

MATHS

BOOKS - CHHAYA MATHS (BENGALI ENGLISH)

MATHEMATICAL INDUCTION

Illustrative Example

1. Prove by mathematical induction that the sum of the squares of first n natural numbers is $rac{1}{6}n(n+1)(2n+1).$

Watch Video Solution

2. By principle of mathematical induction,prove that
$$1^3+2^3+3^3+\ldots+n^3=\left[rac{n(n+1)}{2}
ight]^2$$
 for all $n\in\mathbb{N}$

7. Prove by induction that

$$rac{1}{1\cdot 3} + rac{1}{3\cdot 5} + rac{1}{5\cdot 7} + \ldots + rac{1}{(2n-1)(2n+1)} = rac{n}{2n+1} (n\in\mathbb{N}).$$

Watch Video Solution

8. If $n\geq 3$ is an integer, prove by mathmatical induction that, $2n+1<2^n.$

9. If $n \geq 4$ is an integer,prove by induction that $n^2 < n$!.

13. If p be a natural number, then prove that, $p^{n+1} + (p+1)^{2n-1}$ is divisible by $\left(p^2 + p + 1\right)$ for every positive integer n.

Watch Video Solution

14. By mathematical induction prove that,

 $1\cdot 2 + 2\cdot 2^2 + 3\cdot 2^3 + \ldots + n\cdot 2^n = (n-1)\cdot 2^{n+1} + 2, n\in \mathbb{N}.$

Watch Video Solution

15. By mathematical indcution prove that,

$$4 + 44 + 444 + \dots$$
 to n terms $= \frac{4}{81} (10^{n+1} - 9n - 10).$

Watch Video Solution

16. If $n \geq 2$ is an integer, prove by induction that,

$$1+rac{1}{4}+rac{1}{9}+\ldots\,+rac{1}{n^2}<2-rac{1}{n}$$

17. If n>1 is an integer, prove induction that,

$$\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} > \frac{13}{24}.$$

Watch Video Solution

18. Prove by mathematical induction that $\left(11^{n+2}+12^{2n+1}
ight)$ is divisible by

133 for all non-negative integers.

Watch Video Solution

19. Let P(n) be the statement : $2^n > 3n$. IF P(m) is true, show that, P(m+1)

is true. Do you conclude that, P(n) is true for all $n\in\mathbb{N}$?

20. Using mathematical induction prove that,

$$\cos heta+\cos2 heta+\ldots+\cos n heta=rac{\cosrac{n+1}{2} heta\sinrac{n heta}{2}}{\sinrac{ heta}{2}}.$$

Watch Video Solution

$$\cos heta\cos 2 heta\cos 2^2 heta\ldots\cos 2^n heta=rac{\sin 2^{n+1} heta}{2^{n+1}\sin heta}.$$

Watch Video Solution

22. By induction prove that, $7^{2n} + 2^{3(n-1)} \cdot 3^{n-1}$ is a multiple of 25 for

all $n \in \mathbb{N}$.

Watch Video Solution

23. By mathematical induction prove that,
$$rac{n^7}{7}+rac{n^5}{5}+rac{2n^3}{3}-rac{n}{105}$$
 is an

integer for all $n \in \mathbb{N}$.

Watch Video Solution

26. Using mathematical induction prove that for every integer $n\geq 1,$ $\left(3^{2^n}-1
ight)$ is divisible by 2^{n+2} but not by $2^{n+3}.$

27. Prove by mathematical induction that, $2n+7 < (n+3)^2$ for all $n \in \mathbb{N}.$

28. Prove by the principle of mathematical induction that when every even power of every odd integer greater than 1 is divided by 8, the remainder is always 1.

Watch Video Solution

Exercise

1. The sum of first n numbers is -

A. n

$$\mathsf{B.}\,\frac{n(n+1)}{2}$$

C.
$$rac{1}{6}n(n+1)(2n+1)$$

D. $\left[rac{n(n+1)}{2}
ight]^2$

Answer: B

 $\wedge m^2$

Watch Video Solution

2. The sum of the squares of first n natural numbers is -

)

H.
$$n$$

B. $\frac{n(n+1)}{2}$
C. $\frac{1}{6}n(n+1)(2n+1)$
D. $\left[\frac{n(n+1)}{2}\right]^2$

Answer: C

3. The sum of the cubes of first n natural numbers is -

A.
$$n^3$$

B. $\frac{n(n+1)}{2}$
C. $\frac{1}{6}n(n+1)(2n+1)$
D. $\left[\frac{n(n+1)}{2}\right]^2$

Answer: D

Watch Video Solution

4. State which of the following statement is true ?

A. If a mathematical relation involving the natural number n is true for

all $n \in \mathbb{N}$.

B. A mathematical statement may be true or false.

C. $\left(n^2+n+41
ight)$ is a prime number for all natural number n.

D. If $n \in \mathbb{N}$ and $n \geq 2$. Then n n(n+1) is always divisible by 3.

Answer: B

divisible by 7.

7. If $1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots + n \cdot n! = (n+1)! - 1$ then show

that,

 $1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots + n \cdot n! + (n+1)(n+1)! = (n+2)! - 1$

8. If $\left(10^{2n-1}+1
ight)$ is divisible by 11, then prove that $\left(10^{2n+1}+1
ight)$ is also

divisible by 11.

O Watch Video Solution

9. If $\left(15^{2n-1}+1
ight)$ is divisible by 16, then show that $\left(15^{2n+1}+1
ight)$ is also divisible by 16.

Watch Video Solution

10. If $[12^n + 25^{n-1}]$ is divisible by 13, then show that $[12^{n+1} + 25^n]$ is also divisible by 13.

11. If $\left[n^3 + (n+1)^3 + (n+2)^3\right]$ is also divisible by 9. then show that, $\left[(n+1)^3 + (n+2)^3 + (n+3)^3\right]$ is also divisible by 9.

Watch Video Solution

12. If $n\in N, x>-1$ and $(1+x)^n\geq 1+nx$, then prove that $(1+x)^{n+1}\geq 1+(n+1)x.$

Watch Video Solution

13. Let f(n) = n(n+1)(2n+1), if f(n) is always divisible ny 6 then

prove that, f(n+1) is also divisible ny 6.

Watch Video Solution

14. For all $n\in\mathbb{N}$, prove by principle of mathematical induction that,

$$1+3+5+\ldots + (2n-1) = n^2$$

$$a + (a + d) + (a + 2d) + \ldots$$
 to n terms $= rac{n}{2} [2a + (n - 1)d].$

Watch Video Solution

16. For all $n\in\mathbb{N}$, prove by principle of mathematical induction that,

$$\sin x + \sin 2x + \sin 3x + \ldots + \sin nx = \frac{\sin \frac{n+1}{2}x\sin \frac{nx}{2}}{\sin \frac{x}{2}}$$

Watch Video Solution

17. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that,

$$\sin x + \sin 3x + \ldots + \sin (2n-1)x = rac{\sin^2 nx}{\sin x}$$

18. For all
$$n \in \mathbb{N}$$
, prove by principle of mathematical induction that,

$$(\cos heta+i\sin heta)^n=\cos n heta+i\sin n heta \quad ig[i=\sqrt{-1}ig].$$

$$rac{1}{2}+rac{1}{4}+rac{1}{8}+\ldots\,+rac{1}{2^n}=1-rac{1}{2^n}.$$

Watch Video Solution

20. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that,

$$a+ar+ar^2+\dots$$
 to n terms $=a\cdot rac{r^n-1}{r-1}[r
eq 1].$

Watch Video Solution

21. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that,

$$1^2+3^2+5^2+\ldots\,+(2n-1)^2=rac{n}{3}ig(4n^2-1ig).$$

$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + n(n+1) = \frac{1}{3}n(n+1)(n+2).$$

Watch Video Solution

23. For all $n\in\mathbb{N}$, prove by principle of mathematical induction that,

$$2^2+5^2+8^2+\ldots$$
 to n terms $=rac{n}{2}ig(6n^2+3n-1ig).$

Watch Video Solution

24. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that, $rac{1}{1\cdot 2}+rac{1}{2\cdot 3}+rac{1}{3\cdot 4}+\ldots+rac{1}{n(n+1)}=rac{n}{n+1}.$

$$rac{1}{1\cdot 4}+rac{1}{4\cdot 7}+rac{1}{7\cdot 10}+\ldots$$
 to terms $=rac{n}{3n+1}.$

Watch Video Solution

26. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that,

$$\left(1-rac{1}{2}
ight)\left(1-rac{1}{3}
ight)\left(1-rac{1}{4}
ight)\ldots\left(1-rac{1}{n+1}
ight)=rac{1}{n+1}$$

Watch Video Solution

27. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that,

$$1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \ldots + \frac{1}{1+2+3+\ldots+n} = \frac{2n}{n+1}.$$
Watch Video Solution

28. For all $n\in\mathbb{N}$, prove by principle of mathematical induction that,

$$1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots + n \cdot n! = (n+1)! - 1.$$

 $2^{3n}-1$ is divisible by 7.

Watch Video Solution

30. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that,

 $4^n + 15n - 1$ is a multiple of 9.

Watch Video Solution

31. For all $n \in \mathbb{N}$, prove by principle of mathematical induction that,

 $2 \cdot 7^n + 3 \cdot 5^n - 5$ is divisible by 24.

 $15^{2n-1} + 1$ is divisible by 16.


```
34. For what natural numbers n the inequality 2^n > 2n+1 is valid ?
```


35. $3^{2n+2}-8n-9$ is divisible by

36. If $n \in \mathbb{N}$, then by principle of mathematical induction prove that,

 $10^n+3\cdot 4^{n+2}+5 \quad [n\geq 0]$ is divisible by 9.

37. If $n \in \mathbb{N}$, then by principle of mathematical induction prove that,

 $3^{4n+1}+2^{2n+2}$ $[n\geq 0]$ is a multiple of 7.

Watch Video Solution

38. If $n \in \mathbb{N}$, then by principle of mathematical induction prove that,

 $3^{2n+2}-8n-9$ is divisible by 64.

39. If $n \in \mathbb{N}$, then by principle of mathematical induction prove that,

$$7 + 77 + 777 + \dots$$
 to n terms $= rac{7}{81} ig(10^{n+1} - 9n - 10 ig).$

40. If $n \in \mathbb{N}$, then by principle of mathematical induction prove that,

$$1+2+3+....+n < rac{1}{8}(2n+1)^2.$$

Watch Video Solution

41. If $n \in \mathbb{N}$, then by principle of mathematical induction prove that,

$$1^2+2^2+3^2+....+n^2>rac{n^3}{3}.$$

Watch Video Solution

42. If $n \in \mathbb{N}$, then by princuple of mathematical induction prove that,

$$rac{1}{5}n^5+rac{1}{3}n^3+rac{1}{15}\cdot 7n$$
 is an integer.

43. If $n \in \mathbb{N}$, then by princuple of mathematical induction prove that,

$$rac{n^{11}}{11} + rac{n^5}{5} + rac{n^3}{3} + rac{62n}{165}$$
 is an integer.

Watch Video Solution

44. If $n \in \mathbb{N}$, then by princuple of mathematical induction prove that,

 $n \cdot 1 + (n-1) \cdot 2 + (n-2) \cdot 3 + \ldots + 2 \cdot (n-1) + 1 \cdot n = rac{1}{6}n(n+1)$

Watch Video Solution

45. If $n \in \mathbb{N}$, then by principle of mathematical induction prove that,

Prove that $2+\sqrt{2+\sqrt{2+\sqrt{2+\ldots n}}}$ times <4, for all integers $n\geq 1.$

46. If $n \in \mathbb{N}$, then by principle of mathematical induction prove that,

Use mathematical induction to prove

$$\left(1-rac{1}{2^2}
ight) \left(1-rac{1}{3^2}
ight) \left(1-rac{1}{4^2}
ight) \ldots \left(1-rac{1}{\left(n+1
ight)^2}
ight) = rac{n+2}{2n+2}$$

for all positive integers n.

Watch Video Solution

47. If $n\in\mathbb{N}$, then by princuple of mathematical induction prove that,

 $2+222+22222+\ldots +22\ldots \{(2n-1) ext{digits}\} = rac{20}{891} ig(10^{2n}-1ig) - rac{2n}{9}$

for all positive integers n.

Watch Video Solution

48. If $n \in \mathbb{N}$, then by principle of mathematical induction prove that,

 $.^n \, C_0 + .^n \, C_1 + .^n \, C_2 + \ldots \, + .^n \, C_n = 2^n (n \in \mathbb{N})$

49. If x and are two real numbers, then prove by mathematical induction

that (x^n-y^n) is divisible by (x-y) for all $n\in\mathbb{N}.$

51. If $n \in \mathbb{N}$ and $(2 \cdot 1 + 1) + (2 \cdot 2 + 1) + (2 \cdot 3 + 1) + \ldots + (2 \cdot n + 1) = n^2 + 2n + 5$

is true for n=m, then prove that it is also true for n=m+1. Can we conclude

that is is true for all $n\in\mathbb{N}$?

52. Prove by induction method that $n(n^2 - 1)$ is divisible by 24 when n is

an odd positive integer.

Sample Questions For Competitive Exams

1. If for all $n\in\mathbb{N}$ and $n\geq 1$, then $\left(3^{2^n}-1
ight)$ is always divisible by

A.
$$2^{n+2}$$

B. 2^{n-2}

C. 8

Answer: A::C

2. If $n \in \mathbb{N}$, both expression n(n+1)(n+2) and n(n+1)(n+5) are multiple of -

A. 5 B. 2 C. 3

D. 6

Answer: B::C::D

3. The value of n for which $n! > 2^n$ will true, are -

A. 6 B. 3 C. 4

D. 5

Answer: A::C::D

Watch Video Solution

4. If n is even then the expression $nig(n^2+20ig)$ is divisible by the numbers,

are -

A.
$$rac{2^3}{6^{-1}} imes (7 imes 5)^\circ$$

B. $rac{3^2}{6^{-1}}-(5+5^\circ)$
C. 96

D. 48

Answer: A::B::D

5. If $p\in \mathbb{N}$ then the expression $p^{n+1}+(p+1)^{2n-1}$ is divisible by the expressions are -

A.
$$p^2 + p + 1$$

B. $p^2 + p$
C. $\frac{\left(p^4 + p^2 + 1
ight)}{\left(p^2 - p + 1
ight)}$
D. $p^2 + 1$

Answer: A::C

6. $10^n + 3 \cdot 4^2 + 5$ is always divisible by the number -

A. 9	
B. 13	
C. 21	
D. 11	

Answer: A

7. 3^{2n} when divided by 8 leves the remainder-

Watch Video Solution

8. If n be a positive integer, then the digit in the unit's place of $3^{2n-1} + 2^{2n-1}$ is -

9. For a positive integer n, n(n+1)(2n+1) when divided by 6 leaves

the remainder -

10. $n\in\mathbb{N},$ $\left(n+1
ight)^{3}+\left(n+2
ight)^{3}+\left(n+3
ight)^{3}$ when divided by 9, then the

remainder will be -

Watch Video Solution

11. Match the entries given in left column with those given in right column.

]	Column I		Column II
Á	If $n \in \mathbb{N}$, then 4^n + 15 n – 1 $$ is divisible by	(p)	8
₿	If 1 is added with the sum of the squares of three consecutive natural numbers, then the expression is divisible by	(q)	9
C	$2 \cdot 7^n + 3 \cdot 5^n - 5(n \ge 1)$ is divisible by	(r)	12
D	$3^{2n+2} - 8n - 9(n \ge 1)$ is divisible by	(s)	25
E	When <i>n</i> is a natural number, then $7^{2n} + (2^{3n-3}) \cdot (3^{n-1})$ is always divisible by	(t)	24

12. Match the entries given in left column with those given in right column.

	and the second					
2.	Column I		Column II			
٨	$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \cdots$	(p)	$\frac{n}{3n+1}$			
₿	$+\frac{1}{(2n-1)(2n+1)} =$					
	$1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots$ $+ \frac{1}{1+2+3+\dots+n} =$	(q)	$\frac{12}{5}(6^n - 1)$			
C	$\frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \frac{1}{7 \cdot 10} + \cdots$	(r)	$(n-1)2^{n+1}+2$			
	$+\frac{1}{(3n-2)(3n+1)}=$					
D	$1 \cdot 2 + 2 \cdot 2^2 + 3 \cdot 2^3 + \cdots + n \cdot 2^{n+1} =$	(s)	$\frac{n}{2n+1}$			
E	$3 \cdot 2^2 + 3^2 \cdot 2^3 + 3^3 \cdot 2^4 + \dots$ + $3^n \cdot 2^{n+1} =$	(t)	$\frac{2n}{n+1}$			

13. P(n) : $11^{n+2} + 1^{2n+1}$ where n is a positive integer

p(n) is divisible by -

A. 2

B. 7

C. 23

D. 9

Answer: B

Watch Video Solution

14. P(n) : $11^{n+2} + 1^{2n+1}$ where n is a positive integer

If P(n) = 14642, then the value of n is -

A. 3

B. 4

C. 5

Answer: D

15. P(n) : $11^{n+2} + 1^{2n+1}$ where n is a positive integer

If n=3, then the last digit of expression is -

A. 5

B. 2

C. 9

D. 6

Answer: C

16. If n be a positive integer and P(n) : $4^{5n} - 5^{4n}$

P(n) is divisible by -

A. 399

B. 401

C. 397

D. 430

Answer: A

Watch Video Solution

17. If n be a positive integer and P(n) : $4^{5n} - 5^{4n}$

If P(n) be negative value, then the value of n is -

A. 4

B. 5

C. 7

D. none of these

Answer: D

18. If n be a positive integer and P(n) : $4^{5n} - 5^{4n}$

When n=3 then the last digit of the expression will be -

A. 4 B. 9 C. 6

D. 1

Answer: B

19.
$$\lim_{n \to \infty} \left[\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{2n}} + \frac{1}{\sqrt{3n}} + ... + \frac{1}{n} \right]$$

A. Statement-I is true, Statement -II is true and Statement -II is a correct explanation for Statement - I.

B. Statement -I is true, Statement-II is true but Statement -II is not a

correct explanation of Statement - I.

C. Statement - I is true, Statement - II is false.

D. Statement -I is false, Statement - II is true.

Answer: B

Watch Video Solution

20. Statement - I : For every natural number $\frac{(n+4)!}{(n+1)!}$ is divisible by 6.

Statement - II : Product of three consective natural numbers is divisible by

A. Statement-I is true, Statement -II is true and Statement -II is a

correct explanation for Statement - I.

B. Statement -I is true, Statement-II is true but Statement -II is not a

correct explanation of Statement - I.

C. Statement -I is true, Statement - II is false.

D. Statement - I is false, Statement - II is true.

Answer: B