

India's Number 1 Education App

MATHS

BOOKS - CHETAN MATHS (TAMIL ENGLISH)

SIMILARITY

Example

1. In $\triangle ABC$ ray BD bisects $\angle ABC - A - D - C$, side DE || side BC

$$A - E - B$$

then prove,
$$\frac{AB}{BC} = \frac{AE}{EB}$$

Watch Video Solution

Practice Set 11

1. Base of a triangle is 9 and height is 5. Base of another is 10 and height is 6. Find the ratio of areas of these triangles.

2. In the adjoining figure $PS \perp ray \ RQ$, seg $QT \perp seg \ PR$. If RQ = 6, PS = 6 and PR = 6

In

 $AP \perp BC, AD \mid BC$, then find $A(\Delta ABC) : A(\Delta BCD)$

adjoining

figure

Watch Video Solution

4.

In

figure

 $BC \perp AB, AD \perp AB, BC = 4, AD = 8 \; ext{ then find } \; rac{A(\Delta ABC)}{A(\Delta ADB)}$

5. In the adjoining figure , $PQ \perp BC, AD \perp BC$ then find the following

ratios

$$\frac{A(\Delta PQB)}{A(\Delta PBC)}$$

Watch Video Solution

6. In the adjoining figure , $PQ \perp BC, AD \perp BC$ then find the following ratios

7. In the adjoining figure , $PQ \perp BC, AD \perp BC$ then find the following ratios

8. In the adjoining figure , $PQ \perp BC$, $AD \perp BC$ then find the following ratios $\frac{A(\Delta ADC)}{A(\Delta PQC)}$

Practice Set 12

1. Measurements of the some angles in the figure are given . Prove that

$$\frac{AP}{PB} = \frac{AQ}{QC}$$

2. In ΔPQR ,

PM = 15,

PQ = 25,

PR = 20,

NR = 8

whether lin NM is parallel to side RQ? Give reason.

Watch Video Solution

3. In the adjoining figure X id any point in interior of triangle . Point X is joined to vertices of traingle. seg $PQ \mid DE$,

 ${
m seg}$ $QR \mid |{
m seg} EF$. Then fill in the blanks to prove that ,

seg $PR \mid | seg DF$.

4. Given below some triangles and lengths of line segments . Identity in which figures , Ray PM is bisector of $\angle QPR$.

Watch Video Solution

5. Given below some triangles and lengths of line segments . Identity in which figures , Ray PM is bisector of $\angle QPR$.

(CTN_MK_MAT_X_P2_GEO_C01_E02_005_Q01.png" width="80%">

Watch Video Solution

6. Given below some triangles and lengths of line segments . Identity in which figures , Ray PM is bisector of $\angle QPR$.

7. In

 ΔMNP , NQ is bisector of $\angle N$. if MN = 5, PN = 7, MQ = 2.5

then find QP.

8. Find QP using given information in the figure.

9. In

 $\triangle ABC$, seg BD bisects $\angle ABC$, if AB = x, BC = x + 5, AD = x - 2,

.Then find the value of x.

11.

Watch Video Solution

 $\triangle ABC$, seg BD bisects $\angle ABC$ and Ray CE bisects $\angle ACB$. if seg

In

then prove that ED||BC.

12. In trapezium ABCD ,side AB||sidePQ||sideDC. AP=15, PD= 12, QC =14. Find

BQ.

13. In the adjoining figure AB||CD||EF. Find x and AE.

Watch Video Solution

Practice Set 13

1. As shown in adjoining figure, two poles of height 8 m and 4 mare perpendicular to ground. If the length of shodow of smaller pole due to sunlight is 6 m then how long will be the shadow of bigger pole at at the

same time?

Watch Video Solution

2. Are the triangles in the figure given similar?

Watch Video Solution

3. In the figure seg AC and seg BD intersects each other at point P and

$$rac{AP}{CP} = rac{BP}{DP}$$
 . Then Prove that $\Delta ABP extstyle \Delta CDP$.

Watch Video Solution

4. In trapezium PQRS, side PQ|| side SR. AR= 5 AP and AS = 5AQ. Prove that

: SR = 5PQ

0

Watch Video Solution

5. In adjoining figure, $\angle ABC=75^\circ$, $\angle EDC=75^\circ$ state which two traiangles are similar and by which test ? Also traingles by a proper one

to one correspondence

6. \square ABCD is a parallelogram. Point E is on side BC , line DE intersects

Ray AB in point . T Prove that : DE imes BE = CE imes TE.

0

Watch Video Solution

7. In trapezium ABCD , side $AB \mid \mid DC$ Diagonals AC and BD intersect in

O . If
$$AB=20,\,DC=6,\,OB=15.$$
 Find OD.

Watch Video Solution

8. In

 $\Delta ABC, AP \perp BC, BQ \perp AC, B-P-C, A-Q-C$ then prove that

9. In the figure , in ΔABC , point D on side BC is such that , $\Delta BAC\cong \Delta ADC$ then prove that , $CA^2\equiv CB imes CD$.

Watch Video Solution

Practice Set 14

1. If $\Delta ABC \sim \Delta PQR$ and AB: AP = 2:3, then fill in the blanks.

$$rac{A(\ riangle \ ABC)}{A(\ riangle \ PQR)} = rac{\left(AB
ight)^2}{\left(PQ
ight)^2} = rac{2^2}{3^2} = \ rac{\Box}{\Box}$$

Watch Video Solution

2. Ratio of correspoding sides of two similar traingles is 3:5, then find ratio of their area.

3. If ΔABC ~ ΔPQ , $A(\Delta ABC)=80$, $A(\Delta PQR)=125$, then fill in the blanks.

4. ΔLMN $\sim \Delta PQR, 9 imes A(\Delta PQR) = 16 imes A(\Delta LMN).$ If QR = 20 , then find MN.

5. Areas two similar triangles are 225 sq. cm , 81 sr. cm If a side of the smaller traingles is 12 cm , then find correspoding side of bigger traingle.

- **6.** ΔABC and ΔDEF are equilateral triangles. If $A(\Delta ABC)$: $A(\Delta DEF)=1$: 2 and AB=4, find DE.
 - Watch Video Solution

7. In the adjoining figure , seg $PQ \mid \ | \ \, {
m seg} \ DE, A(\Delta PQF) = 20$ sq units . PF = 2 , then find $A(\ \Box\ DPQE)$ by completing the following activity.

1. In $\Delta ABC, B-D-C$ and BD=7, BC=20 Then find the following ratio.

$$\frac{A(\Delta ABD)}{A(\Delta ADC)}$$
A
B
D

Watch Video Solution

2. In $\Delta ABC, B-D-C$ and BD=7, BC=20 Then find the following ratio.

 $A(\Delta ABD)$

3. In
$$\Delta ABC, B-D-C$$
 and $BD=7, BC=20$ Then find the following ratio.

4. Ratio of areas of two triangles with equal height is 2:3. If base of smaller trainagle is 6 cm then what is the correponding base of the bigger triangles.

5. In the figure given

$$ngle ABC=ngle DCB=90^{\circ}$$
 . $AB=6,DC=8. ext{ then}rac{A(\Delta ABC)}{A(\Delta DCB)}$?

Watch Video Solution

6. In the adjoining figure ,

 $PM = 10 ext{cm} A(\Delta PQS) = 100 ext{ sq cm} A(\Delta QRS) = 110 ext{ sq cm}$ then

7. In the figure
$$A-D-C$$
 and $B-E-C$ seg $DE \mid |$ side AB if $AD=5, DC=3,$

then find BE.

8. In the adjoining figure bisectors of $\angle B$ and $\angle C$ intersect each other in point X. Line AX intersects side BC in point Y.

 $AB=5, AC=4, BC=6 ext{then find } rac{AX}{XY}.$

9. In the figure given seg PA, seg QB, seg RC and seg SD are perpendicular to line AD. $AB=60,\,BC=70,\,CD=80\,$ and $PS=280,\,$ then find PQ,

QR and RS.

Watch Video Solution

10. In $\square \, ABCD, \, \mathrm{seg} \, |AD| \mid \mathrm{seg} \, |BC|$. Diagonal AC and diagonal BC

intersect each other in point P. Then show that $\frac{AP}{PD} = \frac{PC}{BP}$

11. In the adjoining figure , XY \parallel seg AC . If 2AX=3 imes BX and XY=9.

Complete the activity to find the value of AC.

12. ΔMNT ~ ΔQRS : Length of altitude drawn from vertex T is 5 and length of altitude drawn from vertex S is 9 . Find $\frac{A(\Delta TMN)}{A(\Delta SQR)}$

Problem Set 1 Mcqs

1. If in ΔABC and ΔPQR for some one- one correpondence if

$$\frac{AB}{QR} = \frac{BC}{PR} = \frac{CA}{PQ}$$
 then

A.
$$\Delta PQR$$
 ~ ΔABC

B.
$$\Delta PQR$$
 ~ ΔCAB

C.
$$\Delta CBA$$
 ~ ΔPQR

D.
$$\Delta BCA$$
 ~ ΔPQR

Answer: A::B::C::D

2. If in $\Delta DEF ext{-}\Delta PQR$. $\angle D\cong \angle Q,$ $\angle R\cong \angle E$, then which of the

following statement is false?

A.
$$\frac{EF}{PR} = \frac{DF}{PQ}$$

$$\mathrm{B.}\,\frac{DE}{PQ}=\frac{EF}{RP}$$

C.
$$\frac{DE}{QR} = \frac{DF}{PQ}$$

$$\mathrm{D.}\,\frac{EF}{RP}=\frac{DE}{QR}$$

Answer: B

3. In $\triangle ABC$ and $\triangle DEF$. $\angle B\cong \angle E, \angle F\cong \angle C$ and AB=3DE then which statement regarding two triangles is true?

- A. The triangles are not congruent and not similar.
- B. The triangles are similar but not congruent.
- C. The triangles are congruent and similar.
- D. None of the statements above is true.

Answer: A::B::C

4. ΔABC and ΔDEF both are equilateral triangles.

 $A(\Delta ABC)$: $A(\Delta DEF)=1$: 2. If AB = 4 , then what is the length of DE

?

A.
$$2\sqrt{2}$$

B. 4

C. 8

D. $4\sqrt{2}$

Answer: B::D

 $\ensuremath{\mathbf{5.}}$ In the figure seg XY|| BC , then which of the following statement is true?

6. In $\Delta ABC, AB=3 {
m cm}, BC=2 {
m cm} \ {
m and} \ AC=2.5 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m cm} \ \Delta DEF \sim \Delta ABC, EF=2 {
m$

What is the perimeter of ΔDEF ?

A. 30 cm

 $\mathsf{B.}\ 22.5\mathrm{cm}$

C. 15 cm		
D. 7.5cm		
Answer: A::C		
Watch Video Solution		
7. The sides of two similar tria	ingles are 4 : 9 . What	
area?		

is the ratio of their

A. 2:3

B. 4:9

C. 81:16

D. 16:81

Answer: D

8. The areas of two similar traingles are $18\mathrm{cm}^2$ and $32\mathrm{cm}^2$ respectively.

What is the ratio of their corresponding sides?

- A. 3:4
- B. 4:3
- C.9:16
- D. 16:9

Answer: C::D

Watch Video Solution

9.

 ΔABC - ΔPQR , AB=6cm, BC=8cm, AC=10cm and QR=6cm.

- . What is the length of side PR?
 - A. 8 cm
 - B. 10 cm

C.	$4.5 \mathrm{cm}$
D.	7.5cm

Answer: D

Watch Video Solution

10. In ΔXYZ , ray YM is the bisector of ΔXYZ where XY= YZ and X- M - Z

, then which of the relation is true?

A. XM=MZ

B. XM
eq MZ

 $\mathsf{C}.\,XM>MZ$

D. None

Answer:

11. In ΔABC , $AB=6{
m cm}$, $BC=8{
m cm}$ and $AC=10{cm}\Delta ABC$ is enlarged to ΔPQR such that the largest side is 12.5 cm . What is the length of the smallest side of ΔPQR ?

 $\mathsf{A.}\ 7.5\ \mathsf{cm}$

B. 9 cm

C. 8 cm

D. 10 cm

Answer: a

Watch Video Solution

12. In $\triangle ABC$, B-D-C and BD=6cm, DC=4cm what is the ratio $A(\triangle ABC)$ to $A(\triangle ACD)$?

A. 2:3

B.5:2

Answer: B

Watch Video Solution

In

13.

$\Delta XYZ, PQ \mid |YZ, X-P-Y| \text{ and } X-Q-Z. \text{ If } \frac{XP}{PY} = \frac{4}{13} \text{ and } XQ$

What is XZ?

A. 15.6 cm

B.20.4 cm

 $D.\,10.2\,cm$

Answer: B::C::D

C.7.8 cm

14. In ΔABC , P is a point on side BC such that BP = 4 cm and PC = 7 cm.

$$A(\Delta APC): A(\Delta ABC) = \dots$$

A. 11:7

B. 7:11

C. 4:7

D. 7:4

Answer: B

Watch Video Solution

15. In ΔPQR seg RS is the bisector $\angle PQR, PS = 8, SQ = 6, PR = 20$ then QR =

of

A. 10

B. 15

C. 30 D. 40

Answer: B

Watch Video Solution

16. In $\triangle ABC$, line $PQ \mid | \mathrm{side}BC, AP = 3, BP = 6, AQ = 5$ then the value of CQ is

A. 20

B. 10

C. 5

D. 16

Answer: B

Problems For Practice

1. In the adjoining figure , $BE \perp \sec AB$ and $\sec BA \perp \sec AD$. If BE = 6, AD =9 , the find $A(\Delta ABE)$: $A(\Delta BAD)$

2. The ratio of the areas of two traiangles with the common base is 6:5. Height of the larger triangles is 9 cm gt Then find the correspoding height of the smaller triangle.

3. In the adjoining figure, RP: PK = 3.2, then find the value of

(i) $A(\Delta TRP)$: $A(\Delta TPK)$

(ii) $A(\Delta TRK)$: $A(\Delta TPK)$

(iii) $A(\Delta TRP)$: $A(\Delta TRK)$

4. In the adjoining figure $\operatorname{seg}\ DH\perp\operatorname{seg}\ EF, \ \operatorname{seg}\ GK\perp\operatorname{seg}\ EF.$

If DH = 12 cm , GK =20 cm and $A(\Delta DEF)=300^{\circ}\,\mathrm{cm}^2$, then find

- (i) EF
- (ii) $A(\Delta GEF)$

Watch Video Solution

5. The ratio of the areas of two triangles with equal height is 3 : 2 . The base of the larger triangle is 18 cm . Find the corresponding base of the smaller triangle.

6. In

$$\Delta DEF$$
, line $PQ \mid \text{ | side}EF$. $DQ = 1.8, QF = 5.4, PE = 7.2$. find DE .

7. In ΔPQR seg RS is bisector of $\angle PRQ$. PS=6, SQ=8, PR=15.

Find QR.

8. In ΔXYZ , XY=YZ. Ray YM bisects $\angle XYZ$. X-M-Z prove that M is midpoints of seg XZ.

9. In the adjoining figure , seg ML || seg BC , seg NL || seg DC. Prove that AM : AB = AN: AD .

10. \Box ABCD is a trapezium in which AB|| DC and its diagonals intersect each other at points O . Show that AO : BO = CO : DO.

11. Point D and E are the points on sides AB and AC such athat AB = 5.6, AD = 1.4, AC =7.2 and AE = 1.8. Show that DE||BC.

12. In ΔPQR , ray QS bisects of $\angle PQR$. P-S-R. Show that

$$\frac{A(\Delta PQS)}{A(\Delta QRS)} = \frac{PQ}{QR}$$

13. In the adjoining figure , seg PQ \parallel AB. Seg PR \parallel seg BD. Prove that QR||AD.

In the adjoining figure , 14.

seg PA, seg QB, seg RC and seg SD are \perp to line AB=6, BC=6

then find PQ, QR and RS.

15. A vertical pole of a length 6 m casts a shadow of 4 m long on the ground . At the same time a tower casts a shadow 28 m long . Find the height of the tower.

16. In

 $\Delta ABC, AB=5, BC=6, AC=7.$ $\Delta PQR\text{-}\Delta ABC.$ Perimeter of ΔPQR

Watch Video Solution

17. In

 $\Delta ABC, \angle B = 90^{\circ}, \text{seg } DE \perp \text{side } AC. AD = 6, AB = 12, AC = 18,$

, then find AE.

18. E is a point on side

19. D is a point on side BC of ΔABC such that , $\angle ADC = \angle BAC$. Show that $AC^2 = BC \times DC$.

20.

In $\Delta RES, RE=15, SE=10. \ \mathrm{In} \Delta PEA, PE=8, AE=12. \ \mathrm{Prove} \ \mathrm{that} \Delta RE$

Watch Video Solution

the adjoining 21. In $\operatorname{seg}\ Ce\ \bot \quad \operatorname{side}\ AB, \quad \operatorname{seg}AD\ \bot \quad \operatorname{side}\ BC.$ Prove that figure

(i) $\triangle AEP \sim \triangle CDP$

(ii) $\Delta AEP \sim \Delta ADB$

22. In the adjoining figure , if $\Delta ABN\cong \Delta ACM$ show that ΔAMN - ΔABC .

23. Let X be any point on side BC of ΔABC seg XM \parallel side AB and seg XN

||side CA . M - N- T , T - B - X . Prove that : $TX^2 = TB.\ TC.$

24. In the adjoining figure , seg AB \parallel side DC , OD = x OB = x -3 , OC = x-5 ,

OA = 3x - 19. Find the value of x.

25. $\Delta DEF \text{-}\Delta MNK$ If DE = 5 and MN = 6 , then find the value of

$$A(\Delta DEF) : A(\Delta MNK)$$

26. If $\triangle ABC \sim \triangle DEF$ such that the area of $\triangle ABC$ is 9cm^2 and the area of $\triangle DEF$ is 16cm^2 . If BC = 2.1 cm . Find

length of EF.

Watch Video Solution

27. In the adjoining figure, seg DE|| side BC . If DE : BC =3: 5 , then find $A(\Delta ADE):A(\Delta DBCE)$

28. In $\triangle ABC$, PQ is a line segment intesecting AB at point P and AC at point Q. PQ || BC. If PQ divides $\triangle ABC$ into two equal parts equal in area, find BP: AB.

Watch Video Solution

29. In $\triangle ABC$, $\angle ABC = 90^{\circ}$. $\triangle PAB$, $\triangle QAC$ and $\triangle RBC$ are the equilateral triangles contructed on sides AB, AC and BC repectively. Prove that $: A(\Delta PAB) + A(\Delta RBC) = A(\Delta QAC)$

30. In $\triangle ABC$, seg DE|| side BC. If $2A(\triangle ADE) = A(\Box DBCE)$. Show that $BC = \sqrt{3} \times DE$.

1. Select the appropriate alternative : In the adjoining figure ,

 $PQ \mid \ \mid AC. \ BP = 6, PA = 8, BQ = 9$, then QC =

A. 15

B. 12

C. 18

D. 20

Answer:

2. In the figure seg XY|| BC, then which of the following statement is true?

A.
$$\frac{AB}{AC}=rac{AX}{AY}$$

$$\mathrm{B.}\,\frac{AX}{XB}=\frac{AY}{AC}$$

$$\operatorname{C.}\frac{AX}{YC} = \frac{AY}{XB}$$

$$\mathrm{D.}\,\frac{AB}{YC}=\frac{AC}{XB}$$

Answer:

3. Solve the following questions :

$$\Delta ABC \sim \Delta PQRA(\Delta ABC) : A(\Delta PQR) = 9 : 16$$
Find $BC : QR$.

4. Solve the following questions : ΔPQR , seg RS is the bisector of $\angle PRQ$. PS=8, SQ=6, PR=20, the solution of APQR is the section of APQR is the section

5. Perform any one the following activities:

In the adjoining figure , seg PM is a median . Prove that

$$A(\Delta PQM) = A(\Delta PRM)$$

6. Perform any one the following activities:

In the adjoining figure, DX = 4, DE = 8, FY = 6, OF = 12. Complete the

follwing activity to prove that seg XY || seg EF.

7. Attempt any Two of the following:

In $\ \Box \ ABCD$,seg AB $\|$ seg CD . Diagonal AC and BD intersect each other

 $A(\Delta ABP)$

at point P . Prove :

that $AC^2 = BC \times DC$.

Watch Video Solution

9. Attempt any Two of the following:

In the adjoining figure seg PA , seg QB seg RC and seg SD are \perp line I .

8. D is a point on side BC of $\triangle ABC$ such that , $\angle ADC = \angle BAC$. Show

AB = 60, BC = 70, CD = 80. If PS = 280, then PQ, QR, RS.

10. Atempt any two of the following:

In ΔPQR ray MX and ray MY bisect $\angle PMQ$ and $\angle PMR$ respectively .

P- X - Q , P - Y - R . Seg PM is a median , prove that seg XY \parallel seg QR

Watch Video Solution

11. Atempt any two of the following:

In the adjoining figure , in the adjoining figure , i

$$B$$
 Q
 C

 ΔABC , A-P-B and A-Q-CProve that

 $AP \times A$

 $A(\Delta APQ)$

12. Atempt any two of the following:

Watch Video Solution

angle in the ratio of the remaining sides.

Prove: In a triangle the angle bisector divides the side opposite to the

