©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CHHAYA PHYSICS (BENGALI

ENGLISH)

ELASTICITY

Examples

1. An 8 kg mass is suspended from one end of
an iron wire of length 2 m and diameter 1 mm .

IF the young's modulus of iron is 2×10^{12} dyn.
cm^{-2}, then what is the increase in length of the wire? $\left[g=980 \mathrm{~cm}^{\mathrm{s}} \mathrm{s}^{-2}\right]$

- Watch Video Solution

2. The volume of 1 litre of glycerine decrease by $0.42 \mathrm{~cm}^{3}$ on application of a pressure of $20 \mathrm{~kg} . \mathrm{cm}^{-2}$. Calculate the bulk modulus of glycerine.
3. The upper surface of an aluminium cube of side 10 cm is displaced by 0.03 cm with respect to its firmly held lower surface by a tangential force of $7.5 \times 10^{10} d y n$. Calculate the modulus of rigidity of aluminium.

D Watch Video Solution

4. A metallic wire of length 3 m is stretched to produce an elongation of 2 mm . IF the diameter of the wire is 1 mm , then find the decrease in its diameter due to this
elongation.Poisson's ratio for the material of the wire is 0.24 .

D Watch Video Solution

5. When a body of mass 5 kg is hung from a wire of length 1 m and radius 2 mm , the length
increases by 0.1 mm , IF the poisson's ratio is
0.4 , what will be the change in the radius of the wire? If the load is reduced to 2 kg ,how will the radius change?
6. The change in length of a wire of a circular cross section is found to be 0.01% due to longitudinal stress, IF the poisson's ratio for the material is 0.2 , what is the percentage change in volume?

D Watch Video Solution

7. A metallic wire of length and diameter 3 m and 0.001 m respectively is stretched by a load of 10 kg .Young's modulus and Poisson's ratio
of the material of the wire are respectively $20 \times 10^{10} N . m^{-2}$ and 0.28 . Calculate the decrease in the diameter of the wire. ($g=9.8 m . s^{-2}$)

D Watch Video Solution

8. A wire of length 2 m and diameter 2 cm is
suspended vertically with its top end fixed. Its poisson's ratio and Young's modulus are 0.2 and $1.8 \times 10^{11} N . m^{-2}$ respectively.What will
be its lateral strain if a load of 1000kg is suspended at its lower end?

D Watch Video Solution

9. A rubber cord of length 10 m is suspended vertically. How much does it stretch under its
own weight? Density of rubber
$=1.5 \times 10^{3} \mathrm{~kg} . \mathrm{m}^{-3}$, Young's modulus of
rubber $=6 \times 10^{6} \mathrm{gf}. \mathrm{~cm}^{-2}, \mathrm{~g}=9.8 \mathrm{~m} . \mathrm{s}^{-2}$

D Watch Video Solution
10. A force of $10^{6} N . m^{-2}$ is required for breaking a material. IF the density of the material is $3 \times 10^{3} \mathrm{~kg} . \mathrm{m}^{-3}$, then what should be the length of the wire made of this material
, so that it breaks due its own weight? [

$$
\left.g=9.8 m . s^{-2}\right]
$$

- Watch Video Solution

11. A copper wire of negligible mass of length 1 m and cross sectional area $10^{-6} m^{2}$ is kept on a smooth horizontal table with one end fixed.

A ball of mass 1 kg is attached to the other end. The wire and the ball are revolving with an angular velocity of $20 \mathrm{rad} . \mathrm{s}^{-1}$. IF the elongation in the length of the wire is $10^{-3} \mathrm{~m}$, obtain the Young's modulus. IF on increasing the angular velocity to $100 \mathrm{rad} . \mathrm{s}^{-1}$ the wire breaks down, obtain the breaking stress.

- Watch Video Solution

12. A steel cable with a radius of 1.5 cm
supports a chair-lift at a ski area. IF the
maximum stress does not exceed $10^{8} \mathrm{~N} . \mathrm{m}^{-2}$,
what is the maximum load that the cable can
support?

D Watch Video Solution

13. What amount of work must be done in stretching a wire, of length 1 m and of cross sectional area $1 \mathrm{~mm}^{2}$, by 0.1 mm ? Young's modulus for the material $=2 \times 10^{11} \mathrm{~N} . \mathrm{m}^{-2}$.

D Watch Video Solution

14. When the load on a wire is increased from 3 kg to 5 kg , the elongation of the wire increases from 0.6 mm to 1 mm .How much work is done during this extension of the wire?

D Watch Video Solution

15. For a uniform wire of length 3 m and cross sectional area $1 \mathrm{~mm}^{2}, 0.021 \mathrm{~J}$ of work is necessary to stretch it through 1mm. Calculate the Young's modulus for its material.
16. Two uniform wires of length 3 m and 4 m respectively are made of the same material To stretch both these wires by the same length, 0.03 J and 0.05 J of work on necessary. Calculate the ratio of the cross sectional area of the two wires.

D Watch Video Solution

17. When a mass of 4 kg is hung from the lower and of a spring.IF elongates by 1 cm .(i) What is the force constant of the spring? (ii) If
a load of 2 kg is hung from the lower end of the spring , then find its elongation.

D Watch Video Solution

18. The force constant of a spring is k. The spring is cut into three equals parts. Find the force constant of each part.
19. The force constant of a spring of length I is
k. the spring is cut into two parts of lenghts l_{1} and l_{2}. IF $l_{1}=n l_{2}$, then find the spring constants k_{1} and k_{2} of the two parts.n is an integer.

D Watch Video Solution

20. To increase the length of an electric string of radius 3.5 mm by $\frac{1}{20}$ the of its initial
length, within its elastic limit, a 10 N force is required, Calculate the Young's modulus for the material of the string.

D View Text Solution

21. Two wires of the same length but of difference materials have diameter of 1 mm
and 3 mm respectively.IF both of them are stretched by the same force,then the elongation of the first wire becomes thrice
that of the second. Compare their Young's

modull.

D Watch Video Solution

22. IF the elastic limit of a typical rock is
$3 \times 10^{8} N . m^{-2}$ and its mean density is
$3 \times 10^{3} \mathrm{~kg} . \mathrm{m}^{-3}, \quad$ estimate the maximum
height of a mountain on the earth. ($g=10 m \cdot s^{-2}$)
23. Two equal and opposite forces are applied
tangentially to two mutually opposite faces of an aluminium cube of side 3 cm to produce a shear of 0.01°. IF the modulus of rigidity for aluminium is $7 \times 10^{10} N . m^{-2}$, then calculate the force applied.

D Watch Video Solution

24. A rubber cord of length 20 m is supplied
from a rigid support by one of its ends it hangs vertically. What will be the elongation of
the cord due to its own weight? The density of rubber $=1.5 \mathrm{~g} . \mathrm{cm}^{-3}$ and Young 's modulus= $49 \times 10^{7} N . m^{-2}$.

D Watch Video Solution

25. A steel wire of diameter 0.8 mm and length
$1 m$ is clamped firmly at two points A and B
which are 1 m apart in the same horizontal
line. A body is hung from the middle point of the wire such that the middle point sags 1 cm from the original position. Calculate the
mass of the body.
$\left[Y=2 \times 10^{12}\right.$ dyn. $\left.\mathrm{cm}^{-2}\right]$

D Watch Video Solution

26. IF the work done in stretching a uniform
wire, of cross section $1 \mathrm{~mm}^{2}$ and length 2 m , by
1 mm is 0.05 joule, find the young's modulus
for the material of the wire.

- Watch Video Solution

27. A cylindrical pipe of uniform cross section and of length 120 cm is closed at one end and is completely filled with water. Kept upright, the cylinder is stretched to increase its length.

It elongates by 1 cm , but the length of the water-column increases by 0.7 cm . Calculate the Poisson's ratio of the material of the pipe.

- View Text Solution

28. A light bar of length 2 m is suspended
horizontally by means of two wires of equal
lengths connected to its two ends. One wire is
of steel having a cross sectional area of
$0.1 \mathrm{~cm}^{2}$, the other is of brass with a cross
sectional area of $0.2 \mathrm{~cm}^{2}$, Find the point on the
bar from where a weight must be suspended
so that both the wires experience (i) the same
stress,(ii) the same strain, Given the young's
modulus for steel $=2 \times 10^{11} N . m^{-2}$ and
that for brass $=10 \times 10^{10} N . m^{-2}$.

View Text Solution

29. A sphere of mass 25 kg and radius 0.1 m is hung from the celling of a room with the help of a steel wire. The height of the ceiling from the floor is 5.21 m . When the sphere is hung just like a pendulam, its lower surface touches the floor of the room. What will be the velocity of the sphere at the lowest points of its oscillation? The young's modulus for steel = $2 \times 10^{11} N . m^{-2}$, the initial length of the wire $=5 \mathrm{~m}$ and the radius of the wire $=5 \times 10^{-4} \mathrm{~m}$.
30. Two blocks A and B are connected to each other by a string and spring , the string passes over a frictionless pulley as shown in fig.1.16 Block B slides over the horizontal top surface of a stationary block C and the block A slides along the vertical side of C, both with the same uniform speed. the coefficient of friction
between the surfaces of the blocks is 0.2 . THe
force constant of the spring is $1960 \mathrm{~N} . \mathrm{m}^{-1}$. IF
the mass of the block A is 2 kg , calculate the
mass of the block B and the energy stored in the spring.

D View Text Solution

31. On application of a pressure of $21 \mathrm{~kg} . \mathrm{cm}^{-2}$
, the volume of 1 litre of an oil decreases by $840 \mathrm{~mm}^{3}$.Calculate the bulk modulus and compressibility of the oil.

D Watch Video Solution

32. A 0.5 kg block slides from a point A [fig.1.17]
on a horizontal track with an initial speed of
$3 m . s^{-1}$ towards a weightless horizontal
spring of length 1 m and of force constant
$2 N . m^{-1}$. The part $A B$ of the track is
frictionless and the part BC has coefficients of
static and kinetic friction as 0.22 and 0.2 respectively. If the distance $A B$ and $B D$ are 2 m and 2.14 m respectively. Find the total distance covered by the black before it comes to rest ($\left.g=10 m \cdot s^{-2}\right)$

View Text Solution

33. The bodies A and B of masses m and $2 m$
respectively are put on a smooth floor. They are connected by a spring. A third body C of mass m moves with a velocity v_{0} along the line joining A and B and collides elastically with A as shown in fig1.18.At a certain instant of time
t_{0} after the collision, it is found that the instantaneous velocities of A and B are the same. Further,at this instant the compression of the spring is found to be x_{0}. FInd out the
common velocity of A and B at time t_{0} and (ii)
the force constant of the spring.

D View Text Solution

34. The bodies A and B of masses m and $2 m$ respectively are put on a smooth floor. They are connected by a spring. A third body C of mass m moves with a velocity v_{0} along the line joining A and B and collides elastically with A as shown in fig1.18.At a certain instant of time
t_{0} after the collision, it is found that the
instantaneous velocities of A and B are the same. Further,at this instant the compression of the spring is found to be x_{0}. FInd out the force constant of the spring.

D View Text Solution

35. IF the tension in a wire increases gradually
to 6 kg , the elongation of the wire becomes
1.13 mm . Calculate the work done.

D Watch Video Solution

36. A body of mass 4 kg and density
$2.5 \mathrm{~g} . \mathrm{cm}^{-3}$, suspended by a metallic wire of length 1 m and diameter 2 mm , is kept completely immersed in water. What will be the increase in the length of the wire? Young's modulus of the metal $=2 \times 10^{11} N . m^{-2}$ and $g=9.8 m . s^{-2}$.

- Watch Video Solution

37. A 0.1 kg mass is suspended from a wire of negligible mass. The length of the wire is 1 m
and its cross sectional area is $4.9 \times 10^{-7} \mathrm{~m}^{2}$.

IF the mass is pulled a little in the vertically downward direction and released, it performs simple harmonic motion of angular frequency $140 \mathrm{rad} . \mathrm{s}^{-1}$. If the young's modulus of the material of the wire is $n \times 10^{9} N . m^{-2}$ Calculate the value of n.

D View Text Solution

38. Stress-strain graph of an elastic material is
shown in fig.1.18.Using the graph find the
young's modulus of the material.

D View Text Solution

39. A 3 kg of mass is hanging from one end of a vertical copper wire of length 2 m and of diameter 0.5 mm , due to this the elongation produced in the wire is 2.38 mm . Find young's modulus of copper.
40. Six external forces, each of magnitude F, are applied on all the faces of a unit cube.

Considering its elastic modulus ,calculate the longitudinal strain and the volume strain on the unt cube.

D View Text Solution

41. One end of a horizontal thick copper wire of length $2 L$ and radius $2 R$ is welded to an end of another horizontal thin copper wire of length L and radius R. When the arrangement
is stretched by applying forces at two ends,
find the ratio of the elongation in the thin
wire to that in the thick wire.

D Watch Video Solution

Higher Order Thinking Skill Hots Question

1. What is more elastic-steel or diamond?

D View Text Solution

2. Explain why the temperature of a wire under tension will charge if it snaps suddenly?

D View Text Solution

3. Two bodies M and N of equal mass are hung separtely from two lightweight springs. Force constants of the springs are k_{1} and k_{2}. The bodies are set to vibrate so that their maximum velocities are equal. Find the ratio of the amplitudes of vibration of the two bodies.
4. Springs are usually made of steel but not of copper why?

D View Text Solution

5. On the basis of the moduli of elasticity, distinguish between solid, liquid and gaseous substances.
6. The poisson's ratio of a wire of σ. Show that
if e is the longitudinal strain due to an applied
forces, the volume strain will be $e(1-2 \sigma)$.

D View Text Solution

7. In the case of an elastic body which one is more fundamental -stress or strain?

D View Text Solution
8. "Within elastic limit the Poisson's ratio depends only on the nature of the material but not on the stress applied"-explain.

D View Text Solution

9. For a steel wire, if the diameter is larger, it can with stand a greater load. Why?

D Watch Video Solution

10. In fig.1.21 load-elongation of two wires made of two different materials A and B are
shown. The wires have the same length and
the same area of cross section. Which material
has a greater value of Y ?

D View Text Solution

11. Load-elongation graphs of two wires A and B, made of the same material and of equal
initial length are shown in the fig.1.21. Which wire is thicker?

D View Text Solution

12. Young moduli of two rods of equal length and equal cross section and Y_{1} and Y_{2}. These rods are joined end to end forming a composite rod-system. Prove that the equivalent Young's modulus of the composite
system of rods $=\frac{2 Y_{1} Y_{2}}{Y_{1}+Y_{2}}$

D Watch Video Solution

13. State whether the values of Young's moduli
for thin and thick iron wires of equal length will be different.

D View Text Solution
14. Can a steel wire be elongated to twice its
initial length by hanging a load from its end?

D View Text Solution
15. How does the value of modulus of elasticity change due to increase in temperature?

D View Text Solution

16. A hanging wire of length L is elongated by an amount I with a load M attached to its free end. Prove that the elastic potential energy stored in the wire is $\frac{1}{2} M g l$.

- Watch Video Solution

17. A spring balance gives erroneous readings
if it is used frequently over a long period of time. Explain.

D View Text Solution

18. An elastic wire is cut into two equals halves.

Determine whether there will be any change in
the maximum load that each half can carry.
19. The breaking force for a wire is F.What will be the breaking force for two parallel wires of same size

D Watch Video Solution

20. The breaking force for a wire is F.What will
be the breaking force for a single wire of double the thickness?
21. The most elastic among the following substances is
A. rubber
B. glass
C. steel
D. copper

Answer: C

D Watch Video Solution
2. Which is most elastic?
A. iron
B. copper
C. quartz
D. wood

Answer: C

D View Text Solution
3. The ratio of the lengths of two wires made of the same metal and of equal radius is 1:2 IF both the wires are stretched by the same force, then the ratio of the strains will be
A. 1:1
B. 1:2
C. 2:1
D. 1:4

Answer: A

- Watch Video Solution

4. Shearing strain is expressed by
A. shearing force
B. angle of shear
C. increase in area
D. decrease in volume

Answer: B

D View Text Solution

5. Breaking stress of a wire depends on

A. the radius of the wire
B. the length of the wire
C. the shape of the cross-section
D. the nature of its material

Answer: D
6. Elongation of an elastic material is very low.

What should be the shape of a body for which
the longitudinal strain will be appreciable?
A. a thin but long wire
B. a thick block having any cross section
C. a thin block having rectangular cross
section
D. a thin and short wire

Answer: A
7. The unit of elastic modulus is
A. $N . m^{-3}$
B. $N . m^{-2}$
C. $N . m^{-1}$
D. N.m

Answer: B

- Watch Video Solution

8. Four wires made of the same material are stretched by the same load. Their dimensions are given below. Which one will be elongated most?
A. length 1 m , diameter 1 mm
B. length 2 m , diameter 2 mm
C. length 3 m , diameter 3 mm
D. length 4 m , diameter 0.5 mm

Answer: D
9. Keeping the length of a wire unchanged, its diameter is doubled. Young's modulus for the material of the wire will
A. increase
B. decrease
C. remain the same
D. none of these

Answer: C
10. Keeping one end of a wire of length L and radius r fixed, a force F is applied at the other end to elongate it by I. Another wire made of same material but of length $2 L$ and radius $2 r$ is stretched by a force $2 F$. Its increase in length will be
A. 1
B. 21
C. $\frac{l}{2}$
D. 41

Answer: A

D Watch Video Solution

11. The ratio of the length and diameters of two metallic wires A and B of the same material are 1:2 and $2: 1$ respectively. IF both
the wires are stretched by the same tension,
then the ratio of the elongations of A and B
will be
A. $1: 2$
B. $4: 1$
C. 1:8
D. 1: 4

Answer: C

D Watch Video Solution

12. A uniform rod weights W, has length L and cross sectional area a. The rod is suspended
from one of its ends. The young's modulus of
its material is Y . Increase in length of the rod

will be

A. zero
B. $\frac{W L}{2 a Y}$
C. $\frac{W L}{a Y}$
D. $\frac{2 W L}{a Y}$

Answer: B
(Watch Video Solution
13. Two rods of equal length and crosssectional area have their Young's moduli Y_{1} and Y_{2} respectively. IF the rods are joined end to end, then the equivalent Young's modulus of the combined rod system is

$$
\begin{aligned}
& \text { A. } \frac{2 Y_{1} Y_{2}}{Y_{1}+Y_{2}} \\
& \text { B. } \frac{Y_{1} Y_{2}}{Y_{1}+Y_{2}} \\
& \text { C. } \frac{1}{2\left(Y_{1}+Y_{2}\right)} \\
& \text { D. } Y_{1}+Y_{2}
\end{aligned}
$$

- Watch Video Solution

14. A rubber string of length 8 m is hanging vertically with one end fixed. If the density of rubber is $1.5 \times 10^{3} \mathrm{~kg} . \mathrm{m}^{-3}$ and young's modulus is $5 \times 10^{6} \mathrm{~N} . \mathrm{m}^{-2}$, then increase of its length due to its own weight will be [$g=10 \mathrm{~m} \cdot \mathrm{~s}^{-2} \mathrm{~J}$
A. $9.6 \times 10^{-2} m$
B. $19.2 \times 10^{-3} m$
C. $9.6 \times 10^{-3} \mathrm{~m}$

D. 9.6 m

Answer: A

D Watch Video Solution

15. Modulus of rigidity of steel is n and its

Youngs's modulus is Y. A steel wire of cross
sectional area A is so elongated that its area
of cross section becomes $\frac{A}{10}$. As a result
A. Y increase but n decrease
B. Y and n both remain the same
C. Y decreases but n increases
D. both Y and n will increase

Answer: B

D Watch Video Solution

16. In stretching a wire, the amount of work done per unit volume of the wire is
A. stress \times strain
B. $\frac{1}{3} \times$ stress \times strain
C. $\frac{\text { stress }}{\text { strain }}$
D. $\frac{1}{2} \times$ stress \times strain

Answer: D

D View Text Solution

17. A stretched rubber has
A. increased kinetic energy
B. increased potential energy
C. decreased kinetic energy
D. decreased potential energy

Answer: B

D Watch Video Solution

18. A wire of initial length L and area of cross
section A has Young's modulus Y of its
material. The wire is stretched by a stress 5
within its elastic limit. The stored energy
density in the wire will be

5
 A. $\frac{}{2 Y}$
 B. $\frac{2 Y}{5^{2}}$
 C. $\frac{5^{2}}{2 Y}$
 D. $\frac{5^{2}}{Y}$

Answer: C

- Watch Video Solution

19. A wire of initial length L and area of cross section A, having young's modulus Y of its
material, is stretched to be elongated by an amount x. Work done in stretching the wire is
A. $Y A \frac{x^{2}}{2 L}$
B. $Y A \frac{x^{2}}{L}$
C. $Y A \frac{x}{2 L}$
D. $Y A \frac{2 x^{2}}{L}$

Answer: A

D Watch Video Solution

20. One end of a wire is rigidly fixed and a force of 200 N is applied at its other end. The wire undergoes an elongation of 1 mm . The potential energy stored in the wire is
A. 0.1J
B. 0.2J
C. 10J
D. 20J

Answer: A
21. Two wires A and B are made of the same metal. Diameter of A is double that of B and
the length of A is thrice that of B. IF both the wires are stretched by the same force to elongate them equally within elastic limit, then the ratio of energy stored in the wires A and B will be
A. $2: 3$
B. 3: 4
C. 3:2
D. 6:1

Answer: B

D Watch Video Solution

22. A spring of force constant k is cut into two
equal parts The force constant of each part of
the spring will be
A. $\frac{k}{2}$
B. k
C. 2 k
D. 4 k

Answer: C

- Watch Video Solution

23. Force constants of two springs are k_{1} and
k_{2} One end of a spring is connected with one
end of the other. Equivalent force constant of
the spring system will be
A. $\frac{k_{1}+k_{2}}{2}$
B. $2\left(k_{1}+k_{2}\right)$
C. $\frac{k_{1}+k_{2}}{k_{1} k_{2}}$
D. $\frac{k_{1} k_{2}}{k_{1}+k_{2}}$

Answer: D

D Watch Video Solution

24. A wire of length L are area of cross section
A. Having young's modulus Y of its material,
behaves like a spring of force constant k. the value of k will be

$$
\begin{aligned}
& \text { A. } k=\frac{Y A}{L} \\
& \text { B. } k=\frac{2 Y A}{L} \\
& \text { C. } k=\frac{Y A}{2 L} \\
& \text { D. } k=\frac{Y L}{A}
\end{aligned}
$$

Answer: A
(Watch Video Solution
25. An elastic spring of length L and of force
constant k is stretched to increase its length
by an amount x . The spring is further stretched to elongate it by y . The amount of work done in stretching the spring in the second case (x and y are very small) is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} k y^{2} \\
& \text { B. } \frac{1}{2} k\left(x^{2}+y^{2}\right) \\
& \text { C. } \frac{1}{2} k(x+y)^{2} \\
& \text { D. } \frac{1}{2} k y(2 x+y)
\end{aligned}
$$

Answer: D

D Watch Video Solution

26. An ideal spring with spring constant k is hung from the ceiling and a block of mass M is attached to its lower end. The mass is released when the spring is initially unstretched. Then the maximum extension in the spring is

$$
\begin{aligned}
& \text { A. } \frac{4 M g}{k} \\
& \text { B. } \frac{2 M g}{k}
\end{aligned}
$$

c. $\frac{M g}{k}$
D. $\frac{M g}{2 k}$

Answer: B

D Watch Video Solution

27. Two springs P and Q of force constant k_{p} and $k_{q}\left(k_{Q}=\frac{k_{P}}{2}\right)$ are stretched by applying forces of equal magnitude. IF the energy stored in Q is E, then the energy stored in P is
A. E
B. 2 E
C. $\frac{E}{4}$
D. $\frac{E}{2}$

Answer: D

D Watch Video Solution
28. Before snapping a wire can bear a load of

100kg. The wire is cut into two parts .Now the
maximum load that can be withstood by each

part of the wire is

A. 100 kg
B. 40 kg
C. 200kg
D. 50 kg

Answer: A
(Watch Video Solution
29. A uniform wire of length L and weight W is
rigidly fixed at one end and a load W_{1} is
applied at its othe end. IF the area of cross section of the wire is S , then stress developed In the wire at a distance $\frac{3 L}{4}$ from its lower end will be (assume that increase in length of the wire is very small)

$$
\begin{aligned}
& \text { A. } \frac{W_{1}}{S} \\
& \text { B. } \frac{\left(\frac{3 W}{4}\right)}{S} \\
& \text { C. } \frac{\left(W_{1}+\frac{3 W}{4}\right)}{S}
\end{aligned}
$$

$$
\text { D. } \frac{\left(W_{1}+\frac{W}{4}\right)}{S}
$$

Answer: C

D View Text Solution

30. A steel ring of radius r and cross section A
is fitted on to a wooden disc of radius
$R(R>r)$. IF young's modulus be E , then the force with which the steel rings is expanded is
A. $A E \frac{R}{r}$
B. $\frac{E r}{A R}$
C. $\frac{E}{A}\left(\frac{R-r}{A}\right)$
D. $A E\left(\frac{R-r}{r}\right)$

Answer: D

- Watch Video Solution

Exercise Very Short Answer Type Questions

1. Between rubber and steel-which one is more elastic?
2. Which one is more elastic- steel or diamond?

- Watch Video Solution

3. State whether elasticity of a metallic substance increases or decreases with the rise
in temperature.

- View Text Solution

4. Strain has no unit'- state whether the statement is true or false.

D View Text Solution

5. Write down the dimensions of stress.
(Watch Video Solution
6. Can the length of a steel wire be doubled by
hanging a load from its end?

- Watch Video Solution

7. Under which kind of stress, does a body undergo a change in shape without changing
its volume?

- View Text Solution

8. Which property of a spring is represented by its force constant?

D Watch Video Solution
9. Between steel and copper-which one is usually used to make springs?

D View Text Solution
10. Write down the dimensions of force constant.

D Watch Video Solution
11. Can liquid and gaseous substances
withstand shearing strain?

D View Text Solution
12. Which property of a metal is manifested when a compressional stress more than the yield point is developed?

- View Text Solution

13. On what factory does the breaking stress of
a wire depend?

- Watch Video Solution

14. State whether a body undergoes a change in volume due to shearing stress only.

D Watch Video Solution

15. Young's modulus depends on temperature'state whether it true or false?

D View Text Solution

16. Write down the dimensions of elastic limit.

- View Text Solution

17. A wire is halved by cutting it. Would there by any change in the breaking load due to this?

D View Text Solution

18. All bodies are____elastic is reality.[Fill in the blanks]

19. Strain is a___quantity.[Fill in the blanks]

D Watch Video Solution

20. During change in length of a wire or change in volume of a body,_____stress is developed.[Fill in the blanks]

- Watch Video Solution

21. During change in shape of a body,____stress is developed.[Fill in the blanks]

D Watch Video Solution

22. Compressibilities of solids and liquids are
very____but that of a gaseous substance in
much____[Fill in the blanks]
23. Modulus of rigidity is a characteristic of
[Fill in the blanks]

(Watch Video Solution

24. Poisson's ratio depends on the _____of a body.[Fill in the blanks]

D View Text Solution
25. Loss in elastic ability of a body due to rapid
change in the load applied on it is
called____[Fill in the blanks]

D View Text Solution
26. What is the SI unit of force constant?
(Watch Video Solution
27. ____are usually made of ___ not of copper.
[Fill in the blanks]

D View Text Solution
28. The magnitude of the _____per unit cross sectional area on a body is the breaking stress.
[Fill in the blanks]

- Watch Video Solution

29. Write the name of a substance whose elasticity does not change with the change in temperature.

D View Text Solution

30. What is defined by dividing stress by strain within elastic limit?

D View Text Solution
31. For which kind of substance is Young's modulus physically meaningful?

D Watch Video Solution

32. The iron wires of equal length are taken.

One of them is thick and the other is thin. In which case will young's modulus be greater?

D Watch Video Solution

33. What is the Poisson's ratio of the substance whose volume remains unchanged under elastic strains?

D View Text Solution

34. A wire is cut into two parts. What will be the change in Young'modulus of the parts?

D Watch Video Solution

35. What is the range of theoretical values of Poisson's ratio?

- Watch Video Solution

36. Write down the dimension of Poisson's ratio with respect to M, L and T.

- Watch Video Solution

37. What is the value of Young's modulus for a perfectly rigid body?

D Watch Video Solution
38. Name the reciprocal of bulk modulus.

D Watch Video Solution

39. What is the dimension of elastic modulus?
40. What is the relation between Y, K and σ ?

- Watch Video Solution

41. What is the relation between Y, n and σ ?

(Watch Video Solution

42. What is the value of Young's modulus for a perfectly plastic body?

- Watch Video Solution

43. What will be the change in temperature of a stretched wire if snaps suddenly?

- View Text Solution

44. Which type of energy is stored when as elastic wire is elongated by stretching.
45. In a stretched wire, potential energy stored per unit volume $=\frac{1}{2}$ times___times [Fill in the blanks]

D Watch Video Solution

46. Force constant of two springs are k_{1} and $k_{2}\left(k_{1}>k_{2}\right)$ (i) The springs are elongated by the same amount and (ii) the springs are elongated by applying the same force. Then for which of the springs is more work performed?

- Watch Video Solution

47. Force constants of two springs are k_{1} and
k_{2}. What will be the equivalent force constant
of the spring system when the springs are joined in a parallel combination?

- Watch Video Solution

Exercise Short Answer Type Questions I

1. A horizontal bar fixed rigidly at one end is called a cantilever. When a load is hung at its
free end the cantilever (i) bends (ii) inclines at an angle with the horizontal without bending .What will be the nature of strain in each case?

- Watch Video Solution

2. In case of liquids and gases bulk modulus is
the only meaningful modulus of elasticity'what do you mean by this statement?
3. Modulus of rigidity is meaningful only in the case of a solid substances'-explain.

(Watch Video Solution

4. Between steel and diamond which one is more elastic? Explain with reason.
5. IF the volume of a body remains unchanged when subjected to a tensile strain, what will be its Poisson's ratio?

D Watch Video Solution

6. The stress-strain graphs for material A and B are shown in fig.1.25.

The graphs are drawn to the same scale.
(a) Which of the materials has greater Young's

modulus?

(b) Which of the two is the stronger material?

- View Text Solution

Exercise Short Answer Type Questions li

1. Why is it necessary to do work to increase the length of a wire by stretching it? Which form is this work converted into?
(Watch Video Solution
2. How much load should be hung from the end of a steel wire of length 3.14 m and of diameter 1 mm so that it increases in length by 1 mm ? Y for steel is $2 \times 10^{11} \mathrm{SI}$ unit.

- Watch Video Solution

2. When a load of 10 kg is hung from one end of a wire of length 5 m , the wire elongates by 5 mm . IF the young modulus for the material of
the wire is $9.8 \times 10^{10} \mathrm{~N} . \mathrm{m}^{-2}$, then find the area of cross section of the wire. $\left[g=9.8 m . s^{-2}\right]$

D Watch Video Solution

3. A steel wire of uniform diameter has length
2.5 m , mass 0.016 kg and density
$7.9 \times 10^{3} \mathrm{~kg} . \mathrm{m}^{-3}$. What will be the Young's modulus of steel if a load of 12 kg is needed to elongate the wire by 1.8 mm ?
4. What will be the increase in length of a steel
wire of length 10 m and of diameter 2 mm when subjected to a tension due to application of a load of 168 kg on it? Young's modulus of steel $=21 \times 10^{10} \mathrm{~N} . \mathrm{m}^{-2}$.

- Watch Video Solution

5. A load of 20 kg is hung from one end of a
wire of length 6 m and of cross sectional area
$1 \mathrm{~mm}^{2}$. IF the load is withdrawn, the length of
the wire becomes 5.995 m . Calculate the
longitudinal strain, (ii) longitudinal stress and
(iii) Young's modulus for the material of the wire.

- Watch Video Solution

6. When a load of 3 kg is hung from one end of
a copper wire of length 2 m and diameter 0.5 mm , it increases in length by 2.38 mm , Find the young's modulus for the material of the wire.

View Text Solution

7. A load of 5 kg hangs from one end of a vertical wire of length 1 m and of radius 1 mm .

IF young's modulus of the material of the wire is $2 \times 10^{11} N . m^{-2}$, find the length of the wire when no load is acting on it.

D Watch Video Solution

8. Cross sectional area of a steel wire is $1 \mathrm{~cm}^{2}$
.How much force is required to increase its
length to twice its initial length? Young's modulus for steel is 2×10^{12} dyn. cm^{-2}.

D Watch Video Solution

9. The length of a wire of diameter 0.8 mm is
2.5 m , IF the breaking stress for the material of
the wire is $3 \times 10^{7} \mathrm{~kg} . \mathrm{m}^{-2}$, then find the load that should be hung from the end of that wire so that it snaps.

- Watch Video Solution

10. Young's modulus for the material of a substance is $7.25 \times 10^{10} \mathrm{~N} . \mathrm{m}^{-2}$ and its bulk modulus is $11 \times 10^{10} \mathrm{~N} . \mathrm{m}^{-2}$. Find modulus of rigidity of the substance.

- Watch Video Solution

11. What will be the increase in length of a wire of length 10 m undergoing a strain of 0.001% ?

If the cross sectional area of the wire $2 m m^{2}$
and the load applied at its end is 1 kg , then
calculate the stress developed in $d y n . \mathrm{cm}^{-2}$.

- Watch Video Solution

12. Calculate the change in length of a wire of
length 5 m undergoing a strain of 1% of 0.1. IF the area of cross section of the wire is $1 \mathrm{~mm}^{2}$ and the load applied on it is 10 kg then find the ratio of stress to strain.

- Watch Video Solution

13. Volume of a substance at normal atmospheric pressure is $3500 \times 10^{-6} \mathrm{~m}^{3}$.

What will be its change in volume at the pressure of 25 standard atmosphere? Given that bulk modulus of the substance is $10^{11} N . m^{-2}$.

D Watch Video Solution

14. Compressibility of an oil is
$20 \times 10^{-6} \mathrm{~atm}^{-1}$. A hydraulic press contains
$0.5 \mathrm{~m}^{3}$ of this oil. What will be the decrease in
volume of oil if a pressure of 100 standard atmosphere is applied on it?

D Watch Video Solution

15. Young's modulus of silver is
$7.25 \times 10^{10} N . m^{-2}$ and its bulk modulus is
$11 \times 10^{10} N . m^{-2}$. Find the poisson's ratio for silver.

D Watch Video Solution

16. Young modulus of a material is
12.65×10^{10} dyn. cm^{-2} and its modulus of rigidity is 4.425×10^{10} dyn. cm^{-2}.Calculate Poisson's ratio for the material.

- Watch Video Solution

17. Young modulus of a material
$=18.5 \times 10^{10}$ N. m^{-2} and its poisson's ratio
is 0.238 . Determine the bulk modulus and modulus of rigidity for the material.
18. The value of Young's modulus for a material is 24×10^{11} dyn. cm ${ }^{-2}$. What will be the range of the value of its modulus of rigidity?

D Watch Video Solution

19. Two wires of the same length are made of different materials. Diameter of the one is 2 mm and that of the other is 4 mm . When these two wires are stretched by the same
force, the first one's elongation is twice the second's.compare their Young's modulus.

D Watch Video Solution

20. A metallic wire of length and diameter 300
cm and 0.1 cm . respectively is stretched by a
load of 10 kg . Young's modulus and Poisson's
ratio for the material of the wire are 20×10^{11} dyn. cm ${ }^{-2}$ and 0.26 respectively

Calculate the decrease in diameter of the wire.
21. $200 \mathrm{~cm}^{3}$ of air is kept at 760 mm of mercury pressure. Keeping the temperature constant, if the pressure or that air is increased by 1 mm of mercury, then its volume decreases by $0.263 \mathrm{~cm}^{3}$. Calculate the bulk modulus of air.

- Watch Video Solution

22. When a load of 20 kg is hung from a wire of cross sectional area $1 \mathrm{~mm}^{2}$, its elongated length is 600.5 cm . IF the load is withdrawn
the wire shrinks by 0.5 cm in length. Calculate
the young's modulus for the material of the wire.

D View Text Solution

23. A wire of length $2 m$ and of cross sectional area $1 \mathrm{~mm}^{2}$ is elongated by 1 mm by application of a load at its one end. IF Young's modulus for the material of the wire is
$2 \times 10^{11} N . m^{-2}$. Then calculate the work done.
24. A wire of length 4 m and of cross sectional area $4 m m^{2}$ is elongated by 0.1 mm by the applications of a force. IF young's modulus for the material of the wire is $2 \times 10^{12} \mathrm{~N} . \mathrm{m}^{-2}$, then calculate the amount of energy stored in the wire.

- View Text Solution

25. A wire of length L and cross sectional area
a is stretched by I, where $l<L$. Show that if the elastic limit is not exceeded, the potential energy of the wire increases by $\frac{Y a l^{2}}{2 L}$

D Watch Video Solution

26. 29.4 N force is required to compress a spring by 1 cm . How much work should be done to compress the spring by 20 cm ?
27. Two ends of a plank are placed on two wedges. The plank gets depressed by 1 mm when a load of 2 kg is hung from its mid-point.

What will be the depression of the plank if a load of 5 kg is hung from its mid-point.

D View Text Solution

28. A mild steel wire of length 1.0 m and cross
sectional area $0.50 \times 10^{-2}(\mathrm{~cm})^{2}$ is stretched,
well within its elastic limit, horizontally
between two pillars. A mass of 100 g is suspended from the mid-point of the wire.

Calculate the depression at the mid -point.

D View Text Solution

29. Initial length of a wire is L and its area of
cross section is A. The wire is elongated by applying a stress τ within its elastic limit.

Prove that the potential energy density in the wire due to elongation is $\frac{\tau^{2}}{2 Y} \quad[Y=Y o u n g ' s$ modulus]

D Watch Video Solution

30. Calculate the maximum length of a vetica steel wire just before its snaps. Breaking stress of steel is $7.9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{-2}$ and density of steel is $7.9 \times 10^{3} . \mathrm{m}^{-3}$.

D Watch Video Solution

31. A horizontal aluminium rod of diameter 4.8
cm remains projected 5.3 cm outwards from a wall. A load of 1200 kg is hung from the free
end of the rod. If the modulus of rigidity of aluminium is $3 \times 10^{10} \mathrm{~N} . \mathrm{m}^{-2}$ and the mass of the rod is negligible, then calculate the shearing stress and normal displacement of the free end of the rod.

D View Text Solution

32. A boy stretches the rubber cord of his catapult by 6 cm . IF 0.588 N of force is required for stretching the cord by 1 cm , then calculate the average force acting on the cord of the
catapult. With what velocity will a stone of mass 8 g be projected under such condition?

D View Text Solution

Exercise Problem Set li

1. The length of a metallic wire is l_{1} metre when the tension is 4 N and l_{2} metre when the tension is 6 N respectively. Find the length when the tension is 9 N and the actual length of the wire.

- Watch Video Solution

2. A copper rod of length L and radius r is suspended from the ceiling by one of its ends.

What will be elongation of the rod due to its own weight when ρ and Y and the density and the Young's modulus of copper respectively?

- Watch Video Solution

3. A cube of side 40 mm has its upper face displaced by 0.1 mm by a tangential force of 8
kN . Find the shearing modulus of the cube.

D Watch Video Solution

4. A wire suspended vertically from one of its
ends is stretched by attaching a weight of 200

N to the lower ends. The weight stretches the
wire by 1 mm . What is the elastic energy stored in the wire?

D View Text Solution
5. A solid sphere of radius R made of material
of bulk modulus K is surrounded by a liquid in
a cylindrical container. A massless piston of area A floats on the surface of the liquid.

When a mass M is placed on the piston to
compress the liquid, find the frictional charge in the radius of the sphere.
6. A load of $1 \mathrm{~kg} . \mathrm{wt}$ is attached to one end of a
steel wire of area of cross section $3 m m^{2}$ and
Young's modulus $10^{11} \mathrm{~N} . \mathrm{m}^{-2}$. The other end is suspended vertically from a hook on a wall.

Then the load is pulled horizontally and released. When the load passes through its
lowest position, find the frictional charge in the length of the wire.\{take $g=10 \mathrm{~m} . \mathrm{s}^{-2}$)

View Text Solution

1. A light rod of length 300 cm and of radius 3
cm is hung vertically from one end. Young's
modulus and Poisson's ratio for the material
of the rod are 2×10^{12} dyn. cm^{-2} amd 0.3
respectively. IF a load of 1200 kg is suspended
from the other end of the rod, find the lateral strain in the rod.

- Watch Video Solution

2. When a load is applied to stretch a wire of
length 200 cm , it gets elongated by 2 mm . IF the diameter of its cross section is 1 mm , then calculate the decrease in its diameter due to stretching, Poisson's ratio for the material of the wire is 0.24 .

- View Text Solution

3. A pillar of height 10 m carries a load of 80 tonne.Calculate the contractions in length and
in volume of the pillar. Area of cross section of the pillar is $100 \mathrm{~cm}^{2}$, Poisson's ratio of the material $=0.2$ and Young 's modulus $=$ $1.96 \times 10^{11} N . m^{-2}$.

D View Text Solution

4. A body of mass 2 kg and density $2.7 \mathrm{~g} . \mathrm{cm}^{-3}$
is suspended by a steel wire of length 1 m and
radius 1 mm . IF the body is completely immersed In water, what will be the change in
length of the wire? Y of steel

$$
=2 \times 10^{2} d y n . \mathrm{cm}^{-2} \text { and } g=980 \mathrm{~cm} . s^{-2}
$$

D Watch Video Solution

5. When a load of 10 kg is suspended from one end of a wire of length 1 m , it increases in length by 0.1 cm . IF the Poisson's ratio for the material of the wire is $\frac{1}{3}$, then calculate the change in volume of the wire, cross-sectional area of the wire $=0.1 \mathrm{~cm}^{2}$.
6. The radius of a copper wire is twice that of a steel wire. One end of the copper wire is joined with one end of the steel wire and the same tensile force is applied on them. If the length of the copper wire increases by 1%, what will be the percentage increase in the length of the steel wire? Given Young's modulus of steel is twice that of copper.
7. Two rods of different materials but of the same sectional area have lengths L_{1} and L_{2}. IF their Young's moduli are Y_{1} and Y_{2} respectively. Then calculate the equivalent Young's modulus of the composite system when the two rods are joined along their lengths.

D Watch Video Solution

8. The mariana trench is located in the Pacific

Ocean, and at one place it is nearly 11 km beneath the surface of water. The water pressure at the bottom of the trench is about $1.1 \times 10^{8} \mathrm{~Pa}$. A steel ball of initial volume
$0.32 m^{3}$ is dropped into the ocean and it falls to the bottom of the trench. What is the change in the volume of the ball when it reaches the bottom?
9. A wire $A B$ of radius 0.3 mm and length 300 cm is attached to a fixed support at its ends A and it hangs vertically. The wire carries a load 39.2 N attached to its mid-point and also another load of 39.2 N at its lower end B. IF Y for the material of the wire is $2 \times 10^{12} d y n . \mathrm{cm}^{-2}$, find the elongation of the end B.

D View Text Solution

10. The length of a spring is L and it elongates
through I when a load W is hung from its one end. Assume that the spring is cut into two equal parts and then the same load is hung from one end of any part of the divided spring calculate the increase in length of the spring now.

- Watch Video Solution

11. A steel wire of length 2 m and of diameter
0.8 mm is rigidly fixed at two ends horizontally
,when a load is suspended from the mid-point of the wire, a depression of 1 cm is produced.

Calculate the amount of load attached, if Young's modulus for steel is
20×10^{11} dyn. cm^{-2}.

D Watch Video Solution

12. Length of a wire is 21 and its area of cross
section is a. the wire is kept horizontally by
fixing its two ends or two rigid supports. A weight W is suspended from its mid-point. IF the mid-point depresses by $\mathrm{x}(x<1)$, then prove that $Y=\frac{W l^{3}}{a x^{3}}$, [Young's modulus for the material of the wire].

D Watch Video Solution

13. A metallic strip has thickness 3 mm and breadth 4 cm . The strip is kept horizontal on two wedges kept 80 cm apart and a mass of 50 g is placed at its middle. Calculate the depression of the mid-point of the strip, Given $Y=2 \times 10^{12}$ dyn. cm^{-2} and $g=980 \mathrm{~cm} . \mathrm{s}^{-2}$
14. The length of an unstretched elastic string
is 2 a . It is connected to two pegs A and B kept at a distance 2 a . To the mid-point C an elastic string of length a is attached. The other end D of this string is pulled at right angles to $A B$ until C is displaced through a distance equal
to $\frac{a}{10}$. Calculate the shift of D assuming the strings have the same moduli of elasticity and the same cross sectional area.
15. The edge of an aluminium cube is 10 cm long. One face of the cube is firmly fixed to a vertical wall. A mass of 100 kg is then attached to the opposite face of the cube. The shear modulus of aluminium is 25 Gpa . What is the vertical deflection of this face?

D View Text Solution

16. What will be the density of lead at a pressure of $2 \times 10^{4} N . m^{-2}$? (Density of lead=
$11.4 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ at STP and bulk modulus of lead $\left.=0.8 \times 10^{10} N . m^{-2}\right)$

D View Text Solution

17. One end of a wire of initial length 1.5 is
fixed at A and the other end is attached to a
load of 19.6 N . the length of the wire is now found to be 1.53 m . the load is then raised up to A and then released.Find the maximum distance it will descend below A .

View Text Solution

18. Four identical hollow cylindrical columns of mild steel support a big structure of mass
$50,000 \mathrm{~kg}$. The inner and outer radii of each column are 30 and 60 cm respectively. Assuming the load distribution to be uniform , calculate the compressional strain of each column.

D Watch Video Solution
19. A 14.5 kg mass fastened to the end of a steel wire of unstretched length 1.0 m is whirled in a vertical circle with an angular velocity of 2 rev. s^{-1} at the bottom of the circle. The cross sectional area of the wire is $0.065 \mathrm{~cm}^{2}$. Calculate the elongation of the wire when the mass is at the lowest point of its path.

D View Text Solution

20. When a spring is stretched by a distance x, it exerts a force given by $\mathrm{F}=\left(-5 x-6 x^{3}\right) \mathrm{N}$.

Find the work done when the spring is stretched from 0.1 m to 0.2 m .

D Watch Video Solution

21. A uniform cylinder of length L and mass M
having cross sectional area A is suspended, with its length vertical, from a fixed point by a massless spring of spring constant k,such that
it is half submerged in a liquid of density σ at equilibrium position. What is the extension of the spring when it is in equilibrium?

- View Text Solution

22. A load of 31.4 kg is suspended from a wire of radius $10^{-3} \mathrm{~m}$ and density $9 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.

Calculate the change in temperature of the wire if 75% of the work done is converted into
heat. The Young's modulus and the specific heat capacity of the material of the wire are
$9.8 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} \quad$ and $\quad 490 \mathrm{~J} . \mathrm{kg}^{-1} . \mathrm{K}^{-1}$ respectively.

D View Text Solution

Entrance Corner Assertion Reason Type

1. Statement I: Young's modulus for a perfectly
plastic body is zero.

Statement II: For a perfectly plastic body, restoring force is zero.
A. Statement I is true, statement II is true,
statement II is a correct explanation for statement I.
B. Statement I is true,statement II is true,
statement II is not a correct explanation
for statement I
C. Statement I is true, statement II is false
D. Statement I is false, Statement II is true

Answer: A

2. Statement I: IF length of a rod is doubled the breaking load remains unchanged.

Statement II: Breaking load is equal to the elastic limit.
A. Statement I is true, statement II is true,
statement II is a correct explanation for
statement I.
B. Statement I is true,statement II is true,
statement II is not a correct explanation
for statement I
C. Statement I is true, statement II is false
D. Statement I is false, Statement II is true

Answer: C

- Watch Video Solution

3. Statement I: Ductile metals are used to prepare thein wires.

Statement II: In the stress-strain curve of ductile metals, the length between the points
representing elastic limit and breaking points
is very small.
A. Statement I is true, statement II is true,
statement II is a correct explanation for
statement I.
B. Statement I is true,statement II is true,
statement II is not a correct explanation

for statement I

C. Statement I is true, statement II is false
D. Statement I is false, Statement II is true

Answer: C

D Watch Video Solution

4. Statement $\mathrm{I}:$ The restoring force F on a stretched string at extension x is related to
the potential energy U as $F=-\frac{d U}{d x}$
Statement II: $\mathrm{F}=-\mathrm{kx}$ and $U=\frac{1}{2} k x^{2}$, where k is the spring constant.
A. Statement I is true, statement II is true,
statement II is a correct explanation for
statement I.
B. Statement I is true,statement II is true,
statement II is not a correct explanation

for statement I

C. Statement I is true, statement II is false

D. Statement I is false, Statement II is true

Answer: A
(Watch Video Solution
5. Statement I: Identical springs of steel and copper are equally stretched more work will be done on the steel spring.

Statement II: Steel is more elastic than copper.
A. Statement I is true, statement II is true, statement II is a correct explanation for statement I.
B. Statement I is true,statement II is true,
statement II is not a correct explanation
for statement I
C. Statement I is true, statement II is false
D. Statement I is false, Statement II is true

Answer: A

D Watch Video Solution

6. Statement I: A hollow shaft is found to be
stronger than a solid shaft made of same material.

Statement II: The torque required to produce
a given twist is hollow cylinder is greater than
that required to twist a solid cylinder of same size and same material.
A. Statement I is true, statement II is true,
statement II is a correct explanation for
statement I.
B. Statement I is true,statement II is true,
statement II is not a correct explanation
for statement I
C. Statement I is true, statement II is false
D. Statement I is false, Statement II is true

Answer: A

D View Text Solution

7. Statement I: The bridges are declared unsafe after a long use.

Statement II: Elastic strength of bridges decreases with time.
A. Statement I is true, statement II is true,
statement II is a correct explanation for
statement I.
B. Statement I is true,statement II is true, statement II is not a correct explanation
for statement I
C. Statement I is true, statement II is false
D. Statement I is false, Statement II is true

Answer: A

D View Text Solution
8. Statement I:Stress is the internal force per unit area of a body.

Statement II: Rubber is less elastic than steel.
A. Statement I is true, statement II is true,
statement II is a correct explanation for
statement I.
B. Statement I is true,statement II is true,
statement II is not a correct explanation
for statement I
C. Statement I is true, statement II is false

D. Statement I is false, Statement II is true

Answer: B

- Watch Video Solution

Entrance Corner Multiple Correct Answer Type

1. A wire of length L and cross section A hung
from a rigid support is loaded with a mass M

The elongation produced is
A. inversely proportional to L
B. directly proportional to M
C. directly proportional to Young's
modulus
D. inversely proportional to A

Answer: A::D

- Watch Video Solution

2. Which of the following statements are correct regarding elasticity?
A. Rubber dies not obey Hooke's law
B. Elasticity can be different for tensile and
compressive stress
C. Elasticity is independent of temperature

D. Poisson's ratio is a modulus of elasticity

Answer: A::B

3. Potential energy per unit volume of a stretched wire is
A. $\frac{1}{2} \frac{\text { Stress }}{\text { strain }}$
B. $\frac{1}{2} \frac{\text { stress }}{\text { strain }}$
C. $\frac{1}{2}$ Young modulus \times strain 2
D. $\frac{1}{2} \times$ Young modulus \times strain

Answer: A::C

D Watch Video Solution
4. Two wires A and B have equal lengths and are made of the same material. But the diameter of A is twice that of wire B. Then for a given load
A. the extension of B will be four times that of A
B. the extension of A and B will be equal
C. the strain in B Is four times that in A
D. the strain in A and B will be equal

- Watch Video Solution

5. Two wires A and B have the same cross
section and are made of the same material but
the length of wire A is twice that of B. Then for a given load
A. the extension of A will be twice that of B
B. the extension of A and B will be equal
C. the strain in A will be half that in B
D. the strains in A and B will be equal

Answer: A::D

- Watch Video Solution

6. Choose the correct statement(s) from the following
A. steel is more elastic than rubber
B. The stretching of a coil spring is
determined by the Young's modulus of
the wire of the spring
C. The frequency of a tuning fork is determined by the shear modulus of the material of the fork
D. When a material is subjected to a tensile
(stretching) stress the restoring force is
causd by interatomic attraction

Answer: A::D

D View Text Solution

1. According to Hooke's law within the elastic
limit $\frac{\text { stress }}{\text { strain }}=$ constant. The constant depends
on the type of strain or the type of force
acting. Tensile stress might result In
compressional or elongative strain, however, a
tangential stress can only cause a shearing
strain. After crossing the elastic limit. the
material undergoes elongation and beyond a
stage beaks. All modulus of elastically are basically constants for the materials under

Two wires of same material have length and
radius I,r and $2 l, \frac{r}{2}$ respectively. The ratio of their Young's modulus is
A. $1: 2$
B. $2: 3$
C. 2:1
D. 1:1

Answer: D

2. According to Hooke's law within the elastic limit $\frac{\text { stress }}{\text { strain }}=$ constant. The constant depends on the type of strain or the type of force acting. Tensile stress might result In compressional or elongative strain, however, a tangential stress can only cause a shearing strain. After crossing the elastic limit. the material undergoes elongation and beyond a stage beaks. All modulus of elastically are basically constants for the materials under stress

After crossing the yield region the material will have
A. reduced stress
B. increased stress
C. breaking stress
D. constant stress

Answer: A::C

D View Text Solution

3. According to Hooke's law within the elastic limit $\frac{\text { stress }}{\text { strain }}=$ constant. The constant depends on the type of strain or the type of force acting. Tensile stress might result in compressional or elongative strain, however, a tangential stress can only cause a shearing strain. After crossing the elastic limit. the material undergoes elongation and beyond a stage beaks. All modulus of elastically are basically constants for the materials under stress

If $\frac{\text { stress }}{\text { strain }}$ is x in elastic region and y in yield region, then
A. $x=y$
B. $x>y$
C. $x<y$
D. $x=2 y$

Answer: B

D View Text Solution
4. A sphere of radius 0.1 m and mass $8 \pi \mathrm{~kg}$ is
attached to the lower end of a steel wire of length 5 m and diameter $10^{-3} \mathrm{~m}$. The wire is suspended from 5.22 m high ceiling of a room. When the sphere is made to swing as a simple pendulam. It just grazes the floor at the lowest point. Given Young's modulus of steel is $1.994 \times 10^{11} N . m^{-2}$

What is the extension of the wire at the mean position when the sphere is oscillating?
B. 0.02 m
C. 0.03 m
D. 0.04 m

Answer: B

D View Text Solution
5. A sphere of radius 0.1 m and mass $8 \pi \mathrm{~kg}$ is attached to the lower end of a steel wire of
length 5 m and diameter $10^{-3} \mathrm{~m}$. The wire is
suspended from 5.22 m high ceiling of a room.

When the sphere is made to swing as a simple pendulam. It just grazes the floor at the lowest point. Given Young's modulus of steel is $1.994 \times 10^{11} N . m^{-2}$

The tension in the wire at the mean position when the sphere is oscillating is
A. $199.4 \pi N$
B. $19.94 \pi N$
C. $1.994 \pi N$
D. $0.1994 \pi N$

- View Text Solution

6. A light rod of length 2 m is suspended from
the ceiling horizontally by means of two vertical wires of equal length tied to its ends.

One of the wire is made of steel and is cross section $10^{-3} m^{2}$ and the other is of brass of cross section $2 \times 10^{-3} \mathrm{~m}^{2}$. Young's modulus for steel is 2×10^{11} N. m^{-2} and for brass is $10^{11} N . m^{-2}$.

Find out the position along the rod at which a
weight may be hung to produce equal stress in both wires.
A. 1.39 m
B. 1.30 m
C. 1.33 m
D. 1.24 m

Answer: C

D View Text Solution
7. A light rod of length 2 m is suspended from
the ceiling horizontally by means of two
vertical wires of equal length tied to its ends.
One of the wire is made of steel and is cross
section $10^{-3} \mathrm{~m}^{2}$ and the other is of brass of
cross section $2 \times 10^{-3} m^{2}$. Young's modulus
for steel is 2×10^{11} N. m^{-2} and for brass is
$10^{11} N . m^{-2}$.
Find out the position along the rod at which a weight may be hung to produce equals strains on both wires
A. 1 m
B. 1.2 m
C. 0.87 m
D. 1.05 m

Answer: A

D View Text Solution
8. One end of a string of length L and cross sectional area A is fixed to a support and the other end is fixed to a bob of mas m. The bob
is revolved in a horizontal circle of radius r with an angular velocity ω such that the string makes an angle θ with the vertical. Young's modulus is Y .

The angular velocity ω is equal to

> A. $\sqrt{\frac{g \sin \theta}{r}}$
> B. $\sqrt{\frac{g \cos \theta}{r}}$
> C. $\sqrt{\frac{g \tan \theta}{r}}$
> D. $\sqrt{\frac{g \cot \theta}{r}}$

Answer: C
9. One end of a string of length L and cross sectional area A is fixed to a support and the other end is fixed to a bob of mas m. The bob is revolved in a horizontal circle of radius r with an angular velocity ω such that the string makes an angle θ with the vertical. Young's modulus is Y .

The tension T in the string is

$$
\text { A. } \frac{m g}{\cos \theta}
$$

B. $\frac{m g}{\sin \theta}$
C. $\frac{m g}{\tan \theta}$
D. $m\left(g^{2}+r^{2} \omega^{4}\right)^{\frac{1}{2}}$

Answer: A::D

D Watch Video Solution

10. One end of a string of length L and cross sectional area A is fixed to a support and the other end is fixed to a bob of mas m. The bob is revolved in a horizontal circle of radius r
with an angular velocity ω such that the string makes an angle θ with the vertical. Young's modulus is Y .

The increase ΔL in length of the string is

> A. $\frac{T L}{A Y}$
> B. $\frac{m g L}{A Y \cos \theta}$
> C. $\frac{m g L}{A Y \sin \theta}$
> D. $\frac{m g L}{A Y}$

Answer: A::B

11. One end of a string of length L and cross
sectional area A is fixed to a support and the other end is fixed to a bob of mas m. The bob
is revolved in a horizontal circle of radius r with an angular velocity ω such that the string makes an angle θ with the vertical. Young's modulus is Y .

The stress in the string is

$$
\begin{aligned}
& \text { A. } \frac{m g}{A} \\
& \text { B. } \frac{m g}{A}\left(1-\frac{r}{l}\right)
\end{aligned}
$$

C. $\frac{m g}{A}\left(1+\frac{r}{l}\right)$

$$
\text { D. } \frac{m g}{A}\left(\frac{r}{l}\right)
$$

Answer: A

D View Text Solution

Entrance Corner Integer Answer Type

1. A 0.1 kg mass is suspended from a wire of negligible mass. The length of the wire is 1 m and its cross sectional area is $4.9 \times 10^{-7} \mathrm{~m}^{2}$.

IF the mass is pulled a little in the vertically downward direction and released, it performs simple harmonic motion of angular frequency $140 \mathrm{rad} . \mathrm{s}^{-1}$. IF the young's modulus of the material of the wire is $n \times 10^{9} \mathrm{~N} . \mathrm{m}^{-2}$. Find the value of n.

- Watch Video Solution

2. Two wires A and B have the same length and area of cross section. But young's modulus of

A is two times the young's modulus of B. Then
what is the ratio of force constant of A to that of B ?

D Watch Video Solution

3. For a wire of length I, maximum change in length under stress condition is 2 mm . What is
the change in length (in mm) under same condition when length of wire is halved?

D Watch Video Solution

4. The density of water at the surface is $1030 \mathrm{~kg} . \mathrm{m}^{-3}$ and bulk modulus of water is $2 \times 10^{9} N . m^{-2}$. What is the approximate change in density (Inkg. m^{-3}) of water in a lake at a depth of 400 m below the surface?

D Watch Video Solution

5. A body of mass 3.14 kg is suspended form one end of a wire of length 10.0 m . The radius of the wire is changing uniformly from
$9.8 \times 10^{-4} m$ at one end to $5.0 \times 10^{-4} m$ at the other end. Find the change in the length of the wire in mm. Young's modulus of the material of the wire is $2 \times 10^{11} \mathrm{~N} . \mathrm{m}^{-2}$.

D View Text Solution

Examination Archive With Solutions Wbchse

1. A spring is cut into two equal pieces. What is
the spring constant of each part if the spring constant of the original spring is k.

- Watch Video Solution

2. Define Poisson's ratio. The poisson's ratio of a material is σ. If a longitudinal strain of a wire made of thin material be a, show that its volume strain is $(1-2 \sigma) a$

- Watch Video Solution

3. What are the maximum and minimum values of Poisson's ratio?
4. Show that the elastic potential energy per unit volume of a rod stretched longitudinally is $\frac{1}{2} \times$ stress \times strain.

- Watch Video Solution

5. Force constants of two springs are k_{1} and
k_{2}. One end of a spring is connected with one end of the other. Equivalent force constant of the spring system will be
A. $\frac{\left(k_{1}+k_{2}\right)}{2}$
B. $2\left(k_{1}+k_{2}\right)$
C. $\frac{\left(k_{1}+k_{2}\right)}{k_{1} k_{2}}$
D. $\frac{k_{1} k_{2}}{k_{1}+k_{2}}$

Answer: D

D Watch Video Solution

6. A spring having spring constant k is cut into
two parts in the ratio 1:2 Find the spring constants of the two parts.

- Watch Video Solution

Examination Archive With Solutions Wbjee

1. The length of a metal wire is L_{1}, when the
tension is T_{1} and l_{2} when the tension is T_{2}.
The unstretched length of the wire is

$$
\begin{aligned}
& \text { A. } \frac{L_{1}+L_{2}}{2} \\
& \text { B. } \sqrt{L_{1} L_{2}} \\
& \text { C. } \frac{T_{2} L_{1}-T_{1} L_{2}}{T_{2}-T_{1}}
\end{aligned}
$$

D. $\frac{T_{2} L_{1}+T_{1} L_{2}}{T_{2}-T_{1}}$

Answer: C

D Watch Video Solution

2. A liquid of bulk modulus k is compressed by

applying an external pressure such that its density increased by 0.01%. The pressure applied on the liquid is
A. $\frac{k}{10000}$
B. $\frac{k}{1000}$
C. 1000 k
D. 0.01 k

Answer: A

D Watch Video Solution

3. The stress along the length of a rod (with rectangular cross section) is 1% of the Young's modulus of its material. What is the approximate percentage of change of its

rod is 0.3)

A. 0.03
B. 0.01
C. 0.7%
D. 0.4%

Answer: D

D Watch Video Solution

1. When a rubber band is stretched by a distance x , it exerts a restoring force of magnitude $F=a x+b x^{2}$ where a and b are constants. The work done in stretching the unstretched rubber band by L is
A. $a L^{2}+b L^{3}$
B. $\frac{1}{2}\left(a L^{2}+b L^{3}\right)$
C. $\frac{a L^{2}}{2}+\frac{b L^{3}}{3}$
D. $\frac{1}{2}\left(\frac{a L^{2}}{2}+\frac{b L^{3}}{3}\right)$

Answer: C

D Watch Video Solution

2. A man grows into a giant such that his
linear dimensions increase by a factor of 9.

Assuming the his dimensity remains same, the stress in the leg will change by a factor of
A. 9
B. $\frac{1}{9}$
C. 81

D. $\frac{1}{81}$

Answer: A

D View Text Solution

3. An external pressure P is applied on a cube at $0^{\circ} C$ so that it is equally compressed from all sides. K is the bulk modulus of the material
of the cube and a is its coefficient of linear expansion. Suppose we want to bring the cube
to its original size by heating . The temperature should be raised by
A. $\frac{P}{3 a K}$
B. $\frac{P}{a K}$
C. $\frac{3 a}{P K}$
D. 3PKa

Answer: A

D Watch Video Solution
4. A solid sphere of radius r made of a soft material of bulk modulus K is surrounded by a
liquid in a cylinderical container. A massless piston of area a floats on the surface of the liquid, convering entire cross section of cylindrical container. When a mass m is placed on the surface of the piston to compress the liquid, the fractional decrement in the radius of the sphere, $\left(\frac{d r}{r}\right)$ is
A. $\frac{m g}{3 K a}$
B. $\frac{m g}{K a}$
C. $\frac{K a}{m g}$
D. $\frac{K a}{3 m g}$

Answer: A

- View Text Solution

Examination Archive With Solutions Aipmt

1. Copper of fixed volume V is drawn into wire
of length I. when this wire is subjected to a
constant force F, the extension produced in
the wire is Δl, which of the following graphs is a straight line?
A. Δl versus $1 / l$
B. Δl versus l^{2}
C. Δl versus $1 / l^{2}$
D. Δl versus I

Answer: B

D View Text Solution
2. The approximate depth of an ocean is 2700
m . The compressibility of water is
$45.4 \times 10^{-11} \mathrm{~Pa}^{-1}$ and density of water is $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. What fractional compression of water will be obtained at the bottom of the ocean?
A. 0.8×10^{-2}
B. 1.0×10^{-2}
C. 1.2×10^{-2}
D. 1.4×10^{-2}

Answer: C

- Watch Video Solution

Examination Archive With Solutions Neet

1. The density of a metal at normal pressure is
ρ, Its density when it is subjected to an excess
pressure ρ is ρ^{\prime} IF B is bulk modulus of the
metal, the ratio of $\frac{\rho^{\prime}}{\rho}$ is
A. $1+\frac{B}{p}$

> B. $\frac{1}{1-\frac{p}{B}}$
> C. $1+\frac{p}{B}$
> D. $\frac{1}{1+\frac{p}{B}}$

Answer: B

D Watch Video Solution

2. Two wires are made of the same material and have the same volume. The first wire has cross sectional area A and the second wire has cross sectional area 3 A . IF the length of the
first wire is increased by Δl on applying a
force F, how much force is needed to stretch
the second wire by the same amount?
A. 4 F
B. 6 F
C. 9 F
D. F

Answer: C

D Watch Video Solution

1. Which substances are called elastomers?

Given one example.

- View Text Solution

2. Bridges are declared unsafe after long use

Why?

- Watch Video Solution

3. What are elastomers? Given two examples for the same.

D Watch Video Solution

4. State Hooke's law.

D Watch Video Solution

5. What is the value of rigidity modulus of elasticity for an incompressible liquid?
6. Which type of energy is stored in the spring of wrist watch?

D Watch Video Solution

7. The stress strain graph for materials A and B are as shown in the graphs are drawn to the same scale, which graph represents property of ductile materials? Justify your answer.

- View Text Solution

8. A two wires A and B of length I, radius r and
length 2 I, radius 2 r having same Young's modulus Y are hung with a weight mg as
shown in figure. What is the net elongation in
the two wires?

- View Text Solution

9. Which of the two forces -deforming or restoring is responsible for elastic behaviour of substance?

D Watch Video Solution

10. Define stress. A heavy wire is suspended
from a roof and no weight is attached to its
lower end. Is it under stress.

D Watch Video Solution

