ is divided to get point B ?

Problems For Practice

1. Draw a line segment $P Q=8 \mathrm{~cm}$. Take point R on it such that $l(P R): l(R Q)=3: 2$.

- Watch Video Solution

2. $l(A B): l(B C)=3: 2$. Draw a seg $A B$, If $l(A B)=7.2 \mathrm{~cm}$.

- Watch Video Solution

3. $\triangle X Y Z \sim \Delta A B C, \angle X=40^{\circ}, \angle Y=80^{\circ}, X Y=6 \mathrm{~cm}$. Draw $\triangle A B C$ if $A B: X Y=3: 2$.
4. Draw $\triangle A B C$ with side $B C=6 \mathrm{~cm}, A B=5 \mathrm{~cm}$, and $\angle A B C=60^{\circ}$. Also, construct $\triangle X Y Z$ whose sides are $\frac{3}{4}$ of the corresponding sides of $\triangle X Y Z$.

- Watch Video Solution

5.

$\triangle P Q R \sim \Delta A B C, P Q=3 \mathrm{~cm}, Q R=4 \mathrm{~cm}, P R=5 \mathrm{~cm} . A(\Delta P Q R): A(\Delta A E$
. Construct both triangles

- Watch Video Solution

6. $\triangle P Q R \sim \triangle G E F, m \angle P=70^{\circ}, P Q=5 \mathrm{~cm}, P R=3.5 \mathrm{~cm}$. Construct $\triangle G E F$, if $P Q: G E=5: 7$.

- Watch Video Solution

7. $\triangle P Q R \sim \triangle X A B, m \angle P=60^{\circ}, P Q=6 \mathrm{~cm}, P R=4 \mathrm{~cm} \quad$ Construct $\triangle X A B$, if $P Q: X A=3: 2$.

Watch Video Solution

8. $\triangle A M T \sim \Delta G H E$., construct $\triangle A M T$ such that $M A=6.3 \mathrm{~cm}, \angle M A T=120^{\circ}, A T=4.9 \mathrm{~cm}$ and $\frac{M A}{H G}=\frac{7}{5}, \quad$ then construct $\triangle G H E$.

- Watch Video Solution

9. Draw a tangent to a circle of radius 3 cm and centre O at any point K on the circle.

- Watch Video Solution

10. Draw a circle with centre P and radius 2.6 cm . Draw a chord AB of length 3.8 cm . Draw tangent to the circle through points A and B.

- Watch Video Solution

11. Draw a circle with radius 3.4 cm . Draw tangent to the circle, passing through point B on the circle, without using centre.

- Watch Video Solution

12. Construct a circle with centre O and radius 4.3 cm . Draw a chord $A B$ of length 5.6 cm . Construct the tangents to the circle at point A and B without using centre.

- Watch Video Solution

13. Draw a circle with centre M and diameter 6 cm . Draw a tangent to the circle from a point N at distance of 9 cm from the centre.

Watch Video Solution

14. Draw a circle with O as centre and radius 3.8 cm . Take two points P and Q such that $\angle P O Q=120^{\circ}$ Draw tangents at P and Q without using centre.

- Watch Video Solution

15. Draw a circle with O as centre and radius 4 cm . Take a point P at a distance of 7.5 cm from O Draw tangents to the circle thorough the point P.

- Watch Video Solution

1. The number of tangents that can be drawn to a circle at a point on the circle is \qquad
A. 3
B. 2
C. 1
D. 0

Answer:

Watch Video Solution

2. The length of the two tangent segment drawn to a circle from an external point are
A. Equal
B. Unequal
C. Infinite
D. Can't say

Answer:

- Watch Video Solution

3. Draw seg $\mathrm{PQ}=8 \mathrm{~cm}$. Divide it in the ratio $3: 5$,

- Watch Video Solution

4. Draw $\angle A B C=120^{\circ}$ and bisect it.

Watch Video Solution
5. Draw seg AB of length 6.3 cm and bisect it.
6. Draw $\triangle D E F, E F=5 \mathrm{~cm} . \angle D=40^{\circ}, \angle F=50^{\circ}$.

- Watch Video Solution

7. Construct a circle with centre O and radius 3.5 cm . Take a point on it, draw a tangent passing through point P.

- Watch Video Solution

8. $\triangle A B C \sim \triangle X Y Z, A B: X Y=3: 5 B C=9 \mathrm{~cm}, A C=4.5 \mathrm{~cm}$. Find YZ and XZ .

- Watch Video Solution

9. Draw a circle with centre P and suitable radius. Draw a chord AB of length 5 cm . Draw tangents at points A and B without using centres.

- Watch Video Solution

10. Draw a circle centre O. Take two points P and Q on the circle with such that $\angle A O B=120^{\circ}$. Draw tangents at points A and B .

- Watch Video Solution

11.

$\triangle D E F \sim \triangle P Q R, \angle D=40^{\circ}, \angle F=60^{\circ}, D F=6 \mathrm{~cm}, D E: P Q=3: 4$. Construct only $\triangle P Q R$.

- Watch Video Solution

12. Draw a circle with centre A and radius 3.5 cm . Take a point B such that $d(A, B)=8 \mathrm{~cm}$. Draw tangents to the circle passing through point B.

- Watch Video Solution

13.

$\triangle A B C \sim \Delta G E F, A B: G E=5: 2 . A B=6 \mathrm{~cm}, B C=7.5 \mathrm{~cm} A C=5 \mathrm{~cm}$. Construct $\triangle G E F$ and $\triangle A B C$.

- Watch Video Solution

