

India's Number 1 Education App

PHYSICS

BOOKS - CHHAYA PHYSICS (BENGALI ENGLISH)

QUESTION PAPERS OF JEE MAIN -2018

Question

1. It is found if a neutron suffers an elastic collinear collitsion with deuterium at rest ,

fractional loss of its energy is p_d , while for its similar collision with carbon nucleus at rest, fractional loss of energy is P_c . The values of p_d and p_c are respectively

A. 0, 0

B. 0, 1

C. 0.89, 0.28

D. 0.28, 0.29

Answer:

2. The mass of a hydrogen molecules is 3.32×10^{-27} Kg . If wall of area $2cm^2$ at an angle of 45° to the normal , and rebound elastically with a speed of $10^3 m/s$, then the pressure on the wall is nearly

A. $2.35 imes 10^2 N/m^2$

B. $4.70 imes10^2N/m^2$

C. $2.35 imes10^3N/m^2$

D. $4.70 imes10^3N/m^2$

3. Two batteries with emf 12 V and 13 V are connected in parallel across a load resistor of 10Ω . The internal resistances of the two batteries are 1Ω and 2Ω respectively The voltage across the load lies between

A. 11.4 and 11.5V

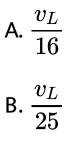
B. 11.7V and 11.8V

C. 11.6V and 11.7V

D. 11.5V and 11.6V

Answer:

Watch Video Solution


4. A particle is moving in a circular path of radius a under the action of an attractive potential $U=-rac{k}{2r^2}.$ Its total energy is

A. zero

$$B. - \frac{3}{2} \frac{k}{a^2}$$
$$C. - \frac{k}{4a^2}$$
$$D. \frac{k}{2a^2}$$

5. IF the series limit frequency of the Lyman series is V_L then the series limit frequency of the pfund series is

- $\mathsf{C.}\,25V_L$
- D. $16v_L$

6. Unpolarised light of intersity I passes through an ideal polariser A. Another identical polariser B is placed behind A. The intensity of

light beyond B is placed between A and B . The internsity beyond B is now found to be $\frac{I}{8}$ the angle between polariser A and C is

A. $45^{\,\circ}$

 $\mathsf{B.60}^\circ$

 $\mathsf{C.0}^\circ$

D. 30°

Answer:

Watch Video Solution

7. An electron from various excited states of hydrogen atom emit radiation to come to the ground state . Let λ_n, λ_q be the de Broglie wavelength of the electron in the n- th state and the ground state respectively .Let \wedge_n be the wavelength of the emited photon in teh transition from the n - th state to the ground state . for large n , (A, B are constants)

A.
$$\wedge_n pprox A + B\lambda_n^2$$

B.
$$\wedge_n^2 \approx \lambda$$

$$\mathsf{C}.\ \wedge_n\ \approx A+\frac{B}{\lambda_n^2}$$

D. $\wedge_n pprox A + B\lambda_n$

Answer:

Watch Video Solution

8. An electron , a proton and an alpha particle having the same kenetic energy are moving in circular orbits of raddii r_e, r_p, r_a respectively in a uniform magnetic field B . The relation between r_e, r_p, r_a is

A. $r_e > r_p < r_a$

B.
$$r_e < r_a < r_p$$

C.
$$r_e > r_p = r_a$$

D.
$$r_e < r_p = r_a$$

9. A parallel plate capacitor of capacitance 90 pF is connected to a battery of emf 20 V . If a dielectric material of dielectric constant

 $k={5\over 3}$ is inserted between the plates , the

magnitude of the induced charge will be

A. 2.4nC

B.0.9nC

C. 1.2nC

 $\mathsf{D}.\,0.2nC$

Answer:

10. For an RLC circult driven with voltage of ampitude v_m and frequency $\omega_0 \frac{1}{\sqrt{LC}}$ the current exibits resonance the quality factor . Q given by

A.
$$rac{R}{(\omega_0 C)}$$

B. $rac{CR}{\omega_0}$
C. $rac{\omega_0 L}{R}$
D. $rac{\omega_0 R}{L}$

Answer:

11. A telephonic communication servies is working at carrier frequency of 10GHz. Only 10 % of its . Is utilized for transmision . How many telephonic channals can be transmitted simultaneously if each channel requires a bandwidth of 5 kHz ?

A. $2 imes 10^5$ B. $2 imes 10^6$

 ${\sf C.}~2 imes10^3$

D. $2 imes 10^4$

Answer:

Watch Video Solution

12. A granite rod of 60 cm length is clamped a its middle point and is set into logitudinal vibrations . The density of granite is $2.7 \times 10^3 Kg/m^3$ and its Young's modulus is 9.27×10^{10} Pa. What will be fundamental frequency of the logitudinal vibrations ? A. 10 kHz

$\mathsf{B.}\,7.5kHz$

C. 5kHz

D. 2.5kHz

Answer:

13. Seven idential circular planer discs , each of mass M and radius R are welded symmetrically as shown . The moment of inertia of the

arrangement about the axis normal to the plane and passing through the point P is

(##CHY_DMB_PHY_XI_P2_QP_18_E02_016_Q01.png"

width="80%">

۰

A.
$$\frac{73}{2}MR^{2}$$

B. $\frac{181}{2}MR^{2}$
C. $\frac{19}{2}MR^{2}$
D. $\frac{55}{2}Mr^{2}$

Answer:

14. Three concentric metal shells A , B and C of respective radii a, b , and c (a < b < c) have surface charge densities $+\rho$, ρ and $+\rho$ respectively. The potential of shell B is

$$\begin{array}{l} \mathsf{A} \cdot \frac{\rho}{\varepsilon_0} \bigg[\frac{b^2 - c^2}{b} + a \bigg] \\ \mathsf{B} \cdot \frac{\rho}{\varepsilon_0} \bigg[\frac{b^2 - c^2}{c} + a \bigg] \\ \mathsf{C} \cdot \frac{\rho}{\varepsilon_0} \bigg[\frac{a^2 - b^2}{a} + c \bigg] \\ \mathsf{D} \cdot \frac{\rho}{\varepsilon_0} \bigg[\frac{a^2 - b^2}{b} + c \bigg] \end{array}$$

15. In a potentiometer experiment experiment . It is found that no current passes through the galvanometer when the terminals of the cell are connected across 52 cm of the potentiometer wire , if the cell shunted by a resistance across 40 cm of the wire . find the internal resistance of the cell . A. 2Ω

 $\mathsf{B}.\,2.5\Omega$

C. 1Ω

D. 1.5Ω

Answer:

16. The angular width of the central maximum in a single slit diffraction pattern is 60° . The width of the slit is $1\mu m$. The slit is illuminated

by monochromatic plane waves . If another slit of same width is made mear it young's fringes can be observed in a screen placed at a distance 50 cm from the slits , if slits , if the observed fringe width is 1 cm , what is slit separation distance (i . e, distance between the sentres of each slit)

A. $75 \mu m$

B. $100 \mu m$

 $\mathsf{C.}\,25\mu m$

D. $50 \mu m$

17. A silver atom in a solid oscillates in simples harmonic motion in some direction with a frequency of $10^{12}s^{-1}$ what is the force constant of the bonds connecting one atom with the other ? (mole wt . Of silver = 108 and avogradro number $= 6.02 \times 10^{23}$ g . mol⁻¹)

A. 2.2N/m

B. 5.5N/m

 $\mathsf{C.}\,6.4N/m$

D. 7.1N/m

Answer:

Watch Video Solution

18. In a collinear collision a particle with an initial speed V_0 strikes a stationary particle of the same mass . If the final total kinetic energy is 50 % greater than the original kinetic

energy, the magnidue of the relative velocity

between the two particles , after collision is

A.
$$\frac{v_0}{2}$$

B. $\frac{v_0}{\sqrt{2}}$
C. $\frac{v_0}{4}$

D.
$$\sqrt{2}v_0$$

Answer:

Watch Video Solution

19. The dipole moment of a circular loop carring a current I, is m and the magnetic field at the centre of the loop is B_1 . When the dipole moment is doubled by keeping the current constant, the magnetic field at the centre of the loop is B_2 . the ratio B_1/B_2 is

A. $\sqrt{2}$

$$\mathsf{B.}\,\frac{1}{\sqrt{2}}$$

20. The density of a material in the shape of a cube is determined by measuring three sides of the cube and its mass . If the relative errons in measuring the mass and length are respectively 1.5% and 1%, the maximum error in determining the density is

A. 4.5~%

B. 6 %

C. 2.5~%

D. 3.5~%

Answer:

Watch Video Solution

21. On interchanging the resistance , the balance point of a metre bridge shifts to the left by 10 cm . The resistance of their series combination is $1K\Omega$. How much was the

resistance on the slot before intercharging

the resistances ?

A. 550Ω

 $\mathsf{B}.\,910\Omega$

 $\mathsf{C}.\,990\Omega$

D. 505Ω

Answer:

Watch Video Solution

22. In an ac circult, the instantaneous emf and

current are given by $e = 100 \sin 30t$: $t = 20 \sin \left(30t - \frac{\pi}{4} \right)$. in one cycle of ac , the average power consumed by the circult and the wattless current are respectively

A.
$$\frac{50}{\sqrt{2}}$$
, 0
B. 50, 0
C. 50, 10
D. $\frac{1000}{\sqrt{2}}$, 10

23. Two moles of an ideal mmonoatomic gas occupies a volume V at $27^{\circ}C$. The gas expands adiabatically to a volume 2 V. Calculate (a) the final temperature of the gas and (b) change in its internal energy.

- A. 189K 2.7KJ
- B. 195*K* 2.7*KJ*

C. 189*K* 2.7*KJ*

D. 195K - 2.7KJ

Answer:

Watch Video Solution

24. A particle is moving with a unifrom with with a uniform speed in a circular orbit of radius R in a central force inversely proportional to the n th power of R . If the period of roation of the particel is T . Then

A.
$$T \propto R^{(\,n\,+\,1\,)\,/\,2}$$

B.
$$T \propto R^{n/2}$$

C.
$$T \propto R^{3\,/\,2}$$
 for any n

D. $T \propto R^{rac{n}{2}+1}$

Answer:

Watch Video Solution