©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CHHAYA PHYSICS (BENGALI

ENGLISH)

KINETIC THEORY OF GASES

Examples

1. The velocity of 10 gas molecules is a
container are $2,3,3,4,4,4,5,5,7$ and $10 \mathrm{~km} . \mathrm{s}^{-1}$
respectively. Find out the mean velocity and rms speed.

- Watch Video Solution

2. Find out the rms speed of a gas of density $2 g . L^{-1}$ at 76 cmHg pressure. Given density of mercury $=13.6 \mathrm{~g} . \mathrm{cm}^{-3}$ and $g=980 \mathrm{~cm} . \mathrm{s}^{-2}$.

D Watch Video Solution

3. Determine the rms speed of air molecules at STP Given density of mercury $=13.6 \mathrm{~g} . \mathrm{cm}^{-3}$ density of air $=0.00129 \mathrm{~g} . \mathrm{cm}^{-3}$.

- Watch Video Solution

4. The rms speed of hydrogen molecules at STP
is $1.85 \mathrm{~km} . s^{-1}$ What is the density of hydrogen gas?
5. Find out the rms speed of nitrogen gas molecules at $0^{\circ} C$. The density of nitrogen gas at $\mathrm{STP}=1.25 g . L^{-1}$
and density of mercury $=13.6 \mathrm{~g} . \mathrm{cm}^{-3}$

D Watch Video Solution

6. Find out the ratio of the rms speeds of hydrogen and nitrogen molecules at STP?
7. At what temperature will the rms speed of molecules of nitrogen gas be twice of that at $0^{\circ} C ?$

- Watch Video Solution

8. The temperature of a gas rises from $27^{\circ} C$ to
$327^{\circ} \mathrm{C}$. Show that the rms speed of the gas
molecules would be $\sqrt{2}$ times its initial value at
the final temperature.
9. The rms speed of oxygen gas molecules at STP is $4.5 \times 10^{4} \mathrm{~cm} . s^{-1}$. Find out the same for carbon dioxide gas molecules at STP. Given the molecular weights of oxygen and carbon dioxide are 32 and 44, respectively.

- Watch Video Solution

10. Find out the kinetic energy of 2 g of nitrogen gas at $27^{\circ} \mathrm{C}$. Given
$R=8.3 \times 10^{7} \mathrm{erg} . \mathrm{mol}^{-1} \mathrm{~K}^{-1}$.
11. At what temperature the average kinetic energy of the molecules of a perfect gas be doubled than that at $20^{\circ} C$?

D Watch Video Solution

12. Find out the temperature at which the molecular rms speed of a gas would be $\frac{1}{3} r d$ its value at $100^{\circ} \mathrm{C}$.
13. The rms speed of the molecules of an ideal gas at STP is $0.5 \mathrm{~km} . s^{-1}$. Find the density of the gas,what will be the density at $21^{\circ} C$ IF pressure remains the same? Given,atmospheric pressure $=10^{5} \mathrm{~N} . \mathrm{m}^{-2}$.

- Watch Video Solution

14. Find out the energy of 1 mol of a gas and its average molecular kinetic energy at $27^{\circ} \mathrm{C}$.

Given, $\quad R=8.3 \times 10^{7}$ erg. $\mathrm{mol}^{-1} . K^{-1} \quad$ and

$$
N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}
$$

D Watch Video Solution

15. The average kinetic energy of a molecule in a gas at STP is $5.6 \times 10^{-14} \mathrm{erg}$. Find out the number of molecules per volume of the gas

Given, density of mercury $=13.6 \mathrm{~g} . \mathrm{cm}^{-3}$.

D Watch Video Solution

16. Find out the temperature at which the rms
speed of nitrogen molecules will be equal to
the escape velocity from the earth's gravity.
Given,mass of a nitrogen atom =
$23.24 \times 10^{-24} \mathrm{~g}$, average radius of the earth $=6390 \quad \mathrm{~km}, \mathrm{~g}=980 \mathrm{~cm} . \mathrm{s}^{-2}, \quad$ Boltzman
constant $=1.37 \times 10^{-16} \mathrm{erg} .{ }^{\circ} \mathrm{C}^{-1}$

D Watch Video Solution

17. Find out the temperature at which the average kinetic energy of a gas molecule will be
equal to the energy gained by an electron on acceleration across a potential difference of 1 V , Given Boltzman constant=1.38×10-23 J. K , charge of an electron $=1.6 \times 10^{-19} C$.

- Watch Video Solution

18. Find out the molecular kinetic energy of 1 mol of oxygen gas at STP, Given, molecular weight of oxygen=32, density of oxygen at STP = $1.43 \mathrm{~g} . L^{-1}$, density of mercury $=13.6 \mathrm{~g} . \mathrm{cm}^{-3}$.
19. At what temperature will the rms speed of a hydrogen molecules be equal to that of an oxygen molecule at $47^{\circ} C$?

D Watch Video Solution

20. 0.76 g of a mixture of hydrogen and oxygen
gases has a volume of 2 L temperature of 300 K and pressure of $10^{5} \mathrm{~N} . \mathrm{m}^{-2}$. Find out the individual masses of hydrogen and oxygen in the mixture.

- Watch Video Solution

21. Find out the number of molecules in a gas of volume $20 \mathrm{~cm}^{3}$ at a pressure of 76 cm of mercury. And at $27^{\circ} \mathrm{C}$ Given average molecule kinetic energy at $27^{\circ} \mathrm{C}=2 \times 10^{-14} \mathrm{erg}$.

- Watch Video Solution

22. Find the temperature at which the average kinetic energy of a gas molecule will be equal to the energy of a photon to 6000 Angstrom
radiation. Given,Boltzmann constant,
$k=1.38 \times 10^{-23} J . K^{-1} \quad$ Planck's constant,
$h=6.625 \times 10^{-34} J . s$.

- Watch Video Solution

23. Some amount of oxygen gas contained in a vessel has a density of $1.429 \mathrm{~kg} . \mathrm{m}^{-3}$. At STP.

The temperature is increased until the pressure is doubled Neglecting the change in
volume of the vessel,find the rms speed of the oxygen molecules.
24. Two ideal gases at absolute temperature T_{1}
and T_{2} are mixed with each other. IF the molecular mass and the number of molecules are m_{1}, n_{1} and m_{2}, n_{2}, respectively, find out the temperature of the mixture.

- Watch Video Solution

25. 2 mol of a monatomic gas is mixed with 1
mol of a diatomic gas. Find out the value of γ

- Watch Video Solution

26. The mean free path for the collision of nitrogen molecules at STP is $6.44 \times 10^{-6} \mathrm{~cm}$.

What is the mean time interval between collisions?

Given,
$R=8.31 \times 10^{7}$ erg. $\mathrm{mol}^{-1} . \mathrm{K}^{-1}, \quad$ molecular mass of nitrogen=28.

- Watch Video Solution

27. The mass of a hydrogen molecule is $3.32 \times 10^{-27} \mathrm{~kg} .10^{23}$ such molecules hit every second on a rigid wall of area $2 \mathrm{~cm}^{2}$ at an angle of 45° with horizontal with a velocity of $10^{3} \mathrm{~m} . \mathrm{s}^{-1}$. If the molecules are reflected will the same velocity, then what is the pressure exerted on the wall?

D Watch Video Solution

28. 22 g of $C O_{2}$ gas at $27^{\circ} \mathrm{C}$ is mixed with 16 g
of O_{2} gas at $37^{\circ} C$. What will be the
temperature of the mixture?

- Watch Video Solution

29. A mixture of 8 g oxygen , 14 g nitrogen and

22 g carbon dioxide is contained in a vessel of
volume 4 L What will be the pressure of the gas
mixture if the temperature of the mixture is
$27^{\circ} C ?$

- Watch Video Solution

30. 1 mol of He at $57^{\circ} \mathrm{C}$ is mixed with 1 mol of

Ar at $27^{\circ} \mathrm{C}$. Find the temperature of the gas mixture .

- Watch Video Solution

31. Find the minimum radius of the planet of density $5.5 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and temperature $427^{\circ} \mathrm{C}$ which can hold O_{2} in its atmosphere.
[Given $G=6.67 \times 10^{-11} N . m^{-2} \cdot \mathrm{~kg}^{-2} \quad$ and
$\left.R=8.3 J . \mathrm{mol}^{-1} . K^{-1}\right]$
32. $1 \mathrm{~mol} O_{2}$ at temperature $27^{\circ} C$ at STP $\left(1.01 \times 10^{5} \frac{N}{m^{2}}\right)$ is kept in a vessel.Find the number of collisions the molecules experience(in SI) per second per unit area with the wall of the vessel.
[Given Boltzmann constant k= $\left.1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right]$
33. $0.014 \mathrm{~kg} N_{2}$ gas at $27^{\circ} \mathrm{C}$ is kept in a closed
vessel. How much heat is required to double the rms speed of the N_{2} molecules?

- Watch Video Solution

34. IF 2 mol of a gas at constant pressure, requires 70 cal heat to increase its temperature from $30^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$, then find its degrees of freedom.
35. Will the rms speed of molecules of different gases at the same temperature be the same?

- Watch Video Solution

2. $1 \mathrm{~cm}^{3}$ of hydrogen gas and $1 \mathrm{~cm}^{3}$ of oxygen gas are both at STP. Which one contains more number of molecules?
3. How does kinetic theory explain the increase of temperature of a gas when heat is supplied from outside?

- Watch Video Solution

4. A porous container is filled with a gas mixture. Which gas would leak faster from the container when it is placed in vaccum?
5. Equal number of molecules of an ideal monatomic and an ideal diatomic gas are at the same temperature. Which gas will be more heated if equal amount of heat is supplied from outside?
(D) Watch Video Solution
6. The motion of gas molecules ceases at the temperature of absolute zero .Explain.
7. The velocity of a gas molecule is comparable to that of a rifle bullet. Yet, a gas molecule spends a much longer time than a bullet does to travel equal distances .Explain.

- View Text Solution

8. How would the rms speed of an ideal gas
change if temperature increases.

- Watch Video Solution

9. How would the rms speed of an ideal gas
change if density increases at constant pressure,

- Watch Video Solution

10. How would the rms speed of an ideal gas
change if density increases at constant temperature.

D
 Watch Video Solution

11. Why does a real gas obey Boyle's law and

Charle's law at high temperature.

- Watch Video Solution

12. Why does a real gas obey Boyle's law and

Charle's law at low pressure.

- Watch Video Solution

13. A gas mixture contains 1 mol each of two
different gases, Would the average molecular kinetic energy of the two gases be equal? Would the rms speed be equal?

(Watch Video Solution

14. State the condition in which a real gas behaves as an ideal gas.
15. For a fixed mass of a gas at constant temperature the pressure falls when the volume increases, and vice versa. Explain according to the kinetic theory?

D Watch Video Solution

16. For a fixed mass of a gas at constant
volume, pressure rises when temperature increases,and vice versa Explain from the kinetic theory.
17. Find out the molecular kinetic energy of 1 mol of an ideal gas. Is it equal for all gases?

- Watch Video Solution

18. In a closed container ,the gas molecules have a highly random motion. Yet the pressure throughout the container is uniform at constant temperature.
19. Why does a place of wood floating on water have no Brownian motion?

- Watch Video Solution

20. Light gases like hydrogen and helium are very rare in the earth's atmosphere why?

D Watch Video Solution
21. IF n is the number of degrees of freedom of the molecules of an ideal gas, show that the ratio $\frac{C_{p}}{C_{v}}$ is $1+\frac{2}{n}$.

- Watch Video Solution

22.1 mol of an ideal monatomic gas $\left(\gamma=\frac{5}{3}\right)$ is mixed with 1 mol of an ideal diatomic gas $\left(\gamma=\frac{7}{5}\right)$. Find the value of γ for the mixture.

- Watch Video Solution

23. The ratio between the specific heats of an ideal gas is γ. Show that the number of degrees of freedom of the gas molecules is $n=\frac{2}{\gamma-1}$.

D Watch Video Solution

24. IF the absolute temperature of a perfect gas rises to four times its initial value estimate the changes of molecular rms speed.
25. IF the absolute temperature of a perfect gas rises to four times its initial value estimate the changes of total kinetic energy.

- Watch Video Solution

26. Some gas cylinders are kept on the running
vehicle . What will be the change it temperature of the gas molecules inside the cylinder?
27. Find the dimension of the constant a in the
van der Waals equation
$\left(p+\frac{a}{V^{2}}\right)(V-b)=R T$.

D Watch Video Solution

28. Find the dimension of the constant b in the

$$
\begin{array}{llll}
\text { van } & \text { der } & \text { Waals } & \text { equation } \\
\left(p+\frac{a}{V^{2}}\right)(V-b)= & R T
\end{array}
$$

- Watch Video Solution

29. We have a sample of a gas characterised by $\mathrm{p}, \mathrm{V}, \mathrm{T}$ and another sample by $2 p, \frac{V}{4}, 2 T$. What is the ratio of the number of molecules in the two samples?

D Watch Video Solution

30. Find out the ratio between the absolute
temperature of two samples of hydrogen and oxygen gases, if their molecules rms speed are equal.
31. At equilibrium the volume pressure and temperature of a gas are V, p and T respectively.

IF the gas is divided into two parts by a equation, what will be the value of these quantities in each part?

D Watch Video Solution

32. In a gas -filled container, a molecule of speed $200 \mathrm{~m} / \mathrm{s}$ collides at an angle of 30° with
the horizontal face of this container, and
rebounds with the same speed. Is the collision elastic or inelastic? In this momentum conserved in this collision?

- Watch Video Solution

33. While considering the motion of gas molecules in a container, why do we use rms speed instead of average speed of molecules?

D Watch Video Solution

1. IF the volume of a body is V_{1} and total volume of the molecules of the body is V_{2}, then
A. $V_{1}=V_{2}$
B. $V_{1}<V_{2}$
C. $V_{1}>V_{2}$
D. $V_{1}<V_{2}$ or $V_{1}>V_{2}$ for different bodies

Answer: C

2. The molecules of all solids

A. are relatively closer than those of liquids
or gases
B. are relatively farther than those of liquids
or gases
C. move faster than those of liquids or
gases
D. are stationary as they cannot move inside
the solid

Answer: A

- Watch Video Solution

3. Which of the following statements is inconsistent with the characteristic of Brownian motion?
A. the velocity of a particle increases as its
size decreases
B. the velocity of the particles increases as
the temperature increases
C. the velocity of the particles increases as
the viscosity of the medium decreases

D. the velocity of the particles increases

when the container is shaken.

Answer: D

D Watch Video Solution

4. A piece of wood floating on water does not have any Brownian motion, because
A. a part of the wooden piece is above water
B. the resultant of the applied forces by the
water molecules is zero
C. an adhesive force acts between the molecules of wood and water
D. the viscosity of water is comparatively
less

Answer: B
5. The velocities of two particles moving towards east to $4 m . s^{-1}$ and $6 m . s^{-1}$, respectively The velocities of three other particles moving towards west are
$2 m . s^{-1}, 3 m . s^{-1}$ and $5 m . s^{-1}$ respectively.

The root mean square speed of these 5 particles is
A. 0
B. $4 m . s^{-1}$
C. $1.667 m . s^{-1}$

$$
\text { D. } 4.242 m . s^{-1}
$$

Answer: D

- Watch Video Solution

6. the pressure and density of hydrogen gas, kept in a vessel are $1.013 \times 10^{6} \mathrm{dyn} . \mathrm{cm}^{-2}$ and $0.089 \mathrm{~g} . L^{-1}$, respectively, The rms speed of the gas molecules will be
A. $18.5 m . s^{-1}$
B. $185 \mathrm{~m} . \mathrm{s}^{-1}$
C. $1.85 \mathrm{~km} . s^{-1}$

D. $18.5 \mathrm{~km} . s^{-1}$

Answer: C

- Watch Video Solution

7. IF the mean velocity rms speed and maximum

 probable velocity of a gas are c^{-}, c and c_{m}, respectively then$$
\text { A. } c_{m}<\bar{c}<c
$$

$$
\text { B. } \bar{c}<c<c_{m}
$$

C. $c_{m}>\bar{c}>c$

D. None of these

Answer: A

(Watch Video Solution

8. There is a mixture of hydrogen and oxygen
gases in a vessel. The root mean square speed of the oxygen molecules is
A. 4 times that of hydrogen molecules
B. 16 times that of hydrogen molecules
C. $\frac{1}{4}$ times of hydrogen molecules
D. $\frac{1}{16}$ times of hydrogen molecules

Answer: C

D Watch Video Solution

9. A mixture of 2 moles of helium gas (atomic mass=4 amu) and 1 mole of argon gas (atomic
mass $=40 \mathrm{amu}$) is kept at 300 K in a container.

The ratio of the rms speeds is
A. 0.32
B. 0.45
C. 2.24
D. 3.16

Answer: D

D Watch Video Solution
10. At room temperature the rms speed of the molecules of a certain diatomic gas is found to be $1930 \mathrm{~m} / \mathrm{s}$. The gas is
A. H_{2}
B. F_{2}
C. O_{2}
D. Cl_{2}

Answer: A
11. IF the volume of a container is V , the pressure on the walls of the container by a gas is p and internal energy of the gas is U , then
A. $U=p \mathrm{~V}$

$$
\begin{aligned}
& \text { B. } U=\frac{1}{3} p V \\
& \text { С. } U=\frac{2}{3} p V \\
& \text { D. } U=\frac{3}{2} p V
\end{aligned}
$$

Answer: D

12. A certain amount of gas is at $27^{\circ} \mathrm{C}$. The rms
speed of the gas molecules becomes double at
A. $327^{\circ} C$
B. $600^{\circ} \mathrm{C}$
C. $927^{\circ} \mathrm{C}$
D. $1200^{\circ} \mathrm{C}$

Answer: C
(Watch Video Solution
13. If a gas of particular mass is expanded at constant temperature ,the variable which undergoes a change is
A. pressure of the gas
B. internal energy of the gas
C. rms speed of the gas molecules
D. kinetic energy of the gas molecules

Answer: A

14. At equilibrium condition,volume,pressure and temperature of a gas kept in a closed container are V, p and T respectively. IF the container is divided into two equal parts by a partition, the value of these quantities for each part will be

$$
\begin{aligned}
& \text { A. } \frac{V}{2}, \frac{p}{2}, \frac{T}{2} \\
& \text { B. } \frac{V}{2}, \frac{p}{2}, T \\
& \text { C. } \frac{V}{2}, p, \frac{T}{2} \\
& \text { D. } \frac{V}{2}, p, T
\end{aligned}
$$

- Watch Video Solution

15. According to the kinetic theory of gases,
there are no intermolar attractions, so these molecules do not have
A. linear momentum
B. kinetic energy
C. potential energy
D. mechanical energy
16. IF k is Boltzmann constant and T is temperature, the average kinetic energy of each molecule of a gas will be
A. $\frac{2}{3} k T$
B. $\sqrt{\frac{2}{3}} k T$
C. $\frac{3}{2} k T$
D. $\sqrt{\frac{3}{2}} k T$
17. The rms speed of oxygen molecules at $47^{\circ} \mathrm{C}$
will be equal to the rms speed of hydrogen molecules at
A. 80 K
B. -83 K
C. 3 K
D. 20 K

- Watch Video Solution

18. The pressure volume and temperatuere in
two samples of a gas are $\mathrm{p}, \mathrm{V}, \mathrm{T}$ and $2 \mathrm{p} \frac{v}{4}, 2 \mathrm{~T}$ respectively The ratio of the number of molecules in the two samples is
A. 2:1
B. $4: 1$
C. 8:1
D. $16: 1$

Answer: B

D Watch Video Solution

19. The rms speed of gas molecules at $0^{\circ} C$. Will be reduced to half at
A. $0^{\circ} C$
B. $273^{\circ} C$
C. $32^{\circ} C$
D. $204^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution

20. A container of 5 L contains 10^{26} number of
molecules of a gas. IF the mass and rms speed
of each molecule are $2.4 \times 10^{25} g$ and
$3.5 \times 10^{4} \mathrm{~cm} . s^{-1}$ respectively, the pressure of
the gas will approximately be

$$
\text { A. } 2 \times 10^{6} \text { dyn. } \mathrm{cm}^{-2}
$$

B. 10^{6} dyn. cm^{-2}

$$
\begin{aligned}
& \text { C. } 3 \times 10^{6} \text { dyn. } \mathrm{cm}^{-2} \\
& \text { D. } 5 \times 10^{6} \text { dyn. } \mathrm{cm}^{-2}
\end{aligned}
$$

Answer: A

- Watch Video Solution

21. Air is filled in two heat insulated vessels 1
and 2 having pressure volume and temperature
p_{1}, V_{1}, T_{1} and p_{2}, V_{2}, T_{2} respectively IF the intermediate valve between the two vessels is
opened the temperature of air at equilibrium

will be

A. $T_{1}+T_{2}$
B. $\frac{T_{1}+T_{2}}{2}$
C. $\frac{T_{1} T_{2}\left(p_{1} V_{1}+p_{2} V_{2}\right)}{p_{1} V_{1} T_{2}+p_{2} V_{2} T_{1}}$
D. $\frac{T_{1} T_{2}\left(p_{1} V_{1}+p_{2} V_{2}\right)}{p_{1} V_{1} T_{1}+p_{2} V_{2} T_{2}}$

Answer: C

- Watch Video Solution

22. A vessel contains a mixture of one moles of oxygen and two moles of nitrogen at 300 K . the ratio of the average rotational kinetic energy per O_{2} molecule to per N_{2} molecule is
A. $1: 1$
B. $1: 2$
C. 2:1
D. depends on the moment of inertia of the
two molecules

Answer: A

- Watch Video Solution

23. 70 cal of heat is required to raise the temperature of 20 moles of an ideal diatomic gas at constant pressure from $30^{\circ} \mathrm{C}$. The amount of heat required (in cal) to raise the temperature of the same gas through the same range ($30^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$) at constant volume is
A. 30
B. 50
C. 70
D. 90

Answer: B

- Watch Video Solution

24. Three closed vessels A, B and C at the same
temperature T and contain gases which obey the Maxwellian distribution of velocities. Vessel

A contains only O_{2}, B only N_{2} and C a mixture of equal quantities of O_{2} and N_{2}. IF the
average velocity of the O_{2} molecules in vessel A is v_{1} that of the N_{2} molecules in vessel B is v_{2}, the average velocity of the O_{2} molecules in vessel C is

$$
\begin{aligned}
& \text { A. } \frac{\left(v_{1}+v_{2}\right)}{2} \\
& \text { B. } v_{1} \\
& \text { C. }\left(v_{1} v_{2}\right)^{\frac{1}{2}} \\
& \text { D. } \sqrt{\frac{3 k T}{M}}
\end{aligned}
$$

Answer: B

1. What is the name of the smallest entity of matter that exhibits all the properties of that matter?

D Watch Video Solution

2. Which one of the following has the highest intermolecular force-solid,liquid or gas?
3. If a gas jar filled with a light gas like hydrogen is held upside down on another gas jar filled with carbon dioxide, it is observed that the two gases produce a homogenous mixture in the jars. What is the name of this process?

D Watch Video Solution

4. How does the velocity of Brownian particles
change due to movement of the vessel?
(D) Watch Video Solution
5. What is the direction of velocities of of gas molecules according to the kinetic theory of gases?

- Watch Video Solution

6. Gas molecules collide with each other and with the walls of the container. What is the type of these collisions.
7. What do you call the straight line path described by a gas molecule between two successive collisions?

D Watch Video Solution

8. Both vaporisation and vapour pressure prove the___of molecules of a liquid.[Fill in the blanks].
9. Brownian motion supports the \qquad matter [Fill in the blanks]

D Watch Video Solution

10. In Brownian motion in a medium, if the particles decrease in size,how does their velocity vary?
11. Does the velocity of the particles increase or decrease when the velocity increases in Brownian motion in a medium?

- View Text Solution

12. Which gases obey the basic assumptions of the kinetic theory?
13. According to the kinetic theory of gases,every gas molecule behaves as a [Fill in the blanks]

(Watch Video Solution

14. According to the kinetic theory of gases the
velocity of gas molecules vary from____to
_____[Fill in the blanks]

D Watch Video Solution
15. Which is greater -rms speed or mean velocity?

(Watch Video Solution

16. Does the pressure of a gas increase or decrease when the velocity of the gas molecules increases?
(D) Watch Video Solution
17. On which other factor does the pressure of a gas depend,besides the number of molecules per unit volume and the temperature of the gas?

D Watch Video Solution

18. Is the most probable velocity of gas molecule higher or lower than the mean velocity?
19. Will the rms speed of oxygen and hydrogen gas molecules be the same at equal temperature?

- Watch Video Solution

20. What is the ratio of the rms speed of O_{3} and O_{2} at a certain temperature?
21. By how times will the pressure of a gas kept in a gas container of constant volume increase to double the rms speed of the gas molecules?

- Watch Video Solution

22. The velocity of three gas molecules are $4 \mathrm{~cm} \cdot \mathrm{~s}^{-1}, 8 \mathrm{~cm} \cdot \mathrm{~s}^{-1} \quad$ and $\quad 12 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ respectively. Calculate their rms speed.
23. What is the relation between rms speed and molecular mass of a gas?

- Watch Video Solution

24. Hydrogen and oxygen gases are kept in two
vessels at the same temperature and pressure.
What is the ratio of the rms speed of their molecules?
25. IF a gas molecule of a mass m and velocity u collides perpendicularly with a wall of container, what will be the value of momentum of the molecule after the collision?

- Watch Video Solution

26. IF n number of molecules, each having mass
m and velocity u, perpendicular hit the walls of
a container in every second what will be the
value of the applied force?
27. In the kinetic theory of gases___is more important than mean velocity. [Fill in the blanks]

- Watch Video Solution

28. What is the name of the force acts among the molecules of matter?

Watch Video Solution
29. Under which conditions do real gases behave as ideal gases?

- Watch Video Solution

30. Which property of a gas is proportional to
the net internal energy of the gas molecule?

D Watch Video Solution
31. At which temperature does the kinetic energy of gas molecules become zero?

- Watch Video Solution

32. To which gases is the van der Waals equation applicable?
(Watch Video Solution
33. If the temperature of a gas is increased at constant volume,how will the number of collisions of the molecules per unit time change?

- Watch Video Solution

34. What is the dimensions of a in van der

Waals's equation $\left(p+\frac{a}{V^{2}}\right)(V-b)=R T$?
35. What is the dimensions of b in van der

Waals's equation $\left(p+\frac{a}{V^{2}}\right)(V-b)=R T$?

D Watch Video Solution

36. What is the relation between pressure p of
a gas and its energy density u ?

- Watch Video Solution

37. According to the kinetic theory of gases,
there is no attractive force between the gas
molecules , the entire energy of them is
[Fill in the blanks]

D Watch Video Solution

Exercise Short Answer Type Questions I

1. What is the difference between real gas and ideal gas?
(Watch Video Solution
2. $1 \mathrm{~cm}^{3}$ of hydrogen gas and $4 \mathrm{~cm}^{3}$ of oxygen gas are both at STP. Which one contains more number of molecules?

- Watch Video Solution

3. A porous container is filled with a mixture of
hydrogen and oxygen gas. Which gas will leak faster and why?
4. Explain the relation between pressure and volume of a gas confined in a closed vessel at a constant temperature,according to the kinetic theory of gases.

D Watch Video Solution

5. Explain the relation between pressure and temperature of a gas confined is a close inextensible vessel, according kinetic theory of gases.
6. Why do real gases not obey Boyle's law ?

When will they obey?

- Watch Video Solution

7. Why does moon have no atmosphere?
8. The motion of real gas molecules ceses at absolute zero temperature -Explain. What will be in case of ideal gases?

D Watch Video Solution

Exercise Short Answer Type Questions li

1. IF the number of gas molecules in a
container in doubled, how will the pressure
and the total kinetic energy of the gas molecules of that container change?

D Watch Video Solution

2. How will the rms speed and the total kinetic energy of the gas molecules change, if its absolute temperature is decreased 4 times?
3. Why do real gases behave an ideal gases at low pressure?

- Watch Video Solution

4. We know that the velocity of a gas molecule is approximately equal to the velocity of a rifle bullet,Yet,a gas molecule spends much longer time than a bullet does to travel equal distance Explain.
5. A gas mixture contains 2 mol each of helium and oxygen gas. What will be the ratio of their
(i) average kinetic energy, (ii) rms speed?

- Watch Video Solution

6. Write down the expansion for pressure of an ideal gas according to kinetic theory of gases.

Given that at absolute temperature T , the average kinetic energy of a molecule of an ideal gas is $\frac{3}{2}\left(\frac{R}{N}\right) T$, where R is the universal gas
constant and N is the Avogadro number

Determine the equation for ideal gases from his.

D Watch Video Solution

Exercise Problem Set I

1. IF the density of hydrogen gas is
$0.00009 \mathrm{~g} . \mathrm{cm}^{-3}$ determine the value of rms
speed of hydrogen molecules at STP.
2. IF the density of helium gas is $0.178 \mathrm{~g} . L^{-1}$ what will be the rms speed of helium molecules at STP?

- Watch Video Solution

3. A container having volume 1 L contains 10^{25} number of oxygen molecules if the mass and the rms speed of oxygen molecules are $2.7 \times 10^{-25} \mathrm{~g}$ and $4 \times 10^{4} \mathrm{~cm} . \mathrm{s}^{-1}$, respectively what will be the pressure of that gas?
4. In a hydrogen filled balloon, the pressure of the gas is $\frac{11}{2}$ times the atmospheric pressure and its density is $83 . g . m^{-3}$. Determine the roots mean square speed of hydrogen molecules.

D Watch Video Solution

5. The velocities of four molecules are $1 \mathrm{~km} . \mathrm{s}^{-1}, 3 \mathrm{~km} . \mathrm{s}^{-1}, 5 \mathrm{~km} . \mathrm{s}^{-1}$ and $7 \mathrm{~km} . \mathrm{s}^{-1}$
respectively Determine the difference between
the values of mean velocity and rms speed of these molecules.

- Watch Video Solution

6. IF the density of nitrogen at STP is
1.25g. L^{-1}, determine the rms speed of nitrogen molecules.

D Watch Video Solution

7. IF the rms speed of oxygen at STP is $4.6 \times 10^{4} \mathrm{~cm} . s^{-1}$ What will be its density at STP?

D Watch Video Solution

8. Determine the rms speed of gas molecules at
$27^{\circ} \mathrm{C} \quad\left[R=8.3 \times 10^{7} \mathrm{erg} . \mathrm{mol}^{-1} . \mathrm{K}^{-1}\right.$, atomic weight of oxygen=16].
(D) Watch Video Solution
9. Determine the rms speed of air at STP

$$
\begin{aligned}
& \text { Density of mercury }= \\
& 13.6 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, g=980 \mathrm{~cm} \cdot \mathrm{~s}^{-2} \text { density of air }= \\
& 0.00129 \mathrm{~g} \cdot \mathrm{~cm}^{-3} .
\end{aligned}
$$

- Watch Video Solution

10. Determine the rms speed of carbon dioxide molecules at $0^{\circ} C$ Universal gas constant,
$R=8.31 \times 10^{7} \mathrm{erg} . \mathrm{mol}^{-1}, K^{-1}$
and
molecule mass of $C O_{2}=44$.
11. The temperature of a gas is increased from
$77^{\circ} C$ to $277^{\circ} C$. What will be the ratio of the initial and final kinetic energies of the gas molecules?

D Watch Video Solution

12. At which temperature will the value of root mean square speed of molecules be zero?
13. Find the temperature at which the value of
rms speed of hydrogen molecules will be equal to that of carbon dioxide molecules at $27^{\circ} \mathrm{C}$.

Carbon dioxide molecules are 22 times heavier than hydrogen molecules.

- Watch Video Solution

14. Estimate the average thermal energy of
helium atom at (i) the temperature on the surface of the sun 6000 K (ii) the temperature
of 10 million Kelvin (typical core temperature in case of star).

- Watch Video Solution

15. Calculate the molecular kinetic energy of 1 g helium gas at $127^{\circ} C$ Molecular weight of helium=4 and $R=8.3 \times 10^{7} \mathrm{erg} . \mathrm{Mol}^{-1} . \mathrm{K}^{-1}$
16. Calculate the temperature at which the average translational kinetic energy of the molecules of a gas will be $\frac{1}{3}$ rd of that at $180^{\circ} C$?

D Watch Video Solution

17. IF the rms sped of hydrogen molecules is
$1.84 \mathrm{~km} . s^{-1}$ at STP, what will be the rms speed of oxygen molecules at STP? The molecular mass of hydrogen and oxygen and 2 and 32 respectively.

- Watch Video Solution

18. If the density and rms speed of a gas are $1.25 \times 10^{-3} \mathrm{~g} . \mathrm{cm}^{-3} \quad$ and $\quad 5 \times 10^{4} \mathrm{~cm} . \mathrm{s}^{-1}$ respectively then determine (i) kinetic energy of the gas per unit volume and (ii) pressure of the gas

- Watch Video Solution

19. Calculate the rms speed of oxygen gas molecule at 300 K .

- Watch Video Solution

20. The temperature of an ideal gas is increased from 120 K to 480 K . IF a 120 K the rms speed of the gas molecules is v then find out the rms speed at 480K.
21. Determine the average energy of a gas
molecule at 3940
$R=8.31 \times 10^{7}$ erg. mol $^{-1} . K^{-1} \quad$ and
$N=6.025 \times 10^{23}$.

(Watch Video Solution

22. Mean free path of benzene molecule is
$2.2 \times 10^{-6} \mathrm{~cm}$ and number of molecules per unit volume is $2.79 \times 10^{19} \mathrm{~cm}^{-3}$. Determine the diameter of a benzene molecule.
23. An air bubble of volume $1.0 \mathrm{~cm}^{3}$ rises from
the bottom of a lake 40 m deep at a temperature of $12^{\circ} C$. To What volume does it grow when it reaches the surface. Which is at a temperature of $35^{\circ} \mathrm{C}$?

- Watch Video Solution

Exercise Problem Set li

1. Three vessels of equal capacity have gases at
the same temperature and pressure. The first vessel contains neon (monatomic) the second contains chlorine (diatomic) and the third contains uranium hexafluoride(polyatomic). Do
the vessels contain equal number of respective molecules? Is the root mean square speed of molecules are same in the three cases in $v_{r m s}$ the largest?

- Watch Video Solution

2. From a certain appartus the diffusion rate of hydrogen has an average value of $28.7 \mathrm{~cm}^{2} . s^{-1}$ The diffusion of another gas under the same conditions is measured to have an average rate of $7.2 \mathrm{~cm}^{3} . \mathrm{s}^{-1}$ Identify the gas.

(Watch Video Solution

3. The mean kinetic energy of the molecules of an ideal gas is given by
$E=2.07 \times 10^{-23}$ TJ. mol^{-1} where T is
temperature of the gas. Calculate the number of molecules to 1 litre of the gas at STP. What will be the average distance between the molecules?[Given standard atmosphere = $\left.1.01 \times 10^{5} \mathrm{~N} . \mathrm{m}^{-2}\right]$

- Watch Video Solution

4. A jar contains a gas and few drops of water at $T_{1} K$. The pressure of the jar is 830 mm of mercury. The temperature of the jar is reduced by 1% The saturated vapour pressure at the
two temperatures are 30 mm and 25 mm of mercury calculate the new pressure in the jar.

(D) Watch Video Solution

5. A gaseous mixture consists of 16 g of helium
and 16 g of oxygen. Obtain the ratio of $\frac{C_{p}}{C_{v}}$ of the mixture.
6. A container of volume $0.166 \mathrm{~m}^{3}$ contains a mixture of 1.60 g oxygen and 2.80 g nitrogen at constant temperature 300 K . Find the pressure of the mixture.

D Watch Video Solution

7. The mean square speed of the molecules of a fixed mass of a gas is $6.8 \times 10^{4} \mathrm{~m}^{2} . \mathrm{s}^{-2}$ calculate the mean square speed of the molecules when the gas has been compressed adiabatically to half of its original, volume The
ratio of the specific heat capacity of the gas at constant pressure to that at constant volume is 1.30 .

- Watch Video Solution

8. One mole of an ideal gas $(\gamma=1.4)$ performs

80 J of work while undergoing isobaric expansion. Find the amount of heat absorbed
by the gas in the process and change in its internal energy.
9. A barometer tube is 1 m long and $2 \mathrm{~cm}^{2}$ in
cross section. Mercury stands up to height of
75 cm in the tube. When a small amount of oxygen is introduced in the space above the mercury level,the level falls by 5 cm . Calculate the mass of the oxygen introduced. Room temperature $\quad=27^{\circ} C g=10 m . s^{-2} \quad$ and density of mercury $=13600 \mathrm{~kg} . \mathrm{m}^{-3}$

1. The area of one of the walls of container is
$3 \mathrm{~cm}^{2} .10^{23}$ Number of molecules are incident on it every second at an angle of 45°. What is the pressure exerted on the wall if the velocity of each molecule is $10^{5} \mathrm{~cm} . \mathrm{s}^{-1}$ and it mass is $3.32 \times 10^{-24} g$?
2. A container of volume 1 L contains 2.5×10^{23} number of nitrogen molecules. The mass of each molecule is 4.65×10^{23} and the rms speed of the molecule is $5 \times 10^{4} \mathrm{~cm} . \mathrm{s}^{-1}$. Determine the pressure and the total kinetic energy of the gas.

- Watch Video Solution

3. Calculate the number of molecules is $1 \mathrm{~cm}^{3}$
of an ideal gas at $27^{\circ} \mathrm{C}$. Temperature and 20 mmHg pressure. The average kinetic energy of
one molecule of the gas at
$27^{\circ} C=4 \times 10^{-14} \mathrm{erg}$, density of mercury $=$
$13.6 \mathrm{~g} . \mathrm{cm}^{-3}$

D Watch Video Solution

4. The mass of one molecule of hydrogen gas is
$3.2 \times 10^{-24} g$ The root mean square speed of
the molecules of another gas is 4 times that of hydrogen molecule at the same
temperature.Determine the mass of each molecule of that gas.
5. A dust particle present in air is 10^{12} times heavier than a molecule of air. The rms speed of a dust particle is n times that of a molecule of air. What is the value of n ?
(Watch Video Solution
6. Estimate the total number of air molecules
(inclusive of O_{2}, N_{2} and water vapour and
other constituents) in a room of capacity $25 m^{3}$ at a temperature of $27^{\circ} \mathrm{C}$ and 1 atm pressure.

- Watch Video Solution

7. Calculate the mean free path for the collision of nitrogen molecules at $0^{\circ} C$ temperature at 1 standard atmosphere pressure. The mean time interval between two successive collisions = $1.9 \times 10^{-10} s$,
$R=8.31 \times 10^{7} \mathrm{erg} . \mathrm{mol}^{-1} . \mathrm{K}^{-1} \quad$ molecular mass of nitrogen $=28$.
8. The average kinetic energy of a hydrogen molecule at $0^{\circ} \mathrm{C}$ is $5.64 \times 10^{-14} \mathrm{erg}$ and the universal gas
constant
$R=8.32 \times 10^{7} \mathrm{erg} . \mathrm{mol}^{-1} . \mathrm{K}^{-1}$. Find out the
value of the avogadro number.

- Watch Video Solution

9. The radius of a completely evacuated bulb is

20 cm . The bulb is filled with 2 g hydrogen and 3
g helium gas. What is the pressure exerted on the wall of the bulb at $22^{\circ} C$?

D Watch Video Solution

10. Determine the number of molecules is $20 \mathrm{~cm}^{3}$ of a gas at $27^{\circ} \mathrm{C}$ and 76 cmHg pressure.

Average kinetic energy per molecule at $27^{\circ} C=4 \times 10^{-14} \mathrm{erg}$ and $g=980 \mathrm{~cm} . \mathrm{s}^{-2}$.
11. An insulated box containing a mono-atomic
gas of molar mass M moving with a speed v_{0} is
suddenly stopped. Find the increment is gas
temperature as a result of stopping of the box.

- Watch Video Solution

12. Given below are densities of some solids and liquids given rough estimates of the size of their atoms:
13. Find out the temperature at which the average translational kinetic energy of a gas molecule will be equal to the energy gained by an electron on acceleration across a potential difference of 5 V , Boltzmann constant, $k=1.38 \times 2 .^{-23} J . K^{-1} 1 e v=1.6 \times 10^{-19} J$.
14. Nuclear fusion occurs among deuterium nuclei when the average kinetic energy of a nucleus is 0.72 MeV . At what temperature can this nuclear
fusion
occur?
$1 e v=1.6 \times 10^{-19} J, k=1.38 \times 10^{-23} J . K^{-1}$

(Watch Video Solution

15. Calculate the translational kinetic energy and net kinetic energy of an oxygen molecule at $27^{\circ} C$, where Avogadro number
$N=6.023 \times 10^{23}$ and Boltzmann constant $k=1.38 \times 10^{-23} \mathrm{~J} . \mathrm{K}^{-1}$

- Watch Video Solution

16. A cylinder of volume 10 L contains nitrogen gas at $27^{\circ} \mathrm{C}$, and 50 standard avogadro pressure. The cylinder is kept in vaccum and a $1 \mathrm{~cm}^{2}$ hole is made on it. Calculate the time after which the cylinder will be empty.

$$
k=1.38 \times 10^{-23} J . K^{-1}, N=6.023 \times 10^{23}
$$

and molecular mass of nitrogen $=28$.
17. The mean free path of oxygen gas molecules
at STP is $9.5 \times 10^{-6} \mathrm{~cm}$ What is the time interval between two successive collisions of a molecule? Atomic weight of oxygen=32 and $R=8.3 \times 10^{7} \mathrm{erg} . \mathrm{mol}^{-1} . \mathrm{K}^{-1}$

- Watch Video Solution

18. A gas is equilibrium has uniform density and pressure throughout its volume. This is strictly
true only if there are no external influences. A
gas column under gravity for example does not have uniform density (and pressure). As you might expect, its density decreases with height.

The precise independence is given by the so
called law of atmospheres
$n_{2}=n_{1} \exp \left[-m g\left(h_{2}-h_{1}\right) / K_{B} T\right]$
where n_{2}, n_{1} refer to number density at
heights h_{2} and h_{1} respectively. Use this relation to derive the equation for sedimentation equilibrium of a suspension in a liquid column:

$$
n_{2}=n_{1} \exp \left[-m g N_{A}\left(p-p^{\prime}\right)\left(h_{2}-h_{1}\right) /(p R T)\right]
$$

where p is the density of the suspended particle and p^{\prime} that of the surrounding medium [N_{A} is Avogadro's number and R the universal gas constant]

- View Text Solution

19. The velocity of a nitrogen molecule on the earth surface is equal to its rms speed at $0^{\circ} C$

IF the molecule moves straights upwards without any collisions with other molecules, determine the height up to which the molecule
would rise. The mass of a nitrogen molecule

$$
\begin{aligned}
& m=4.65 \times 10^{-26} \mathrm{~kg} \\
& k=1.38 \times 10^{-23} \mathrm{J.} K^{-1}
\end{aligned}
$$

- Watch Video Solution

20. Two non-reactive monoatomic ideal gases
have their atomic masses in the ratio 2:3 the ratio of their partial pressures, when enclosed in a vessel kept a constant temperature is $4: 3$

Calculate the ratio of their densities.
21. Two mole of ideal helium gas is in a rubber balloon at $30^{\circ} \mathrm{C}$. The balloon is fully expandable and an be assumed to required no energy in its expansion. The temperature of the gas balloon is slowly charged to $35^{\circ} \mathrm{C}$. Taking $R=8.31 J . \mathrm{mol}^{-1} . K^{-1}$ calculate the amount of heat required to raise that temperature.

D Watch Video Solution

22. A closed container of volume $0.02 m^{3}$
contains a mixture of neon and argon gases at
a temperature of $27^{\circ} \mathrm{C}$ and pressure of $1 \times 10^{5} \mathrm{~N} . \mathrm{m}^{-2}$ The total mass of the mixture is 28 g . If the molar masses of neon and argon are20 and $40 \mathrm{~g} / \mathrm{mol}$ respectively . find the masses of the individual gases in the container assuming then to be ideal.
$\left[R=8.314 \mathrm{~J} . \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}\right]$

- Watch Video Solution

1. Statement I: The root mean square speeds of the molecules of different ideal gases at the same temperature are the same.

Statement II: The average translational kinetic energy of molecules of different ideal gas are same at the same temperature.
A. Statement I is true,statement II is true,
statement II is a correct explanation for statement I
B. Statement I si true,statement II is true, statement II is not a correct explanation for statement I.
C. Statement I is true, statement II is false
D. Statement I is false, statement II is true,

Answer: C

- Watch Video Solution

2. Statement I: The rms speed of oxygen molecules $\left(O_{2}\right)$ at an absolute temperature T is c. IF the temperature is doubled and oxygen gas dissociates into atomic oxygen, the rms speed remains unchanged.

Statement II: The rms speed of the molecules of a gas is directly proportional to $\sqrt{T / M}$
A. Statement I is true,statement II is true,
statement II is a correct explanation for
statement I
B. Statement I si true,statement II is true, statement II is not a correct explanation for statement I.
C. Statement I is true, statement II is false
D. Statement I is false, statement II is true,

Answer: A

- Watch Video Solution

3. Statement I: The total translation kinetic energy of all the molecules of a given mass of an ideal gas is 1.5 times the product of its pressure and its volume.

Statement II: The molecules of a gas collide with each other and the velocities of the molecules change due to the collision.
A. Statement I is true,statement II is true,
statement II is a correct explanation for statement I
B. Statement I si true,statement II is true, statement II is not a correct explanation for statement I.
C. Statement I is true, statement II is false
D. Statement I is false, statement II is true,

Answer: B

- Watch Video Solution

4. Statement $I:$ Mean free path of gas molecules,varies inversely with density of the gas

Statement II: Mean free path of gas molecule is defined as the average distance travelled by a molecule between two successive collisions.
A. Statement I is true,statement II is true,
statement II is a correct explanation for
statement I
B. Statement I si true,statement II is true, statement II is not a correct explanation for statement I.
C. Statement I is true, statement II is false
D. Statement I is false, statement II is true,

Answer: B

- Watch Video Solution

5. Statement I: For an ideal gas at constant temperatures the product of the pressure and the volume is constant.

Statement II: The mean square velocity of the molecules is inversely proportional of mass.
A. Statement I is true,statement II is true,
statement II is a correct explanation for
statement I
B. Statement I si true,statement II is true,
statement II is not a correct explanation
C. Statement I is true, statement II is false
D. Statement I is false, statement II is true,

Answer: B

- Watch Video Solution

6. Statement I: The total translational kinetic energy of all the molecules of a given mass of an ideal gas is 1.5 times the product of its pressure and its volume.

Statement II: The molecules of a gas collide with each other and the velocities of the molecules change due to the collision.
A. Statement I is true,statement II is true,
statement II is a correct explanation for
statement I
B. Statement I si true,statement II is true,
statement II is not a correct explanation
for statement I.
C. Statement I is true, statement II is false

D. Statement I is false, statement II is true,

Answer: B

D Watch Video Solution

Entrance Corner Multiple Correct Answer Type

1. From the following statements concerning
ideal gas at any given temperature T , select correct one(s).
A. the coefficient of volume expansion at constant pressure is the same for all ideal gases
B. the average translational kinetic energy
per molecule of oxygen gas is $3 \mathrm{kT}, \mathrm{K}$ being
the Boltzmann constant
C. the mean free path of molecules
increases with decrease in pressure
D. in a gaseous mixture,the average
translational kinetic energy of the
molecules of each component is different.

Answer: A::C

- Watch Video Solution

2. Let $\bar{v}, v_{r m s}$ and v_{p} respectively denote the mean velocity,root mean square speed and most probable velocity of the molecules in an ideal monatomic gas at absolute temperature T. The mass of a molecule is m. Then
A. no molecule can have a speed greater than $\sqrt{2} v_{r m s}$
B. no molecule can have speed less than
$\frac{v_{p}}{\sqrt{2}}$
C. $v_{p}<\bar{v}<v_{r m s}$
D. the average kinetic energy of a molecule
is $\frac{3}{4} m v_{p}^{2}$

Answer: B::C
(Watch Video Solution
3. For a jar containing H_{2} and He gases which of the following statements are correct?
A. Both the gas molecules have same average energy
B. Both the gas molecules have same average translational kinetic energy
C. Hydrogen molecules have greater
average energy than helium molecules
D. Both the molecules have same average

Answer: A::B::C

- Watch Video Solution

4. The root mean square speed of the perfect gas molecules will be doubled if
A. pressure is doubled at constant volume
B. pressure is made 4 times at constant
C. volume is made 4 times at constant

pressure

D. volume is increased by 41.1% at constant

pressure

Answer: C::D

D Watch Video Solution

5. According to kinetic theory of gases, Which of the following statements are true?
A. real gas behaves as ideal gas at high temperature and low pressure
B. liquid state of ideal gas impossible
C. at any temperature and pressure,ideal
gas obeys Boyle's law and Charle's law
D. The molecules of a real gas do not exert
any force or one another

Answer: B::C

1. The pressure exerted by an ideal gas is $p=$ $\frac{1}{3} \frac{M}{V} c^{2}$ where the symbols have their usual meanings. Using standard gas equation, $\mathrm{pV}=\mathrm{nRT}$ we find that $c^{2}=\frac{3 R T}{M}$ or $C^{2} \propto T$. Average kinetic energy of translation of 1 mol of gas $=\frac{1}{2} M c^{2}=\frac{3 R T}{2}$

Average thermal energy of a helium atom at room temperature $\left(27^{\circ} \mathrm{C}\right)$ is (given Boltzmann constant $k=1.38 \times 10^{-23} J . K^{-1}$)

$$
\text { A. } 2.16 \times 10^{21} J
$$

B. $6.21 \times 10^{21} \mathrm{~J}$
C. $6.21 \times 10^{-21} J$
D. $6.21 \times 10^{-23} J$

Answer: C

D Watch Video Solution

2. The pressure exerted by an ideal gas is $p=$ $\frac{1}{3} \frac{M}{V} c^{2}$ where the symbols have their usual meanings. Using standard gas equation, $\mathrm{pV}=\mathrm{nRT}$ we find that $c^{2}=\frac{3 R T}{M}$ or $C^{2} \propto T$.

Average kinetic energy of translation of 1 mol of gas $=\frac{1}{2} M c^{2}=\frac{3 R T}{2}$

Average thermal energy of 1 mol of helium at
$27^{0} C$ temperature is (given constant for $1 \mathrm{~mol}=$ 8.31 J. $\mathrm{mol}^{-1} . K^{-1}$)
A. $3.74 \times 10^{3} J$
B. $3.74 \times 10^{-3} J$
C. $3.74 \times 10^{6} J$
D. $3.74 \times 10^{-6} J$

Answer: A
3. The pressure exerted by an ideal gas is $p=$
$1 M$
$\frac{1}{3} \frac{M}{V} c^{2}$ where the symbols have their usual meanings. Using standard gas equation, $\mathrm{pV}=\mathrm{nRT}$ we find that $c^{2}=\frac{3 R T}{M}$ or $C^{2} \propto T$. Average kinetic energy of translation of 1 mol of gas $=\frac{1}{2} M c^{2}=\frac{3 R T}{2}$

At what temperature when pressure remains unchanged, will the rms speed of hydrogen be double its value at STP?
A. 819 K
B. $819^{\circ} C$

C. 1000 K

D. $1000^{\circ} C$

Answer: B

(Watch Video Solution

4. The pressure exerted by an ideal gas is $\mathrm{p}=$ $\frac{1}{3} \frac{M}{V} c^{2}$ where the symbols have their usual meanings. Using standard gas equation, $\mathrm{pV}=\mathrm{nRT}$ we find that $c^{2}=\frac{3 R T}{M}$ or $C^{2} \propto T$.

Average kinetic energy of translation of 1 mol of gas $=\frac{1}{2} M c^{2}=\frac{3 R T}{2}$

At what temperature, when pressure remain unchanged, will the rms speed of a gas be half its value at $0^{\circ} C$?
A. $204.75 K$
B. $204.75^{\circ} \mathrm{C}$
C. $-204.75 K$
D. $-204.75^{\circ} \mathrm{C}$

Answer: D
5. IF c_{1}, c_{2}, c_{3}. are random speeds of gas molecules at a certain moment then average velocity $c_{a v}=\frac{c_{1}+c_{2}+c_{3}+\ldots \ldots c_{n}}{n}$ are root mean square speed of gas molecules
$c_{r m s}=\sqrt{\frac{c_{1}^{2}+c_{2}^{2}+c_{3}^{2}+\ldots \ldots+c_{n}^{2}}{n}}=c$
Further $c^{2} \propto T$ or $c \propto \sqrt{T}$

AtOK, c=0 i.e.,molecular motion stops.

IF three molecules have velocities
$0.5 \mathrm{~km} . \mathrm{s}^{-1}, 1 \mathrm{~km} . \mathrm{s}^{-1}$ and $2 \mathrm{~km} . \mathrm{s}^{-1}$ the ratio
of rms speed and average velocity is
A. 0.134
B. 1.34
C. 1.134
D. 13.4

Answer: B

D Watch Video Solution

6. IF $c_{1}, c_{2}, c_{3} \ldots \ldots$.....re random speeds of gas molecules at a certain moment then average velocity $c_{a v}=\frac{c_{1}+c_{2}+c_{3}+\ldots \ldots c_{n}}{n}$ are root
mean square speed of gas molecules
$c_{r m s}=\sqrt{\frac{c_{1}^{2}+c_{2}^{2}+c_{3}^{2}+\ldots \ldots+c_{n}^{2}}{n}}=c$
Further $c^{2} \propto T$ or $c \propto \sqrt{T}$
AtOK, c=0 i.e.,molecular motion stops.
Temperature of a certain mass of a gas is doubled, The rms speed of its molecules becomes n times where n is
A. $\sqrt{2}$
B. 2
C. $\frac{1}{\sqrt{2}}$
D. $\frac{1}{2}$

Answer: A

- Watch Video Solution

7. IF $c_{1}, c_{2}, c_{3} \ldots . .$. are random speeds of gas molecules at a certain moment then average
velocity $c_{a v}=\frac{c_{1}+c_{2}+c_{3}+\ldots \ldots c_{n}}{n}$ are root mean square speed of gas molecules
$c_{r m s}=\sqrt{\frac{c_{1}^{2}+c_{2}^{2}+c_{3}^{2}+\ldots \ldots+c_{n}^{2}}{n}}=c$
Further $c^{2} \propto T$ or $c \propto \sqrt{T}$

AtOK, c=0 i.e.,molecular motion stops.

KE per molecule of the gas in the above question becomes x times where x is
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. 4
D. 2

Answer: C

- View Text Solution

8. IF c_{1}, c_{2}, c_{3}. are random speeds of gas molecules at a certain moment then average
velocity $c_{a v}=\frac{c_{1}+c_{2}+c_{3}+\ldots \ldots c_{n}}{n}$ are root
mean square speed of gas molecules
$c_{r m s}=\sqrt{\frac{c_{1}^{2}+c_{2}^{2}+c_{3}^{2}+\ldots \ldots+c_{n}^{2}}{n}}=c$
Further $c^{2} \propto T$ or $c \propto \sqrt{T}$

AtOK, c=0 i.e.,molecular motion stops.
KE per mole of hydrogen at $100^{\circ} C$ (given
$R=8.31 J . \mathrm{mol}^{-1}, K^{-1}$) is
A. 4946 J
B. 4649J

C. 4496J

D. 4699J

Answer: C

(Watch Video Solution

9. IF $c_{1}, c_{2}, c_{3} \ldots . .$. are random speeds of gas molecules at a certain moment then average velocity $c_{a v}=\frac{c_{1}+c_{2}+c_{3}+\ldots \ldots c_{n}}{n}$ are root mean square speed of gas molecules
$c_{r m s}=\sqrt{\frac{c_{1}^{2}+c_{2}^{2}+c_{3}^{2}+\ldots \ldots+c_{n}^{2}}{n}}=c$

Further $c^{2} \propto T$ or $c \propto \sqrt{T}$

AtOK, c=0 i.e.,molecular motion stops.
At what temperature when pressure remains
constant, will the rms speed of the gas molecules be increased by 10% of the rms speed at STP?
A. 57.3 K
B. $57.3^{\circ} \mathrm{C}$
C. 557.3 K
D. $-57.3^{\circ} \mathrm{C}$

- Watch Video Solution

10. A cubical box of side 1 m contains helium gas (atomic weight=4) at pressure $100 \mathrm{~N} . \mathrm{m}^{-2}$

During an observation time of 1 s , an atom travelling with rms speed parallel to one of the edges of the cube was found to make 500 hits with a perpendicular wall without any collisions with other atoms.

Evaluate the temperature of the gas

A. 125 K

B. 160 K

C. 181 K

D. 185 K

Answer: D

- Watch Video Solution

11. A cubical box of side 1 m contains helium gas (atomic weight=4) at pressure $100 \mathrm{~N} . \mathrm{m}^{-2}$

During an observation time of 1 s , an atom travelling with rms speed parallel to one of the
edges of the cube was found to make 500 hits
with a perpendicular wall without any collisions
with other atoms.

Evaluate the average kinetic energy per atom.
A. $3.31 \times 10^{-21} J$
B. $3.75 \times 10^{6} J$
C. $3.81 \times 10^{-15} J$
D. $3.22 \times 10^{3} J$

Answer: B
12. A cubical box of side 1 m contains helium
gas (atomic weight $=4$) at pressure $100 \mathrm{~N} . \mathrm{m}^{-2}$

During an observation time of 1 s , an atom travelling with rms speed parallel to one of the edges of the cube was found to make 500 hits with a perpendicular wall without any collisions with other atoms.

Evaluate the total mass of the helium gas in the box.

$$
\begin{aligned}
& \text { A. } 9 \times 10^{-4} k g \\
& \text { B. } 5 \times 10^{-3} k g
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } 3 \times 10^{-4} k g \\
& \text { D. } 7 \times 10^{-3} k g
\end{aligned}
$$

Answer: B

(Watch Video Solution

Entrance Corner Integer Answer Type

1. Two identical cylinder contain helium at 3.5
standard atmosphere and argon at 2.5
standard atmosphere respectively. IF both
these gases are filled in one of the cylinders, what would be the pressure of the mixture?

D Watch Video Solution

2. The rms speed of molecule of a gas at
$-73^{\circ} \mathrm{C}$ and 1 standard atmosphere pressure is
$100 \mathrm{~m} . s^{-1}$. The temperature of the gas is increased to $527^{\circ} \mathrm{C}$ and pressure is doubled.

The rms speed becomes k times what is the value of k ?
3. The density of gas is $6 \times 10^{22} \mathrm{~kg} . \mathrm{m}^{-3}$ and the root mean square speed of the gas molecules is $500 \mathrm{~m} . \mathrm{s}^{-1}$ The pressure exerted by the gas on the walls of the vessel in $n \times 10^{3} N . m^{-2}$ Find the value of n.

D Watch Video Solution
4. A gas has molar heat capacity
$c=37.55 \mathrm{~J} . \mathrm{mol}^{-1} . \mathrm{K}^{-1}$. In the process
$\mathrm{pT}=$ constant . Find the number of degrees of freedom of the molecules of the gas.

D Watch Video Solution

5. A vessel has 6 g of hydrogen at pressure p and temperature 500k. A small hole is made in
it so that hydrogen leaks out. How much hydrogen (in g) leaks out if the final pressure is
$\frac{p}{2}$ and temperature falls to 300 K ?

- Watch Video Solution

1. Use kinetic theory of gases to show that the average kinetic energy of a molecule of an ideal gas is directly proportional to the absolute temperature of the gas.

- Watch Video Solution

2. What is mean free path of a gas molecule?

On What factors does it depend?
3. Which one of the following is not true for an ideal gas?
A. The molecule of an ideal gas move
randomly
B. The molecule of an ideal gas attract one
another
C. The volume of the molecules of an ideal
gas is negligible
D. The pressure of an ideal gas increases with increase in the velocity of its molecules.

Answer: D

- Watch Video Solution

4. From the relation $p=\frac{1}{3} m n c_{r m s}^{2}$ show that the mean kinetic energy of a molecule is the same for all types of gases.
5. From the relation $C_{p}-C_{v}=R$ show that the ratio of two specific heats (γ) of an ideal gas is given by $\gamma=1+\frac{2}{f}$ where f is the degrees of freedom of the molecule.

D Watch Video Solution

6. A monatomic ideal gas is heated at constant pressure. How much fraction of heat is used to increase internal energy?
A. $\frac{2}{5}$
B. $\frac{3}{5}$
C. $\frac{3}{7}$
D. $\frac{3}{7}$

Answer:

D Watch Video Solution

7. From kinetic theory prove that pressure of a gas $p=\frac{2 E}{3 v} \quad$ (where $\mathrm{v}=1$ molar volume, $\mathrm{E}=$ kinetic energy).

- Watch Video Solution

8. What will be the effect on rms velocity of a gas particle when (i) Temperature of the gas is increased (ii) density of the gas is decreased?

- Watch Video Solution

9. The degrees of fraction of a molecular gas is
n. Show that the ratio of gas $\frac{C_{p}}{C_{v}}=1+\left(\frac{2}{n}\right)$
10. In thermal equilibrium the rms velocity of a gas molecule is
A. proportional to T^{3}
B. proportional to T^{2}
C. proportional to \sqrt{T}
D. zero

Answer: C
11. Write the expression for mean free path.

- Watch Video Solution

12. The mean free path of oxygen molecule at

NTP is $9.5 \times 10^{-6} \mathrm{~cm}$ What will be the time between two consecutive collisions of an oxygen molecule?
$\left.R=8.3 \times 10^{7} \mathrm{erg} . \mathrm{mol}^{-1} . K^{-1}\right)$

D Watch Video Solution

13. From kinetic theory of gases prove that the pressure of a gas $\mathrm{p}=2 E / 3 V$, where $\mathrm{V}=1$ molar volume $\mathrm{E}=\mathrm{kinetic}$ energy.

(Watch Video Solution

14. State two fundamental postulates of kinetic theory of ideal gases.
(D) Watch Video Solution
15. The temperature of a gas in increased from
$27^{\circ} \mathrm{C}$ to $327^{\circ} \mathrm{C}$. Show that the rms velocity of
the gas molecules at higher temperature is $\sqrt{2}$
times the velocity at the initial temperature.

D Watch Video Solution

16. The volume and pressure of two moles of an ideal gas and V and p respectively Another

1 mol ideal gas having volume 2 V also exerts the
same pressure p. Molecular mass of the second
gas is 16 times that of the first gas. Compare the rms velocities of the two gases.

- Watch Video Solution

17. The perfect gas equation for 4 g of hydrogen gas is
A. $p V=R T$
B. $p V=2 R T$
C. $p V=\frac{1}{2} R T$
D. $p V=4 R T$

Answer: B

- Watch Video Solution

18. From the relation $p=\frac{1}{3} m n c_{r m s}^{2}$ show that the mean kinetic energy of a molecule is the same for all types of gases.

- Watch Video Solution

19. Define degrees of freedom Write down the principle of equipartition of energy. Find the
value of $\gamma=\left(C_{p} / C_{v}\right)$ of a diatomic gas.

- Watch Video Solution

Examinations Archive With Solutions Wbjee

1. The rms speed of oxygen is v at a particular
temperature. IF the temperature is doubled and oxygen molecules dissociate into oxygen
atoms the rms speed becomes
A. v
B. $\sqrt{2} v$
C. 2 v

$$
\text { D. } 4 \mathrm{v}
$$

Answer: C

(Watch Video Solution

2. IF the rms velocity of hydrogen gas at certain
temperature is c, then the rms velocity of oxygen gas at the same temperature is

> A. $\frac{c}{8}$
> B. $\frac{c}{10}$
> C. $\frac{c}{4}$
> D. $\frac{c}{2}$

Answer: C

D Watch Video Solution

3. Temperature of an ideal gas initially at $27^{\circ} \mathrm{C}$
is raised by $6^{\circ} C$, The rms velocity of the gas
A. increase by nearly 2%
B. decrease by nearly 2%
C. increase by nearly 1%
D. decrease by nearly 1%

Answer: C

D Watch Video Solution

Examinations Archive With Solutions Jee Main

1. An open pipe made up of glass is immersed
in mercury in such a way that a length of 8 cm extends above the mercury level. The open end of the tube is then closed and sealed and the tube is raised vertically up by additional 46 cm .

What will be length of the air column above mercury in the tube now? (atm pressure $=76 \mathrm{~cm}$ of HG)
A. 16 cm
B. 22 cm
C. 38 cm

D. 6 cm

Answer: A

- View Text Solution

2. Consider an ideal gas confined in an isolated
closed chamber. As the gas undergoes an adiabatic expansion the average time of
collision between molecules increases as V^{q}
where V is the volume of the gas. The value of q
is $\left(\gamma=\frac{C_{p}}{C_{v}}\right)$

$$
\begin{aligned}
& \text { A. } \frac{3 \gamma+5}{6} \\
& \text { B. } \frac{3 \gamma-5}{6} \\
& \text { C. } \frac{\gamma+1}{2} \\
& \text { D. } \frac{\gamma-1}{2}
\end{aligned}
$$

Answer: C

D Watch Video Solution

3. An ideal gas undergoes a quasistatic, reversible process in which its molar heat capacity C remains constant. It during this
process the relation the pressure p and volume
V is given by $p V^{n}=$ constant, then n is given by
(here C_{p} and C_{v} are molar specific heat at constant pressure and constant volume respectively).

$$
\begin{aligned}
& \text { A. } n=\frac{C_{p}}{C_{v}} \\
& \text { B. } n=\frac{C-C_{p}}{C-C_{v}} \\
& \text { C. } n=\frac{C_{p}-C}{C-C_{v}} \\
& \text { D. } n=\frac{C-C_{v}}{C-C_{p}}
\end{aligned}
$$

Answer: B
4. The mass of a hydrogen molecule is
$3.32 \times 10^{-27} \mathrm{~kg} .10^{23}$ such molecules hit every second on a rigid wall of area $2 \mathrm{~cm}^{2}$ at an angle of 45° to the normal and rebound elastically with a speed of $10^{3} \mathrm{~m} / \mathrm{s}$ then the pressure on the wall is nearly

> A. $2.35 \times 10^{2} \mathrm{~N} / \mathrm{m}^{2}$
> B. $4.70 \times 10^{2} \mathrm{~N} / \mathrm{m}^{2}$
> C. $2.35 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}$

D. $4.70 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}$

Answer:

D Watch Video Solution

Examinations Archive With Solutions Aipmt

1. The mean free path of molecules of a gas
(radius r) is inversely proportional to
A. r^{3}
B. r^{2}
C. r

$$
\text { D. } \sqrt{r}
$$

Answer: B

(Watch Video Solution

2. The ratio of the specific heats $\frac{C_{p}}{C_{v}}=\gamma$ in terms of degrees of freedom(n) is given by
A. $\left(1+\frac{1}{n}\right)$
B. $\left(1+\frac{n}{3}\right)$
C. $\left(1+\frac{2}{n}\right)$
D. $\left(1+\frac{n}{2}\right)$

Answer: C

(Watch Video Solution

Examinations Archive With Solutions Neet

1. The molecules of a given mass of a gas have rms velocity of $200 \mathrm{~m} . \mathrm{s}^{-1}$ at $27^{\circ} \mathrm{C}$ and
$1.0 \times 10^{5} N . m^{-2} \quad$ pressure. When the temperature and pressure of the gas are respectively. $127^{\circ} \mathrm{C}$ and $0.05 \times 10^{5} \mathrm{~N} . \mathrm{m}^{-2}$ the rms velocity of its molecules in $m . s^{-1}$ is

$$
\begin{aligned}
& \text { A. } \frac{400}{\sqrt{3}} \\
& \text { B. } \frac{100 \sqrt{2}}{3} \\
& \text { C. } \frac{100}{3} \\
& \text { D. } 100 \sqrt{2}
\end{aligned}
$$

Answer: A

2. When the temperature of a gas is raised from $30^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$ the percentage increase in the rms velocity of the molecules will be
A. 0.6
B. 0.1
C. 0.15
D. 0.3

Answer: B
3. At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the earth's atmosphere?
[Given:mass of $\operatorname{oxygen}(\mathrm{m})=2.76 \times 10^{-26} \mathrm{~kg}$ Boltzmann constant

$$
\left.k_{B}=1.38 \times 10^{-23} J . K^{-1}\right]
$$

A. $5.016 \times 10^{4} K$
B. $8.360 \times 10^{4} K$
C. $2.508 \times 10^{4} K$
D. $1.254 \times 10^{4} K$

Answer: B

D Watch Video Solution

Cbse Scanner

1. What would be the effect on the rms speed of gas molecules if the temperature of the gas
is increased by a factor of 4 ?
2. State law of equiparition of energy.

- Watch Video Solution

3. Find the ratio of two molar specific heats for a diatomic gas .

- Watch Video Solution

4. The absolute temperature of a gas is increased to four times. What will be the
change in its root mean square speed.

- Watch Video Solution

5. Define degrees of freedom. What is the degrees of freedom of a monatomic and diatomic gas?

- Watch Video Solution

6. A flask contains Argon and chloring in the ratio of $2: 1$ by mass. The temperature of the
mixture is $27^{\circ} \mathrm{C}$ Obtain the ratio of averagae kinetic energy per molecule and root mean square speed $v_{r m s}$ of the molecules of the two gases. Given atomic mass of argon=39.9 u and molarcular mass of chlorine. $=70.9 \mathrm{u}$.

D Watch Video Solution

7. State the law of equipartition of energy.

D Watch Video Solution

8. Prove that the average kinetic energy of a molecule of an ideal gas is direcly proportional to the absolute temperature of the gas.

(Watch Video Solution

9. The absolute temperature of a gas is increased to 3 times. What will be the increase in root mean square velocity of the gas molecule.
