©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CHHAYA PHYSICS (BENGALI

ENGLISH)

QUESTION PAPERS OF NEET -2018

Question

1. The fundamental frequency in an open organ pipe is equal to the third harmonic of a
closed organ pipe. If the length of the closed organ pipe. If the length of the closed organ of a closed organ pipe is 20 cm , the length of the open organ pipe is
A. 12.5 cm
B. 8 cm
C. 13.2 cm
D. 16 cm

Answer:

2. At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmmosphere ? [given . Mass of oxygen molecules
$(m)=2.76 \times 10^{-26} \mathrm{~kg}$, Boltzman's constant
$\left.K_{B}=1.38 \times 10^{-23} J \cdot k^{-1}\right]$
A. $5.016 \times 10^{4} K$
B. $8.360 \times 10^{4} K$
C. $2.508 \times 10^{4} K$
D. $1.254 \times 10^{4} K$

Answer:

- Watch Video Solution

3. The efficiency of an ideal heat engine working between the freezing point and boiling point of water is
A. 6.25%
B. 20%
C. 26.8%
D. 12.5%

Answer:

D Watch Video Solution

4. A carbon resistor of $(47 \pm 4.7) K \Omega$ is to be marked with rings of different colours for its identification. The colour code sequenece will be
A. yellow - Green - Violet - Gold
B. Yellow-Violet - Orange -Silver
C. Violet -Yellow - orange - silver

D. Green - Orange - Violet - Gold

Answer:

D Watch Video Solution

5. A set of n equal resistors, of value R each , are connected in series to a battery of emf E and internal resistance R. The current drawn is I. Now the n resistors are connected in parallel to the same battery. Then the current
A. 20
B. 11
C. 10
D. 9

Answer:
(Watch Video Solution
6. A battery consists of a variable number n of identical cells (having internal resistance r each) which are connected in series. The terminals of the battery are shortcirculted and
the current I is measured. Which of the graph
shows the corrent relationship I and n ?
A.
B.
c.
D.

Answer:

D Watch Video Solution

7. Unpolarised is incident from air on a plane surface of a material of refractive index μ. At a particular angle of incidence I. It is found that the reflected and refracted rays are perpendicular to each other. Which of the following options is correct for this situation ?

$$
\text { A. } I=\sin ^{-1}\left(\frac{1}{\mu}\right)
$$

B. Reflected light is polarised with its
electtic vector perpendicular to the incidence
C. Reflected light is polarised with its
electric vector parallel to the plane of
incidence
D. $I=\tan ^{-1}\left(\frac{1}{\mu}\right)$

Answer:

8. In young's double experiment the separation d between the slits is 2 mm , the wavelength λ of the used is $5896 \AA$ and distance D between the screen and slits is 100 cm . It is found that the angular width of the angular width of the fringes is 0.20°. To increase the fringe angular width to 0.21° (with same λ and D$)$ the separation between the slits needs to be changed to
A. 2.1 mm
B. 1.9 mm
C. 1.8 mm
D. 1.7 mm

Answer:

D Watch Video Solution

9. An astronomical refreacting telescope will
have large angular magnification and high
angular resloution, when it has an objective lens of
A. large focal length diameter
B. large focal length and small diameter
C. small focal length and large diameter
D. small focal length and small diameter

Answer:

D Watch Video Solution
10. The ratio of kinetic energy to the total energy of an electron in a Bohr of the hydrogen atom is
A. $2:-1$
B. 1: -1
C. $1: 1$
D. 1: -2

Answer:

D Watch Video Solution

11. An electron of mass m with an initial velocity $\vec{V}=v_{0} \hat{i}\left(V_{0}>0\right)$ enters an electric field $\vec{E}=-E_{0} \hat{i}\left(E_{0}=\right.$ constant $\left.>0\right)$ at
$\mathrm{t}=0$. If λ_{0} is its broglie wavelength initially,
then its de Broglie wavelength at time t is
A. $\lambda_{0} t$
B. $\lambda_{0}\left(1+\frac{e E_{0}}{m V_{0}} t\right)$
C. $\left.\frac{\lambda_{0}}{(1+) e E_{0}} /\left(\left(m V_{0}\right) t\right)\right)$
D. λ_{0}

Answer:

D Watch Video Solution

12. For a radioactive material , half - life is 10 minutes. If initially there are 600 number of nuclei , the time taken (in minutes) for the distingration of 450 nuclei is
A. 3
B. 10
C. 20
D. 15

Answer:

13. When the light of frequency $2 V_{0}$ (where V_{0}
is threshold frequency) is incident on a metal
plate the maximum velocity of electrons emiyyed is V_{1}. When the frequency of the incident radiation is increased to $5 V_{0}$, the maximum velocity of electron emitted from the same plate is V_{2}. the ratio of V_{1} to v_{2} is
A. $4: 1$
B. 1:4
C. 1:2
D. 2:1

Answer:

- Watch Video Solution

14. In a p-n junction diode, change in temperature due to heating
A. does not affect resistance of p-n
junction
B. affects only forward resistance
C. affects only reverse resistance
D. affects the overall V-I characteristics of
p-n juction

Answer:

D Watch Video Solution

15. In the combination of the following gates
the output Y can be written in terms of inputs
A and B as
(\#\#CHY_DMB_PHY_XI_P2_QP_18_EO3_017_Q01.png"
width="80\%">
A. $\overline{A \cdot B}+A \cdot B$
B. $A \cdot \bar{B}+\bar{A} \cdot B$
C. $\overline{A \cdot B}$
D. $\overline{A+B}$

Answer:

D Watch Video Solution
16. An EM wave is propagating in a medium with a velocity $\vec{v}=v \hat{i}$. The instantanous oscillating electric field of this EM wave is along $+y$ axis , then the direction of oscillating magnetic field of the EM wave will be along
A. $-y$ direction
B. $+z$ direction
C. $-z$ direction
D. $-x$ direction

Answer:

Watch Video Solution

17. The refractive index of the material of a prism is $\sqrt{2}$ and the angle of the prism is 30°.

One of the two refracting surfaces of the prism is made a mirror inwards, by silver coating . A beam of monochromatic lighet enetering the prism from the other face will retrace its path (after reflection from the silvered surface) if its angle of incidence on the prism is
A. 30°
B. 45°
C. 60°
D. zero

Answer:

D Watch Video Solution

18. An object is placed at a distance of 40 cm
from a cancave mirror of focal length 15 cm . If
the object is displaced through a distance of

20 cm towards the mirror , the displacement of the image will be
A. 30 cm towards the mirror
B. 36 cm away from the mirror
C. 30 cm away from the mirror
D. 36 cm towards the mirror

Answer:

- Watch Video Solution

19. The magnetic potential energy stored in a
certain inductor is 25 mJ . When the current in
the inductor is 60 mA . This inductor is of inductance
A. $1.389 H$
B. $138.88 H$
C. $0.138 H$
D. $13.89 H$

Answer:

20. An electron falls from rest through a vertical distance h in a unifrom and vertically upward directed electric field E. The direction of electric field is now reversed keeping its magnitude the same. A proton is allowed to
fall from rest in it through the same vertical distance h. The time of fall of the electron, in comparisonn to the time of fall of the proton is
A. 10 times greater
B. 5 times greater
C. smaller
D. equal

Answer:

D Watch Video Solution

21. The electrostic force between the metal
plates of an isolated parallel plate capacitor C
having a charge Q and area A, is
A. proportional to the square root of the distance between the plates
B. linearly proportional to the distance
between the plates
C. independent of the distance between
the plates
D. inversely proportional to the distance between the plates

Answer:

22. A tuning fork is used to produce resonance in a glass tube. The length of the air column in this tube can be adjusted by a variavble piston .At room temperature of $27^{\circ} \mathrm{C}$ two successive resonances are produced at 20 cm and 73 cm of column lenggth. if the frequency of the tuning fork is 320 Hz , the velocity of sound in air at $27^{\circ} C$ is
A. $350 \mathrm{~m} / \mathrm{s}$
B. $339 m / s$
C. $330 \mathrm{~m} / \mathrm{s}$

D. $300 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

23. A pendulum is hung from the roof of a sufficiently high builing and is moving freely to
and fro like a simple harmonic oscillator. The acceleration of the bob of the mean position.

The time period of oscillationn is
A. 2 s
B. πs
C. $2 \pi s$
D. $1 s$

Answer:

D Watch Video Solution

24. A metallic rod of mass per unit length
$0.5 \mathrm{Kg} . \mathrm{M}^{-1}$ islying horizontally on a smooth
inclined plane which makes an angle of 30°
with the horizontal. The rod is not allowed to
slide down by flowing a current through it when a magnetic field of induction 0.25 T is acting on it in the vertical direction. The current flowing in the rod to keep it stationary is
A. $14.76 A$
B. 5.98 A
C. $7.14 A$
D. $11.32 A$

- Watch Video Solution

25. A thin diamagnetic rod is placed vertically between the poles of an electrimagnet. When
the current in the electromagnet is switched on , then the diamgnetic rod is pushed up , out of the horizontal magnetic field . Hence the rod gains gravitional potential energy .

The work required to do this comes from
A. the lattice structure of the materical of the rod
B. the magnetic field
C. the current source
D. the induced electric field due to the changing magenetic field

Answer:

D Watch Video Solution
26. An inductor20 mH , a capacitor $100 \mu F$ and
source of emf , $V=10 \sin 314 t$. The power

loss in the circult is

A. $2.74 W$
B. $0.43 W$
C. 0.79 W
D. $1.13 W$

Answer:

D Watch Video Solution

27. Current sensiticity of a moving coil galvanometer is 5 div /mA and its voltage sensitivity (angular deflection per unit voltage apllied) is $20 \mathrm{div} / \mathrm{v}$. The resistance of the galvanometer is
A. 250Ω
B. 25Ω
C. 40Ω
D. 500Ω

- Watch Video Solution

28. Three objects , A (a solid sphere) , B (a thin circular disc) and C (a circular ring) , each have the same mass M and radius R. They all spin with the same angular speed ω about their own symmetry axies . The amounts of work (W) required to bring them to rest, would satisfy the relation
A. $W_{B}>W_{A}>W_{C}$
B. $W_{A}>W_{B}>W_{C}$
C. $W_{C}>W_{B}>W_{A}$
D. $W_{A}>W_{C}>W_{B}$

Answer:

D Watch Video Solution

29. A moving block having mass m, collides
with another stationary block having mass 4 m .

The lighter block comes to rest after collision .

When the initial velovity of the lighter block is
v, then the value of coefficient of restitution

(e) will be

A. 0.8
B. 0.25
C. 0.5
D. 0.4

Answer:
(Watch Video Solution
30. Which one of the following statements is incorrect?
A. Frictional force opposes the relative motion
B. Limiting value of static friction is directly proportional to normal reaction
C. Rolling friction is smaller than sliding

friction

D. Coefficient of sliding friction has
dimensions of length

Answer:

D Watch Video Solution

31. The moment of the force
$\vec{F}=4 \hat{i}+5 \hat{j}-6 \hat{k}$ at $(2,0,-3)$ about the
point $(2,-2,-2)$, is given by

$$
\text { A. }-7 \hat{i}-8 \hat{j}-4 \hat{k}
$$

B. $-4 \hat{i}-\hat{j}-8 \hat{k}$
C. $-8 \hat{i}-4 \hat{j}-7 \hat{k}$
D. $-7 \hat{i}-4 \hat{j}-8 \hat{k}$

Answer:

- Watch Video Solution

32. A student measured the dimeter of a small steel ball using a screw gauge of least count
0.001 cm . The main scale reading is 5 m m and zero of circult scale division coincides with 25
divisions above the reference level. If screw
gauge has a zero error of -0.004 cm , the correct diameter of the ball is
A. 0.053 cm
B. 0.525 cm
C. 0.521 cm
D. 0.529 cm

Answer:

D Watch Video Solution
33. A solid sphere is rotating freeely about its
symmetry axis in free space. The radius of the
sphere is increases keeping its mass same.

Which of the following physical quantities would remain constant for the sphere?
A. Rotationtal kinetic energy
B. Moment of inertia
C. Angular velocity
D. Angular momentum

Answer:

- Watch Video Solution

34. IF the mass of the sun were ten times smaller and the universal gravitional constant were ten times larger in magnitdue, which of the following is not correct?
A. Time period of a simple pendulum on
the earth would decrease
B. Walking on the ground would become more difficult

C. raindrops will fall faster

D. g on the earth will not change

Answer:

- Watch Video Solution

35. A solid sphere is in rolling motion a body possesses translational kinetic energy $\left(K_{t}\right)$ as well as rotaional kinetic energy $\left(K_{r}\right)$ simltaneously. The ratio $K_{t}:\left(K_{t}+K_{r}\right)$ for the sphere is
A. 10: 7
B. 5:7
C. 7: 10
D. 2:5

Answer:

D Watch Video Solution

36. The power radiated by a block is P and it radiates maximum energy at wavelength, λ_{0}. If the temperature of the block body is now
changed so that it radiates maximum energy at wavelength $\frac{3}{4} \lambda_{0}$, the power radiated by it becomes $n p$. the value of n is

$$
\begin{aligned}
& \text { A. } \frac{256}{81} \\
& \text { B. } \frac{4}{3} \\
& \text { C. } \frac{3}{4} \\
& \text { D. } \frac{81}{256}
\end{aligned}
$$

Answer:

D Watch Video Solution

37. Two wires are mode of the same material and have the same volume. The first wire has
cross sectional area A and the second wire has
cross sectional area 3 A . If the length of the
first wire is increased by Δl on applying a force
F, how much force is needed to stretch the socond wire by the same amount ?
A. $4 F$
B. $6 F$
C. $9 F$
D. F

Answer:

D Watch Video Solution

38. A simple of 0.1 g of water at $100^{\circ} \mathrm{C}$ and normal pressure $\quad\left(1.013 \times 10^{5} N \cdot m^{-2}\right)$
requires 54 cal of heat energy to convert to
steam at $100^{\circ} C$. If the volume of the steam produced is $167.1 c c$, the change in internal energy of the sample , is
A. 42.2 J
B. 208.7 J
C. 104.3 J
D. 84.5 J

Answer:

- Watch Video Solution

