d'doubtnut

India's Number 1 Education App

MATHS

BOOKS - CHETAN MATHS (TAMIL ENGLISH)

PYTHAGORAS THEOREM

Practice Set 21

1. In the adjoining figure, $\angle Q P R=90^{\circ}, \operatorname{seg} P M \perp$ hypotenuse QR, Q -$M-R$. If $P M=10, Q M=8$ then find $Q R$.

- Watch Video Solution

2. Find the side and perimeter of a square whose diagonal is 10 cm .
3. Length and breadth of a rectangle are 35 cm and 12 cm respectively. Find length of its diagonal.

- Watch Video Solution

4.

In
the
adjoining
figure,
$\angle D F E=90^{\circ}, F G \perp E D$ if $G D=8, F G=12$ then find (i) EG (ii) FD
(iii) EF.

- Watch Video Solution

5. Walls of two buildings on either side of a street are parallel to each othar. A ladder 5.8 m long is placed on the street such that its top just reaches the window of a building at the height if 4 m . On turning the ladder over to the other side of the street, its top touches the window of
the other building at a heitht 4.2 m . Find the width of the street.

- Watch Video Solution

6. In adjoining figure, find RP and PS using the information given in $\triangle P S R$ find RP and PS.

- Watch Video Solution

7. In the adjoining figure, M is the midpoint of $Q R . \angle P R Q=90^{\circ}$ prove that $P Q^{2}=4 P M^{2}-3 P R^{2}$
8. Which of the following are pythagorean triplets justify. 3, 5, 4

- Watch Video Solution

9. Which of the following are pythagorean triplets justify.
4,9,12

- Watch Video Solution

10. Which of the following are pythagorean triplets justify.

5,12,13

- Watch Video Solution

11. Which of the following are pythagorean triplets justify.
12. Which of the following are pythagorean triplets justify.

24,70,74

- Watch Video Solution

13. Which of the following are pythagorean triplets justify. 11,60,61

- Watch Video Solution

Pratice Set 21

1. For finding $A B$ and $B C$ with the help of information in adjoining figure, complete the following activity, $\mathrm{AB}=\mathrm{BC} ~ \therefore \angle \mathrm{BAC}=. ~ \therefore \mathrm{AB}=\mathrm{BC}=. \times \mathrm{AC}$
$=. \times 8=. \times 2 \times 2=.$.
`(\#\#CTN_MK_MAT_X_P2_GEO_CO2_SLV_015_Q5.png" width="80\%">

- Watch Video Solution

Practice Set 22

1. In $\triangle P Q R$ seg $P S$ is median of $\triangle P Q R$. And $P T \perp Q R$,
(i) $P R^{2}=P S^{2}+Q R \times S T+\left(\frac{Q R}{2}\right)^{2}$

- Watch Video Solution

2. In $\triangle P Q R \operatorname{seg} P S$ is median of $\triangle P Q R$. And $P T \perp Q R$,
(ii) $P Q^{2}=P S^{2}-Q R \times S T+\left(\frac{Q R}{2}\right)^{2}$

- Watch Video Solution

3. In adjoining figure, point T is in the interior of rectangle $P Q R S$. Prove that, $T S^{2}+T Q^{2}=T P^{2}+T R^{2}$

Pratice Set 22

1. In $\triangle P Q R$, Point S is the midpoint of side QR . If $\mathrm{PQ}=11, \mathrm{PR}=17, \mathrm{PS}=13$ then find $Q R$.

- Watch Video Solution

2. In $\triangle A B C$,point M is midpoint of side BC . If $A B^{2}+A C^{2}=290 \mathrm{~cm}^{2}=290 \mathrm{~cm}^{\circ}$ and $\mathrm{AM}=8 \mathrm{~cm}$, find BC .

Practive Set 22

1. In $\triangle A B C, A B=10, A C=7, B C=9$ find the length of the median drawn from C to side. AB. Given
(i) In $\triangle A B C$, seg $C M$ is a median $(i i) A B=10, A C=7 B C=9$

- Watch Video Solution

Problem Set 2

1. Find the height of an equilateral triangle having side 2 a.
(i) $\triangle A B C$ is an equilateral triangle.
$A B=2 a$

- Watch Video Solution

2. Do sides $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$ from a right angled triangle ? Give reason.
3. Find the length a diagonal of a rectangle having side 11 cm and 60 cm .

- Watch Video Solution

4. Find the length of the hypotenuse of a right angled triangle if remaining sides are 9 cm and 12 cm .

- Watch Video Solution

5. A side of and isoceles right angled triangle is x. Find its hypotenuse..

- Watch Video Solution

6. In $\triangle P Q R, P Q=\sqrt{8}, Q R=\sqrt{5}, P R=\sqrt{3}$ Is $\triangle P Q R$ a right angle ? If yes which angle is of 90° ?

- Watch Video Solution

7. In $\triangle R S T, \angle S=90^{\circ}, \angle T=30^{\circ}, \mathrm{RT}=12 \mathrm{~cm}$. Find RS and ST.

- Watch Video Solution

8. Find the diagonal of a rectangle whose length is 16 cm and area is 192 sq. cm.
$\square A B C D$ is a rectangle (ii) $\mathrm{AB}=16 \mathrm{~cm}$ (iii) $A(\square A B C)=192 s q . \mathrm{cm}$

- Watch Video Solution

9. Find the length of the side and perimeter of an equilateral triangle whose height is $\sqrt{3} \mathrm{~cm}$.
(i) $\triangle A B C i s a n$ equilateral triangle.
(ii) $\operatorname{seg} A M \perp$ side $B C, B-M-C$
(iii) $A M=\sqrt{3} \mathrm{~cm}$

- Watch Video Solution

10.

$\triangle A B C, \operatorname{seg} A P$ is a median. If $B C=18, A B^{2}+A C^{2}=260$ find $A P$.

Watch Video Solution

11. $\triangle A B C$ is an equilateral triangle. Point P is on base BC such that $P C=\frac{1}{3} B C$, if $\mathrm{AB}=6 \mathrm{~cm}$, find AP .
$\triangle A B C$ is an equilateral
(ii) $\mathrm{AB}=6 \mathrm{~cm}$
$P C=\frac{1}{3} B C$

- Watch Video Solution

12. from the information given th the figure, Prove that: $\mathrm{PM}=\mathrm{PN}=\sqrt{3} \times a$

- Watch Video Solution

13. Prove that the sum of the squares of the squares of tha diagonals of a parallelogram is equal to tha sum of the squares of its sides.

- Watch Video Solution

14. Pranali and Prased started walking to the East and to the North respectively, from the same point and at the same speed. After 2 hours distance between them was $15 \sqrt{2} \mathrm{~km}$. Find their speed per hour.

- Watch Video Solution

15. In $\triangle A B C, \angle B A C=90^{\circ}$, seg BL and seg CM are medians of $\triangle A B C$ prove that $4\left(B L^{2}+C M^{2}\right)=5 B C^{2}$
16. Sum of squares of adjacent sides of a paralleogram is $130 \mathrm{~cm}^{2}$ and length of one of its diagonal is 14 cm . Find length of the other diagonal.
(i) $\square A B C D$ is a parallelogram
(ii) $A B^{2}+B C^{2}=130 \mathrm{~cm}^{2}$
(iii) $\mathrm{AC}=14 \mathrm{~cm}$

- Watch Video Solution

17. In $\triangle A B C, \operatorname{seg} A D \perp \operatorname{seg} B C, D B=3 C D$. Prove that: $2 A B^{2}=2 A C^{2}+B C^{2}$

- Watch Video Solution

18. In an isosceles triangle, length of each congruent side is 13 cm and length of the base is 10 cm . Find the distance between vertex opposite to base and centroid.
19. In trapezium ABCD, seg AB \|seg DC. Seg $B D \perp$ seg AD, seg $A C \perp$ seg BC . If $\mathrm{AD}=15, \mathrm{BC}=15$ and $\mathrm{AB}=25$, then find $A(\square A B C D)$

- Watch Video Solution

20. in the adjoining figure, $\triangle P Q R$ is an equilateral triangle. Point S is on seg $Q \mathrm{R}$ such that $Q S=\frac{1}{3} Q R$, Prove that $9 P S^{2}=7 P Q^{2}$

- Watch Video Solution

21. Seg $P m$ is a median of 'Delta $P Q R$. If $P Q=40, P R=42$ and $P M=29$, find QR.
22. Seg AM is a median of $\triangle A B C$, if $\mathrm{AB}=22, \mathrm{AC}=34, \mathrm{BC}=24$, find AM .

- Watch Video Solution

Problem Set 2 Mcq

1. Out of the following which is the pythagorean triplet?
A. $(1,5,10)$
B. $(3,4,5)$
C. $(2,2,2)$
D. $(5,5,2)$

Answer: C::D

2. In a right angled triangle, if sum of the squares of the sides making right angle is 169 then what is the length of the hypotenuse?
A. 15
B. 13
C. 5
D. 12

Answer: A:C

- Watch Video Solution

3. Out of the dates given below which date constitutes a pythagorean triplet?
A. $15 / 08 / 17$
B. $16 / 08 / 16$
C. $03 / 05 / 17$
D. $04 / 09 / 15$

Answer: A

- Watch Video Solution

4. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are sides of a triangle and $a^{2}+b^{2}=c^{2}$, name the type of triangle.
A. Obtuse angled triangle
B. Acute angled triangle
C. Right angled triangle
D. Equilateral triangle

Answer: A: D

- Watch Video Solution

5. Find perimeter of a square if its diagonal is $10 \sqrt{2} \mathrm{~cm}$.
A. 10 cm
B. $40 \sqrt{2}$
C. 20 cm
D. 40 cm

Answer: C::D

- Watch Video Solution

6. Altitude on the hypotenuse of a right angle triangle divides it in two parts of lengths 4 cm and 9 cm . Find the length of the altitude.
A. 9 cm
B. 4 cm
C. 6 cm
D. 18 cm

Answer: C

- Watch Video Solution

7. Height and base of a right angled triangle are 24 cm and 18 cm , find the length of its hypotenus.
A. 24 cm
B. 30 cm
C. 15 cm
D. 18 cm

Answer: C

- Watch Video Solution

8.

$\triangle A B C A B=6 \sqrt{3} \mathrm{~cm}, A C=12 \mathrm{~cm}, B C=6 \mathrm{~cm}$. Find measure of $\angle A$
A. 30°
B. 60°
C. 90°
D. 45°

Answer: C

- Watch Video Solution

Additional Mcq S

1. In $\triangle R S T, \angle s=90^{\circ}, R T=12 m, S T=8 \mathrm{~m}$ then $\mathrm{RS}=$
A. $10 \sqrt{8} m$
B. $5 \sqrt{4} m$
C. $4 \sqrt{5} m$
D. 5 m

Answer: D

- Watch Video Solution

2.

$\triangle P Q R, \angle P Q R=90^{\circ}, \operatorname{seg} Q M \perp h y p P R, P M=16$ and $R M=9$ then Q.
A. 12
B. 25
C. 7
D. 16×9

Answer: A::B

- Watch Video Solution

3. In $\triangle A B C, \angle B=90^{\circ}, \angle C=30^{\circ}, A B=6 \mathrm{~cm}$ then $\mathrm{AC}=\ldots$...
A. $3 \sqrt{3} \mathrm{~cm}$
B. $4 \sqrt{3} \mathrm{~cm}$
C. $12 \sqrt{3} \mathrm{~cm}$
D. 12 cm

Answer: A::B::C

- Watch Video Solution

4. In $\triangle P Q R, \angle Q=90^{\circ}, P Q=Q R=5 \sqrt{2} P R=10$ then $\angle P \ldots \ldots$.
A. 30°
B. 45°
C. 60°
D. Data not sufficient

Answer: D

5. Which of the following is a pythagorean triplet?
A. $60,61,11$
B. $40,41,42$
C. $11,12,15$
D. $9,15,17$

Answer: A

- Watch Video Solution

6. In $\Delta Q S R, m \angle Q=45^{\circ}, m \angle S=90^{\circ}$ and $S R=4$ find $Q S$
A. 3
B. 4
C. 5
D. 6

Answer: B

- Watch Video Solution

7. Appollonius theorem is a theorem relating the length of Of a triangle.
A. Altitude
B. Angle bisector
C. Perpendicular bisector
D. Median and sides

Answer: A:D

- Watch Video Solution

8. In the adjoining figure, $A B^{2}+A C^{2}=122, B C=10$, then find $\mathrm{AQ} . \ldots .$.
A. 3
B. 6
C. 12
D. 36

Answer:

- Watch Video Solution

9. In $\triangle P Q R, m \angle P Q R=90^{\circ}, \operatorname{seg} Q S \perp h y p P R$ then
A. $Q S^{2}=P S \times R S$
B. $P S^{2}=Q S \times P R$
C. $P R^{2}=Q S \times P S$
D. $P R^{2}=Q S^{2} \times P S^{2}$

D Watch Video Solution

10. In which of the following quadrilateral sum of squares of all sides is equal to the sum of squares of diagonals?
A. Parallelogram
B. Rhombus
C. Square
D. (A), (B) and (c)

Answer: A::B::C::D

D Watch Video Solution

$\Delta X Y Z, \angle y=90^{\circ}, \angle Z=a^{\circ}, \angle x=\left(a+30^{\circ}\right) . I f X Z=24$ find $X Y$ and $Y Z$

- Watch Video Solution

2. In
the
adjoining
figure,
$\angle L=\angle M N K=90^{\circ}, \angle M K L=30^{\circ}$ and $\angle M N K=45^{\circ} . \operatorname{If} K L=6 \sqrt{3}$,

D Watch Video Solution

3. Sides of triangles are given below. Determine which of the them are right angled triangle.
(i) $8,15,17$ (ii) $20,30,40$
(iii) $11,12,15$ (iv) $20,16,12$
4. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from the base of the wall.

- Watch Video Solution

5. E is a point on hypotenuse dF of $\triangle D F H$, such that seg $H E \perp \operatorname{seg} D F, \operatorname{seg} E G \perp \operatorname{seg} F H$ and $\operatorname{seg} E K \perp \operatorname{seg} D H$ prove that,
(i) $E G^{2}=F G \times E K$
(ii) $E K^{2}=D K \times E G$

- Watch Video Solution

6. In adjoining figure, seg $A D$ bot side $B C$, $B-D-C$. Prove that $A B^{2}+C D^{2}=B D^{2}+A C^{2}$
$\angle P Q R=90^{\circ} \operatorname{seg} Q S \perp$ side $P R, P S=4, P Q=6$. Find x, y and z .

- Watch Video Solution

8.

$\triangle D E F i$ sanequilateral triangle. $\operatorname{Seg} D P \perp$ side $E F . E-P-F$. Prove tha

- Watch Video Solution

9.

$\triangle P Q R i s a n$ equilateral triangle, $\operatorname{seg} P M \perp \operatorname{side} Q R, Q-M-R$ Prove tha
10.

- Watch Video Solution

11.

$\triangle P Q R$, Misthe midpoint ofside $Q R . I f P Q=11, P R=17$ and $Q R=12$ th

- Watch Video Solution

12. In $\triangle A B C$, APisamedian. If $A P=7, A B^{2}+A C^{2}=260$ find $B C$.

- Watch Video Solution

13. In $\triangle A B C, A B^{2}+A C^{2}=122$ and $B C=10$ Find the length of the median on side $B C$.

- Watch Video Solution

14. Adjacent sides of a parallelogram are 11 cm and 17 cm . If the length of one of its diagonals is 26 cm , find the length of the other.

D Watch Video Solution

15. If ' O ' is any point in the interior of rectangle $A B C D$, then prove that : $O B^{2}+O D^{2}=O A^{2}+O C^{2}$

(Watch Video Solution

16. In the adjoining figure, $\triangle P Q R$ is an equilateral triangle. $Q R=R N$. Prove that $P N^{2}=3 P R^{2}$
17. In the adjoining figure, $\angle P Q R=90^{\circ} T$ is the midpoint of side QR . Prove that $P R^{2}=4 P T^{2}-3 P Q^{2}$

(D) Watch Video Solution

Assignment 2

1. Solve the following sub questions:

Is 28,21 and 35 a pythagorean triplet?

- Watch Video Solution

2. Solve the following sub questions: in $\Delta \mathrm{PQR}$, angle PQR = 90^(@) "seg" QS bot "hypotenuse" PR, PS = 16, RS = 9 "find" QS
3. Solve any one of the followng questions: In $\triangle A D C, \angle A D C=90^{\circ} \angle C=45^{\circ}, A C=8 \sqrt{2} c m$. Find $A D$.

- Watch Video Solution

4.

In $\Delta X Y Z, \angle y=90^{\circ}, \angle Z=a^{\circ}, \angle X=(a+30)^{\circ}$ find $\angle x$

- Watch Video Solution

5. Solve the any one of following sub questions:

In
$\triangle P Q R, \operatorname{seg} P M$ is a median $P M=10$ and $P Q^{2}+P R^{2}=328$ then find $Q R$
6. Solve the any one of following sub questions:

If m and n are two distinct numbers then prove that $m^{2}-n^{2}, 2 m n$ and $m^{2}+n^{2}$ is a pythagorean triplet.

- Watch Video Solution

7. Solve the following sub question :
in the adjoining figure, seg
$P S b a t s i d e Q R . I f P Q=a, P R=b Q S=c$ and $R s=d$ then complete the following activity to prove that $(a+b)(a-b)=(c+d)(c-d)$

Proof: In $\triangle P S Q \angle P S Q=90^{\circ}$
$\square^{2}=P S^{2}+\square^{2}$
$P S^{2}=\square^{2}-\square^{2}$

In $\triangle P S R, \angle P S R=90^{\circ}$
$\square^{2}=P S^{2}+\square^{2}$
$P S^{2}=\square^{2}-\square^{2}=\square^{2}-\square^{2}$
$a^{2}-c^{2}=b^{2}-d^{2}$
$a^{2}-b^{2}=C^{2}-d^{2}$
$\square \times \square=\square \times \square$

- Watch Video Solution

8. Solve the following sub question in
$\Delta A B D, \angle B A D=90^{\circ}$ seg $A C \perp$ hypo $B D, B-C-D$ showt $\hat{i} A B^{2}=B C:$

- Watch Video Solution

Assignment 3

1. Solve the following sub questions :

State and prove 'Pythagoras theorem'

1. Solve the following sub questions:

In
Delat $A C B, \angle A C B=90^{\circ} \operatorname{seg} C D \perp$ side $A B, A-D-B \operatorname{seg} D E \perp$ side C.

- Watch Video Solution

Assignment 5

1. Solve the following sub question :

In an equilateral triangle $A B C$, the side $B C$ is trisected at D. prove that $9 A D^{2}=7 A B^{2}$

- Watch Video Solution

