©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - CHHAYA CHEMISTRY (BENGALI ENGLISH)

COORDINATION COMPOUNDS OR COMPLEX COMPOUNDS

Example

1. Calculate the overall complex dissociation equilibrium constant for $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$ion, given that β_{2} for this complex is 1.6×10^{7}.

Warm Up Exercise

1. What are first order and higher order compounds? Give examples.
2. Write four differences between double salts and complex salts.

- Watch Video Solution

3. How will you identify the ions present in Mohr salt?

- Watch Video Solution

4. How will you prove that $\left[\mathrm{Fe}(\mathrm{CN})_{2} \cdot 4 \mathrm{KCN}\right]$ is a complex salt?

- Watch Video Solution

5. Classify double salts with examples .
6. What is primary valency? Why is it known as ionisable valency?

- Watch Video Solution

7. What is secondary valency? What is it known as non- ionisable valency?

- Watch Video Solution

8. Determine the coordination number of Ni and Co in the complexes $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$.

- Watch Video Solution

9. Give an example each of cationic, anionic and electrically neutral coordination entity:

- Watch Video Solution

10. Explain the following terms:
ligand

- Watch Video Solution

11. Explain the following terms :
coordination number

- Watch Video Solution

12. Explain the following terms :
central metal atom or ion

- Watch Video Solution

13. Explain the following terms :
counter ion
14. Explain the following terms : coordination sphere.

- Watch Video Solution

15. Mention the coordination entity, ligand, counter ion, oxidation number of the central metal ion of the coordination compound $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$.

- Watch Video Solution

16. Distiguish between homoleptic and heteroleptic complexes with one example of each.
17. Determine the net charge of the coordination entity, comparising of a

Co (III)-ion, $5 \mathrm{NH}_{3}$ molecules and $1 \mathrm{Cl}^{-}$ion.

Watch Video Solution

18. Mention the denticity and structure of the following lignads : (i)
$C_{5} H_{5} N\left(\right.$ (ii) acac ${ }^{-}$(iii) EDTA ${ }^{4-}$ (iv) trien

- Watch Video Solution

19. Define the following with an example of each.
(i) Ambident ligand

- Watch Video Solution

20. Define the following with an example of each.
(ii) Flexidenate ligand
21. Define the following with an example of each.
(iii) Chelating ligand

- Watch Video Solution

22. What is a π-acid ligand ? Give an example.

- Watch Video Solution

23. What do you mean by Effective Atomic Number (EAN)?

Calculate the EAN of Pt and Fe in the complexes $\left[\mathrm{PtCl}_{6}\right]^{2-}$ and $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$ respectively.

- Watch Video Solution

24. Give the IUPAC names of the following complexes. $K_{3}\left[\operatorname{Cr}(C N)_{6}\right]$

Watch Video Solution

25. Give the IUPAC names of the following complexes.
$N a_{2}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]$

- Watch Video Solution

26. Give the IUPAC names of the following complexes.
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$

- Watch Video Solution

27. Give the IUPAC names of the following complexes.
$\left[\mathrm{Co}(\mathrm{en})_{3}\right] \mathrm{Cl}_{3}$
28. Write the formulae of the following complexes.
potassium hexacyanidoferrate (III)

- Watch Video Solution

29. Write the formulae of the following complexes.
pentaamminechloridoplatinum(IV) chloride

- Watch Video Solution

30. Write the formulae of the following complexes.
sodium (ethylenediaminetetraacetate) chromate (II)
31. Write the formulae of the following complexes.
hexakis(methylisocyanide) iron (II) bromide

- Watch Video Solution

32. Write the formulae of the following complexes.
hexacyanidoplatinic (IV) acid

- Watch Video Solution

33. Identify the isomerism exhibited by the complexes, (i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{ONO})\right] \mathrm{Cl}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{2}\right] \mathrm{Cl}$. Suggest a method to distinguish between the two compounds.

- Watch Video Solution

34. Write the ionisation of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$. Why does the compound exhibit ionisation isomerism?

- Watch Video Solution

35. The tetrahedral compounds of the type
$M A_{4}, M A_{3} B, M A_{2} B_{2}, M A_{2} B C$, do not exhibit geometrical isomerism justify the statement ($M=$ central metal atom or ion, $A, B, C, D=$ monodenatate ligands).

- Watch Video Solution

36. What are facial and meridional isomers? Explain with the help of an $M A_{3} B_{3}$ type compound with ($\mathrm{A}, \mathrm{B}=$ monodenate ligands).

- Watch Video Solution

37. Identify the type of isomerism in the following compounds:
(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] 6^{+}$

Watch Video Solution

38. Identify the type of isomerism in the following compounds:
(ii) $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ (tetrahedral)

- Watch Video Solution

39. Write the formulas of the ionisation isomers of the following :
(i) $\left[\mathrm{Ni}(e n)_{2}\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{Cl}_{2}$

- Watch Video Solution

40. Write the formulas of the ionisation isomers of the following :
(ii) $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CN}\right] \mathrm{SO}_{4}$
41. What do you mean by inner orbital and outer orbital complex?

- Watch Video Solution

42. How do you determine the hybridisation of the central metal ion of a complex from its magnetic moment?

- Watch Video Solution

43. Discuss the formation of $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ with the help of valence bond theory.

- Watch Video Solution

44. Discuss the formation of $\left[\mathrm{FeF}_{6}\right]^{3-}$ with the help of valence bond theory.

- Watch Video Solution

45. Write the limitations of valence bond theory.

- Watch Video Solution

46. Why do $\mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}$ always form outer orbital octahedral complexes?

- Watch Video Solution

47. What is crystal field splitting? How do the d-orbitals split under the influence of an octahedral field?
48. What do you mean by crystal field stabilisation energy (CFSE)? Calculate the value of CFSE for a d^{4} metal ion in presnce of weak - field ligand in octahedral complex.

- Watch Video Solution

49. How d-orbitals undergo splitting in a tetrahedral crystal field?

- Watch Video Solution

50. What do you mean by spectrochemical series? Arrange the ligands of the following complexes in order of their crystal field spiltting ability: $\left[\mathrm{CrCl}_{6}\right]^{3-},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

- Watch Video Solution

51. Explain what happens when $\left.\left[\mathrm{Ti}_{2} \mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ is heated.

- Watch Video Solution

52. Why does the colour of aqueous NiCl_{2} solution change at various stages when ethylenediamine is gradually added to it?

- Watch Video Solution

53. Write the limitations of crystal field theory.

- Watch Video Solution

54. Differentiate between valence bond and crystal field theory.

- Watch Video Solution

55. Write the relation between overall and stepwise stability constants of coordination compounds formed through 1, 2, 3 and 4 steps.

Watch Video Solution

56. Why is the stability of $\left[N i(e n)_{3}\right]^{2+}$ more than that of $\left[N i\left(N H_{3}\right)_{6}\right]^{2+}$?

- Watch Video Solution

57. Arrange the following in increasing order of conductivity. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right],\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{C},\right] \mathrm{Cl}_{2},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right.$

- Watch Video Solution

58. Name bidentate lignads with (i) two neutral donor groups and (ii) two acid groups.
59. What are inner metallic complexes? Give examples.

- Watch Video Solution

60. Mention four applications of chelate formation.

- Watch Video Solution

61. Explain the role of coordination compounds in analytical chemistry, with the help of examples.

- Watch Video Solution

62. Name the metal ions present in chlorophyll, haemoglobin, vitamin B_{12} and cis-platin.
63. What is calgon? Water is it used?

- Watch Video Solution

64. Give two examples of metal carbonyls.

- Watch Video Solution

65. What do you mean by synerigic effect?

- Watch Video Solution

66. How does hypo remove unreacted AgBr from photographic films?
67. Give the coordination number of $F e$ in $[F e(E D T A)]^{-}$.

- Watch Video Solution

2. Give an example of a neutral coordination compound in which the central metal atom is $s p^{3} d^{2}$ hybridised.

- Watch Video Solution

3. Name the isomer(s) of $\left[\mathrm{Pt}(\mathrm{SCN})\left(\mathrm{NH}_{3}\right)_{3}\right] \mathrm{SCN}$.

- Watch Video Solution

4. Write the IUPAC name for the coordination isomer of $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$.
5. Calculate the oxidation number of cobalt in the complex, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right) \mathrm{Cl}\right]\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$.

- Watch Video Solution

6. Which of the following cannot act as a ligand? $\mathrm{NH}_{3}, \mathrm{CH}_{4}, \mathrm{CO}, \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

7. Write the metals present in the following compounds :
(1) Chlorophyll

- Watch Video Solution

8. Write the metals present in the following compounds :
(2) cis- platin
9. Write the metals present in the following compounds :
(3) Haemoglobin

- Watch Video Solution

10. Write the metals present in the following compounds :
(4) Vit. B_{12}.

- Watch Video Solution

11. What is the coordination number of the metal ion in an octahedral complex ? Why does NH_{3} take part in complex formation but not NH_{4}^{+}?

- Watch Video Solution

12. Is the complex formation an exothermic or an endothermic process?

Give reasons.

- Watch Video Solution

13. How does tempertaure affect the stability of coordination compounds?

- Watch Video Solution

14. Mention any two important conditions that help in the formation of a metal - complex.

- Watch Video Solution

15. Give the name and structure of an unsymmetrical bidentate ligand.
16. Give the structures of the geometrical isomers of $\left[\mathrm{Pt}(\mathrm{gly})_{2}\right]$.

- Watch Video Solution

17. Write the balanced chemical equation for the reaction between $N i^{2+}$ ion and dimethylglyoxime giving a red coloured precipitate.

- Watch Video Solution

18. Name the solution used to wash photographic films. Give chemical reaction involved in the above process.

- Watch Video Solution

19. What do you mean by ligancy?
20. In the inner orbital complex ion, $\left[N i\left(C N_{4}\right)\right]^{2-}$, give:
(1) the type of hybridisation in Ni^{2+}
(2) the orbitals involved in hybridisation.

- Watch Video Solution

21. What do you mean by crystal field splitting energy in tetrahedral and octahedral complexes?

- Watch Video Solution

22. $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is an outer orbital complex. Give:
(1) the type of hybridisation in Ni^{2+}
(2) the orbitals involved in hybridisation.

- Watch Video Solution

23. Write the name and structure of a the ligand that is used to determine the hardness of water (i.e., in the qualitative analysis of Ca^{2+} and $M g^{2+}$.

- Watch Video Solution

24. $\left[\mathrm{Ni}(\mathrm{NH})_{4}\right]^{2-}$ is diamagnetic but $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is paramagnetic. Give the hybridisation of Ni^{2+} in the given complex ions.

- Watch Video Solution

25. Arrange the given ligands in order of their ligand field strength.
$\left[\mathrm{CrCl}_{6}\right]^{3-},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right]^{3+},\left[\mathrm{Cr}\left(\mathrm{CN}_{6}\right)\right]^{3-},\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}\right.$

- Watch Video Solution

26. Which of the following exhibits geometrical isomerism? (1) linear (2) square planar (3) tetrahedral (4) octahedral

- Watch Video Solution

27. What is the basis of spectrochemical series?

- Watch Video Solution

28. Write the names of the coordination entities that are used as electrolytes in electroplating with gold \& silver.

- Watch Video Solution

29. Why are most of the coordination compounds of transition elements paramagnetic in nature?
30. A transition metal M and ligand L forms a coordination compound $M L_{4}$. Express the overall stability constant of the system, β_{4}, in terms of concentration of its various components.

- Watch Video Solution

31. What do you mean by labile complex?

- Watch Video Solution

32. The reaction of sulphide ion with nitroprusside ion gives a violet complex. Write the balanced equation for the given reaction.

- Watch Video Solution

33. How can you identify cis - $\left[P t\left(N H_{3}\right)_{2} C l_{2}\right]$ from trans $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$.

Watch Video Solution

34. Give an example each of symmetrical and unsymmetrical bidentate ligand.

- Watch Video Solution

35. Consider the following equilibria along with the respective stability constants :
$A g^{+}+N H_{3} \Leftrightarrow\left[A g\left(N H_{2}\right)\right]^{+}, K_{1}=3.5 \times 10^{3}$
$\left[\mathrm{Ag}\left(N H_{3}\right)\right]^{+}+N H_{3} \Leftrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$,
$K_{2}=1.7 \times 10^{3}$
Calculate the overal formiation constant of $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$.
36. Why do the transition elements form complexes?

- Watch Video Solution

2. The square planar complexes with coordination number 4 ($M A_{2} B_{2}$ or $M A_{2} B C$) show geometrical isomerism but tetrahedral complexes do not. Explain.

- Watch Video Solution

3. With the help of suitable tests, distinguish between $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$. What type of isomerism is shown by these compounds?

- Watch Video Solution

4. Though the salts of s - and p-block elements are colourless, why are the salts of transition elements coloured?

Watch Video Solution

5. Calculate the oxidation number of the central metal atoms or ions :
(any 4): (1) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right]^{+}$

- Watch Video Solution

6. Calculate the oxidation number of the central metal atoms or ions :
(any 4): (2) $\left[\mathrm{PtClNO}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$

- Watch Video Solution

7. Calculate the oxidation number of the central metal atoms or ions :
(any 4): (3) $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
8. Calculate the oxidation number of the central metal atoms or ions : (any 4): (4) $\left[\mathrm{CoCl}_{2}(e n)_{2}\right]^{+}$

- View Text Solution

9. Calculate the oxidation number of the central metal atoms or ions:
(any 4): (5) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{ONO})\right]^{2+}$

- Watch Video Solution

10. Write the type of hybridisation in $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$. Also explain its structure and magnetic property.

- Watch Video Solution

11. Give the geometrical isomers of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$.

- Watch Video Solution

12. Write the formula of potassiumtrioxalatoferrate (III).

- Watch Video Solution

13. Calculate the Effective Atomic number of Mn is $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$.

- Watch Video Solution

14. If a coordination compound, $\mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$ is heated, it does not give out NH_{3}, while if the same reacts with AgNO_{3} solution, gives a white precipitate of AgCl . Write the structure and IUPAC name of the compound.
15. $\left[M(\mathrm{AA})_{2} X_{2}\right]^{n+}$ is an optically active complex ion. What is its geometry? Give an example.

- Watch Video Solution

16. How do the transition elements form π - complexes ?

- Watch Video Solution

17. Why can't there be any low spin tetrahedral complex?

- Watch Video Solution

18. Calculate the volume of $0.1 \mathrm{M} \mathrm{AgNO}_{3}$ solution required for complete precipitation of chloride ions present in 30 mL of 0.01 M solution of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$.
A. Millimoles of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$

$$
=\text { volume }(\text { in } \mathrm{mL}) \times \text { molarity }=30 \times 0.01=0.3
$$

\therefore Millimoles of Cl^{-}in

$$
\begin{aligned}
& {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}=3 \times \text { millimoles of }\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}} \\
& =3 \times 0.3=0.9
\end{aligned}
$$

So, millimoles of Ag^{+}ion required $=$millimoles of Cl^{-}ion present

$$
\text { in }\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}=0.9
$$

But millimoles of Ag^{+}ion $=$volume of
AgNO_{3} solution (in mL) \times molarity of AgNO_{3} solution
$\therefore \quad 0.9=$ volume of AgNO_{3} Soluion (in mL) $\times 0.1$
Hence volume of AgNO_{3} solution (in mL) $=\frac{0.9}{0.1}=9$
B.
C.
D.

Answer:

19. Why do the following transition metal ions appear colourless ? $C u^{+}, \mathrm{Ag}^{+}, \mathrm{Zn}^{2+}, \mathrm{Hg}^{2+}$ and Cd^{2+}.
A. From the electronic configurations of the metal atoms,

$$
C u\left(3 d^{10} 4 s^{1}\right), A g\left(4 d^{10} 5 s^{1}\right), Z n\left(3 d^{10} 4 s^{2}\right), H g\left(5 d^{10} 6 s^{2}\right) \quad \text { and }
$$

$C d\left(4 d^{10} 5 s^{2}\right)$, we can see that the given metal ions do not have unpaired electrons in their $(n-1) d$ orbital and the orbitals are completely filled $\left(d^{10}\right)$ with electrons :

$$
C u^{+}\left(3 d^{10}\right), A g^{+}\left(4 d^{10}\right), Z n^{2+}\left(3 d^{10}\right), H g^{2+}\left(5 d^{10}\right) \text { and } C d^{2+}\left(4 d^{10},\right.
$$

Hence, these electrons do not undergo $d-d$ transition by absorbing light from visible spectrum and therefore the given metal ions appear colourless.
B.
C.

D.

Answer:

- Watch Video Solution

20. Explain which of the following compounds has effective atomic number of central metal atom in accordance with Sidwick theory?
(1) $K_{3}\left[F e\left(C N_{6}\right)\right]$ (2) $K_{4}\left[F e(C N)_{6}\right]$

- Watch Video Solution

21. Why does the paramagnetic nature of the 3d transition series increase till $C r$ and then decrease regularly?

- Watch Video Solution

22. Calculate the 'spin-only' magnetic moment of the tetrahedral complex, $\stackrel{\mathrm{II}}{\mathrm{H}} \mathrm{g}\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]$.
\therefore Electronic configuration of Co^{2+} ion:
Co^{2+} undergoes $s p^{3}-$ hybridisation and forms a tetrahedral complex. In this case, no pairing of electrons takes place in the 3d orbitals. Hence, the given complex has 3 unpaired electrons.
\therefore Magnetic moment, $\mu=\sqrt{n(n+2)}$
$=\sqrt{3(3+2)}=\sqrt{15}=3.87 B M$

- View Text Solution

23. Show the structures of the isomers of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$.

- Watch Video Solution

24. The stability (or formation) constant $\left(K_{f}\right)$ for $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$is 1.6×10^{7}. Calculate the ratio of the concentrations of $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$

- Watch Video Solution

Solved Wbchse Scanner 2015

1. Which of the following complex ions has no 'd' electron(s) in the central metal atom -
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$
C. $\left[F e(C N)_{6}\right]^{3-}$
D. $\left[\mathrm{MnO}_{4}\right]^{-}$

Answer: d

- Watch Video Solution

2. Which of the following is the correct electronic configuration of $N i$ in
$\mathrm{Ni}(\mathrm{CO})_{4}{ }^{-}$
A. $[A r] 3 d^{8} 4 s^{2}$
B. $[A r] 3 d^{10} 4 s^{0}$
C. $[A r] 3 d^{8} 4 s^{0}$
D. $[A r] 3 d^{9} 4 s^{1}$

Answer:

- Watch Video Solution

Solved Wbchse Scanner 2016

1. An aqueous solution of a complex compound of formula $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\left(\mathrm{SO}_{4}\right)$ reacts readily with aqueous AgNO_{3} to give a yellowish white precipitate. Write down the structural formula of the complex and mention the reaction involved.

Solved Wbchse Scanner 2017

1. When tetraamminechloridonitrito cobalt (III) nitrate is dissolved in water, how many ions will be formed from one molecule -
A. 4
B. 3
C. 2
D. 0

Answer: C

- Watch Video Solution

2. Explain why $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ is coloured but $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$ is colourless.

Solved Wbchse Scanner 2018

1. What is the oxidation number of the central metal in $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right) \mathrm{Cl}\right]$ (atomic no. of $\mathrm{Cr}=24$)-
A. 0
B. +1
C. +3
D. +2

Answer: d

- Watch Video Solution

2. How many isomers are possible for $\left.\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\right]_{2}\right] \mathrm{Cl}$?

Solved Cbse Scanner Delhi 2014

1. Give the formula of the following coordination entities:
(a) Co^{3+} ion is bound to one Cl^{-}, one NH_{3} molecule and two bidentate ethylene diamine (en) molecules.

- Watch Video Solution

2. Give the formula of the following coordination entities :
(b) Ni^{2+} ion is bound to two water molecules and two oxalate ions.

Write the name and magnetic behaviour of each of the above coordination entities.

- Watch Video Solution

1. Write IUPAC name of the complex $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl} l_{2}\right] \mathrm{Cl}$. What type of isomerism is exhibited by the complex $\left[\mathrm{Co}(e n)_{3}\right]^{3+}$ (en = ethane-1,2diamine) ? Why is $\left[\mathrm{NiCl}_{4}\right]^{2-}$ paramagnetic but $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is diamagnetic ? (Atomic no : $\mathrm{Cr}=24, \mathrm{Co}=27, \mathrm{Ni}=28$)

- Watch Video Solution

Solved Cbse Scanner Delhi 2015

1. What is the IUPAC name of $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$?

- Watch Video Solution

2. Indicate the types of isomerism exhibited by the following complexes :
(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]^{2+}$

- Watch Video Solution

3. Indicate the types of isomerism exhibited by the following complexes :
(ii) $\left[\mathrm{Co}(\mathrm{en})_{3}\right] \mathrm{Cl}_{3} \quad$ (en $=$ ethylene diamine)

- Watch Video Solution

4. Indicate the types of isomerism exhibited by the following complexes :
(iii) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$

- Watch Video Solution

Solved Cbse Scanner Outside Delhi 2015

1. What is meant by chelate effect ?

- Watch Video Solution

2. Write the name of the following : (i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
3. Write the IUPAC name of the following :
(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
(ii) $\left[N i C l_{4}\right]^{2-}$
(iii) $K_{3}\left[F e(C N)_{6}\right]$

- Watch Video Solution

4. Write the IUPAC names of the following coordination compounds:

$$
K_{3}\left[F e(C N)_{6}\right]
$$

(Watch Video Solution

Solved Cbse Scanner Delhi 2016

1. On adding NaOH to ammonium sulphate, a colourless gas with pungent odour is evolved which forms a blue coloured complex with
Cu^{2+} ion. Identify the gas.

- Watch Video Solution

2. When a coordination compound $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is mixed with AgNO_{3}, 2 moles of AgCl are precipitated per mole of the compound. Write - (i) structural formula of the complex, (ii) IUPAC name of complex.

- Watch Video Solution

3. For the complex $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$, write the hybridization type, magnetic character and spin nature of the complex. (At. Number : $\mathrm{Fe}=26$)

- Watch Video Solution

4. Draw one of the geometrical isomers of the complex $\left[\mathrm{Pt}(e n)_{2} \mathrm{Cl}_{2}\right]^{2+}$ which is optically active.

Solved Cbse Scanner East Zone 2016

1. When a coordination compound $\mathrm{PtCl}_{4} \cdot 6 \mathrm{NH}_{3}$ is mixed with $\mathrm{AgNO}_{3}, 4$ moles of AgCl are precipitated per mole of the compound. Write - (i) structural formula of the complex

- Watch Video Solution

2. When a coordination compound $\mathrm{PtCl}_{4} \cdot 6 \mathrm{NH}_{3}$ is mixed with $\mathrm{AgNO}_{3}, 4$ moles of AgCl are precipitated per mole of the compound. Write - (ii) IUPAC name of the complex.

- Watch Video Solution

3. For the complex $\left[\mathrm{CoF}_{6}\right]^{3-}$, write the hybridization type, magnetic character and spin nature of the complex (At. Number : $\mathrm{Co}=27$)
4. Why is the complex $\left[\mathrm{Co}(e n)_{3}\right]^{3+}$ more stable than the complex $\left[\mathrm{CoF}_{6}\right]^{3-}$?

- Watch Video Solution

Solved Cbse Scanner Delhi 2017

1. What type of isomerism is shwon by the complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$?

- Watch Video Solution

2. Why a solution of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is green while a solution of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is colourless? (At. No. of $\mathrm{Ni}=28$)
3. Write IUPAC name of the following complex : $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{CO}_{3}\right)\right] \mathrm{Cl}$.

- Watch Video Solution

4. What type of isomerism is shown by the complex $\left[\mathrm{Co}(e n)_{3}\right] \mathrm{Cl}$?

- Watch Video Solution

5. Write the hybridisation and magnetic character of $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$. (At.

No. of Co = 27)

- Watch Video Solution

6. Write IUPAC name of the following complex : $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$.

- Watch Video Solution

1. Using IUPAC norms write the formulae for the following :
(i) Sodium dicyanidoaurate (I)

- Watch Video Solution

2. Using IUPAC norms write the formulae for the following :
(ii) Tetraamminechloridonitrito - N - platinum (IV) sulphate

- Watch Video Solution

3. What type of isomerism is shown by the complex $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{SCN})^{2+}$?
4. Why is $\left[\mathrm{NiCl}_{4}\right]^{2-}$ paramagnetic while $\left[\mathrm{Ni}\left(C N_{4}\right)\right]^{2-}$ is diamagnetic ?
(At. No. of $\mathrm{Ni}=28$)

- Watch Video Solution

5. Using IUPAC norms write the formulae for the following :
(i) Tri(ethane-1,2-diamine) chromium (III) chloride

- Watch Video Solution

6. Using IUPAC norms write the formulae for the following :
(ii) Potassium tetrahydroxozincate (II)

- Watch Video Solution

7. Using IUPAC norms write the formulae for the following :
(i) Potassium trioxalatoaluminate (III)
8. Using IUPAC norms write the formulae for the following :
(i) Dichloridobis (ethane-1,2-diamine) cobalt (III)

- Watch Video Solution

Solved Cbse Scanner All India 2018

1. Write the coordination number and oxidation state of platinum in the complex $\left[P t(e n)_{2} C l_{2}\right]$?

- Watch Video Solution

2. Write the formulas for the following compounds :
(6) Iron (III) hexacyanoferrate (II)
3. What type of isomerism is exhibited by the complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4}$?

- Watch Video Solution

4. Write the hybridisation and number of unpaired electrons in the complex $\left[\mathrm{CoF}_{6}\right]^{3-}$. (At. No. of $\mathrm{Co}=27$)

- Watch Video Solution

Solved Ncert Textbook Problems Ncert Intext Questions

1. On the basis of the following observation made with aqueous solution, assign secondary valencies to metals in the following compounds :
2. Write the formulas for the following compounds -
(1) Tetraammineaquachloridocobalt (III) chloride

- Watch Video Solution

3. Write the formulas for the following compounds -
(2) Potassium tetrahedroxozincate (II)

- Watch Video Solution

4. Write the formulas for the following compounds -
(3) Potassium trioxalatoaluminate (III)

- Watch Video Solution

5. Write the formulas for the following compounds -
(4) Dichloridobis (ethane-1,2-diamine) cobalt (III)
6. Write the formulas for the following compounds -
(5) Tetracarbonylnickel (0)

- Watch Video Solution

7. Write the IUPAC names of the following coordination compounds :
(1) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right]$

- Watch Video Solution

8. Write the IUPAC names of the following coordination compounds :
(2) $K_{3}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$

- Watch Video Solution

9. Write the IUPAC names of the following coordination compounds :
(3) $\left[\mathrm{CoCl}_{2}(e n)_{2}\right] \mathrm{Cl}$

Watch Video Solution

10. Write the IUPAC names of the following coordination compounds :
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{CO}_{3}\right)\right] \mathrm{Cl}$

- Watch Video Solution

11. Write the IUPAC names of the following coordination compounds :
$\mathrm{Hg}\left[\mathrm{Co}(S C N)_{4}\right]$

- Watch Video Solution

12. Write the formulas for the following compounds :
(1) Tetraamminediaquacobalt (III) chloride
13. Write the formulas for the following compounds :
(2) Potassium tetracyanonickelate (II)

- Watch Video Solution

14. Write the formulas for the following compounds :
(3) Tris (ethane-1, 2 -diamine) chromium (III) chloride

- Watch Video Solution

15. Write the formulas for the following compounds :
(4) Amminebromidochloridonitrito - N - platinate (II)

- Watch Video Solution

16. Write the formulas for the following compounds :
(5) Dichloridobis (ethane -1, 2 -diamine) platinum (IV) nitrate

Watch Video Solution

17. Write the formulas for the following compounds :
(6) Iron (III) hexacyanoferrate (II)

- Watch Video Solution

18. Write the IUPAC names of the following coordination compounds :
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$

- Watch Video Solution

19. Write the IUPAC names of the following coordination compounds :
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
20. Write the IUPAC names of the following coordination compounds :
$K_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$

- Watch Video Solution

21. Write the IUPAC names of the following coordination compounds :
$K_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$

- Watch Video Solution

22. Write the IUPAC names of the following coordination compounds :
$K_{2}\left[P d C l_{4}\right]$

- Watch Video Solution

23. Write the IUPAC names of the following coordination compounds :

$$
\left[\mathrm{Pt}\left(\mathrm{CN}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NH}_{2} \mathrm{CH}_{3}\right)\right] \mathrm{Cl} \text { itrate }
$$

(6) Iron (III) hexacyanoferrate (II)

- Watch Video Solution

24. Why is geometrical isomerism not possible in tetrahedral complexes having two different types of uni - dentate ligands coordinated with the central metal ion?

- View Text Solution

25. Draw structure of geometrical isomers of $\left.\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{CN})_{4}\right)\right]^{-}$

- Watch Video Solution

26. Out of the following two coordination entities which is chiral
(optically active)? cis $-\left[\mathrm{CrCl}_{2}(o x)_{2}\right]^{3-}$
trans $-\left[\mathrm{CrCl}_{2}(o x)_{2}\right]^{3-}$

- Watch Video Solution

27. Indicate the types of isomerism exhibited by the following complexes and draw the structures for these isomers:

$$
K\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]
$$

- Watch Video Solution

28. Indicate the types of isomerism exhibited by the following complexes and draw the structures for these isomers :
$\left[\mathrm{Co}(e n)_{3}\right] \mathrm{Cl}_{3}$

- Watch Video Solution

29. Indicate the types of isomerism exhibited by the following complexes and draw the structures for these isomers :
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]\left(\mathrm{NO}_{3}\right)_{2}$

- Watch Video Solution

30. Indicate the types of isomerism exhibited by the following complexes and draw the structures for these isomers :
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}_{2}\right]$

- View Text Solution

31. Give evidence that $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4} \&\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{5}\right] \mathrm{Cl}$ are ionisation isomers.

- Watch Video Solution

32. The spin only magnetic moment of $\left[M n B r_{4}\right]^{2-}$ is 5.9 BM . Predict the geometry of the complex ion.

- Watch Video Solution

33. Explain on the basis of valence bond theory that $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ ion with square planar structure is diamagnetic and the $\left[\mathrm{NiCl}_{4}\right]^{2-}$ ion with tetrahedral geometry is paramagnetic.

- Watch Video Solution

34. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is strongly paramagnetic whereas $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is weakly paramagnetic. Explain.

- Watch Video Solution

35. $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is paramagnetic while $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is diamagnetic though both are tetrahedral. Why?

- Watch Video Solution

36. Explain $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is an inner orbital complex whereas $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ is an outer oubital complex.

- Watch Video Solution

37. Predict the number of unpaired electrons in the square planar $\left[P t(C N)_{4}\right]^{2-}$ ion.

- Watch Video Solution

38. Hexaaquamanganese (II) ion contains five unpaired electrons, while the hexacyano ion contains only one unpaired electron. Explain using

Crystal Field Theory.

- Watch Video Solution

39. Calculate the overall complex dissociation equilibrium constant for the $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ ion, given that β_{4} for this complex is 2.1×10^{13}.

- Watch Video Solution

Solved Ncert Textbook Problems Ncert Exercise Questions

1. Explain the bonding in coordination compounds in terms of Werner's postulates.

- Watch Video Solution

2. FeSO_{4} solution mixed with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ solution in $1: 1$ molar ratio gives the test of Fe^{2+} ion but $\mathrm{CuSO} \mathrm{S}_{4}$ solution mixed with aqueous
ammonia in 1: 4molar ratio does not give the test of Cu^{2+} ion. Explain why?

- View Text Solution

3. Explain with two examples each of the following: coordination entity, ligand, coordination number, coordination polyhedron, homoleptic and heteroleptic.

- Watch Video Solution

4. What is meant by unidentate, didentate and ambidentate ligands? Give two examples of each.

- Watch Video Solution

5. Specify the oxidation number of the metals in the given coordination entities :
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{CN})(e n)_{2}\right]^{2+}$

- Watch Video Solution

6. Specify the oxidation number of the metals in the given coordination entities:
$\left[\operatorname{CoBr}(E n)_{2}\right]^{2+}$

- Watch Video Solution

7. Specify the oxidation number of the metals in the given coordination entities :
$\left[\mathrm{PtCl}_{4}\right]^{2-}$

- Watch Video Solution

8. Specify the oxidation number of the metals in the given coordination entities :
$K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$

- Watch Video Solution

9. Specify the oxidation number of the metals in the given coordination entities :
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$

- Watch Video Solution

10. Using IUPAC norms write formulas of the following :

Tetrahydroxozincate (II)

- Watch Video Solution

11. Using IUPAC norms write formulas of the following :

Potassium tetrachloridopalladate (II)
12. Using IUPAC norms write formulas of the following :

Diamminedichloridoplatinum (II)

- Watch Video Solution

13. Using IUPAC norms write formulas of the following :

Potassium tetracyanonickelate (II)

(Watch Video Solution

14. Using IUPAC norms write formulas of the following :

Pentaamminenitrito-O-cobalt (III)

- Watch Video Solution

15. Using IUPAC norms write formulas of the following :

Hexaamminecobalt (III) sulphate

Watch Video Solution

16. Using IUPAC norms write formulas of the following :

Potassium tri(oxalato) chromate (III)

- Watch Video Solution

17. Using IUPAC norms write formulas of the following :

Hexaammineplatinum (IV)

- Watch Video Solution

18. Using IUPAC norms write formulas of the following :

Tetrabromidocuprate (II)
19. Using IUPAC norms write formulas of the following :

Pentaamminenitrito - N - cobalt (III)

- Watch Video Solution

20. Using IUPAC norms write systematic names of :
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$

- Watch Video Solution

21. Using IUPAC norms write systematic names of :

$$
\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NH}_{2} \mathrm{CH}_{3}\right)\right] \mathrm{Cl}
$$

22. Using IUPAC norms write systematic names of : $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Watch Video Solution

23. Using IUPAC norms write systematic names of:
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\left(\mathrm{NH}_{2}\right)\right] \mathrm{Cl}$

- Watch Video Solution

24. Using IUPAC norms write systematic names of:
$\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

- Watch Video Solution

25. Using IUPAC norms write systematic names of :
$\left[\mathrm{NiCl}_{4}\right]^{2-}$
26. Using IUPAC norms write systematic names of :
$\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$

- Watch Video Solution

27. Using IUPAC norms write systematic names of :
$\left[\mathrm{Co}(e n)_{3}\right]^{3+}$

- Watch Video Solution

28. Using IUPAC norms write systematic names of :
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$

- Watch Video Solution

29. List various types of isomerism possible for coordination compounds, giving an example of each.

Watch Video Solution

30. How many geometrical isomers are possible in the following coordination entities ?
$\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$

- Watch Video Solution

31. How many geometrical isomers are possible in the following coordination entities ?
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$

- Watch Video Solution

32. Draw the structures of optical isomers of:
$\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$

Watch Video Solution

33. Draw the structures of optical isomers of:
$\left[\mathrm{PtCl}_{2}(e n)_{2}\right]^{2+}$

- Watch Video Solution

34. Draw the structures of optical isomers of:
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}(e n)\right]^{+}$

(D) Watch Video Solution

35. Draw all the isomers (geometrical and optical) of :
$\left[\mathrm{CoCl}_{2}(e n)_{2}\right]^{+}$
36. Draw all the isomers (geometrical and optical) of :
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}(e n)_{2}\right]^{2+}$

- Watch Video Solution

37. Draw all the isomers (geometrical and optical) of:
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}(e n)\right]^{+}$

- Watch Video Solution

38. Write all the geometrical isomers of $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)(\mathrm{Br})(\mathrm{Cl})(\mathrm{py})\right]$ and how many of these will exhibit optical isomerism?

- Watch Video Solution

39. Aqueous copper sulphate solution (blue) gives - (1) a green precipitate with aqueous potassium fluoride

- Watch Video Solution

40. Aqueous copper sulphate solution (blue) gives - (2) a bright green solution with aqueous potassium chloride. Explain these experimental results.

- Watch Video Solution

41. What is the coordination entity formed when excess of aqueous KCN is added to aqueous solution of CuSO_{4} ? Why is it that no precipitate of copper sulphide is obtained when $H_{2} S(g)$ is passed through this solution?

- Watch Video Solution

42. Discuss the nature of bonding in the given coordination entities on the basis of valence bond theory:
$\left[F e(C N)_{6}\right]^{4-}$

- Watch Video Solution

43. Discuss the nature of bonding in the given coordination entities on the basis of valence bond theory:
$\left[F_{6} F_{6}\right]^{3-}$

- Watch Video Solution

44. Discuss the nature of bonding in the given coordination entities on the basis of valence bond theory:
$\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$

- Watch Video Solution

45. Discuss the nature of bonding in the given coordination entities on the basis of valence bond theory: $\left[\mathrm{CoF}_{6}\right]^{3-}$

- Watch Video Solution

46. Draw figure to show the splitting of d - orbitals in an octahedral crystal field.

- Watch Video Solution

47. What is spectrochemical series? Explain the difference between a weak - field ligand and a strong - field ligand.

- Watch Video Solution

48. What is crystal field splitting energy ? How does the magnitude of Δ_{0} decide the actual configuration of d orbitals in a coordination entity?

- Watch Video Solution

49. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is paramagnetic while $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is diamagnetic. Explain why?

- Watch Video Solution

50. A solution of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is green but a solution of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is colourless. Explain.

- Watch Video Solution

51. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ are of different coloures in dillute solutions. Why?
52. Discuss the nature of bonding in metal carbonyls.

- Watch Video Solution

53. Write IUPAC name for each of the following and indicate oxidation state, electronic configuration and coordination number. Also give stereochemistry, magnetic moment :
$\mathrm{K}\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

54. Write IUPAC name for each of the following and indicate oxidation state, electronic configuration and coordination number. Also give stereochemistry, magnetic moment :
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
55. Write IUPAC name for each of the following and indicate oxidation state, electronic configuration and coordination number. Also give stereochemistry, magnetic moment :
$\mathrm{CrCl}_{3}(\mathrm{py})_{3}$

- Watch Video Solution

56. Write IUPAC name for each of the following and indicate oxidation state, electronic configuration and coordination number. Also give stereochemistry, magnetic moment :
$C s\left[\mathrm{FeCl}_{4}\right]$

- Watch Video Solution

57. Write IUPAC name for each of the following and indicate oxidation state, electronic configuration and coordination number. Also give
stereochemistry, magnetic moment :
$K_{4}\left[M n(C N)_{6}\right]$

- Watch Video Solution

58. Give oxidation state, d - orbital occupation and coordination number of the central metal ion in the given complexes:
(1) $\mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
(2) cis $-\left[C r(e n)_{2} C l_{2}\right] C l$
(3) $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{CoF}_{4}\right]$
(4) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{SO}_{4}$

- View Text Solution

59. What is meant by stability of a coordination compound in solution? State the factors which govern stability of complexes.
60. What is meant by chelate effect? Given example.

- Watch Video Solution

61. Discuss briefly giving an example in each case the role of coordination compounds in : (1) biological systems

- Watch Video Solution

62. Discuss briefly giving an example in each case the role of coordination compounds in : (2) medicinal chemistry

- Watch Video Solution

63. Discuss briefly giving an example in each case the role of coordination compounds in : (3) analytical chemistry
64. Discuss briefly giving an example in each case the role of coordination compounds in : (4) extraction/metallurgy of metals.

- Watch Video Solution

65. How many ions are produced from the complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$ in solution : 6, 4, 3 or 2

- Watch Video Solution

66. Amongest the following ions which one has the highest magnetic value?

$$
\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}
$$

- Watch Video Solution

67. Amongest the following ions which one has the highest magnetic value?
$\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

- View Text Solution

68. Amongest the following ions which one has the highest magnetic value?
$\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$,

D Watch Video Solution

69. The oxidation number of cobalt in $\mathrm{K}\left[\mathrm{Co}(\mathrm{CO})_{4}\right]$ is -
A. +1
B. +3
C. -1
D. -3

Answer: C

- Watch Video Solution

70. What will be the correct order for the wavelengths of absorption in the visible region for the following

$$
\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-},\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}<\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} ?
$$

- Watch Video Solution

71. Amongst the following, the most stable complex is -
A. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
D. $\left[\mathrm{FeCl}_{6}\right]^{3-}$

Answer:

- Watch Video Solution

Higher Order Thinking Skill Hots Questions

1. The molecular formula of a complex id $\mathrm{PtCl}_{4} \cdot 2 \mathrm{KCl}$. From electrical conductance measurements, the molecule was found to contain three ions. The compound does not give any precipitate with AgNO_{3} solution. Identify the compound.

- Watch Video Solution

2. Addition of iodine to $K I$ solution does not bring down its freezing point. But, addition of mercuric iodide to $K I$ solution increases its freezing point. Give reasons.

- Watch Video Solution

3. $\left[\mathrm{CoCl}_{2}(e n)_{2}\right]^{+}$has three isomers. How can these be identified using physical methods?

Watch Video Solution

4. Octahedral complexes of which transition metal ions have zero CFSE.

Explain.

- Watch Video Solution

5. Explain the principle of removal of rust stains from clothes using oxalic acid solution.

- Watch Video Solution

6. Explain the following : (1) Nickel does not form low spin octahedral complexes.
7. Explain the following : (2) The π - complexes are known for the transition metals only.

- Watch Video Solution

8. Explain the following : (3) $C O$ is considered to be a stronger ligand than NH_{3} for some metals.

- Watch Video Solution

9. Co^{2+} is easily oxidised to Co^{3+} in the presence of a strong ligand. Explain.
10. Which of the following is the most stable complex ?
$\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-},\left[\mathrm{FeCl}_{6}\right]^{3-}$

- Watch Video Solution

11. What do you mean by macrocyclic effect in relation to the stability of coordination compounds?

- Watch Video Solution

12. Why do the metals of the second and third transition series have a greater tendency to form low-spin complexes as compared to the first transition series?

- Watch Video Solution

13. How many moles of AgCl will be precipitated if an excess of AgNO_{3} solution is added to one litre $1(\mathrm{M})$ solution of $\left[\mathrm{CrCl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{Cl}_{2}$?

- Watch Video Solution

14. Give an example of a coordination compound in which the flexidentate sulphate ion behaves as a monodentate ligand.

- Watch Video Solution

15. $\left[\mathrm{CuCl} l_{4}\right]^{2-}$ exists but $\left[\mathrm{CuI}_{4}\right]^{2-}$ does not. Give reason.

- Watch Video Solution

16. Can the metal carbonyl compounds be called organometallics ?

- Watch Video Solution

17. Compare the values of formation constant, K_{f} of the following coordination entities with their stabilities.

$$
\left[N i\left(N H_{3}\right)_{6}\right]^{2+}, k_{f}=5.31 \times 10^{8}, \quad\left[N i(e n)_{3}\right]^{2+}, k_{f}=1.12 \times 10^{18}
$$

- Watch Video Solution

18. A coordination compound, $\mathrm{CrCl}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ gives a precipitate of AgCl with silver nitrate solution. From the value of molar conductivity, the aqueous solution of the compound was found to contain 2 moles of ions.

Write the name and structural formula of the compound.

- Watch Video Solution

19. Show all stereoisomers of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}(\mathrm{en})\right]^{+}$. Mention their inter relationship.

- Watch Video Solution

20. Give the structures of the stereo isomers of $\left[\mathrm{Co}(e n)_{2} \mathrm{Br}_{2}\right]^{+}$and mention their inter relationships.

- Watch Video Solution

21. A metal complex having composition $\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl} \mathrm{C}_{2} \mathrm{Br}$ has been isolated in two forms (P) and (Q). The form (P) reacts with AgNO_{3} to give a white precipitate. Readily soluble in dilute aqueous ammonia, whereas (Q) gives a pale yellow precipitate soluble in concentrated ammonia. Write the formula of (P) and (Q) and state the hybridisation of Cr in each.

Calculate the magnetic moments (spin only value).

- Watch Video Solution

22. Will there be any change in colour of the compound formed, if $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ is heated ?

- Watch Video Solution

23. If a coordination compound, $\mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$ is heated, it does not give out NH_{3}, while if the same reacts with AgNO_{3} solution, gives a white precipitate of AgCl . Write the structure and IUPAC name of the compound.

- Watch Video Solution

24. Arrange the following complexes in decreasing order of their electrical conductance $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}_{2},\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3},\left[\mathrm{CoCl}_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]$

- Watch Video Solution

25. Octahedral and tetrahedral complexes made of the same metal ion have different coloures. Explain.

- Watch Video Solution

1.

Amongst
$\left[\mathrm{NiCl}_{4}\right]^{2-},\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right],\left[\mathrm{Ni}(\mathrm{CO})_{4}\right] \&\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
, paramagnetic species are -
A. $\left[\mathrm{NiCl}_{4}\right]^{2-},\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
B. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right],\left[\mathrm{Ni}\left(P \mathrm{Ph}_{3}\right)_{2} \mathrm{Cl}_{2}\right],\left[\mathrm{NiCl}_{4}\right]^{2-}$
C. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-},\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{NiCl}_{4}\right]^{2-}$
D. $\left[\mathrm{Ni}\left(P \mathrm{Ph}_{3}\right)_{2} C l_{2}\right],\left[\mathrm{Ni}(\mathrm{CO})_{4}\right],\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$

Answer: A

- Watch Video Solution

2. Optical isomerism is exhibited by (ox = oxalate anion, en $=$ ethylenediamine)-

$$
\text { A. cis }-\left[\mathrm{CrCl}_{2}(o x)_{2}\right]^{3-}
$$

B. $\left[\mathrm{Co}(e n)_{3}\right]^{3+}$
C.trans $-\left[\mathrm{CrCl}_{2}(o x)_{2}\right]^{3-}$
D. $\left[\mathrm{Co}(\otimes)(e n)_{2}\right]^{+}$

Answer: A::B::D

- Watch Video Solution

3. Addition of sodium thiosulphate solution to a solution of silver nitrate given ' X ' as white precipitate, insoluble in water but soluble in excess thiosullphate solution to give 'Y'. On boiling in water, 'Y' gives 'Z'. 'X', 'Y' and 'Z' respectively are -
A. $A g_{2} S_{2} O_{3}, N a_{3}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right], A g_{2} S$
B. $A g_{2} S O_{4}, N a\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right], A g_{2} S_{2}$
C. $A g_{2} S_{2} O_{3}, N a_{5}\left[A g\left(S_{2} O_{3}\right)_{3}\right], A g S$
D. $\mathrm{Ag}_{2} \mathrm{SO}_{3}, \mathrm{Na} 3\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right], \mathrm{Ag}_{2} \mathrm{O}$

Answer: A

D Watch Video Solution

4. Cold ferrous sulphate solution on absorption of $N O$ develops brown colour due to the formation of -
A. paramagnetic $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$
B. diamagnetic $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{~N}_{3}\right)\right] \mathrm{SO}_{4}$
C. paramagnetic $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{SO}_{4}\right)_{2}$
D. diamagnetic $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{SO}_{4}\right)\right] \mathrm{NO}_{3}$

Answer: A

- Watch Video Solution

5. PbCl_{2} is insoluble in cold water. Addition of HCl increases its solubility due to -
A. formation of soluble complex anions lik $\left[\mathrm{PbCl}_{3}\right]^{-}$
B. oxidation of Pb (II) to Pb (IV)
C. formation of $\left[\mathrm{Pb}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. formation of polymeric lead complexes

Answer: A

- Watch Video Solution

6. The number of unpaired electrons in $\left[\mathrm{CoCl}_{4}\right]^{2-},\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ and $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ respectively are -
A. 2,2,1
B. 3,0,1
C. $0,2,1$
D. 2,2,0
7. Ferric ion forms a prussian blue precipitate due to the formation of -
A. $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
B. $K_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
C. $F e(C N S)_{3}$
D. $F e_{4}\left[F e(C N)_{6}\right]_{3}$

Answer: D

- Watch Video Solution

8. Silver chloride dissolves in excess of ammonium hydroxide solution. The cation present in the resulting solution is -
A. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+}$
B. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+}$
C. $A g^{+}$
D. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$

Answer: D

- Watch Video Solution

Entrance Questions Engineering And Medical Archive Jee Main

1. Which of the following facts about the complex $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ is incorrect -
A. the complex involves $d^{2} s p^{3}$ hybridisation and is octahedral in shape
B. the complex is paramagnetic
C. the complex is an outer orbital complex
D. the complex gives white pricipitate with silver nitrate solution
2. Magnetic moment (spin only) of $\left[\mathrm{NiCl}_{4}\right]^{2-}$ -
A. 1.82 BM
B. 5.46 BM
C. 2.82 BM
D. 1.41 BM

Answer: C

Watch Video Solution

3. Which among the following will be named as dibromidobis (ethylenediamine) chrominium (III) bromide -
A. $\left[C r(e n) B r_{2}\right] B r$
B. $\left[C r(e n)_{3}\right] B r_{3}$
C. $\left[C r(e n)_{2} B r_{2}\right] B r$
D. $\left[C r(e n) B r_{4}\right]$

Answer: C

- Watch Video Solution

4. Which of the following complex species is not expected to exhibit optical isomerism-
A. $\left[\mathrm{Co}(e n)_{3}\right]^{3+}$
B. $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
D. $\left[\mathrm{Co}(e n)\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]^{+}$

Answer: C

5. The octahedral complex of a metal ion M^{3+} with four monodentate lignads L_{1}, L_{2}, L_{3} and L_{4} absorb wavelengths in the region of red, green, yellow and blue respectively. The increasing order of ligand strength of the four ligands is -
A. $L_{1}<L_{2}<L_{4}<L_{3}$
B. $L_{4}<L_{3}<L_{2}<L_{1}$
C. $L_{1}<L_{3}<L_{2}<L_{4}$
D. $L_{3}<L_{2}<L_{4}<L_{1}$

Answer: C

- Watch Video Solution

6. Number of geometric isomers that can exist for square planar $\left[\mathrm{Pt}(\mathrm{Cl})(\mathrm{py})\left(\mathrm{NH}_{3}\right)\left(\mathrm{NH}_{2} \mathrm{OH}\right)\right]^{+}$is -
A. 4
B. 6
C. 2
D. 3

Answer: D

- Watch Video Solution

7. Which of the following compounds is not yellow coloured -
A. $\left(N H_{4}\right)_{3}\left[A s\left(M o_{3} O_{10}\right)_{4}\right]$
B. BaCrO 4
C. $Z n_{2}\left[F e(C N)_{6}\right]$
D. $K_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]$

Answer: C

8. Which one of the following complexes shows optical isomerism -
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
B. $c i s-\left[\mathrm{Co}(e n){ }_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
C. trans $-\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}(\mathrm{en}=$ ethylenediamine $)$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$

Answer: B

- Watch Video Solution

9. The pair having the same magnetic moment is (At. No. : $\mathrm{Cr}=24, \mathrm{Mn}=25$, $\mathrm{Fe}=26, \mathrm{Co}=27$)-
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{CoCl}_{4}\right]^{2-}$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{CoCl}_{4}\right]^{2-}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

- Watch Video Solution

10. On treatment of 100 mL of $0.1(\mathrm{M})$ solution of $\mathrm{CoCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with excess $\mathrm{AgNO}_{3}, 1.2 \times 10^{22}$ ions are precipitated. The complex is -
A. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$

Answer: B

- Watch Video Solution

11. The oxidation states of Cr in $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3},\left[\mathrm{Cr}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}\right]$ and $\mathrm{K}_{2}\left[\mathrm{Cr}(\mathrm{CN})_{2}\left(\mathrm{O}_{2}\right)\left(\mathrm{O}_{2}\right)\left(\mathrm{NH}_{3}\right)\right]$
respectively are -
A. $+3,+4$ and +6
B. $+3,+2$ and +4
C. $+3,0$ and +6
D. $+3,0$ and +4

Answer: C

- View Text Solution

12. For 1 molal aqueous solution of the following compounds, which one will show the highest freezing point -
A. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}_{3} \mathrm{Cl}_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}\right.$

Answer: D

- View Text Solution

13. Consider the following reaction and statements :

$$
\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right]^{+}+\mathrm{Br}^{-} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Br}_{3}\right]+\mathrm{NH}_{3}
$$

(I) two isomers are produced if the reactant complex ion is a cis - isomers
(II) two isomers are produced if the reactant complex ion is a trans isomer
(III) only one isomer is produced if the reactant complex ion is trans isomer
(IV) only one isomer is produced if the reactant complex ion is a cis isomer

The correct statements are -
A. (III) and (IV)
B. (II) and (IV)
C. (I) and (II)
D. (I) and (III)

Answer: D

- View Text Solution

Entrance Questions Engineering And Medical Archive Neet

1. The d-electron configurations of $\mathrm{Cr}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}$ and Co^{2+} are d^{4}, d^{5}, d^{6} and d^{7} respectively. Which one of the following will exhibit minimum paramagnetic behaviour -
A. $\left[M n\left(H_{2} O_{6}\right]^{2+}\right.$
B. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Answer: C

2. The complex, $\left[\operatorname{Pt}(p y)\left(\mathrm{NH}_{3}\right) \mathrm{BrCl}\right]$ will have how many geometical isomers -
A. 3
B. 4
C. 0
D. 2

Answer: A

- Watch Video Solution

3. The complex, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$ are the examples of which type of isomerism -
A. linkage isomerism
B. ionization isomerism
C. coordination isomerism
D. geometrical isomerism

Answer: C

- Watch Video Solution

4. Of the following complex ions, which is diamagnetic in nature -
A. $\left[N i C l_{4}\right]^{2-}$
B. $\left[N i(C N)_{4}\right]^{2-}$
C. $\left[\mathrm{CuCl}_{4}\right]^{2-}$
D. $\left[\mathrm{CoF}_{6}\right]^{3-}$

Answer: B

- Watch Video Solution

5. Which of the following complex compounds will exhibit highest paramagnetic behaviour -
A. $\left[T i\left(N H_{3}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$

Answer: B

- Watch Video Solution

6. Which of the following carbonyls will have the strongest $C-O$ bond -
A. $\mathrm{Mn}(\mathrm{CO})_{6}^{+}$
B. $\mathrm{Cr}(\mathrm{CO})_{6}$
C. $\mathrm{V}(\mathrm{CO})_{6}^{-}$
D. $\mathrm{Fe}(\mathrm{CO})_{5}$

- Watch Video Solution

7. Which one of the following is an outer orbital complex and exhibits paramagnetic behaviour -
A. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$

Answer: C

- Watch Video Solution

8. Which among the following will be named as dibromidobis (ethylenediamine) chromium (III) bromide -
A. $\left[C r(e n)_{2} B r\right] B r_{2}$
B. $\left[\mathrm{Cr}(e n)_{2} B r_{2}\right] \mathrm{Br}$
C. $\left[C r(e n) B r_{2}\right] B r$
D. $\left[C r(e n)_{3}\right] B r_{3}$

Answer: B

- View Text Solution

9. A magnetic moment of 1.73 BM will be shown by one among the folllowing -
A. $\left[\mathrm{CoCl}_{6}\right]^{4-}$
B. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
C. $\left[N i(C N)_{4}\right]^{2-}$
D. TiCl_{4}
10. Which of the following complexes is used to be as an anticancer agent-
A. $m e r-\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
B. cis $-\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$
C. cis $-K_{2}\left[P t C l_{2} B r_{2}\right]$
D. $\mathrm{Na}_{2} \mathrm{CoCl}_{4}$

Answer: B

D Watch Video Solution

11. Among the following complexes, the one which shown zero crystal field stabilization energy (CFSE)-
A. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: B

- Watch Video Solution

12. Number of possible isomers for the complex $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]$ will be (en
$=$ ethylenedisamine)-
A. 2
B. 1
C. 3
D. 4

Answer: C

13. The hybridisation involved in complex $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is
(At.no. of $\mathrm{Ni}=28$)
A. $d s p^{2}$
B. $s p^{3}$
C. $d^{2} s p^{2}$
D. $d^{2} s p^{3}$

Answer: A

- Watch Video Solution

14. The name of complex ion, $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is -
A. hexacyanoiron (III) ion
B. hexacyanitoferrate (III) ion
C. tricyanoferrate (III) ion
D. hexacyanidoferrate (III) ion

Answer: D

- Watch Video Solution

15. The sum of coordination number and oxidation number of the metal M in the complex $\left[\mathrm{M}(e n)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right] \mathrm{Cl}$ is -
A. 9
B. 6
C. 7
D. 8

Answer: A

16. The correct increasing order of trans - effect of the following species is
A. $\mathrm{CN}^{-}>\mathrm{Br}^{-}>\mathrm{C}_{6} \mathrm{H}_{5}^{-}>\mathrm{NH}_{3}$
B. $\mathrm{NH}_{3}>\mathrm{CN}^{-}>\mathrm{Br}^{-}>\mathrm{C}_{6} \mathrm{H}_{5}^{-}$
C. $\mathrm{CN}^{-}>\mathrm{C}_{6} \mathrm{H}_{5}^{-}>\mathrm{Br}^{-}>\mathrm{NH}_{3}$
D. $\mathrm{Br}^{-}>\mathrm{CN}^{-}>\mathrm{NH}_{3}>\mathrm{C}_{6} \mathrm{H}_{5}^{-}$

Answer: C

- Watch Video Solution

17. Jahn-Teller effect is not found in high spin complex of -
A. d^{9}
B. d^{7}
C. d^{8}
D. d^{4}

Answer: C

- Watch Video Solution

18. Which of the following has longest $C-O$ bond length ? (Fee $C-O$ bond length in CO is $1.128 \AA$)
A. $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$
B. $\mathrm{Ni}\left(\mathrm{CO}_{4}\right.$
C. $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$
D. $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$

Answer: D

- Watch Video Solution

19. Pick out the correct statement with respect to $\left[M n(C N)_{6}\right]^{3-}$ -
A. it is $s p^{3} d^{2}$-hybridised and octahedral
B. it is $s p^{3} d^{2}-$ hybridised and tetrahedral
C. it is $d^{2} s p^{3}-$ hybridised and octahedral
D. it is $d s p^{2}-$ hybridised and square planar.

Answer: C

- Watch Video Solution

20. The correct order of the stoichiometry of AgCl formed when AgNO_{3} in excess in treated with the complexes $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}, \mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}, \mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$ respectvely is -
A. $1 \mathrm{AgCl}, 3 \mathrm{AgCl}, 2 \mathrm{AgCl}$
B. $3 \mathrm{AgCl}, \mathrm{AgCl}, 2 \mathrm{AgCl}$
C. $3 \mathrm{AgCl}, 2 \mathrm{AgCl}, 1 \mathrm{AgCl}$
D. $2 \mathrm{AgCl}, 3 \mathrm{AgCl}, 1 \mathrm{AgCl}$

D Watch Video Solution

21. Correct increasing order for the wavelengths of absorption in the visible region for the complexes of Co^{3+} is -
A. $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Co}(e n)_{3}\right]^{3+},\left[\mathrm{Co}(e n)_{3}\right]^{3+}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}(e n)_{3}\right]^{3+}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: A

D Watch Video Solution

22. Iron carbonyl, $\mathrm{Fe}(\mathrm{CO})_{5}$ is -
A. dinuclear
B. tetranuclear
C. trinuclear
D. mononuclear

Answer: D

- Watch Video Solution

23. The type of isomerism shown by the complex $\left[\mathrm{CoCl}_{2}(e n)_{2}\right]$ is -
A. linkage isomerism
B. geometrical isomerism
C. ionisation isomerism
D. coordination isomerism

Answer: B

24. The geometry and magnetic behaviour of the complex $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ are
A. tetrahedral geometry and paramagnetic
B. square planar geometry and diamagnetic
C. square planar geometry and paramagnetic
D. tetrahedral geometry and diamagnetic

Answer: D

- Watch Video Solution

Entrance Questions Engineering And Medical Archive Aims

1. Which of the following is diamagnetic -
A. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
B. $\left[\mathrm{NiCl}_{4}\right]^{2-}$
C. $\left[\mathrm{PtCl}_{4}\right]^{2-}$
D. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$

Answer: C

- View Text Solution

2. The wavelength of light absorbed is highest in -
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{H}_{2} \mathrm{O}\right]^{3+}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Co}(e n)_{3}\right]^{2+}$

Answer: A

3. Which of the following metal ion forms unstable complex with CN^{-}-
A. $\operatorname{Ag}(I)$
B. $Z n(I I)$
C. $C u(I I)$
D. $C r(I I)$

Answer: A

- Watch Video Solution

4. Least coordination number is shown by -
A. $\mathrm{Co}_{2}(\mathrm{CO})_{8}$
B. $M n_{2}(C O)_{10}$
C. $\left[\mathrm{Fe}(e n)_{2} \mathrm{NH}_{3}\right]$
D. $\left[\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]$

- Watch Video Solution

5. The diamagnetic species is -
A. $\left[N i(C N)_{4}\right]^{2-}$
B. $\left[\mathrm{NiCl}_{4}\right]^{2-}$
C. $\left[\mathrm{CoCl}_{4}\right]^{2-}$
D. $\left[\mathrm{CoF}_{6}\right]^{2-}$

Answer: A

Watch Video Solution
6. In which of the following pairs both the complexes show optical isomerism -
A. $c i s-\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2} \mathrm{Cl}_{2}\right]^{3-}$, cis $-\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$
B. $\left[\mathrm{Co}(\mathrm{en})_{3}\right] \mathrm{Cl}_{3}, \mathrm{cis}-\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
C. $\left[\begin{array}{ll}\mathrm{PtCl} & \text { (dien) }] \mathrm{Cl},\left[\mathrm{NiCl}_{2} \mathrm{Br}_{2}\right.\end{array}\right]^{2-}$
D. $\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]$, cis $-\left[\mathrm{Pt}(e n)_{2} \mathrm{Cl}_{2}\right]$

Answer: B

- View Text Solution

7. Amongst the following, the most stable complex is -
A. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
D. $\left[\mathrm{FeCl}_{6}\right]^{3-}$

Answer: C

8. Select the correct statement -
A. geometrical isomer may differ in dipole moment and visible/UV spectra.
B. complexes of the type $\left[M A_{3} B_{3}\right]$ can also have facial (fac) and meridional (mer) isomer.
C. no optical isomer exists for the complex trans- $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$.
D. all of these.

Answer: D

- View Text Solution

9. Calculate the overall complex dissociation equilibrium constant for the $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ ions, given that stability constant $\left(\beta_{4}\right)$ for this complex is 2.1×10^{13} -
A. 8.27×10^{-13}
B. 4.76×10^{-14}
C. 2.39×10^{-7}
D. 1.83×10^{14}

Answer: B

- Watch Video Solution

10. Which of the following is a pair of diamagnetic complexes -
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
B. $\left[\mathrm{Co}(o x)_{3}\right]^{3-},\left[\mathrm{FeF}_{6}\right]^{3-}$
C. $\left[\mathrm{Fe}(o x)_{3}\right]^{3-},\left[\mathrm{FeF}_{6}\right]^{3-}$
D. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-},\left[\mathrm{CoF}_{6}\right]^{3-}$

Answer: A

11. Trien is -
A. hexadentate, mono anionic
B. tetradentate, neutral
C. tetradenatate, dianion
D. monodentate, anion

Answer: B

- Watch Video Solution

12. Which of the following can be reduced easily -
A. $V(C O)_{6}$
B. $\mathrm{Mo}(\mathrm{CO})_{6}$
C. $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$
D. $\mathrm{Fe}(\mathrm{CO})_{5}$

Answer: A

- Watch Video Solution

Solved Ncert Exemplar Problems

1. Which of the following complexes formed by Cu^{2+} ions is most stable -
A. $\mathrm{Cu}^{2+}+4 \mathrm{NH}_{3} \Leftrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}, \log \mathrm{K}=11.6$
B. $\mathrm{Cu}^{2+}+4 \mathrm{CN}^{-} \Leftrightarrow\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{2-}, \log \mathrm{K}=27.3$
C. $\mathrm{Cu}^{2+}+2 e n \Leftrightarrow\left[\mathrm{Cu}(e n)_{3}\right]^{2+}, \log K=15.4$
D. $\mathrm{Cu}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}, \log \mathrm{K}=8.9$

Answer: B

2. Colour of the coordination compounds depends on the crystal field splitting. What will be the correct order of absorption of wavelength of light in the visible region, for $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}-$
A. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
D. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: C

- Watch Video Solution

3. When $0.1 \mathrm{~mol} \mathrm{CoCl} 3\left(\mathrm{NH}_{3}\right)_{5}$ is treated with excess of $\mathrm{AgNO}_{3}, 0.2 \mathrm{~mol}$ of AgCl are obtained. The conductivity of solution will correspound to -
A. 1: 3 electrolyte
B. 1: 2 electrolyte
C. 1: 1 electrolyte
D. 3:1 electrolyte

Answer: B

- Watch Video Solution

4. When 1 mole $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is treated with excess of $\mathrm{AgNO}_{3}, 3 \mathrm{~mol}$ AgCl are obtained. Formula of the complex :
A. $\left[\mathrm{CrCl}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
B. $\left[\mathrm{CrCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{CrCl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$

Answer: D

5. The correct IUPAC name of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{C}, 2\right]$ is -
A. diamminedichloridoplatinum (II)
B. diamminedichloridoplatinum (IV)
C. diamminedichloridoplatinum (0)
D. dichloridodiammineplatinum (IV)

Answer: A

- Watch Video Solution

6. The stabilisation of coordination compounds due to chelation is called the chelate effect. Which of the following is the most stable complex species -
A. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
B. $\left[F e(C N)_{6}\right]^{3-}$
C. $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
D. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: C

- Watch Video Solution

7. Indicate the complex ion which shows geometrical isomerism -
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
B. $\left.\left[\mathrm{Pt}(\mathrm{NH})_{3}\right)_{3} \mathrm{Cl}\right]$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Co}(\mathrm{CN})_{5}(\mathrm{NC})\right]^{3-}$

Answer: A

- Watch Video Solution

8. The CFSE for octahedral $\left[\mathrm{CoCl}_{6}\right]^{4-}$ is $18000 \mathrm{~cm}^{-1}$. The CFSE for tetrahedral $\left[\mathrm{CoCl}_{4}\right]^{2-}$ will be-
A. $18000 \mathrm{~cm}^{-1}$
B. $16000 \mathrm{~cm}^{-1}$
C. $8000 \mathrm{~cm}^{-1}$
D. $20000 \mathrm{~cm}^{-1}$

Answer: C

- Watch Video Solution

9. Due to the presence of ambidentate ligands coordination compounds show isomerism. Palladium complexes of the type $\left[\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}(\mathrm{SNC})_{2}\right]$ and $\left[P t\left(C_{6} H_{5}\right)_{2}(N S C)_{2}\right]$ are -
A. linkage isomers
B. coordination isomers
C. ionisation isomers
D. geometrical isomers

Answer: A

- Watch Video Solution

10. The compounds $\left[\mathrm{Co}\left(\mathrm{SO}_{4}\right)\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Br}$ and $\left[\mathrm{Co}\left(\mathrm{SO}_{4}\right)\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}$ represent -
A. linkage isomerism
B. ionisation isomerism
C. coordination isomerism
D. no isomerism

Answer: D

- Watch Video Solution

11. A chelating agent has two or more than two donor atoms to bind to a single metal ion. Which of the following is not a chelating agent -
A. thiosulphato
B. oxalato
C. glycinato
D. ethane 1, 2-diamine

Answer: A

- Watch Video Solution

12. Which of the following species is not expected to be a ligand -
A. $N O$
B. NH_{4}^{+}
C. $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
D. $C O$

- Watch Video Solution

13. What kind of isomerism exists between $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ (violet) and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{cl}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$ (greyish - green)-
A. linkage isomerism
B. solvate isomerism
C. ionisation isomerism
D. coordination isomerism

Answer: B

- Watch Video Solution

14. IUPAC name of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right]$ is -
A. platinum diaminechloronitrite
B. chloronitritio-N - ammineplatinum (II)
C. diamminechloridonitrito - N - platinum (II)
D. diamminechloronitrito - N - platinate (II)

Answer: C

- Watch Video Solution

15. Atomic number of Mn , Fe and Co are 25,26 and 27 respectively. Which of the following inner orbital octahedral complex ions are diamagnetic -
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
B. $\left[M n(C N)_{6}\right]^{4-}$
C. $\left[F e(C N)_{6}\right]^{4-}$
D. $\left[F e(C N)_{6}\right]^{3-}$

Answer: A::C

16. Atomic number of Mn , Fe and Co an dNi are 25, 2627 and 28 respectively. Which of the following outer orbital octahedral complexes have same number of unpaired electrons -
A. $\left[\mathrm{MnCl}_{6}\right]^{3-}$
B. $\left[F e F_{6}\right]^{3-}$
C. $[\mathrm{CoF}]^{3-}$
D. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$

Answer: A: C

- Watch Video Solution

17. Which of the following options are correct for $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ -complex-
A. $d^{2} s p^{3}$ hybridisation
B. $s p^{3} d^{2}$ hybridisation
C. paramagnetic
D. diamagnetic

Answer: A:C

- Watch Video Solution

18. An aqueous pink solution of cobalt(II) chloride changes to deep blue on addition of excess of HCl . This is because -
A. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is transformed into $\left[\mathrm{CoCl}_{6}\right]^{4-}$
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is transformed into $\left[\mathrm{CoCl}_{4}\right]^{2-}$
C.tetrahedral complexes have smaller crystal field splitting than octahedral complexes.
D. tetrahedral complexes have larger. Crystal field splitting than octahedral complexes.

Answer: B::C

- Watch Video Solution

19. Which of the following complexes are homoleptic -
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
C. $\left[N i(C N)_{4}\right]^{2-}$
D. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$

Answer: A:C

- Watch Video Solution

20. Which of the following complexes are heteroleptic -
A. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{2}\right]^{+}$
C. $\left[M n(C N)_{6}\right]^{4-}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$

Answer: B::D

- Watch Video Solution

21. Identify the optically active compounds from the following -
A. $\left[\mathrm{Co}(e n)_{3}\right]^{3+}$
B. trans $-\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$
C. $c i s-\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$
D. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]$

- Watch Video Solution

22. Identify the correct statements for the behaviour of ethane -1, 2 diamine as a ligand -
A. it is a neutral ligand.
B. it is a didentate ligand.
C. it is a chelating ligand
D. it is a unidentate lignad.

Answer: A::B::C

- Watch Video Solution

23. Which of the following show linkage isomerism -
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]^{2+}$
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{CO}\right]^{3+}$
C. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SCN}\right]^{2+}$
D. $\left[\mathrm{Fe}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$

Answer: A:C

- Watch Video Solution

24. Arrange the given complexes in the increasing order of conductivity of their solution:
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right],\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3},\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$

- Watch Video Solution

25. A coordination compound $\mathrm{CrCl}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ precipitates AgCl when treated with AgNO_{3}. Molar conductance of its solution corresponds to a total of two ions. Write structural formula of the compound and name it.
26. A complex of the type $\left[M(\mathrm{AA})_{2} X_{2}\right]^{n+}$ is known to be optically active. What does this indicate about the structure of the complex ? Give one example.

- Watch Video Solution

27. Magnetic moment of $\left[\mathrm{MnCl}_{4}\right]^{2-}$ is 5.92 BM . Explain.

- Watch Video Solution

28. On the basis of crystal field theory explain why Co (III) forms paramagnetic octahedral complex with weak - field ligands whereas it forms diamagnetic octahedral complex with strong - field ligands.

- Watch Video Solution

29. Why are low spin tetrahedral complexes not formed?

- Watch Video Solution

30. Give the electronic configuration of the following complexes on the basis of Crystal Field Splitting theory.
$\left[\mathrm{CoF}_{6}\right]^{3-},\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ and $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$

- Watch Video Solution

31. Explain why $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ has magnetic moment value of 5.92 BM whereas $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ has a value of only 1.74 BM .

- Watch Video Solution

32. Arrange the following complex ions in increasing order of crystal field splitting energy $\left(\Delta_{0}:\left[\mathrm{Cr}(\mathrm{Cl})_{6}\right]^{3-},\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-},\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}\right)$.
33. Why do compounds having similar geometry have different magnetic moment?

- Watch Video Solution

34. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is blue in colour while CuSO_{4} is colourless. Why?

- Watch Video Solution

35. Name the type of isomerism when ambidentate ligands are attached to central metal ion. Give two examples of ambidentate ligands.

- Watch Video Solution

36.

37.

- View Text Solution

38.

View Text Solution
39.
40.

- View Text Solution

41. Assertion (A) : Toxic metal ions are removed by chelating ligands.

Reason (R) : Chelate complexes tend to be more stable.
A. Both (A) and (R) are true and (R) is the correct explanation of (A)
B. Both (A) and (R) are true but (R) is not the correct explanation of (A)
C. (A) is true but (R) is false
D. (A) is false but (R) is true

Answer: A

- Watch Video Solution

42. Assertion (A) : $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$ are reducing in nature.

Reason (R): Unpaired electrons are present in their d-orbitals.
A. Both (A) and (R) are true and (R) is the correct explanation of (A)
B. Both (A) and (R) are true but (R) is not the correct explanation of (A)
C. (A) is true but (R) is false
D. (A) is false but (R) is true

Answer: B

- Watch Video Solution

43. Assertion (A) : Linkage isomerism arises in coordination compounds containing ambidentate lignad.

Reason (R) : Ambidentate ligand has 2 different donor.
A. Both (A) and (R) are true and (R) is the correct explanation of (A)
B. Both (A) and (R) are true but (R) is not the correct explanation of (A)
C. (A) is true but (R) is false
D. (A) is false but (R) is true

Answer: A

44. Assertion (A) : Complexes of $M X_{6}$ and $M X_{5} L$ type (X and L are unidentate) do not show geometrical isomerism.

Reason (R) : Geometrical isomerism is not shown by complexes of coordination number 6.
A. Both (A) and (R) are true and (R) is the correct explanation of (A)
B. Both (A) and (R) are true but (R) is not the correct explanation of (A)
C. (A) is true but (R) is false
D. (A) is false but (R) is true

Answer: C

- Watch Video Solution

45. Assertion (A) : $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ ion shows magnetic moment corresponding to two unpaired electrons.

Reason (R) : Because it has $d^{2} s p^{3}$ type hybridisation.
A. Both (A) and (R) are true and (R) is the correct explanation of (A)
B. Both (A) and (R) are true but (R) is not the correct explanation of (A)
C. (A) is true but (R) is false
D. (A) is false but (R) is true

Answer: D

- Watch Video Solution

46. Using crystal field theory, draw energy level diagram, write electronic configuration of central metal atom/ion, determine magnetic moment value in the following :

$$
\left[\mathrm{CoF}_{6}\right]^{3-},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}
$$

- Watch Video Solution

47. Using crystal field theory, draw energy level diagram, write electronic configuration of central metal atom/ion, determine magnetic moment
value in the following :
$\left[\mathrm{FeF}_{6}\right]^{3-},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$

- Watch Video Solution

48. Using valence bond theory, explain the following in relation to the complexes given below
$\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{FeCl}_{6}\right]^{4-}$
(i) Type of hbridisation. (ii) Inner or outer orbital complex. (iii) Magnetic behaviour. (iv) Spin only magnetic moment value.

- Watch Video Solution

49. $\mathrm{CoSO}_{4} \mathrm{Cl} .5 \mathrm{NH}_{3}$ exists in two isomeric forms ' A ' and ' B '. Isomer 'A' reacts with AgNO_{3} to give white precipitate, but does not react with $B a C l 2$. Isomer ' B ' gives white precipitate with BaCl_{2} but does not react with AgNO_{3}.

Answer the following questions.
(i) Identify 'A' \& 'B' and write their structural formulas.
(ii) Name the type of isomerism involved.
(iii) Give the IUPAC name of 'A' and ' B '.

(Watch Video Solution

50. What is the relationship between observed colour of the complex \& wavelength of light absorbed by the complex?

- Watch Video Solution

51. Why are different colour observed in octahedral and tetrahedral complexes for same metal \& same ligands?

- Watch Video Solution

Mcq Hotspot Single Correct Type

1. Which of the following will give inner orbital octahedral complex -
A. d^{7}
B. d^{8}
C. d^{6}
D. All of these

Answer: C

- Watch Video Solution

2. Which one of the following is paramagnetic -
A. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
B. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
C. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

Answer: A

3. Possible isomers of octahedral $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]-$
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

4. Which of the following complexes does not have any optical isomer -
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
B. $\left[\mathrm{Co}(e n)_{3} C l_{3}\right.$
C. $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
D. $\left[\mathrm{Co}(e n)\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$

Answer: A

- Watch Video Solution

5. The central metal atom of which of the following species does not have any d-electron -
A. $\left[\mathrm{MnO}_{4}\right]^{-}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[F e(C N)_{6}\right]^{3-}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: A

- Watch Video Solution

6. Effective atomic number of Cr in $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ is -
A. 32
B. 33
C. 34
D. 35

Answer: B

- Watch Video Solution

7. Which of the following $d s p^{2}$ hybridised complex ions is square planar-
A. $\left[N i(C N)_{4}\right]^{2-}$
B. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
C. $\left[\mathrm{PtCl}_{4}\right]^{2-}$
D. All of these

Answer: D

D Watch Video Solution

8. Which of the following does not form an amine even in presence of excess ammonia -
A. $A l^{3+}$
B. $A g^{+}$
C. $C u^{2+}$
D. $C d^{2+}$

Answer: A

- Watch Video Solution

9. Which of the following is in accordance with spectrochemical series -
A. $\mathrm{Cl}^{-}<\mathrm{F}^{-}<\left[\mathrm{C}_{2} \mathrm{O}_{4}\right]^{2-}<\mathrm{NO}_{2}^{-}<\mathrm{CN}^{-}$
B. $\mathrm{CN}^{-}<\left[\mathrm{C}_{2} \mathrm{O}_{4}\right]^{2-}<\mathrm{Cl}^{-}<\mathrm{NO}_{2}^{-}<\mathrm{F}^{-}$
C. $\left[\mathrm{C}_{2} \mathrm{O}_{4}\right]^{2-}<\mathrm{F}^{-}<\mathrm{Cl}^{-}>\mathrm{NO}_{2}^{-}<\mathrm{CN}^{-}$
D. $\mathrm{F}^{-}<\mathrm{Cl}^{-}<\mathrm{NO}_{2}^{-}<\mathrm{CN}^{-}<\left[\mathrm{C}_{2} \mathrm{O}_{4}\right]^{2-}$

Answer: A

- Watch Video Solution

10. Which one of the following is a high spin complex -
A. $\left[\mathrm{CoCl}_{6}\right]^{3-}$
B. $\left[F e F_{6}\right]^{3-}$
C. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. all of these

Answer: D

11. The metal atom present in a complex behave as -
A. Lewis base
B. Bronsted acid
C. Bronsted base
D. Lewis acid

Answer: D

- Watch Video Solution

12. Which of the following reacts with $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ to give a white precipitate -
A. PbCl_{2}
B. AgNO_{3}
C. $K I$
D. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: A

- Watch Video Solution

13. Which of the following ions exhibit coordination number 4 -
A. $P t^{2+}$
B. Cr^{3+}
C. Fe^{3+}
D. $P t^{4+}$

Answer: A

- Watch Video Solution

14. Platinum reacts with aquaregia to produce -
A. $\mathrm{Pt}\left(\mathrm{NO}_{3}\right)_{4}$
B. $\mathrm{H}_{2}\left[\mathrm{PtCl}_{6}\right]$
C. PtCl_{4}
D. PtCl_{2}

Answer: B

- Watch Video Solution

15. Molar conductivity of the aqueous solution of which of the following is maximum -
A. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{4}$
B. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{3}$
C. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}_{2}$
D. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right] \mathrm{Cl}$
16. The reagent used for identifying nickel ion is -
A. potassium ferrocyanide
B. phenolphthalein
C. dimethylglyoxime
D. edta

Answer: C

- Watch Video Solution

17. As per stability constants (imaginery) given, which of the following is the strongest ligand -
(i) $C u^{2+}+4 N H_{2} \Leftrightarrow\left[C u\left(N H_{3}\right)_{4}\right]^{2+},\left(K=4.5 \times 10^{11}\right)$
(ii) $C u^{2+}+4 C N^{-} \Leftrightarrow\left[C u(C N)_{4}\right]^{2+},\left(K=2.0 \times 10^{27}\right)$
(iii) $C u^{2+}+2 e n \Leftrightarrow\left[C u(e n)_{2}\right]^{2+},\left(K=3.0 \times 10^{15}\right)$
(iv) $\mathrm{Cu}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+},\left(\mathrm{K}=9.5 \times 10^{8}\right)$
A. NH_{3}
B. $C N^{-}$
C. en
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: B

- Watch Video Solution

18. The reason behind two different colours of the complex entity $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$is -
A. ionisation isomerism
B. optical isomerism
C. geometrical isomerism
D. linkage isomerism

Answer: C

- Watch Video Solution

19. In which of the following pairs of complex ions, spin - only magnetic moment of both are same -
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{CoCl}_{4}\right]^{2-}$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{CoCl}_{4}\right]^{2-},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Answer: B

- Watch Video Solution

20. The $\mathrm{Fe}-\mathrm{C}$ bond in $\mathrm{Fe}(\mathrm{CO})_{5}$ displays-
A. π character
B. σ character
C. ionic character
D. both π and σ character

Answer: D

- Watch Video Solution

21. The formula of tris(ethylenediammine) cobalt (III) sulphate is -
A. $\left[\mathrm{Co}(e n)_{2} \mathrm{SO}_{4}\right]$
B. $\left[\mathrm{Co}(e n)_{3} \mathrm{SO}_{4}\right]$
c. $\left[\mathrm{Co}(\mathrm{en})_{3}\right]_{2} \mathrm{SO}_{4}$
D. $\left[\mathrm{Co}(\mathrm{en})_{3}\right]_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Answer: D

- Watch Video Solution

22. In aqueous solution, which gives $F e^{3+}$ ion -
A. $\left[F e(C N)_{6}\right]^{3-}$
B. $\left[F e(C N)_{6}\right]^{4-}$
C. $F e_{2}\left(\mathrm{SO}_{4}\right)_{3}$
D. $\mathrm{NH}_{4}\left(\mathrm{SO}_{4}\right)_{2} . \mathrm{FeSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

Answer: C

Watch Video Solution
23. Which of the groups act as ambident ligands -
A. CO_{3}^{2-}
B. $C N^{-}$
C. NO_{2}^{-}
D. ethylenediamine

Answer: B::C

- Watch Video Solution

24. Identify complexes which are expected to be coloured -
A. $\mathrm{Ti}\left(\mathrm{NO}_{3}\right)_{4}$
B. $\left[\mathrm{Cu}\left(\mathrm{NCCH}_{3}\right)_{4}\right]^{+} \mathrm{BF}_{4}^{-}$
C. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} 3 \mathrm{Cl}^{-}$
D. $K_{3}\left[V F_{6}\right]$

Answer: C::D

25. Which of the following statement(s) is/are correct -
A. $\left[\mathrm{Ni}(\mathrm{Cl})_{4}\right]^{2-} \quad \& \quad\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} \quad$ differ in magnetic property
B. $\left[\mathrm{NiCl}_{4}\right]^{2-} \quad \& \quad\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} \quad$ differ in their geometry.
C.
$\left[\mathrm{NiCl}_{4}\right]^{2-} \quad \& \quad\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} \quad$ differ in primary valencies of nickel.
D.

$$
\left[\mathrm{NiCl}_{4}\right]^{2-} \quad \& \quad\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} \quad \text { differ in hybridisation state of nicke }
$$

Answer: A::B::D

- Watch Video Solution

26. Which of the following isomerisms are shown by the complex $\left[\mathrm{CoCl}_{2}(\mathrm{OH})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Br}$ -
A. ionisation
B. linkage
C. geometrical
D. optical

Answer: A::C::D

D Watch Video Solution

27. In test of NO_{3}^{-}ion, the dark brown ring complex is formed. Which is true of this complex-
A. the colour is due to charge transfer spectra.
B. iron and NO both have +1 charge.
C. the complex species can be represented as $\left[\frac{I}{F e}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right]^{2+}$
D. iron has +2 oxidation state and NO is neutral.

Answer: A::B::C

D Watch Video Solution

28. Which of the following are outer orbital complexes -
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
B. $\left[M n(C N)_{6}\right]^{3-}$
C. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
D. $\left[F e F_{6}\right]^{3-}$

Answer: C::D

- Watch Video Solution

Exercise Very Short Answer Type Questions Answer In One Two Sentences

1. What is coordination polyhedron? Give an example.

- Watch Video Solution

2. Give one example each of perfect and imperfect complexes.
3. What is $\pi-$ acid lignad? Give example?

- Watch Video Solution

4. Write the IUPAC name of the ionisation isomer of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$.

D Watch Video Solution

5. Write the IUPAC name of the coordination isomer of $\left[C o(e n)_{3}\right]\left[C r(C N)_{6}\right]$.

- Watch Video Solution

6. How many isomers are possible for $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl} l_{2}\right] \mathrm{Cl}$?
7. How will you identify cis- and trans- isomers of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$?

- Watch Video Solution

8. Why do most transition elements and their compounds exhibit paramagnetism?

- Watch Video Solution

9. Why do the tetrahedral compounds of the type $M A_{2} B_{2}$ not display geometrical isomerism?

Watch Video Solution

10. Name the ligand used in the treatment of lead toxicity.
11. Give an example of a complex used in cancer- chemotherapy.

- Watch Video Solution

12. What is the state of hybridisation of Ni in $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$?

Watch Video Solution
13. Cite an example of linkage isomerism.

- Watch Video Solution

14. What is 'fixing' in photography?

- Watch Video Solution

15. Give example of symmetrical \& unsymmetrical bidentate lignads.

- Watch Video Solution

16. Give two examples of complexes having biological importance.

- Watch Video Solution

17. Which coordination compounds removes hardness of water?

- Watch Video Solution

18. Which coordination number(s) is/are most common in coordination compounds?

- Watch Video Solution

19. What is indicated by ' $\Delta_{0}<P^{\prime}$ ' in an octahedral crystal field?

- Watch Video Solution

20. How many ions will be produced by $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{4}$?

- Watch Video Solution

21. How many isomers are possible for the compound $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{PtCl}_{4}\right]$?

- Watch Video Solution

22. Name a organometallic compound used as homogeneous catalyst.

- Watch Video Solution

23. How many unpaired electrons are there in $\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{2-}$ ion (square planar)?

- Watch Video Solution

Exercise Fill In The Blanks

1. Due to $d s p^{2}$-hybridisation, shape of a compound becomes \qquad .

- Watch Video Solution

2. cis-/ trans- isomerism is not possible of \qquad structure.

- Watch Video Solution

3. In metal carbonyls, metal is present in \qquad oxidation state.
4. As perVBT, hybridisation state of Cu in $\left[\mathrm{CuCl}_{4}\right]^{2-}$ is \qquad .

- Watch Video Solution

5. Magnetic moment of a high - spin complex is \qquad than of a low-spin complex.

- Watch Video Solution

6. CFSE of an octahedral d^{4} high-spin complex is \qquad .

- Watch Video Solution

7. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is an \qquad orbit complex and \qquad in nature.

- Watch Video Solution

8. Chemical name of $\left[\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Fe}(\mathrm{CO})_{3}\right]$ is \qquad .

- Watch Video Solution

9. Coordination compound containing \qquad ligand exhibit linkage isomerism only.

- Watch Video Solution

Exercise Short Answer Type Questions

1. What do you mean by denticity of a ligand? Give example each of monodentate lignads.

- Watch Video Solution

2. What is chelating ligand and ambident ligand? Give example.
3. Which of the following categories of complexes display geometrical isomerism: (i) linear (ii) square planar (iii) tetrahedral (iv) octahedral.

- Watch Video Solution

4. What do you mean by crystal field splitting and CFSE?

- Watch Video Solution

5. Will there be any change in colour if $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ is heated?

- Watch Video Solution

6. Write geometrical shapes and hybridisation state of the central metal atom for following:
(i) $\left[\mathrm{ZnCl}_{4}\right]^{2-}$

(D) Watch Video Solution

7. Write geometrical shapes and hybridisation state of the central metal atom for following:
(ii) $\left[N i(C N)_{4}\right]^{2-}$

- Watch Video Solution

8. FeSO_{4} solution mixed with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ solution in $1: 1$ molar ratio gives the test of Fe^{2+} ion, but CuSO_{4} solution mixed with aqueous NH_{3} in 1:4 molar ratio does not give the test of Cu^{2+} ion. Explain.

- Watch Video Solution

9. Calculate the oxidation number of the central metal atom or ion for the following :
(i) $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
10. Calculate the oxidation number of the central metal atom or ion for the following :
(ii) $\left[\mathrm{CoCl}_{2}(e n)_{2}\right]^{+}$

- Watch Video Solution

11. Calculate the oxidation number of the central metal atom or ion for the following :
(iii) $\left[\mathrm{PtClNO}{ }_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$.

Watch Video Solution
12. What are $t_{2 g}$ and e_{g} orbitals?
13. A solution of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is green but a solution of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is colourless. Explain.

Watch Video Solution

14. Explain the nature of bonding in $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ and $\left[\mathrm{FeF}_{6}\right]^{3-}$ on the basic of valence bond theory.

- Watch Video Solution

15. Give the IUPAC names with an example, for each of (i) cationic complex
(ii) anionic complex and (iii) neutral complex.

- Watch Video Solution

16. Why is Co^{2+} easily oxidised to Co^{3+} in presence of a strong-field ligand?
17. Why is CO a stronger complexing agent than NH_{3} ?

- Watch Video Solution

18. Why do metal ions never form low-spin tetrahedral complex?

- Watch Video Solution

19. Calculate the effective atomic number (EAN) of the central metal for the following:
(i) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$

- Watch Video Solution

20. Calculate the effective atomic number (EAN) of the central metal for the following:
(ii) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$

- Watch Video Solution

21. Calculate the effective atomic number (EAN) of the central metal for the following:
(iii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$

- Watch Video Solution

22. Discuss the importance of chelate formation.

- Watch Video Solution

1. Which of the following will give inner orbital octahedral complex -
A. d^{7}
B. d^{8}
C. d^{6}
D. all the given

Answer: C

- Watch Video Solution

Practice Set 10

1. The $\mathrm{Fe}-\mathrm{C}$ bond in $\mathrm{Fe}(\mathrm{CO})_{5}$ displays-
A. π character
B. σ character
C. ionic character
D. both π and σ character

Answer: D

- Watch Video Solution

Practice Set 11

1. The metal atom present in a complex as -
A. Lewis base
B. Bronsted acid
C. Bronsted base
D. Lewis acid

Answer: D

Practice Set 12

1. For the ion $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$what is the oxidation state or Cr ?
A. +3
B. +2
C. +1
D. 0

Answer: A

- Watch Video Solution

Practice Set 13

1. In aqueous solution, which gives Fe^{3+} ion -
A. $\left[F e(C N)_{6}\right]^{3-}$
B. $\left[F e(C N)_{6}\right]^{4-}$
C. $F e_{2}\left(S O_{4}\right)_{3}$
D. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} . \mathrm{FeSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

Answer: C

- Watch Video Solution

Practice Set 14

1. Which of the following is optically active -
A. $\left[Z n(e n)_{2}\right]^{2+}$
B. $\left[\mathrm{Zn}(e n)\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$
C. $\left[\mathrm{Co}(e n)_{3}\right]^{3+}$
D. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(e n)\right]^{3+}$

Answer: C

Practice Set 15

1. What is chelating ligand and ambident ligand? Give example.

- Watch Video Solution

Practice Set 16

1. Why is CO a stronger complexing agent than NH_{3} ?

Practice Set 17

1. Why is Co^{2+} easily oxidised to Co^{3+} in presence of a strong-field ligand?

- Watch Video Solution

Practice Set 18

1. A solution of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is green but a solution of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is colourless. Explain.

Practice Set 19

1. Will there be any change in colour if $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ is heated?
2. (a) Write down the IUPAC name of $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{2} \mathrm{SO}_{4}$.

D Watch Video Solution

Practice Set 21

1. (b) Determine the hybridisation of the central metal ion.
$\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{2} \mathrm{SO}_{4}$

- Watch Video Solution

2. How does complex salt differ from double salt?
