© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - CHHAYA PHYSICS (BENGALI

ENGLISH)

DOPPLER EFFECT IN SOUND

Example

1. The frequency of the whlstle of a train Is 512

Hz . The train crosses a station at a speed of 72
$\mathrm{km} . h^{-1}$ Calculate the frequency of the sound heard by a listener, standing on the platform , before and after the train crosses the station.

Neglect the effect of wind. Velocity of sound is $336, \mathrm{~m} s^{-1}$.

- Watch Video Solution

2. A sound of frequency 512 Hz is emitted from a
stationary source . A train running at a speed of
$72 \mathrm{~km} \cdot h^{-1}$ passes the source. What will be the
frequency of the sound heard by a passenger of the train before and after passing the source ?

Neglect the effect of wind. Velocity of sound is $336 . \mathrm{ms}^{-1}$.

D Watch Video Solution

3. When a train approaches a listener, the apparent frequency of the whistle is 100 Hz , while the frequency appears to be 50 Hz when the train recedes. Calculate the frequency when the listener is in the train .
4. Two engines pass each other in opposite directions. One of them blows a whistle of frequency 540 Hz .

Find the freqauencies heard by a passenger sitting on the other engine before and after passing each other .

Velocity of both engines $=72 k m h^{-1}$, velocity of sound $=340 \mathrm{~ms}^{-1}$.
(D) Watch Video Solution
5. A cr travelling at a speed of $36 h^{-1}$ sounds its horn of frequency 500 Hz . It is heard by the dirver of another car which is travelling behind the frist car in the same directrion with a velocity of $20 m s \cdot s^{-1}$.

Another sound is heard by the driver of the secound car after reflection from a bridge ahead. What will be the frequencies of the two sounds heards heard by the drive of the Sound travels in air with a speed of $340 m \cdot S(-1)$.
6. Each of two persons has a whistle of frequency 500 Hz . One person is at rest at a particular place nad the second person recedes
from him with a velocity of $1.8 m \cdot s^{-1}$

If both of them blow whistles, how many beats
will be heard by each of them ? Velocity of sound $=330 \mathrm{~m} \mathrm{~s}^{-1}$

- Watch Video Solution

7. A siren placed at a railway platform is emitting sound of frequency 5 KHz .

A passenger sitting in a moving train A records
a frequency of 5.5 KHz while the train approaches the siren. During his return journey in a different train B he records a frequency of 6.0 KHz while approaching the same siren . what is the ration of velocity of train B to that of train A ?

- Watch Video Solution

8. A railway track and road are in mutually perpendicular . A train is approaching the railway crossing with a speed $80 \mathrm{~km} / \mathrm{h}$.

When the train is at a distance 1 km from the crossing it blows whistle of frequency 400 Hz which frequency of sound will be heard by a man on a road at a distance 600 m from the crossing $?$ volecity of sound $=330 \mathrm{~m}^{-1}$.

(D) Watch Video Solution

Higher Order Thinking Skill Hots Questions

1. Each of two men A and B is carrying a source
of sound of frequency n. If A approaches B with
a velocity u
how many beats per sound will be heard by A and B

D Watch Video Solution

2. Each of two men A and B is carrying a source of sound of frequency n. If A approaches B with
a velocity u
how many beats per second will be heard by B ?
(Velocity of sound =c)
3. A car is approaching a hill at a high speed. At that time, it the horm of the car is blown, that driver hears the echo sharper than the original sound. Explain the reason.

D Watch Video Solution

4. Certain characteristic wavelength in the light
from a galaxy has a longer wavelength compared to that from a terrestrial source. Is the galaxy approaching or receding ?
5. Show that the approaches frequency f^{\prime} of a source of sound moving with a speed v_{s} towards a stationary receiver if $f^{\prime}=\frac{f c}{c-v_{s}}$, where c is the velocity of sound and f is the frequency.

D View Text Solution

6. two sources, each emitting a sound of wavelength λ, are kept at a fixed distance. How
many number of beats will be heard by a
listener moving a velocity u along the line joining the two sources ?

D Watch Video Solution

7. A car is moving towards a high cliff. The car driver sounds a horn of frequency f. The reflected sound heard by the driver has frequency $2 f$. If v is the velocity of sound, what will be the velocity of the car?
8. What should be the velocity of a source of sound so that the apparent frequency to a listener will be half the actual frequency of the source? Velocity of sound in air = v .

D Watch Video Solution

9. What should be the velocity of a source of sound so that the apparent frequency to a
listener will be twice the actual frequency of the source? Velocity of sound in air $=v$.
10. What should be the velocity of a listener so
that the apparent frequency of the sound coming from a stationary source to him will be twice the actual frequency ? Velocity of sound in air $=\mathrm{v}$.

D Watch Video Solution
11. Doppler effect given an idea of a continuously expanding universe-explain .
12. A listener moving with constant velocity passes a statlonary source. Draw a graph to show the change of apparent frequency of the source to the listener with time . Actual frequency of source is n.

- View Text Solution

13. Both of a sound source and a listener are approaching towards each other with the same
speed $\frac{c}{10}$ (speed of sound in air $=c$). What will be the percentage of apparent increase or decrease in frequency of sound ?

D Watch Video Solution

14. A band music at a frequency f is moving towards a wall at a speed v_{b}. A motorist is following the band with a speed v_{m}. If v is the speed of sound, obtain an expression for the beat frequency heard by the motorist .
15. Why Doppler effect is cleary realised in case of sound but not in case of light wave?

- View Text Solution

Exercise

1. A source of sound with frequency 256 Hz is
moving with a velocity v towards a wall and an
oberver is stationary between the source and
wall. When the observer is between the source
and the wall
A. he will hear beats

B. he will hear no beats

C. he will not get any sound
D. he will get the sound of same frequency

Answer:

D Watch Video Solution

2. The frequency of a progressive wave may change due to

A. reflection

B. refraction

C. interference

D. Doppler effect

Answer:

D Watch Video Solution

3. A train blowing a whistle of frequency 1000

Hz is moving with uniform velocity from west to
east. The apparent frequency of the sound of
the whistle to a stationary listener is 990 Hz .

The position of the listener relative to the train is
A. on the north
B. on the south
C. on the east
D. on the west

Answer:

4. A source of sound and a listener are moving in the same direction with the same velocity. If the actual frequency of sound is 200 Hz , the apparent frequency of the sound to the listener is
A. 200 Hz
B. less then 200 Hz
C. greater then 200 Hz
D. none of these

Answer:

5. A bus is moving towards a hugs wall with a
velocity $5 . \mathrm{m} s^{-1}$. The driver sounds a horn of frequency 200 Hz . The beat frequency heard by the passenger will be
A. 4
B. 6
C. 8
D. 2

- Watch Video Solution

6. A motor car sounding a horn is approaching
a large reflector. If the frequency of the horn is
1000 Hz , the frequency of the echo to the driver will be
A. 1000 Hz
B. less then 1000 Hz
C. greater then 1000 Hz
D. none of these

Answer:

D Watch Video Solution

7. An observer standing on a railway crossing receives frequency of 2.2 kHz and 1.8 kHz when the train approaches and recedes from the observer. Speed of the sound in air is $300 . s^{-1}$
. Velocity of the train (in $\mathrm{m} \cdot \mathrm{S}^{\wedge}(-1)^{\text {') }}$)
A. 60
B. 30
C. 90
D. 70

Answer:

D Watch Video Solution

8. A whistle producing sound waves of frequency 9500 Hz and above is approaching a stationary person with speed $v m s^{-1}$. The velocity of sound in air is $300 \mathrm{~ms}^{-1}$. If the person can hear frequencies up to 10000 Hz ,
the maximum value of v upto which he can hear the whistle is

$$
\begin{aligned}
& \text { A. } 16 \sqrt{2} m . s^{-1} \\
& \text { B. } 15 / \sqrt{2} m . s^{-1} \\
& \text { C. } 15 m \cdot s^{-1} \\
& \text { D. } 30 m \cdot s^{-1}
\end{aligned}
$$

Answer:

- Watch Video Solution

9. What do you undersetand by the red shift of

 a star or of a galaxy of stars ?A. they are gradually receding from the earth
B. they are gradually approaching the earth
C. they are stationary
D. none of the above

Answer:
10. When a source of light and a observer approach each other, the apparent change of the wavelength of light is called

A. red shift

B. violet shift
C. blue shift
D. black shift

Answer:

Very Short Answer Type Questions

1. Which property of sound undergoes an apparent change due to Doppler effect ?

D Watch Video Solution

2. When a source moves at a speed greater than
that of sound, will Doppler effect hold ?
3. Will there be a Doppler effect for sound when the source and listner moves at right angle to the line joining them?

D View Text Solution

4. When a source of sound approaches a stationary listener, the sound appears to be ____ to the listener . (Fill in the blank)

- Watch Video Solution

5. When a listener approaches a source of sound, the sound appears to be ___ to the

listener. [Fill in the blank]

D Watch Video Solution

6. The apparent change of frequency of sound due to Doppler effect is called Doppler \qquad
Fill in the blank]
7. If there is a relative motion between a source of light and an observer, a change of colour of the light appears in the eyes of the observer. What is the name of this phenomenon?

D Watch Video Solution

8. When a source of light and an observer move away from each other, the apparent change in
the wavelength of light is called shift .
[Fill in the blank]

Short Answer Type Questions I

1. Two sirens, situated at two places 1 km apart,
are sounding with the same frequency, A man
while moving along the road in between the two sirens heard beats. Explain .
2. What would a person hear, if he moves away
from a source of sound with the speed of sound
?

Watch Video Solution

Short Answer Type Questions li

1. A source produces a sound of frequency n.

Calculate the aparent frequency and Doppler shift in the following cases :

The source is stationary and the listener is receding with velocity u from the source.

D Watch Video Solution

2. A source produces a sound of frequency n.

Calculate the apparent frequency and Doppler shift in the following cases:

The source is stationary and listener is approaching the source with velocity u.
3. A source produces a sound of frequency n.

Calculate the aparent frequency and Doppler shift in the following cases :

The listener is stationary and the source is approaching the listener with velocity u.

D Watch Video Solution

4. When a source of sound passes us, whether
it be a car horn or a train whistle, the pitch we hear goes from high to low. Explain why ? Use any relation to support your explanation .

Problem Set I

1. A sound of frequency 1000 Hz is emitted from
a roadside siren. A car moving along the road with a unifrom velocity of $50 \mathrm{~km} . h^{-1}$ crosses the siren. Calculate the frequency of the siren relative to the pasenger of the car before and after crossing the siren . (Velocity of sound $=$ $340 \mathrm{~m}^{-1}$)
2. A train sounding a horn of frequency 1000 Hz
crosses a station at a unifrom velocity of 50 km
h^{-1} Calculate the frequency of the whistle relative to a listener, standing on the platform, before and after the crossing of the station. (velocity of sound $=340 \mathrm{~m} \mathrm{~s}^{-1}$)

D Watch Video Solution

3. A moter car blows a horn of frequency 100 Hz
. While approaching a large reflector with a
uniform velocity of $50 \mathrm{~km} \mathrm{~h}^{-1}$. Calculate the
frequency of the echo relative to the passenger of the car. (Velocity of sound $=340 \mathrm{~ms}^{-1}$)

D Watch Video Solution

4. A police standing at a place detected a 10%
change in frequency of the sound of a horn of a
fast moving car approaching towards him. If the velocity of sound is $340 \mathrm{~m} \mathrm{~s}^{-1}$, what is the speed of the car?
5. What will be the percentage difference between the frequency of the sound heard by an observer and the actual frequency of the whistle of a train approaching at a speed of 100 $\mathrm{m} s^{-1}$ towards the observer? Velocity of sound in air $=330 \mathrm{~m} \mathrm{~s}^{-1}$

D Watch Video Solution

6. Due to Doppler effect , the shift in wavelenght observed is $0.1 \AA$ for A star
producing a wavelength of $6000 \AA$

What is the velocity of recession of the star ? ${ }^{`}$

- Watch Video Solution

7. A star is moving away from the earth at a velocity of $10^{5} \mathrm{~ms}^{-1}$. What will be the shift in wavelength of the spectral line of length $5700 \AA$ as observed on the earth?

D Watch Video Solution

1. Two trains are approaching each other, each sounding a horn of frequency $n=1000 \mathrm{~Hz}$, with velocities
$v_{1}=10 m s^{-1}$ and $v_{2}=20 m \cdot s^{-1}$
respectively. In this case (i) calculate the
frequency of the second whistle relative to a passenger of the first train and the frequency of the first whistle relative to a passenger of the second train (ii) What will be these two frequencies after the two trains cross each other ? (Velocity of sound $=340 m \cdot s^{-1}$)
2. A bus is moving towards a huge wall with a velocity $5 . \mathrm{m} s^{-1}$. The driver sounds a horn of frequency 200 Hz . How many beats will a passenger of the bus hear? (Speed of sound in air $=342 \mathrm{~m}^{-1}$)

- Watch Video Solution

3. A motor car is moving towards a vertical wall .

The driver observes that the frequency of the
sound of his horn changes from 440 Hz to 480

Hz when it gets reflected from the wall. If the velocity of sound is $330 \mathrm{~ms}^{-1}$, what is the speed of the car?

D Watch Video Solution

4. Two sources, separated by a certain distance,
are each producing a sound of frequency 1360

Hz . A listener from the middle of the two
sources starts moviing towards a source. If the number of beats heards by the listener per
sound is 4, calculate his speed. Velocity of sound in air $=340 \mathrm{~m}^{-1}$

D Watch Video Solution

5. A car is moving towards a high cliff . The car driver sounds a horn of frequency f. The reflected sound heard by the driver has frequency $2 f$. If V is the velocity of sound, what will be the velocity of the car?
6. A police caar moving at $22 \mathrm{~m} . \mathrm{s}^{-1}$ chases a motor cycle. The man in the car sounds his horn at 170 Hz while both of them move towards a stationary siren of frequency 165 Hz .

Calculate the speed of motor cycle if the motor cyclist does not listen any beat .

D View Text Solution

7. A policeman in a car with a siren of frequency

8 kHz is moving with uniform velocity $36 \mathrm{~km} / \mathrm{h}$
towards a tall building which reflects the sound
waves. The speed of sound in air is $320 \mathrm{~m} \mathrm{~s}^{\wedge}(-1)^{\wedge}$
. Calculate the frequency of the siren heard by the car drive

D Watch Video Solution

Hots Numberical Problem

1. A band playing music at frequency f is moving
towards a wall at a speed of v_{b}. A motorist is following the band with a speed of v_{m}. If v is
the velocity of sound, obtain an expression for the beat frequency heard by the motorist

- View Text Solution

2. A siren placed at a railway platfrom is emitting a sound of 5 kHz . A passenger sitting in a moviing train A records a frequency of 5.5 kHz while the train A approaches the siren.

During his return journey in a different train B he records a frequency of 6.0 kHz while approaching the same siren. What is the ratio of the velocity of train B to that of train A ?

- Watch Video Solution

3. train , standing at the outer signal of a railway station blows a whistle of frequency 400 Hz in still air. (i) What is the frequency of the whistle for a platfrom observer when the trian
(a) approaches the platform with a speed of 10 $\mathrm{m} s^{-1}$ (b) recedes from the platfrom with a speed of $10 \mathrm{~m} \mathrm{~s}^{-1}$? (ii) What is the speed of sound in each case ? The speed of sound in still air can be taken as $340 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.
4. A narrow sound pulse (for example, a short pip by a whistle) is sent across a medium

Does the pulse have a definite (a) frequency, (b)
wevelength , (M69) speed of propagation? (ii) If
the pulse rate is 1 after every 20 s , (that is the whistle is blown for a split of second after every

20 s), is the frequency of the note produced by the whistle equal to $1 / 20$ or 0.05 Hz ?

D View Text Solution

5. A stationary sound source S of frequency 334 Hz and a stationary observer O are placed near a reflecting surface moving away from the source with velocity $2 m \cdot s^{-1}$ as shown in Fig. If the velocity of the sound waves in air is $V=330 \mathrm{~ms}^{-1}$ then calculate apparent frequency of the echo .
(\#\#CHY_DMB_PHY_XI_P2_U10_C05_E08_005_Q01.png" width="80\%">
6. two trains run at same speed $=90 \mathrm{kmh}^{-1}$
along a straight track one after another with a seperation $\mathrm{d}=2 \mathrm{~km}$. At the istant when they are located
smymetrically relative to the point A at a distance $b=1 \mathrm{~km}$ from the track, both emit ' a brief signal of frequency $\mathrm{n}=500 \mathrm{~Hz}$. what will be the nature of sound at A ? Speed of sound V $=350 \mathrm{~m} \mathrm{~s}^{-1}$.
(\#\#CHY_DMB_PHY_XI_P2_U10_CO5_EO8_006_Q01.png" width=" 80% ">
7. A whistle emitting a sound of frequency 440 Hz is tied to a string of 1.5 m length and ratated with an angular velocity of $20 \mathrm{rad} . s^{-1}$ in the horizontal plane. Find the range of frequencies heard by an observer stationed at a large distance from the whistle . Speed of sound $V=$ $350 \mathrm{~m} . \mathrm{s}^{\wedge}(-1)^{`}$,

D View Text Solution

8. A bat is flitting a cave, navigating via ultrasonic beeps . Assume that the sound emission frequency of the bat is 40 kHz . During one faxt swoop directly towerd a flat wall surface, the bat is moving at 0.03 times the speed of sound in air. What frequency does the bat hear reflected off the wall?

D Watch Video Solution

1. Statement I: Intersity of sound wave change when the listener moves towerds or away from the stationary source .

Statement II : The motion of listener causes the apparent change in wavelength.
A. Statement I is true, statement II is true,
statement II is a correct explanation for
statement I
B. Statement I is true, statement II is true,
statement II is not a correct explanation

for statement I.

C. Statement I is true, statement II is false

D. Statement I is false, statement II is true .

Answer: c

D View Text Solution

2. Statement I : When there is no relative
velocity between source and observer, then
observed frequency is the same as emitted

Statement II : Velocity of sound when there is
no relative velocity between source and observer is zero .
A. Statement I is true, statement II is true,
statement II is a correct explanation for
statement I

B. Statement I is true, statement II is true,

statement II is not a correct explanation
for statement I.
C. Statement I is true, statement II is false
D. Statement I is false, statement II is true .

Answer: c

- View Text Solution

Multiple Correct Answers Type

1. State in which of the following cases, an observer will not see any Doppler effect ?
A. Both the source and abserver remain stationary but a wind blows .
B. The observer remains stationary but the
source moves in the same directrion and
with the same speed as the wind
C. The source remains stationary but the
observer and the wind have the same
speed away the sourch .
D. The source and the observer move
directly against the wind but both with
the same speed .
2. Consider a source of sound S and an observer
P. The sound source is of frequency n_{0}. The
frequency observed by P is found to be n_{1} if P approaches S at speed v and S is stationary, n_{2}
if S approaches P at a speed v and P is stationary and n_{3} if each of P and S has speed $\frac{v}{2}$ towerds one another. Which of the following conclusion are correct ?

$$
\text { A. } n_{1}=n_{2}=n_{3}
$$

B. $n_{1}<n_{2}$
C. $n_{3}>n_{0}$
D. n_{3} lies between n_{1} and n_{2}

Answer: B::C::D

D View Text Solution

3. An observer A is moving directly towards a stationary sound source while another observer B is moviing away from the source with the
same velocity . Which of the following conclusions are correct ?
A. Average of frequencies recorded by A and
B is equal to natural frequency of the source .
B. Wavelength of wave received by A is less
than that of wave received by B.
C. Wavelength of waves received by two
observers will be same .

D. Both the observers will observe the wave

traelling with same speed .

Answer: A::C

- View Text Solution

4. Two cars, each moving with speed u on the same horizontal straight road , are approaching each other

Wind blows along the road with velocity w. One of these cars blows a whistle of frequency f_{1}.

An observer in the other car hears the frequency of the whistle to be f_{2}. The speed of sound in still air is v. Correct statement (s) is / are :
A. If wind blows from observer to the source

$$
, f_{2}>f_{1}
$$

B. If the wind blows from the source to observer $f_{2}>f_{1}$
C. If the wind blows from observer to the source $f_{2}<f_{1}$

D. If the wind blows from the source to the

 observer $f_{2}<f_{1}$
Answer: A::B

D View Text Solution

Compreshension Type

1. A source S of acoustic wave of frequency
$v_{0}=1700 \mathrm{~Hz}$ and a recelver R are located at the
same point. At the instant $\mathrm{t}=0$, the source
starts from rest to move away from the receiver with a constant acceleration ω. The velocity of sound in air is $\mathrm{v}=340 \mathrm{~m}^{-1}$.

If $\omega=10 m \cdot s^{-2}$, the apparcent frequency that will be recorded by the stationary receiver at $t=10 \mathrm{~s}$ will be
A. 1700 Hz
B. 1.35 Hz
C. 850 Hz
D. 1.27 Hz

- View Text Solution

Matrix Match Type

1. A source S of acoustic wave of frequency
$v_{0}=1700 \mathrm{~Hz}$ and a recelver R are located at the
same point. At the instant $\mathrm{t}=0$, the source
starts from rest to move away from the receiver
with a constant acceleration ω. The velocity of
sound in air is $\mathrm{v}=340 \mathrm{~m} \mathrm{~s}^{-1}$.
If $\omega=0$ for $t>10 s$, the apparent frequency recorded by receiver at $\mathrm{t}=15 \mathrm{~s}$ will be
A. 1700 Hz

B. 1310 Hx

C. 850 Hz
D. 1.23 kHz

Answer: b.c.d

D View Text Solution

2. A source S of acoustic wave of frequency $v_{0}=1700 \mathrm{~Hz}$ and a recelver R are located at the same point. At the instant $t=0$, the source
starts from rest to move away from the receiver with a constant acceleration ω. The velocity of sound in air is $\mathrm{v}=340 \mathrm{~m}^{-1}$.

If $\omega=10 m \cdot s^{-2}$, the apparent frequency that will be recorded by the stationary receiver just at the Instant when the source is exactly 1 km away from the receiver will be .

A. 1700 Hz

B. 1310 Hz
C. 850 Hz
D. 1.26 kHz

Answer: d

- View Text Solution

3. A small source of sound vibrating at frequenc

500 Hz is rotated in a circle of radius $(100 / \pi)$
cm at a constant angular speed of 5.0 revolutions per second. The speed of sound in air is $330 \mathrm{~m} . s^{-1}$. An observer (A) is situated at a great distance on a straight line perpendicular to the plane of the circle , through its centre. Another observer (B) is at
rest at a great distance from the centre of the circle byt nearly in the same plane . After something the source of sound comes to rest after reaching the centre of the circle. At that
time, another observer (C) moves towards the source with a constant speed of $20 \mathrm{~m} . s^{-1}$, along the radial line to the centre

The apparent frequency of the source heard by

A will be
A. greater then 500 Hz
B. smaller then 500 Hz
C. always 500 Hz
D. greater for half the circle and smaller

during the other half

Answer: c

D View Text Solution

4. A small source of sound vibrating at frequenc

500 Hz is rotated in a circle of radius $(100 / \pi)$
cm at a constant angular speed of 5.0 revolutions per second. The speed of sound in air is $330 \mathrm{~m} . s^{-1}$. An observer (A) is situated at
a great distance on a straight line perpendicular to the plane of the circle , through its centre . Another observer (B) is at rest at a great distance from the centre of the
circle byt nearly in the same plane . After something the source of sound comes to rest after reaching the centre of the circle. At that
time, another observer (C) moves towards the source with a constant speed of $20 \mathrm{~m} . s^{-1}$, along the radial line to the centre

The mininum and the maximum values of the apparent frequency heard by B will be
A. 455 Hz and 535 Hz

B. 485 Hz and 515 Hz

C. 485 Hz and 500 Hz
D. 500 Hz and 515 hz

Answer: b.c.d

- View Text Solution

5. A small source of sound vibrating at frequenc

500 Hz is rotated in a circle of radius $(100 / \pi)$
cm at a constant angular speed of 5.0
revolutions per second. The speed of sound in
air is $330 \mathrm{~m} . s^{-1}$. An observer (A) is situated at
a great distance on a straight line perpendicular to the plane of the circle , through its centre . Another observer (B) is at rest at a great distance from the centre of the
circle byt nearly in the same plane . After something the source of sound comes to rest after reaching the centre of the circle. At that
time, another observer (C) moves towards the source with a constant speed of $20 \mathrm{~m} . s^{-1}$, along the radial line to the centre

The change in the frequency of the source heard by C will be
A. 0.06
B. 0.03
C. 0.02
D. 0.09

Answer: a

- View Text Solution

Integer Answer Type

1. The frequency of the sound of a car horn as perceived by an observer towards whom the car is moving differs from the fre-quency of the horn by 2.5%. Assuming that the velocity of sound in air is $320 \mathrm{~m} . s^{-1}$, find the velocity (in $\mathrm{m} . s^{-1}$) of the car.

- Watch Video Solution

2. A man is watching two trains, one leaving
and the other coming in with equal speed of
$4 \mathrm{~m} . s^{-1}$. If they sound their whistles, each of
frequency 240 Hz , find the number of beats heard by the man (velocity of sound in air $=320$ $\left.\mathrm{m} s^{-1}\right)$.

D Watch Video Solution

3. The difference between the apparent frequency of a source of sound as perceived by an observer during its spproach and recession is 2% of the natural frequency of the source. If the velocity of sound in air is $300 \mathrm{~m} . s^{-1}$, find the velocity (in $\mathrm{m} . s^{-1}$) of the source.
4. A stationary source is emitting sound at a fixed frequency f_{0} which is reflected by two cars approaching the source . The difference between the frequencies of sound reflected from the cars is 1.2% of f_{0}. What is the differernce in the speeds of the cars (in km per hour) to nearest interger ? The cars are moving at constant speeds much smaller then the speed of sound which is $330 \mathrm{~m} \mathrm{~s}^{-1}$.
5. Show that, the change in frequency of sound during the motion of the source towards audience is more than that when audience moves towards source with same velocity.

D View Text Solution

Examination Archive With Solutions Wbjee

1. A car is moving with a speed of $72 \mathrm{~km} . h^{-1}$
towards a roadside source that emits sound at
a frequency of 850 Hz . The car driver listens to
the sound while approaching the source and
again while moving away from the source after
crossing it. If the velocity of sound is 340 m .
s^{-1}, the difference of the two frequencies, the driver hears is
A. 50 Hz
B. 85 Hz
C. 100 Hz

D. 150 Hz

Answer: C

- Watch Video Solution

2. A train is moving with a unifrom speed of 33 m / s and an observer is approaching the train
with the same speed. If the train blows a whistle of frequency 1000 Hz and the velocity of sound
is $333 \mathrm{~m} / \mathrm{s}$, then the apparent frequency of the sound that the observer hear is
A. 1220 Hz

B. 1099 Hz

C. 1110 Hz
D. 1200 Hz

Answer: A

D Watch Video Solution

Examination Archive With Solutions Jee Main

1. A train is moving on a straight track with speed $20 m \cdot s^{-1}$, It is blowing its whistle at the frequency of 1000 Hz . The percentage change in the frequency heard by a person standing near the track as the train passes him is (speed of sound $=320 \mathrm{~m} \cdot \mathrm{~s}^{-1}$) close to
A. 6%
B. 12%
C. 18%
D. 24%

Answer: B

D Watch Video Solution

2. An observer is moving with half the speed of
light towards a stationary microwave source emitting waves at frequency 10 GHz . What is the frequency of the microwave measured by the observer? (speed of light $=3 \times 10^{8} m \cdot s^{-1}$)

A. 10.1 GHz

B. 12.1 GHz

C. 17.3 GHz

D. 15.3 GHz

Answer: C

(Watch Video Solution

Examination Archive With Solutions Aipmt

1. A speeding motorcyclist sees traffic jam ahead
of him. He slows down to $36 \mathrm{~km} \cdot H^{-1}$. He finds that traffic has eased and a car moving
ahead of him at $18 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ is honking at a
frequency of 1392 Hz . If the speed of sound is
$343 \mathrm{~m} \cdot \mathrm{~s}^{-1}$, the frequency of the honk as heard by him will be
A. 1332 Hz
B. 1372 Hz
C. 1412 Hz
D. 1454 Hz

Answer: C

Examination Archive With Solutions Neet

1. A siren emitting a sound of frequency 800 Hz
moves away from an observer towards a cliff at
a speed of $15 m \cdot s^{-1}$. Then the frequency of
sound that the observer hears in the echo
reflected from the cliff is (take velocity of sound
in air $=330 \mathrm{~m} \cdot s^{-1}$)
A. 800 Hz
B. 838 Hz
C. 885 Hz

D. 765 Hz

Answer: B

D Watch Video Solution

2. Due to Doppler effect, the shift in wavelength observed is `0.1 \AA, for a star producing a wavelength $6000 \AA$. The velocity of recession of the star will be

$$
\text { A. } 20 \mathrm{~km} \cdot s^{-1}
$$

B. $2.5 \mathrm{~km} \cdot s^{-1}$
C. $10 \mathrm{~km} \cdot \mathrm{~s}^{-1}$

$$
\text { D. } 5 \mathrm{~km} \cdot s^{-1}
$$

Answer: D

D Watch Video Solution

Cbse Scanner

1. A train standing at the outer singal of a railway station blows a whistle of frequency 400 Hz in still air. (i) What is frequency of the whistle
for a platform observer when the train (a) approaches the platform with a speed of 10 m / s, (b) recedes from the platform with a speed of $10 \mathrm{~m} / \mathrm{s}$. (ii) What is the speed of sound in each case if the speed of sound in still air is 340 m / s.

- View Text Solution

2. Once Amit was going to his house. He was
listening music on mobile with earphone while crossing the railway line and he did not hear the sound of approaching train though the
train was blowing horn. A person nearby ran
towards him and push away just as the train reached there. amit realised his mistake and thanked the person.
(a) Describe the value possessed by the person.
(b) Name the phenomenon of change in frequency of sound when there is relative motion between the observer and source of sound.

- View Text Solution

