d'doubtnut

India's Number 1 Education App

MATHS

BOOKS - CHHAYA MATHS (BENGALI ENGLISH)

MATHEMATICAL INDUCTION

Illustrative Example

1. Prove by mathematical induction that the sum of the squares of first n natural numbers is $\frac{1}{6} n(n+1)(2 n+1)$.

- Watch Video Solution

2. By principle of mathematical induction,prove that $1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$ for all $n \in \mathbb{N}$
3. Prove by induction that $n(n+1)(2 n+1)$ is divisible by 6 for all $n \in \mathbb{N}$

- Watch Video Solution

4. By mathematical induction prove that, $\left(2^{2 n}-1\right)$ is divisible by 3 where $n \geq 1$ is an integer.

- Watch Video Solution

5. Prove by induction, 7 divides $3^{2 n+1}+2^{n+2}$ for all $n \in \mathbb{N}$.

- Watch Video Solution

6. By principle of mathematical induction show that $a^{n}-b^{n}$ is divisible by $a+b$ when n is a positive even integer.
7. Prove by induction that

$$
\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}(n \in \mathbb{N}) .
$$

- Watch Video Solution

8. If $n \geq 3$ is an integer, prove by mathmatical induction that, $2 n+1<2^{n}$.

- Watch Video Solution

9. If $n \geq 4$ is an integer,prove by induction that $n^{2}<n$!.

- Watch Video Solution

> 10. Prove by mathematical induction that, $1^{2}-2^{2}+3^{2}-4^{2}+\ldots+(-1)^{n-1} \cdot n^{2}=(-1)^{n-1} \cdot \frac{n(n+1)}{2}, n \in \mathbb{F}$

- Watch Video Solution

11. By induction method, find the value of
$1 \cdot 1!+2 \cdot 2!+3 \cdot 3!+\ldots+n \cdot n!$.

- Watch Video Solution

12. If $n \geq 0$ is an integer, prove by induction that $3 \cdot 5^{2 n+1}+2^{3 n+1}$ is divisible by 17 .

- Watch Video Solution

13. If p be a natural number, then prove that, $p^{n+1}+(p+1)^{2 n-1}$ is divisible by $\left(p^{2}+p+1\right)$ for every positive integer n .

- Watch Video Solution

14. By mathematical induction prove that,

$$
1 \cdot 2+2 \cdot 2^{2}+3 \cdot 2^{3}+\ldots+n \cdot 2^{n}=(n-1) \cdot 2^{n+1}+2, n \in \mathbb{N} .
$$

- Watch Video Solution

15. By mathematical indcution prove that,
$4+44+444+\ldots$ to n terms $=\frac{4}{81}\left(10^{n+1}-9 n-10\right)$.

- Watch Video Solution

16. If $n \geq 2$ is an integer, prove by induction that,
$1+\frac{1}{4}+\frac{1}{9}+\ldots+\frac{1}{n^{2}}<2-\frac{1}{n}$.
17. If $n>1$ is an integer, prove induction that,
$\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}>\frac{13}{24}$.

- Watch Video Solution

18. Prove by mathematical induction that $\left(11^{n+2}+12^{2 n+1}\right)$ is divisible by 133 for all non-negative integers.

- Watch Video Solution

19. Let $\mathrm{P}(\mathrm{n})$ be the statement: $2^{n}>3 n$. IF $\mathrm{P}(\mathrm{m})$ is true, show that, $\mathrm{P}(\mathrm{m}+1)$ is true. Do you conclude that, $\mathrm{P}(\mathrm{n})$ is true for all $n \in \mathbb{N}$?

- Watch Video Solution

20. Using mathematical induction prove that,
$\cos \theta+\cos 2 \theta+\ldots+\cos n \theta=\frac{\cos \frac{n+1}{2} \theta \sin \frac{n \theta}{2}}{\sin \frac{\theta}{2}}$.

- Watch Video Solution

21. Using induction, prove that,
$\cos \theta \cos 2 \theta \cos 2^{2} \theta \ldots \cos 2^{n} \theta=\frac{\sin 2^{n+1} \theta}{2^{n+1} \sin \theta}$.

(Watch Video Solution

22. By induction prove that, $7^{2 n}+2^{3(n-1)} \cdot 3^{n-1}$ is a multiple of 25 for all $n \in \mathbb{N}$.

- Watch Video Solution

23. By mathematical induction prove that, $\frac{n^{7}}{7}+\frac{n^{5}}{5}+\frac{2 n^{3}}{3}-\frac{n}{105}$ is an integer for all $n \in \mathbb{N}$.

Watch Video Solution

24. By mathematical induction prove the inequality $(1+x)^{n} \geq 1+n x$ for all $n \in \mathbb{N}$ and $x>-1$.

- Watch Video Solution

25. Prove by induction that the sum of the cubes of three successive positive integers is divisible by 9 .

- Watch Video Solution

26. Using mathematical induction prove that for every integer $n \geq 1,\left(3^{2^{n}}-1\right)$ is divisible by 2^{n+2} but not by 2^{n+3}.

- Watch Video Solution

27. Prove by mathematical induction that, $2 n+7<(n+3)^{2}$ for all $n \in \mathbb{N}$.

Watch Video Solution

28. Prove by the principle of mathematical induction that when every even power of every odd integer greater than 1 is divided by 8 , the remainder is always 1.

- Watch Video Solution

Exercise

1. The sum of first n numbers is -
A. n
B. $\frac{n(n+1)}{2}$
C. $\frac{1}{6} n(n+1)(2 n+1)$
D. $\left[\frac{n(n+1)}{2}\right]^{2}$

Answer: B

- Watch Video Solution

2. The sum of the squares of first n natural numbers is -
A. n^{2}
B. $\frac{n(n+1)}{2}$
C. $\frac{1}{6} n(n+1)(2 n+1)$
D. $\left[\frac{n(n+1)}{2}\right]^{2}$

Answer: C

D Watch Video Solution

3. The sum of the cubes of first n natural numbers is -
A. n^{3}
B. $\frac{n(n+1)}{2}$
C. $\frac{1}{6} n(n+1)(2 n+1)$
D. $\left[\frac{n(n+1)}{2}\right]^{2}$

Answer: D

- Watch Video Solution

4. State which of the following statement is true ?
A. If a mathematical relation involving the natural number n is true for all $n \in \mathbb{N}$.
B. A mathematical statement may be true or false.
C. $\left(n^{2}+n+41\right)$ is a prime number for all natural number n.
D. If $n \in \mathbb{N}$ and $n \geq 2$. Then $\mathrm{n} \mathrm{n}(\mathrm{n}+1)$ is always divisible by 3 .

Answer: B

- View Text Solution

5. If $\left(2^{2 n}-1\right)$ is divisible by 3 , then show that, $\left[2^{2(n+1)}-1\right]$ is also divisible by 3.

- Watch Video Solution

6. If $\left(2^{3 n}-1\right)$ is divisible by 7 , then prove that, $\left[2^{3(n+1)}-1\right]$ is also divisible by 7 .

- Watch Video Solution

7. If $1 \cdot 1!+2 \cdot 2!+3 \cdot 3!+\ldots+n \cdot n!=(n+1)!-1$ then show that,
$1 \cdot 1!+2 \cdot 2!+3 \cdot 3!+\ldots+n \cdot n!+(n+1)(n+1)!=(n+2)!-1$

- Watch Video Solution

8. If $\left(10^{2 n-1}+1\right)$ is divisible by 11 , then prove that $\left(10^{2 n+1}+1\right)$ is also divisible by 11 .

- Watch Video Solution

9. If $\left(15^{2 n-1}+1\right)$ is divisible by 16 , then show that $\left(15^{2 n+1}+1\right)$ is also divisible by 16 .

- Watch Video Solution

10. If $\left[12^{n}+25^{n-1}\right]$ is divisible by 13 , then show that $\left[12^{n+1}+25^{n}\right]$ is also divisible by 13 .
11. If $\left[n^{3}+(n+1)^{3}+(n+2)^{3}\right]$ is also divisible by 9 . then show that, $\left[(n+1)^{3}+(n+2)^{3}+(n+3)^{3}\right]$ is also divisible by 9 .

- Watch Video Solution

12. If $n \in N, x>-1$ and $(1+x)^{n} \geq 1+n x$, then prove that $(1+x)^{n+1} \geq 1+(n+1) x$.

- Watch Video Solution

13. Let $f(n)=n(n+1)(2 n+1)$, if $\mathrm{f}(\mathrm{n})$ is always divisible ny 6 then prove that, $\mathrm{f}(\mathrm{n}+1)$ is also divisible ny 6 .

- Watch Video Solution

14. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that, $1+3+5+\ldots+(2 n-1)=n^{2}$.
15. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that, $a+(a+d)+(a+2 d)+\ldots$ to n terms $=\frac{n}{2}[2 a+(n-1) d]$.

- Watch Video Solution

16. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that, $\sin x+\sin 2 x+\sin 3 x+\ldots+\sin n x=\frac{\sin \frac{n+1}{2} x \sin \frac{n x}{2}}{\sin \frac{x}{2}}$

- Watch Video Solution

17. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that, $\sin x+\sin 3 x+\ldots+\sin (2 n-1) x=\frac{\sin ^{2} n x}{\sin x}$

- Watch Video Solution

18. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that, $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta \quad[i=\sqrt{-1}]$.

- Watch Video Solution

19. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that,

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}
$$

- Watch Video Solution

20. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that, $a+a r+a r^{2}+\ldots$ to n terms $=a \cdot \frac{r^{n}-1}{r-1}[r \neq 1]$.

- Watch Video Solution

21. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that, $1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{n}{3}\left(4 n^{2}-1\right)$.
22. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that, $1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots+n(n+1)=\frac{1}{3} n(n+1)(n+2)$.

- Watch Video Solution

23. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that, $2^{2}+5^{2}+8^{2}+\ldots$ to n terms $=\frac{n}{2}\left(6 n^{2}+3 n-1\right)$.

(Watch Video Solution

24. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that, $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}$.

- Watch Video Solution

25. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that,

$$
\frac{1}{1 \cdot 4}+\frac{1}{4 \cdot 7}+\frac{1}{7 \cdot 10}+\ldots \text { to terms }=\frac{n}{3 n+1} .
$$

Watch Video Solution

26. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that,
$\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right) \ldots\left(1-\frac{1}{n+1}\right)=\frac{1}{n+1}$.

- Watch Video Solution

27. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that,
$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots+\frac{1}{1+2+3+\ldots+n}=\frac{2 n}{n+1}$.

- Watch Video Solution

28. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that, $1 \cdot 1!+2 \cdot 2!+3 \cdot 3!+\ldots+n \cdot n!=(n+1)!-1$.
29. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that, $2^{3 n}-1$ is divisible by 7 .

- Watch Video Solution

30. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that, $4^{n}+15 n-1$ is a multiple of 9 .

- Watch Video Solution

31. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that, $2 \cdot 7^{n}+3 \cdot 5^{n}-5$ is divisible by 24 .

- Watch Video Solution

32. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that, $15^{2 n-1}+1$ is divisible by 16 .

Watch Video Solution

33. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that, $12^{n}+25^{n-1}$ is divisible by 13 .

- Watch Video Solution

34. For what natural numbers n the inequality $2^{n}>2 n+1$ is valid ?

- Watch Video Solution

35. $3^{2 n+2}-8 n-9$ is divisible by

- Watch Video Solution

36. If $n \in \mathbb{N}$, then by principle of mathematical induction prove that, $10^{n}+3 \cdot 4^{n+2}+5 \quad[n \geq 0]$ is divisible by 9.

- Watch Video Solution

37. If $n \in \mathbb{N}$, then by principle of mathematical induction prove that, $3^{4 n+1}+2^{2 n+2} \quad[n \geq 0]$ is a multiple of 7.

- Watch Video Solution

38. If $n \in \mathbb{N}$, then by principle of mathematical induction prove that, $3^{2 n+2}-8 n-9$ is divisible by 64 .

- Watch Video Solution

39. If $n \in \mathbb{N}$, then by principle of mathematical induction prove that,
$7+77+777+\ldots$ to n terms $=\frac{7}{81}\left(10^{n+1}-9 n-10\right)$.
40. If $n \in \mathbb{N}$, then by principle of mathematical induction prove that,
$1+2+3+\ldots .+n<\frac{1}{8}(2 n+1)^{2}$.

- Watch Video Solution

41. If $n \in \mathbb{N}$, then by principle of mathematical induction prove that,
$1^{2}+2^{2}+3^{2}+\ldots .+n^{2}>\frac{n^{3}}{3}$.

- Watch Video Solution

42. If $n \in \mathbb{N}$, then by princuple of mathematical induction prove that, $\frac{1}{5} n^{5}+\frac{1}{3} n^{3}+\frac{1}{15} \cdot 7 n$ is an integer.

- Watch Video Solution

43. If $n \in \mathbb{N}$, then by princuple of mathematical induction prove that, $\frac{n^{11}}{11}+\frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{62 n}{165}$ is an integer.

- Watch Video Solution

44. If $n \in \mathbb{N}$, then by princuple of mathematical induction prove that, $n \cdot 1+(n-1) \cdot 2+(n-2) \cdot 3+\ldots+2 \cdot(n-1)+1 \cdot n=\frac{1}{6} n(n+1)$

- Watch Video Solution

45. If $n \in \mathbb{N}$, then by principle of mathematical induction prove that, Prove that $2+\sqrt{2+\sqrt{2+\sqrt{2+\ldots n \text { times }}}}<4$, for all integers $n \geq 1$.

- Watch Video Solution

46. If $n \in \mathbb{N}$, then by principle of mathematical induction prove that, Use mathematical induction to prove

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \ldots\left(1-\frac{1}{(n+1)^{2}}\right)=\frac{n+2}{2 n+2}
$$

for all positive integers n .

- Watch Video Solution

47. If $n \in \mathbb{N}$, then by princuple of mathematical induction prove that,
$2+222+22222+\ldots+22 \ldots\{(2 n-1)$ digits $\}=\frac{20}{891}\left(10^{2 n}-1\right)-\frac{2 n}{9}$ for all positive integers n .

- Watch Video Solution

48. If $n \in \mathbb{N}$, then by principle of mathematical induction prove that,
$.{ }^{n} C_{0}+.{ }^{n} C_{1}+.{ }^{n} C_{2}+\ldots+. .{ }^{n} C_{n}=2^{n}(n \in \mathbb{N})$

- Watch Video Solution

49. If x and are two real numbers, then prove by mathematical induction that $\left(x^{n}-y^{n}\right)$ is divisible by $(x-y)$ for all $n \in \mathbb{N}$.

- Watch Video Solution

50. By induction method prove that, $\left(a^{n}+b^{n}\right)$ is divisible by ($\mathrm{a}+\mathrm{b}$) when n is an odd positive integer.

- Watch Video Solution

$$
\begin{aligned}
& \text { 51. } \begin{array}{c}
\text { If } \\
(2 \cdot 1+1)+(2 \cdot 2+1)+(2 \cdot 3+1)+\ldots+(2 \cdot n+1)=n^{2}+2 n+5
\end{array}
\end{aligned}
$$ is true for $n=m$, then prove that it is also true for $n=m+1$. Can we conclude that is is true for all $n \in \mathbb{N}$?

- Watch Video Solution

52. Prove by induction method that $n\left(n^{2}-1\right)$ is divisible by 24 when n is an odd positive integer.

- Watch Video Solution

53. Find the positive integer n for which the inequality $2^{n}>n^{2}$ is true.

- Watch Video Solution

54. Prove by the method of mathematica induction that for all $n \in \mathbb{N}, 3^{2 n}$ when divided by 8 , the remainder is always 1 .

- Watch Video Solution

55. Prove by induction that $5^{n+1}+4 \cdot 6^{n}$ when divided by 20 leaves the same remainder 9 for all $n \in \mathbb{N}$.
56. Prove by induction that $2^{2^{n}}+1$ has 7 in unit's place for all $n \geq 2$.

Watch Video Solution

57. Using mathematical induction prove that for every integer $n,|\sin n x| \leq n|\sin x|$.

- Watch Video Solution

Sample Questions For Competitive Exams

1. If for all $n \in \mathbb{N}$ and $n \geq 1$, then $\left(3^{2^{n}}-1\right)$ is always divisible by
A. 2^{n+2}
B. 2^{n-2}
C. 8
D. 9

Answer: A: C

- Watch Video Solution

2. If $n \in \mathbb{N}$, both expression $n(n+1)(n+2)$ and $n(n+1)(n+5)$ are multiple of -
A. 5
B. 2
C. 3
D. 6

Answer: B::C::D

3. The value of n for which $n!>2^{n}$ will true, are -
A. 6
B. 3
C. 4
D. 5

Answer: A::C::D

- Watch Video Solution

4. If n is even then the expression $n\left(n^{2}+20\right)$ is divisible by the numbers, are -
A. $\frac{2^{3}}{6^{-1}} \times(7 \times 5)^{\circ}$
B. $\frac{3^{2}}{6^{-1}}-\left(5+5^{\circ}\right)$
C. 96
D. 48

- Watch Video Solution

5. If $p \in \mathbb{N}$ then the expression $p^{n+1}+(p+1)^{2 n-1}$ is divisible by the expressions are -
A. $p^{2}+p+1$
B. $p^{2}+p$
C. $\frac{\left(p^{4}+p^{2}+1\right)}{\left(p^{2}-p+1\right)}$
D. $p^{2}+1$

Answer: A::C

- Watch Video Solution

6. $10^{n}+3 \cdot 4^{2}+5$ is always divisible by the number -
A. 9
B. 13
C. 21
D. 11

Answer: A

D Watch Video Solution

7. $3^{2 n}$ when divided by 8 leves the remainder-

- Watch Video Solution

8. If n be a positive integer, then the digit in the unit's place of $3^{2 n-1}+2^{2 n-1}$ is -

- Watch Video Solution

9. For a positive integer $n, n(n+1)(2 n+1)$ when divided by 6 leaves the remainder -

- Watch Video Solution

10. $n \in \mathbb{N},(n+1)^{3}+(n+2)^{3}+(n+3)^{3}$ when divided by 9 , then the remainder will be -

- Watch Video Solution

11. Match the entries given in left column with those given in right column.

Column I		Column II
© If $n \in \mathbb{N}$, then $4^{n}+15 n-1$ is divisible by	(p)	8
B If 1 is added with the sum of the squares of three consecutive natural numbers, then the expression is divisible by	(q)	9
(c) $2 \cdot 7^{n}+3 \cdot 5^{n}-5(n \geqslant 1)$ is divisible by	(r)	12
(D) $3^{2 n+2}-8 n-9(n \geqslant 1)$ is divisible by	(s)	25
(E) When n is a natural number, then $7^{2 n}+\left(2^{3 n-3}\right) \cdot\left(3^{n-1}\right)$ is always divisible by	(t)	24

Watch Video Solution

12. Match the entries given in left column with those given in right column.

2.	Column I		Column II
	$\begin{aligned} & \frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\cdots \\ & +\frac{1}{(2 n-1)(2 n+1)}= \end{aligned}$	(p)	$\frac{n}{3 n+1}$
(B)	$\begin{aligned} & 1+\frac{1}{1+2}+\frac{1}{1+2+3}+\cdots \\ & +\frac{1}{1+2+3+\cdots+n}= \end{aligned}$	(q)	$\frac{12}{5}\left(6^{n}-1\right)$
(C)	$\begin{aligned} & \frac{1}{1 \cdot 4}+\frac{1}{4 \cdot 7}+\frac{1}{7 \cdot 10}+\cdots \\ & +\frac{1}{(3 n-2)(3 n+1)}= \end{aligned}$	(r)	$(n-1) 2^{n+1}+2$
(D)	$\begin{aligned} 1 \cdot 2+2 \cdot 2^{2}+3 \cdot 2^{3}+\cdots & \\ & +n \cdot 2^{n+1}= \end{aligned}$	(s)	$\frac{n}{2 n+1}$
(E)	$\begin{aligned} & 3 \cdot 2^{2}+3^{2} \cdot 2^{3}+3^{3} \cdot 2^{4}+\cdots \\ &+3^{n} \cdot 2^{n+1}= \end{aligned}$	(t)	$\frac{2 n}{n+1}$

- Watch Video Solution

13. $P(n): 11^{n+2}+1^{2 n+1}$ where n is a positive integer $p(n)$ is divisible by -
A. 2
B. 7
C. 23
D. 9

Answer: B

- Watch Video Solution

14. $P(n): 11^{n+2}+1^{2 n+1}$ where n is a positive integer If $P(n)=14642$, then the value of n is -
A. 3
B. 4
C. 5

D. 2

Answer: D

- Watch Video Solution

15. $P(n): 11^{n+2}+1^{2 n+1}$ where n is a positive integer

If $n=3$, then the last digit of expression is -
A. 5
B. 2
C. 9
D. 6

Answer: C

16. If n be a positive integer and $P(n): 4^{5 n}-5^{4 n}$ $P(n)$ is divisible by -
A. 399
B. 401
C. 397
D. 430

Answer: A

- Watch Video Solution

17. If n be a positive integer and $P(n): 4^{5 n}-5^{4 n}$

If $P(n)$ be negative value, then the value of n is -
A. 4
B. 5
C. 7
D. none of these

Answer: D

- Watch Video Solution

18. If n be a positive integer and $P(n): 4^{5 n}-5^{4 n}$

When $n=3$ then the last digit of the expression will be -
A. 4
B. 9
C. 6
D. 1

Answer: B

19. $\lim _{n \rightarrow \infty}\left[\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{2 n}}+\frac{1}{\sqrt{3 n}}+\ldots+\frac{1}{n}\right]$
A. Statement-I is true, Statement -II is true and Statement -II is a correct explanation for Statement - I.
B. Statement -I is true, Statement-II is true but Statement -II is not a correct explanation of Statement -I .
C. Statement -I is true, Statement -II is false.
D. Statement -I is false, Statement - II is true.

Answer: B

- Watch Video Solution

20. Statement - I : For every natural number $\frac{(n+4)!}{(n+1)!}$ is divisible by 6 .

Statement - II : Product of three consective natural numbers is divisible by
A. Statement-I is true, Statement -II is true and Statement -II is a correct explanation for Statement-I.
B. Statement $-I$ is true, Statement-II is true but Statement $-I I$ is not a correct explanation of Statement - I.
C. Statement $-I$ is true, Statement -II is false.
D. Statement -I is false, Statement - II is true.

Answer: B

- Watch Video Solution

