©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - CHHAYA CHEMISTRY (BENGALI ENGLISH)

EQUILIBRIUM

NUMERICAL EXAMPLES

1. At a particular temperature, the values of rate constant of forward and backward reactions
are $1.5 \times 10^{-2} \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}$ and $1.8 \times 10^{-3} \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}$ respectively for the reaction $A+B \Leftrightarrow C+D$. Determine the equilibrium constnt of the reaction at that temperature.

- Watch Video Solution

2. At a particular temperature, the equilibrium constant of the reaction $2 A+B \Leftrightarrow 2 C$ is $8.0 \times 10^{4} L \cdot \mathrm{~mol}^{-1}$. If the rate constant of the reverse reaction be $1.24 \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}$, then find the value of rate constant of the forward reaction at that temperature.

- Watch Video Solution

3. For the reaction $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(g), K_{p}=3 \times 10^{24}$ at $25^{\circ} \mathrm{C}$.

Find the value of K_{c}.

- Watch Video Solution

4. AT $1500 \mathrm{~K}, K_{c}=2.6 \times 10^{-9}$ for the reaction $2 B r F_{5}(g) \Leftrightarrow B r_{2}(g)+5 F_{2}(g)$. Determine K_{p} of the reaction at that temperature.

- Watch Video Solution

5. Find the temperature at which the numerical values of K_{p} and K_{c} will be equal to each other for the reaction, $\frac{1}{2} N_{2}(g)+\frac{3}{2} H_{2}(g) \Leftrightarrow N H_{3}(g)$.

- Watch Video Solution

6. At $400^{\circ} \mathrm{C}, \mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{I}_{2}(\mathrm{~g})$ are allowed to react in a closed vessel of 5 L capacity to produce $\mathrm{H}(\mathrm{g})$. At equilibrium, the mixture in the flask is found to consist of $0.6 \mathrm{~mol} \mathrm{H}_{2}(\mathrm{~g}), 0.6 \mathrm{~mol} I_{2}(\mathrm{~g})$ and $3.5 \mathrm{~mol} \mathrm{HI}(\mathrm{g})$. Determine the value of K_{c} of the reaction.

- Watch Video Solution

7. At a particular temperature, $\mathrm{CO}(\mathrm{g})$ reacts with $\mathrm{Cl}_{2}(\mathrm{~g})$ in a closed container to produce $\mathrm{COCl}_{2}(g)$. In the equilibrium mixture, partial pressures of $\mathrm{CO}(\mathrm{g}), \mathrm{Cl}_{2}(\mathrm{~g})$ and $\mathrm{COCl}_{2}(\mathrm{~g})$ are found to be $0.12,1.2$ and 0.58 atm respectively. Find the value of K_{p} of the reaction, $\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{COCl}_{2}(\mathrm{~g})$.
8. In a closed vessel of $1 \mathrm{dm}^{3}$ capacity, 1 mol $N_{2}(g)$ and $2 \mathrm{~mol}_{2}(g)$ interact to produce $0.8 \mathrm{~mol} \mathrm{NH}_{3}(\mathrm{~g})$ in the equilibrium mixture. What is the concentration of $\mathrm{H}_{2}(\mathrm{~g})$ in the equilibrium mixture?

- Watch Video Solution

9. At $20^{\circ} \mathrm{C}, 0.258 \mathrm{~mol} A(\mathrm{~g})$ and $0.592 \mathrm{~mol} \mathrm{~B}(\mathrm{~g})$ are mixed in a closed vessel of 5L capacity to conduct the following reaction: $A(g)+2 B(g) \Leftrightarrow C(g)$. If $0.035 \mathrm{~mol} C(\mathrm{~g})$ remains in the equilibrium mixture, then determine the partial pressure of each constituent at equilibrium.

- Watch Video Solution

10. 2 mol of HI were heated in a sealed tube at $440^{\circ} \mathrm{C}$ until the equilibrium was reched. HI was found to be 22% dissociated. Calculate the equilibrium constant for the reaction $2 \mathrm{HI}(g) \Leftrightarrow \mathrm{H}_{2}(g)+I_{2}(g)$.
11. 1 mol $\mathrm{PCl}_{2}(\mathrm{~g})$ is heated in a closed container of 2 litre capacity. If at equilibrium, the quantity of $\mathrm{PCl}_{5}(\mathrm{~g})$ be 0.2 mol then calculate the value of equilibrium constant for the given reaction,
$P C l_{5}(g) \Leftrightarrow$ PCl $_{3}(g)+\mathrm{Cl}_{2}(g)$.

- Watch Video Solution

12. The following reaction is carried out at a particular temperature in a closed vessel of definite volume: $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. Initially, partial pressures of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ are 2 atm and 1 atm respectively and that of $\mathrm{CO}_{2}(\mathrm{~g})$ at equilibrium is 1.4 atm . calculate equilibrium constant of the reaction.

- Watch Video Solution

13. $B(g)+C(g) \Leftrightarrow A(g)$. At constant temperature, mixture of $1 \mathrm{~mol} A(\mathrm{~g}), 2$ $\mathrm{mol} \mathrm{B}(\mathrm{g})$ and $3 \mathrm{~mol} \mathrm{C}(\mathrm{g})$ are left to stand in a closed vessel of 1 L capacity. The equilibrium mixture is found to contain $\mathrm{B}(\mathrm{g})$ of 0.175 molar concentrations ($\mathrm{mol} \cdot \mathrm{L}^{-1}$). Find the value of equilibrium constant at that temperature.

- Watch Video Solution

14. At 550 K , the value of equilibrium constant $\left(K_{c}\right)$ is 0.08 for the given reaction: $\mathrm{PCl}_{5} \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ occurring in a closed container. If the equilibrium concentration of $\mathrm{PCl}_{5}(g)$ and $\mathrm{Cl}_{2}(g)$ are 0.75 and 0.32 $\mathrm{mol} \cdot \mathrm{L}^{-1}$ respectively, then find the concentration of $\mathrm{PCl}_{3}(\mathrm{~g})$.

- Watch Video Solution

15. At a given temperature, K_{p} is 0.36 for the reaction, $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ occurring in a closed vessel. If at equilibrium,
the partial pressures of $\mathrm{SO}_{2}(\mathrm{~g}) \& \mathrm{O}_{2}(\mathrm{~g})$ be $0.15 \mathrm{~atm} \& 0.8 \mathrm{~atm}$ respectively, then calculate the partial pressure of $\mathrm{SO}_{3}(\mathrm{~g})$.

- Watch Video Solution

16. For the reaction, $A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g)$, the value of equilibrium constant is 50 at $100^{\circ} \mathrm{C}$. If a flask of 1 L capacity contianing $1 \mathrm{~mol} A_{2}$ is connected with another flask of 2 L capacity containing $2 \mathrm{~mol} B_{2}$, then calculate the number of moles of $A B$ at equilibrium.

- Watch Video Solution

17. At a particular temperature, the value of K_{p} is 100 for the reaction, $2 N O(g) \Leftrightarrow N_{2}(g)+O_{2}(g)$ occurring in a closed container. If the iniital pressure of $N O(g)$ be 25 atm then calculate the partial pressures of NO, N_{2} and O_{2} at equilibrium.

- Watch Video Solution

18. For the reaction $A(g)+2 B(g) \Leftrightarrow 2 D(g), \Delta G^{0}=2 . \mathrm{kJ} \cdot \mathrm{mol}^{-1}$ at 500K. What is the value of K_{p} for the reaction $\frac{1}{2} A(g)+B(g) \Leftrightarrow D(g)$ at that temperature?

- Watch Video Solution

19. Find the value of ΔG^{0} and K_{c} for the following reaction at 298 K .
$\mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{NO}_{2}(\mathrm{~g})$
Given: standard free energy of formation $\left(\Delta G_{f}^{0}\right)$ of NO_{2} and NO are 52.0 and $87.0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ respectively.

- Watch Video Solution

20. At 298 K , for attainment of equilibrium of the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}), 5 \mathrm{~mol}$ of each of the constituents is taken. Due to this, total pressure of the mixture turns 20 atm. If $\Delta G_{f}^{0}\left(N_{2} \mathrm{O}_{4}\right)=100 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ and $\Delta G_{f}^{0}\left(\mathrm{NO}_{2}\right)=50 \mathrm{~K}\left(\mathrm{~J} \cdot \mathrm{~mol}^{-1}\right)$ then -

Give the value of ΔG of the reaction? (2) In which direction will the reaction proceed more to attain equilibrium?

- Watch Video Solution

21. At $986^{\circ} \mathrm{C}, 3 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ and 1 mol of $\mathrm{CO}(\mathrm{g})$ react with each other according to the reaction, $\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$. At equilibrium, the total pressure of the reaction mixture is found to be 2.0 atm. If $K_{C}=0.63$ (at $986^{\circ} \mathrm{C}$), then at equilibrium find (1) the number of moles of $\mathrm{H}_{2}(\mathrm{~g})$, (2) the partial pressure of each of the gases.

- Watch Video Solution

22. For the reaction, $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ occurring in a closed vessel at 300 K , the partial pressures of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ and $\mathrm{NO}_{2}(\mathrm{~g})$ at equilibrium are 0.28 atm and 1.1 atm respectively. What will be the partial pressures of these gases if the volume of the reaction system is doubled keeping the temperature constnt?
23. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g), K_{p}=1.8$. At $250{ }^{\circ} \mathrm{C}$ if 50% of $P C l_{5}$ dissociates at equilibrium then what should be the pressure of the reaction-system?

- Watch Video Solution

24. At a particular temperature and 0.50 atm pressure, $\mathrm{NH}_{3}(\mathrm{~g})$ and some amount of solid $\mathrm{NH}_{4} \mathrm{HS}$ are present in a closed container. Solid $\mathrm{NH}_{4} \mathrm{HS}$ dissociates to give $\mathrm{NH}_{3}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$. At equilibrium, the total pressure of the reaction-mixture is found to be 0.84 atm. find the value of equilibrium constant of this reaction at that temperature.

- Watch Video Solution

25. At $25^{\circ} \mathrm{C}$ temperature, the molar concentrations of $\mathrm{NH}_{3}, \mathrm{NH}_{4}^{+}$and OH^{-}at equilibrium are $9.6 \times 10^{-3}(\mathrm{M}), 4.0 \times 10^{-4}(\mathrm{M})$ and
$4.0 \times 10^{-4}(\mathrm{M})$ respectively. Determine the ionisation constant of NH_{3} at that temperature.

- Watch Video Solution

26. A $0.1(\mathrm{M})$ solution of acetic acid is 1.34% ionised at 25°. Calculate the ionisation constant of the acid.

- Watch Video Solution

27. In a $0.01(M)$ acetic acid solution, degree of ionisation of acetic acid is 4.2%. Determine the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in that solution.

- Watch Video Solution

28. The value of ionisation constant of pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ at $25^{\circ} \mathrm{C}$ is 1.6×10^{-9}. What is the concentration of OH^{-}ions in a $0.1(\mathrm{M})$ aqueous solution of pyridine at that temperature?
29. At $25^{\circ} \mathrm{C}$, the value of ionisation constant of a weak monobasic acid, HA is 1.6×10^{-4}. What is the degree of ionisation of HA in its $0.1(\mathrm{M})$ aqueous solution?

- Watch Video Solution

30. Ionisation constant of ammonia is 1.8×10^{-5} at $25^{\circ} \mathrm{C}$. Calculate the degree of ionisation of ammonia in its $0.1(M)$ aqueous solution at that temperature.

- Watch Video Solution

31. Determine the pH of the following solutions:
(1) $0.01(\mathrm{~N}) \mathrm{HCl}(2) 0.05(\mathrm{M}) \mathrm{H}_{2} \mathrm{SO}_{4}$
(3) $0.001(\mathrm{~N}) \mathrm{H}_{2} \mathrm{SO}_{4}$.
32. Determine the pH of the following solutions:
(1) $0.1(\mathrm{~N}) \mathrm{NaOH}(2) 0.005(\mathrm{M}) \mathrm{Ca}(\mathrm{OH})_{2}$

- Watch Video Solution

33. Calculate the concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions in the solution with the following pH values at $25^{\circ} \mathrm{C}$
(1) $\mathrm{pH}=5.0$
(2) $\mathrm{pH}=12$.

- Watch Video Solution

34. Calculate the amount of $\mathrm{Ca}(\mathrm{OH})_{2}$ required to be dissolved to prepare 250 mL aqueous solution of $\mathrm{pH}=12$.
35. Determine the pH of the following solutions at $25^{\circ} \mathrm{C}$,
(1) $10^{-7}(\mathrm{M}) \mathrm{HCl}$
(2) $10^{-8}(\mathrm{M}) \mathrm{NaOH}$.

- Watch Video Solution

36. Calculate the pH of $0.1(\mathrm{~N})$ acetic acid solution. Given: K_{a} (acetic acid)
$=1.8 \times 10^{-5}$

- Watch Video Solution

37. The concentration of an aqueous solution of a weak monobasic acid is $1(M)$ and its degree of ionisation is 1.32%. Determine the pH of the solution.
38. Determine the pH of an aqueous solution of ammonia if the concentration of the solution is $3(\mathrm{M}) . K_{b}($ ammonia $)=1.8 \times 10^{-5}$.

- Watch Video Solution

39. pH of $0.05(\mathrm{M})$ aqueous solution of diethylamine is 12 . calculate the ionisation constant and degree of ionisationn of the amine.

- Watch Video Solution

40. At $25^{\circ} \mathrm{C} \mathrm{pH}$ of $0.01(\mathrm{M})$ propionic acid solution is 3.4 . determine the degree of ionisation and ionisation constnt of propionic acid at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

41. What will be the pH of the solution obtained when 50 cc of $0.1(\mathrm{M})$ $\mathrm{Ca}(\mathrm{OH})_{2}$ solution is diluted to 500 cc by ading water into it?
42. $20 \mathrm{~mL} 3(\mathrm{~N}) \mathrm{HCl}$ solution is mixed with $15 \mathrm{~mL} 4(\mathrm{~N}) \mathrm{NaOH}$ solution. What will be the pH of the resulting solution?

- Watch Video Solution

43. $25 \mathrm{~mL}(\mathrm{M} / 10) \mathrm{HCl}$ solution is mixed with $50 \mathrm{~mL} 2 / 25(\mathrm{M}) \mathrm{KOH}$ solution.

What will be the pH of the resulting solution?

- Watch Video Solution

44. 200 mL HCl solution is mixed with 300 mL NaOH solution. What will be the pH of the mixed solution if pH values of HCl and NaOH solutions are 2 and 12 respectively?

- Watch Video Solution

45. Determine the pH of a buffer solution consisting of $0.01(\mathrm{M})$ $\mathrm{CH}_{3} \mathrm{COOH}$ and $0.03(\mathrm{M}) \mathrm{CH}_{3} \mathrm{COONa}$. Given:
$K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.8 \times 10^{-5}$.

- Watch Video Solution

46. Find the pH of ann ammonia-ammonium chloride buffer solution in which

$$
\left[N H_{3}\right]=0.2(M) \text { and }\left[N H_{4}^{+}\right]=0.3(M) .
$$

Given
$K_{b}\left(\mathrm{NH}_{3}\right)=1.76 \times 10^{-5}$.

- Watch Video Solution

47. 0.15 mol of pyridinium chloride is added to 500 mL 0.2 (M) pyridine solution. Determine the pH of the solution. Given: K_{b} (pyridine) $=1.5 \times 10^{-9}$ and assume that volume of the solution does not change due to the addition of pyridinium chloride.

- Watch Video Solution

48. What will be the pH of the solution obtained by mixing $50 \mathrm{~mL} 0.1(\mathrm{~N})$ $\mathrm{CH}_{3} \mathrm{COOH}$ with $25 \mathrm{~mL} \quad 0.1(\mathrm{~N}) \quad \mathrm{NaOH}$ solution? Given: $p K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=4.74$.

- Watch Video Solution

49. 100 mL of a buffer solution ($\mathrm{pH}=9.5$) is to be prepared using $0.3(\mathrm{M})$ NH_{3} and $0.1(\mathrm{M}) \mathrm{HCl}$ solution. What are the volumes (in mL) of NH_{3} and HCl required to prepare this buffer solution? Given: $p K_{b}\left(\mathrm{NH}_{3}\right)=4.74$.

- Watch Video Solution

50. pH of human blood is maintained by the balance in concentrations of $\mathrm{H}_{2} \mathrm{CO}_{3} \& \mathrm{NaHCO}_{3}$. What volume of $5(\mathrm{M}) \mathrm{NaHCO}_{3}$ solution is to be added to 10 mL of a blood sample containing 2(M) $\mathrm{H}_{2} \mathrm{CO}_{3}$ in order to maintain the pH at 7.4 ? $\left[K_{a}\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)=7.8 \times 10^{-7}\right]$
51. In a buffer solution, total concentration of NH_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$ is $0.6(\mathrm{M})$. If the pH of the buffer be 9.0 then, find the amount of NH_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$ required to prepare 1L of that buffer. Given: $p K_{b}\left(\mathrm{NH}_{3}\right)=4.74$

- Watch Video Solution

52. Find the amount of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ required to be added to 500 mL 0.2 (M) NH_{3} to prepare a buffer solution of $\mathrm{pH}=9.35$. [Given: $K_{b}\left(\mathrm{NH}_{3}\right)=1.78 \times 10^{-5} \mathrm{~J}$.

- Watch Video Solution

53. In a buffer solution consisting of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$, concentration of each of the constituents is $0.1(M)$. If $1 \mathrm{~mL} 10(\mathrm{M}) \mathrm{HCl}$ is added to 1 L of this buffer, then what will be the change in pH of the buffer ? Given: $p K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=4.74$.
54. At a certain temperature, solubility of CaF_{2} in its saturated aqueous solution is $2 \times 10^{-4} \mathrm{~mol} \cdot \mathrm{~L}^{-1}$. What is its solubility produced at that temperature?

- Watch Video Solution

55. At $25^{\circ} \mathrm{C}$ concentration of AgCl in its saturated aqueous solution is $0.00287 \mathrm{~g} \cdot L^{-1}$. Find its solublity product at that temperature. [$\mathrm{Ag}=108$, $\mathrm{Cl}=35.5]$.

- Watch Video Solution

56. If the molar concentration of Cl^{-}ions in saturated aqueous solution of PbCl_{2} is $3.2 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$ at a certain temperature, then find the solubility product of PbCl_{2} at that temperature.
57. Calculate the solublity of SrSO_{4} in water in $\mathrm{mol} \cdot L^{-1}$ at $25^{\circ} \mathrm{C}$. (Solublity product of SrSO_{4} at $25^{\circ} \mathrm{C}=7.6 \times 10^{-7} \mathrm{~mol}^{2} \cdot \mathrm{~L}^{-2}$]

- Watch Video Solution

58. At $25^{\circ} \mathrm{C}$, solublity product of CaF_{2} is 4×10^{-11}. Determine the solubility of CaF_{2} in its saturated solution and also the molar concentrations of the constituent ions.

- Watch Video Solution

59. If the solubility product of $\mathrm{Mn}(\mathrm{OH})_{2}$ be 1.9×10^{-13} at $25^{\circ} \mathrm{C}$, then what is the pOH of a saturated aqueous solution of $\mathrm{Mn}(\mathrm{OH})_{2}$ at that temperature?
60. At what concentration of PO_{4}^{3-} ions in $0.1(\mathrm{M})$ aqueous solution of AgNO_{3}, will $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ start to precipitate?Given: $K_{\text {sp }}\left(\mathrm{Ag}_{3} \mathrm{PO}_{4}\right)=1.3 \times 10^{-20}$.

- Watch Video Solution

61. At $25^{\circ} \mathrm{C}$, equal volumes of 0.04 (M) CaCl_{2} and $0.01(\mathrm{M}) \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution are mixed. Will CaSO_{4} be precipitated in the resulting solution? $K_{\text {sp }}\left(\mathrm{CaSO}_{4}\right)=2.4 \times 10^{-5}\left(25^{\circ} \mathrm{C}\right)$.

- Watch Video Solution

62. Justify whether any precipitate will appear or not if 10 mL 0.01 (M) calcium chloride solution is mixed with $5 \mathrm{~mL} 0.1(\mathrm{M})$ potassium chromate solution. Given: $K_{\text {sp }}\left(\mathrm{CaCrO}_{4}\right)=2.3 \times 10^{-2}$.

- Watch Video Solution

63. At what value of pH of $0.1(\mathrm{M})$ aqueous FeCl_{3} solution, will $\mathrm{Fe}(\mathrm{OH})_{3}$ start to precipitate? Given: Solublity product of $\mathrm{Fe}(\mathrm{OH})_{3}=2.0 \times 10^{-39}$.

- Watch Video Solution

WARM UP EXERCISE

1. Equilibria involving physical and chemical changes are dynamic in nature-why?

- Watch Video Solution

2. State Henry's law regarding the solublity of a gas in a liquid.

- Watch Video Solution

3. When a liquid vaporises in a closed container, an equilibrium establishes between the liquid and its vapour. Will this equilibrlium be
established if the liquid is vaporised in an open container? Given reason for your answer.

- Watch Video Solution

4. Give molecular interpretation of the dynamic nature of liquid-vapour equilibrium.

- Watch Video Solution

5. Give examples of two systems involving solid-vapour equilibrium.

- Watch Video Solution

6. What is the reason for fizzing out of CO_{2} gas when a soda water bottle is opened?
7. The equilibrium established in the dissolution of a solid in a liquid or a gas in a liquid is dynamic in nature. Explain.

- View Text Solution

8. What are irreversible \& reversible reactions? Given examples.

- Watch Video Solution

9. Mention the characteristics of a reversible reaction.

- Watch Video Solution

10. Will the same result be obtained if CaCO_{3} is heated in an open vessel and in a closed container separately? Explain.

- Watch Video Solution

11. The reaction $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(\mathrm{~g})$ is carried out separately in a closed vassel and in an open vesel in which case do you expect a higher yield of $\mathrm{CO}_{2}(\mathrm{~g})$?

- Watch Video Solution

12. If a reversible reaction is carried out in a closed vessel, the reactant(s) is/are never used up completely. Explain the reaction with nan example.

- Watch Video Solution

13. Will three be any difference in the amount of products if the reaction between steam and red hot iron is carried out separately in a closed and in an open vessel?

- Watch Video Solution

14. What are the characteristics of chemical equilibrium?
15. What do you mean by chemical equilibrium?

D Watch Video Solution

16. What is the effect of catalyst on chemical equilibrium?

D Watch Video Solution

17. How will you establish the dynamic nature of a chemical equilibrium?

- Watch Video Solution

18. The reaction, $A+B \Leftrightarrow C$ is at equilibrium at a certain temperature. Can the yield of product be increased by using catalyst?
19. The following reaction is carried out in a closed vessel at a fixed temperature $A(g) \Leftrightarrow 2 B(g)$. The concentrations of $A(g)$ and $B(g)$ in course of the reaction are as follows:
(i) When does the reaction attain equilibrium?
(ii) What are the equilibrium concentrations of A and B ?

- View Text Solution

20. The same equilibrium will be attained irrespective of whether a reversible reaction is started from the reactants or products. Explain.

- Watch Video Solution

21. At a given temperature, for the reaction $A \Leftrightarrow B$, the rate constant $\left(k_{f}\right)$ of the forward reaction is greater than that of the backward reaction
$\left(k_{b}\right)$. Is the value of equilibrium constant (K) for this reaction greater than, less than or equal to 1 ?

- Watch Video Solution

22. Write the expressions of K_{c} and K_{p} for the reaction: $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$.

- Watch Video Solution

23. Write the expressions of K_{c} and K_{p} for the reaction: $2 B r F_{5}(g) \Leftrightarrow B r_{2}(g)+5 F_{2}(g)$

- Watch Video Solution

24. Write the expressions of K_{c} and K_{p} for the reaction: $3 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{O}_{3}(\mathrm{~g})$.
25. Write the expressions of K_{c} and K_{p} for the reaction: $4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.

- Watch Video Solution

26. Write the expressions of K_{c} and K_{p} for the reaction: $P_{4}(g)+3 O_{2}(g) \Leftrightarrow P_{4} O_{6}(s)$

- Watch Video Solution

27. Write the expressions of K_{c} and K_{p} for the reaction: $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})$.

- Watch Video Solution

28. Write the expression of K_{c} for the reactions:
$2 \mathrm{Ag}^{+}(a q)+\mathrm{Cu}(s) \Leftrightarrow \mathrm{Cu}^{2+}(a q)+2 \mathrm{Ag}(s)$.
29. Write the expression of K_{c} for the reactions: $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

- Watch Video Solution

30. Write the expression of K_{c} for the reactions:
$A u^{+}(a q)+2 C N^{-}(a q) \Leftrightarrow\left[A u(C N)_{2}\right]^{-}(a q)$.

- Watch Video Solution

31. Write the expression of K_{c} for the reactions:
$3 \mathrm{Cu}(\mathrm{s})+2 \mathrm{NO}_{3}^{-}(a q)+8 \mathrm{H}^{+}(a q) \Leftrightarrow 3 \mathrm{Cu}^{2+}(a q)+2 \mathrm{NO}(g)+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

- Watch Video Solution

32. Write the expression of K_{c} for the reactions:
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{Br}^{-}(a q) \Leftrightarrow \mathrm{Br}_{2}(\mathrm{l})+2 \mathrm{Cl}^{-}(a q)$.

Watch Video Solution

33. Establish the relation between K_{p} and K_{c} for the following reactions: $a A+b B \Leftrightarrow l L+m M$ [where the terms have their usual significance].

- Watch Video Solution

34. What will be the relation between K_{p} and K_{c} for the given equilibrium $? \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$.

- Watch Video Solution

35. Give two examples of chemical reactions for each of the cases:
$K_{p}>K_{c}$
36. Give two examples of chemical reactions for each of the cases:
$K_{p}<K_{c}$

- Watch Video Solution

37. Give two examples of chemical reactions for each of the cases: $K_{p}=K_{c}$

- Watch Video Solution

38. "In any reversible reaction, the equilibrium constant for the forward reaction in the reciprocal of the equilibrium constant of the backward reaction"-explain.

- Watch Video Solution

39. Find the relation betweenn $K_{p} \& K_{c}$ for the given reactions:
$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g}) \Leftrightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$

- Watch Video Solution

40. Find the relation betweenn $K_{p} \& K_{c}$ for the given reactions:

$$
C(s)+\mathrm{CO}_{2}(g)+2 \mathrm{Cl}_{2}(g) \Leftrightarrow 2 \mathrm{COCl}_{2}(g)
$$

- Watch Video Solution

41. Find the relation betweenn $K_{p} \& K_{c}$ for the given reactions:

1
${ }_{2} \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{NO}_{2}(\mathrm{~g})$

- Watch Video Solution

42. Find the relation betweenn $K_{p} \& K_{c}$ for the given reactions:
$C(s)+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
43. Find the relation betweenn $K_{p} \& K_{c}$ for the given reactions:
$\mathrm{Fe}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{FeO}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g})$

- Watch Video Solution

44. Find the relation betweenn $K_{p} \& K_{c}$ for the given reactions:
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$

- Watch Video Solution

45. Find the relation betweenn $K_{p} \& K_{c}$ for the given reactions:
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$.

- Watch Video Solution

46. Given an example of a reaction for which $K_{p}=K_{c}=K_{a}$.
47. $200^{\circ} \mathrm{C}$, the equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ isaxeved \in thefollow \in gtwopathways: $(i) 0.1 \mathrm{~mol}$ N_(2)O_(4)isheated \in aclosedvasselof1Lvolume. (ii)amixtureof0.05mol N_(2)O_(4)(g) and 0.05molNO_(2)(g)isheatedat200^(@)C
\in aclosedvesselof1Lvolume. \in thesetwocases, willtheequilibriumconcentrations
N_(2)O_(4)(g) and NO_(2)(g) and the values of equilibrium constants be the same?

- View Text Solution

48. At a constant temperature, the equilibrium constant of the reaction $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g) \quad$ is K and that of the reaction $\frac{1}{2} N_{2}(g)+\frac{3}{2} H_{2}(g) \Leftrightarrow N H_{3}(g)$ is \sqrt{K}. Explain this difference of K values in spite of the fact that the reactants and products in both the reactions are same.
49. For the reaction $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})-\mathrm{K}_{p}=K_{c}(R T)^{X}$. Find the value of x .

- Watch Video Solution

50. If the value of equilibrium constant of the reaction $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ be K , then what will be the values of equilibrium constant of the reaction :
$4 \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 4 \mathrm{SO}_{3}(\mathrm{~g})$

- Watch Video Solution

51. If the value of equilibrium constant of the reaction $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ be K , then what will be the values of equilibrium constant of the reaction :
$2 \mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
52. If the value of equilibrium constant of the reaction $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ be K , then what will be the values of equilibrium constant of the reaction :
$\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{3}(\mathrm{~g})$

- Watch Video Solution

53. If the value of equilibrium constant of the reaction $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ be K , then what will be the values of equilibrium constant of the reaction :
$\mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$.

- Watch Video Solution

54. At a particular temperature, the following reaction is carried out with 1 mol of $\mathrm{A}(\mathrm{g})$ and 1 mol of $\mathrm{B}(\mathrm{g})$ in a closed vessel: $A(\mathrm{~g})+4 B(\mathrm{~g}) \Leftrightarrow 4 B_{4}(\mathrm{~g})$.

Will the equilibrium concentration of $A B_{4}(g)$ be higher thn that of $A(g)$?

- Watch Video Solution

55. A few reactions and their equilbirium constant are given. Find the equilibrium constant of the reaction, $A \Leftrightarrow 3 B+E$.
$A \Leftrightarrow B+C, K_{c}=2$

- Watch Video Solution

56. A few reactions and their equilbirium constant are given. Find the equilibrium constant of the reaction, $A \Leftrightarrow 3 B+E$.
$C \Leftrightarrow B+D, K_{c}=3$

- Watch Video Solution

57. A few reactions and their equilbirium constant are given. Find the equilibrium constant of the reaction, $A \Leftrightarrow 3 B+E$.
$D \Leftrightarrow B+E, K_{c}=4$.

- Watch Video Solution

58. If the value sof K_{C} for the reactions, $A+2 B \Leftrightarrow C$ and $C \Leftrightarrow 2 D$ are 2 and 4 , respectively, then what will be the value of K_{c} for the reaction, $2 D \Leftrightarrow A+2 B ?$

- Watch Video Solution

59. What does the sign of ΔG of a reaction at a given pressure annd temperature indicate about the feasibility of the reaction?

- Watch Video Solution

60. What does it imply about the direction of a reactions, if the value of reaction quotient (Q) at any instant of the reaction at a constant
temperature is smaller than or larger than or equal to the equilibrium constant (K) of the reaction at the temperature?

- Watch Video Solution

61. For the reaction $A+B \Leftrightarrow C+D$, the equilibrium constant is K. what would be the value of the reaction quotient (Q), when the reaction just starts annd when it reaches equilibrium?

- Watch Video Solution

62. We know, $\Delta G^{0}=-R T \ln K_{c}$ and $\Delta G^{0}=-R T \ln K_{p}$. Therefore in case of a reaction occurring in gaseous phase at a given temperature, ΔG^{0} is the same evenn if the values of K_{p} and K_{c} are different. Is the statement true? Given reasons.

- Watch Video Solution

63. The values of equilibrium constant (K) of a reaction at $25^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ are 2×10^{-4} and 2×10^{-2} respectively. Is the reaction an exothermic or an endothermic reaction?

- Watch Video Solution

64. Consider the reaction, $a X_{2}(g)+b Y_{2}(g) \Leftrightarrow c X Y(g)+$ heat and answer the following questions:

Find the relation among a, b and c .

- Watch Video Solution

65. Consider the reaction, $a X_{2}(g)+b Y_{2}(g) \Leftrightarrow c X Y(g)+$ heat and answer the following questions:

State whether the equilibrium will be shifted towards right or left if temperature is increased.
66. State Le Chatelier's principle.

- Watch Video Solution

67. Explain the effect of (a) pressure and (b) continuous removal of HI at constant temperature on the position of equilibrium of the following reaction: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(g)$.

- Watch Video Solution

68. What will be the effect of catalyst on the position of a chemical equilibrium?

- Watch Video Solution

69. For the following endothermic reactions: $P C l_{5} \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$ (a) At constant temperature, what will be the effect of pressure? (b) At
constant volume, what will be the effect of addition of chlorine gas and nitrogen gas on the position of equilibrium?

- Watch Video Solution

70. Consider the following reaction:
$2 A(g)+B_{2}(g) \Leftrightarrow 2 A B(g), \Delta H<0$. How can the yield of $A B(g)$ be increased?

- Watch Video Solution

71. $2 B r F_{5}(g) \Leftrightarrow B r_{2}(g)+5 F_{2}(g)$, At constant temperature, how the increase in pressure will afffect the following at equilibrium-

Equilibrium constant.

- Watch Video Solution

72. $2 B r F_{5}(g) \Leftrightarrow B r_{2}(g)+5 F_{2}(g)$, At constant temperature, how the increase in pressure will afffect the following at equilibrium-

Position of the equilibrium and yield of product?

- Watch Video Solution

73. Consider the reaction, $A(g)+2 B(g) \Leftrightarrow 2 D(g)+3 E(g)+$ heat and state how the following changes at equilibrium will affect the yield of the product. D(g)-
temperature is increased.

- Watch Video Solution

74. Consider the reaction, $A(g)+2 B(g) \Leftrightarrow 2 D(g)+3 E(g)+$ heat and state how the following changes at equilibrium will affect the yield of the product. $\mathrm{D}(\mathrm{g})$ -
pressure is increased at constant temperature.
75. Consider the reaction, $A(g)+2 B(g) \Leftrightarrow 2 D(g)+3 E(g)+$ heat and state how the following changes at equilibrium will affect the yield of the product. D(g)-

Some amount of $\mathrm{E}(\mathrm{g})$ is removed from the reaction system at constant temperature and volume.

- Watch Video Solution

76. Consider the reaction, $A(g)+2 B(g) \Leftrightarrow 2 D(g)+3 E(g)+$ heat and state how the following changes at equilibrium will affect the yield of the product. D(g)-
some amount of $\mathrm{D}(\mathrm{g})$ is added to the reaction system, keeping temperature and volume constant.

- Watch Video Solution

77. Consider the following reaction: What will be the effect on the following if temperature is increased? (a) equilibrium constan
position of equilibrium (c) yiled of products.
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g), \Delta H>0$

- Watch Video Solution

78. Consider the following reaction: What will be the effect on the following if temperature is increased? (a) equilibrium constant (b) position of equilibrium (c) yiled of products.
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}), \Delta \mathrm{H}<0$.

- Watch Video Solution

79. For this reactions, predict the effect on the following if pressure is increased at equilibrium-(a) position of equilibrium, (b) yield of the products.

$$
H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g),
$$

80. For this reactions, predict the effect on the following if pressure is increased at equilibrium-(a) position of equilibrium, (b) yield of the products.
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$.

- Watch Video Solution

81. For this reactions, predict the effect on the following if pressure is increased at equilibrium-(a) position of equilibrium, (b) yield of the products.
$\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$.

- Watch Video Solution

82. At constant temperature, in a closed vessel the following equilibrium
establishes during decomposition of
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}): \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$. If pressure of the equilibrium
mixture $=P$ and value of equilibrium constant $=K_{p}$, then show that $P=2 \sqrt{K_{p}}$.

- Watch Video Solution

83. Write the conjugate bases of the following acids and give reason:
$\mathrm{HN}_{3}, \mathrm{CH}_{3} \mathrm{OH},\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}, \mathrm{NH}_{4}^{+}, \mathrm{HPO}_{4}^{2-}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{OH}^{-}$.

- Watch Video Solution

84. Write the conjugate acids of the following bases and give reason:
$\mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{O}^{2-}, \mathrm{HS}^{-}, \mathrm{SO}_{3}^{2-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}^{-}, \mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}, \mathrm{H}^{-}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}, \mathrm{~S}_{2} \mathrm{O}_{8}^{2-}$,

- Watch Video Solution

85. Which of the following is the strongest Bronsted base? $\mathrm{ClO}^{-}, \mathrm{ClO}_{2}^{-}, \mathrm{ClO}_{3}^{-}, \mathrm{ClO}_{4}^{-}$.

Watch Video Solution

86. Identify the Lewis acids and Lewis bases in the reaction below:

$$
\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}
$$

- Watch Video Solution

87. Identify the Lewis acids and Lewis bases in the reaction below:
$\mathrm{Co}^{3+}+6 \mathrm{NH}_{3} \Leftrightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$.

- Watch Video Solution

88. Identify the Lewis acids and Lewis bases in the reaction below:

$$
B F_{3}+\mathrm{NH}_{3} \rightarrow\left[\mathrm{H}_{3} \mathrm{~N} \rightarrow \mathrm{BF} \mathrm{~F}_{3}\right]
$$

- Watch Video Solution

89. Identify the Lewis acids and Lewis bases in the reaction below:

$$
\mathrm{CO}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{HCO}_{3}^{-}
$$

Watch Video Solution

90. Identify the Lewis acids and Lewis bases in the reaction below:
$A l F_{3}+3 F^{-} \rightarrow A l F_{6}^{3-}$.

- Watch Video Solution

91. All Lewis bases are in fact Bronsted bases-Explain.

- Watch Video Solution

92. Each of HCO_{3}^{-}and HPO_{4}^{2-} can act both as Bronsted acid and basewhy? Write the formula of conjugate base and conjugate acid in each case.
93. State and exaplain Ostwald's dilution law.

- Watch Video Solution

94. Of the two solutions of acetic acid with concentrations $0.1(\mathrm{~N})$ and 0.01 (N), in which one does acetic acid have higher degree of dissociation?

- Watch Video Solution

95. Write down the limitations of Ostwald's dilution law.

- Watch Video Solution

96. At a certain temperature, the ionisation constannt of three weak acids HA, HB and HC are $4.0 \times 10^{-5}, 5.2 \times 10^{-4}$ and 8.6×10^{-3}, respectively. If
the molar concentrations of their solutions are the same, then arrange them in order of their increasing strength.

- Watch Video Solution

97. A weak tribasic acid, $H_{3} A$, in its aquous solution ionises in the following step:

If the ionisation constants of the steps are K_{1}, K_{2} and K_{3} respectively, then determine the overall ionisation constant of $\mathrm{H}_{3} \mathrm{~A}$.
$\mathrm{H}_{3} \mathrm{~A}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{H}_{2} \mathrm{~A}^{-}(a q)$

- Watch Video Solution

98. A weak tribasic acid, $H_{3} A$, in its aquous solution ionises in the following step:

If the ionisation constants of the steps are K_{1}, K_{2} and K_{3} respectively, then determine the overall ionisation constant of $\mathrm{H}_{3} \mathrm{~A}$.

$$
\mathrm{H}_{2} \mathrm{~A}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HA}^{2-}(a q) .
$$

99. A weak tribasic acid, $H_{3} A$, in its aquous solution ionises in the following step:

If the ionisation constants of the steps are K_{1}, K_{2} and K_{3} respectively, then determine the overall ionisation constant of $\mathrm{H}_{3} \mathrm{~A}$.
$\mathrm{HA}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+A^{3-}(a q)$.

- Watch Video Solution

100. At a certain temperature, the ratio of ionisation constants of weak acids HA and HB is 100:1. if the molarity of the solution of HA is the samme as that of HB and the degrees of ionisation of HA and HB in their respective solutions are α_{1} and α_{2} respectively, then show that $\alpha_{1}=10 \alpha_{2}$.

- Watch Video Solution

101. Are the ionisation constant and ionic product of water the same? Explain.

- Watch Video Solution

102. Find $\left[\mathrm{OH}^{-}\right]$in pure water if $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in it is $\mathrm{x} \mathrm{mol} \cdot \mathrm{L}^{-1}$. Also, find the relation between x and K_{w}.

- Watch Video Solution

103. Why is the ionic product of water at $50^{\circ} \mathrm{C}$ greater than that at $25^{\circ} \mathrm{C}$?

- Watch Video Solution

104. Why does the concentration of OH^{-}ions in pure water increase with rise in temperature ? Does this increase make pure water alkaline ?

Explain.

- Watch Video Solution

105. At $25^{\circ} \mathrm{C}$ what is the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in an aqueous solution in which the concentration of OH^{-}ions is $2 \times 10^{-5}(\mathrm{M})$?

- Watch Video Solution

106. What is common ion effect? Give example. What is buffer action?

- Watch Video Solution

107. Discus the effect of addition of dilute HCl and $\mathrm{CH}_{3} \mathrm{COONa}$ solution separately to a dilute aqueous acetic acid solution.

- Watch Video Solution

108. By what factor will the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in an aqueous solution in incrased or decreased if its pH is increased by one unit ?

- Watch Video Solution

109. The pH of solution A is twice that of solution B . if the concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in A and B are $\mathrm{x}(\mathrm{M})$ and $\mathrm{y}(\mathrm{M})$, respectively, then what is the relation between x and y ?

- Watch Video Solution

110. Establish the relation betweenn $\mathrm{pH}, \mathrm{pOH}$ and $p K_{w}$ in case of pure water or any aqueous solution.

- Watch Video Solution

111. In cae of pure water or any aqueous solution, show that $\mathrm{pH}+\mathrm{pOH}=14$. comment on whether this value will be greater than or less than 14 at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$.

- Watch Video Solution

112. The values off pH for pure water at $0^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ are x and y respectively. Is x greater than or less than y ?

D Watch Video Solution

113. $p K_{w}=12.26$ at $100^{\circ} \mathrm{C}$. What is the range of pH -scale at this temperature? What will be the pH of a neutral solution at this temperature ?

(Watch Video Solution

114. Between $0.1(M)$ and $0.01(M)$ acetic acid solutions which one will have a higher pH , and why?

Watch Video Solution

115. pH of $10^{-8}(\mathrm{M}) \mathrm{HCl}$ is 8 -is it true? Give reasons.

- Watch Video Solution

116. The concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in solution A is 1000 times than that in solution B . what is the difference between the values of pH of these two solutions?

- Watch Video Solution

117. Derive an equation of determine pH of an aqueous NH_{3} solution at a certain temperature.
118. Explain with equation why an aqueous of FeCl_{3} is acidic.

- Watch Video Solution

119. An aqueous solution of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ is acidic. Explain.

- Watch Video Solution

120. What colour change does a blue or red litmus paper exhibit when it is put separately in each of the following aqueous solutions? $\mathrm{CH}_{3} \mathrm{COONa}$.

- Watch Video Solution

121. What colour change does a blue or red litmus paper exhibit when it is put separately in each of the following aqueous solutions ?

$$
\mathrm{CH}_{3} \mathrm{COONH}_{4}
$$

- Watch Video Solution

122. What colour change does a blue or red litmus paper exhibit when it is put separately in each of the following aqueous solutions?
$\mathrm{NH}_{4} \mathrm{Cl}$.

- Watch Video Solution

123. Why is an aqueous solution of NaNO_{3} neutral?

- Watch Video Solution

124. $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ undergoes hydrolysis, although its aqueous solution is neutral. Explain with reason

- Watch Video Solution

125. Why is aq. Solution of ammonium formate slightly acidic ?

- Watch Video Solution

126. Arrange the followin aqueous solutions in order of their increasing pH values: $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{COONH}_{4}, \mathrm{CuSO}_{4}$.

- Watch Video Solution

127. Give an example of a salt solution whose pH is independent of salt concentration.
128. Which of the givensalts will undego cationic or anionic or both cationic and anionicc hydrolysis?
$\mathrm{NH}_{4} \mathrm{~F}, \mathrm{NaCN}, \mathrm{AlCl}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}$.

- Watch Video Solution

129. Show that in an aqueous solution for a conjugate acid-base pair, $K_{a} \times K_{b}=K_{w}$.

- Watch Video Solution

130. Show that, at $25^{\circ} \mathrm{C}$ for a conjugate acid-base pair, $p K_{a}+p K_{b}=p K_{w}$ (or, 14).

- Watch Video Solution

131. What is buffer solutio? Give one example of acidic buffer. In which case of acidic buffer $\mathrm{pH}=\mathrm{pKa}$.

- Watch Video Solution

132. What are buffer solutions? Give one example for each of the bufferacid, basic buffer solution.

- Watch Video Solution

133. What are buffer solutions? Give one example for each of the buffer- a buffer solution obtained by mixing aquueous solutions of two salts derived from a polybasic acid.

- Watch Video Solution

134. Describe the mechanism of acction of an acidic buffer an a basic buffer.

- Watch Video Solution

135. What is buffer capacity? Whenn does the buffer capacity of a buffer solution consisting of a weak acid and its salt become maximum?

- Watch Video Solution

136. Write the Henderson's equation for determining the pH of acidic and basic buffer solutions.

- Watch Video Solution

137. Which of the following are buffer solutions? Give reason.
$100 \mathrm{~mL} 0.1(\mathrm{M}) \mathrm{NH}_{3}+50 \mathrm{~mL} .0 .1(\mathrm{M}) \mathrm{HCl}$
138. Which of the following are buffer solutions? Give reason. 100 mL 0.1 (M) $\mathrm{CH}_{3} \mathrm{COOH}+50 \mathrm{~mL} 0.2(\mathrm{M}) \mathrm{NaOH}$

- Watch Video Solution

139. Which of the following are buffer solutions? Give reason.
$100 \mathrm{~mL} 0.1(\mathrm{M}) \mathrm{CH}_{3} \mathrm{COOH}+100 \mathrm{mLO} .15(\mathrm{M}) \mathrm{NaOH}$

- Watch Video Solution

140. Which of the following are buffer solutions? Give reason.
$100 \mathrm{~mL} 0.1(\mathrm{M}) \mathrm{CH}_{3} \mathrm{COONa}+25 \mathrm{~mL} 0.1(\mathrm{M}) \mathrm{HCl}$

- Watch Video Solution

141. Which of the following are buffer solutions? Give reason.
$50 \mathrm{~mL} 0.2\left(\mathrm{M}_{\mathrm{N}} \mathrm{NH}_{4} \mathrm{Cl}+50 \mathrm{mLO} .1(\mathrm{M}) \mathrm{NaOH}\right.$.

- Watch Video Solution

142. You are supplied with HCOOH
$\left(p K_{a}=3.74\right), \mathrm{CH}_{3} \mathrm{COOH}\left(p K_{a}=4.74\right)$ and NaOH solutions. To prepare a buffer solution of $\mathrm{pH}=3.8$, which acid will you select? Give reason.

- Watch Video Solution

143. pH of a buffer solution composed of NH_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$ is 9.26 . will there be any change in pH if 100 mL of distilled water is added to 100 mL of this buffer solution?

- Watch Video Solution

144. The buffer capacity of a buffer solution consisting of a weak acid, HA and its salt, NaA becomes maximum when its pH is 5.0 . at this pH , what is the relation between the molar concentration of HA and NaA ? Also find the value of $p K_{a}$ of HA.

(Watch Video Solution

145. What are the factors that influence the pH of an acidic or a basic buffer at a particular temperature?

- Watch Video Solution

146. A, B and C are three buffer solutions, each of which composed of a weak acid and its salt. For increasing the pH by 0.02 units, it is found that $1.0,1.4$ and 1.2 millimol of NaOH are required for A, B and C , respectively. Arrange the solutions in the increasinng order of their buffer capacity.
147. Of the two bottles, one contains HCl solution and the other a buffer solution. Each of the bottles is labelled as $\mathrm{pH}=5$. how can you identify the solutions?

- Watch Video Solution

148. Derive the relation between the solublity produce $\left(K_{s p}\right)$ and the solublity (S) of a sparingly soluble salt of the type, $M_{x} A_{y}$ at a given temperature.

- Watch Video Solution

149. At a given temperature, if the solublity product and the solublity of a sparingly soluble salt $M_{2} X_{3}$ be $K_{\text {sp }}$ and S.
respectively, then prove that $S=\left(\frac{K_{s p}}{108}\right)^{1 /(5)}$.
150. At a certain temperature, $K_{s p}$ of AgCl in water is 1.8×10^{-10}. What will be its $K_{s p}$ is a 0.1 M solution of AgNO_{3} at some temperature.

- View Text Solution

151. The principle of solublity product is also applicable in case of highly soluble ionic compounds-explain with the help of a suitable example.

- Watch Video Solution

152. Two strong electrolytes $A B$ and $C D$ react with each other, forming a sparingly soluble salt $A D$. The solution of $x(M) A B$ is mixed with an equal volume of the solution off $y(M) C D$. If the solubility product of $A D$ be z, then what will be the value of $x y$ (in terms of z) when AD starts precipitating?

- Watch Video Solution

153. The solubility products of silver bromide, silver cyanide, silver chromate annd silver chloride are $7.7 \times 10^{-13}, 2.2 \times 10^{-12}, 9 \times 10^{-12} a \cap d 1.56 \times 10^{-10}$, respectively. If a dilute solution of silver nitrate is added drop by drop by drop to a solution containing equal concentrations of potassium bromide, potassium cyanide, potassium chromate and potassium chloride, then which silver salt will precipitate first and which one at last?

- Watch Video Solution

QUESTION ANSWER ZONE FOR BOARD EXAMINATION (very short answer type)

1. To find out the equilibrium constant $(\mathrm{K}$) of a reaction, it is compulsory to mention the balanced equation of the reaction-why?

- Watch Video Solution

2. For what kind of solids, 'solid \Leftrightarrow vapour' equilibrium is achived is achieved easily?

Watch Video Solution

3. At a fixed temperature, a liquid is in equilibrium with its vapours in a closed vessel. Which measurable quantity for the liquid gets fixed at equilibrium?

- Watch Video Solution

4. The equilibrium established in the evaporation of a liquid at a given temperature is due to the same rate of two processes. What are these two processes?

- Watch Video Solution

5. In a soda-water bottle, CO_{2} gas remains dissolved in water under high pressure, write down the equilibrium established in this case.

- Watch Video Solution

6. At $0^{\circ} \mathrm{C}$ and 1 at pressure, why is the equilibrium established between water and ice regarded as dynamic in nature?

- Watch Video Solution

7. Find out K_{p} / K_{c} for the reactio $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \Leftrightarrow \mathrm{CO}_{2}(g)$.

- Watch Video Solution

8. For the reaction, $2 \mathrm{NH}_{3}(g) \Leftrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$ the units of K_{p} will be

- Watch Video Solution

9. The values of equilibrium constant (K) of a reaction at $25^{\circ} \mathrm{C} \& 50^{\circ} \mathrm{C}$ are $2 \times 10^{-4} \& 2 \times 10^{-2}$, respectively. Is the reaction exothermic or endothermic?

- Watch Video Solution

10. For a gaseous reaction, $K_{p}>K_{c}$. What will be the effect on equilibrium if pressure is increased at constant temperature? Will it affect the yields of the products?

- Watch Video Solution

11. In case of thermal decomposition of $\mathrm{H}_{2}(\mathrm{~g})$ to $\mathrm{H}(\mathrm{g})$, which conditions of pressure and temperature will be favourable for an increase in the yield of $\mathrm{H}(\mathrm{g})$?

- Watch Video Solution

12. In case of the reaction $A_{2}(g)+4 B_{2}(g) \Leftrightarrow 2 A B_{4}(g)$, the change in enthalpy (ΔH) is negative. Mention the conditions of pressure and temperature at which the yield of the product, $A B_{4}(g)$ will decrease.

- Watch Video Solution

13. How will equilibrium of the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$ be affected if the volume of the reaction syste at equilibrium is doubled keeping the temperature constant?

- Watch Video Solution

14. Each of HS^{-}and NH_{3} can act as both Bronsted acid and Bronsted base-why? Write the formula of conjugate base and conjugate acid in each case.
15. In the reaction $I_{2}+I^{-} \rightarrow I_{3}^{-}$, which one acts as a Lewis base?

- Watch Video Solution

16. The $p K_{a}$ values of the three weak acids HA, HB and HC are 4.74, 3.75 and 4.20, respectively. Arrange them in order their of increasing acid strengths.

- Watch Video Solution

17. X and Y are two aqueous solutions of acid HA with concentrations 0.1
$M \& 0.01 \mathrm{M}$, respectively. In which solution will the degree of ionisation of HA be higher?

- Watch Video Solution

18. Which one of the following two acids will have a higher concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in their $0.1(\mathrm{M})$ aqueous solution- (1) HCl and (2) $\mathrm{CH}_{3} \mathrm{COOH}$?

Watch Video Solution

19. Show that $\left[\mathrm{OH}^{-}\right]>\sqrt{K_{w}}$ in an alkaline solution.

- Watch Video Solution

20. Will the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in pure water at $0^{\circ} \mathrm{C}$ be more than or less than that at $4^{\circ} \mathrm{C}$?

- Watch Video Solution

21. At a certain temperature, what is the value for the sum of pH annd pOH for an aqueous solution? What will be its value at $25^{\circ} \mathrm{C}$?
22. Show that in pure water, $p H=p O H=\frac{1}{2} p K_{w}$.

- Watch Video Solution

23. An acid bottle is labelled ' $\mathrm{pH}=5$ '. Is this acid a weak acid?

- Watch Video Solution

24. At a certain temperature, K_{w} of pure water $=10^{-12}$ what will be the pH -range and pH of the neutral solution at that temperature?

- Watch Video Solution

25. pH of an aqueous $0.1(\mathrm{M}) \mathrm{CH}_{3} \mathrm{COOH}$ solution is 2.87 . state whether pH of the solution will decrease or increase if $\mathrm{CH}_{3} \mathrm{COONa}$ is added to this solution.
26. At $25^{\circ} \mathrm{C}$, the ionisation constant $\left(K_{a}\right)$ of weak acid HA is 10^{-6}. What will the value of ionisationn constant $\left(K_{b}\right)$ of its conjugate base $\left(A^{-}\right)$be at that temperature ?

- Watch Video Solution

27. Which of the following mixtures will act as buffer solution(s)?
(1) $50 \mathrm{~mL} \mathrm{O.1}(\mathrm{M}) \mathrm{NH}_{3}+100 \mathrm{~mL} \quad 0.025(\mathrm{M}) \mathrm{HCl}$
(2) $100 \mathrm{~mL} 0.05(\mathrm{M}) \mathrm{CH}_{3} \mathrm{COOH}+50 \mathrm{~mL} 0.1(\mathrm{M}) \mathrm{NaOH}$.

- Watch Video Solution

28. Here are a few salts. Whose aqueous solution(s) at $25^{\circ} \mathrm{C}$ has (have) a pH greater than 7 , less than 7 or equal to?
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, \mathrm{CH}_{3} \mathrm{COONH}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{NaNO}_{3}$
29. A liquid is in equilibrium with its vapour as its boiling point. On average which property of the molecules is equal in two phases?

- Watch Video Solution

30. According to Le Chatelier's principle, what is the effect of adding heat to a solid and liquid in equilibrium?

- Watch Video Solution

QUESTION ANSWER ZONE FOR BOARD EXAMINATION SHORT ANSWER TYPE

1. The unit of equilibrium constant of the reaction, $A+3 B \Leftrightarrow n C$ is $L^{2} \cdot \mathrm{~mol}^{-2}$. What is the value of n
2. Find out the value of K_{p} / K_{c} for the reaction $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$, at 298 K , consider the unit of concentration is $\mathrm{mol} \cdot L^{-1}$ and the unit of pressure is atm.

- Watch Video Solution

3. Mention two ways by which the equilibrium of the given reaction can be shifted to the right.

$$
\stackrel{\stackrel{H^{+}}{ }}{\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})} \stackrel{\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})}{ }
$$

- Watch Video Solution

4. When steam is passed over red hot iron, H_{2} gas is produced. In this reaction, the yield of $\mathrm{H}_{2}(\mathrm{~g})$ is found to increase when the partial pressure of steam is increased. Explain.

- Watch Video Solution

5. Why does not the equilibrium constant expression for a reaction involving pure solids or liquid contain the concentrations terms of the solid or liquids?

- Watch Video Solution

6. Find out the equilibrium constant for the reaction, $\mathrm{XeO}_{4}(\mathrm{~g})+2 \mathrm{HF}(\mathrm{g}) \Leftrightarrow \mathrm{XeO}_{3} \mathrm{~F}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ consider K_{1} as the equilibrium constant for the reaction, $\mathrm{XeF}_{6}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{XeOF}_{4}(\mathrm{~g})+2 \mathrm{HF}(\mathrm{g})$ and K_{2} as the equilibrium constant for the reaction, $\mathrm{XeO}_{4}(\mathrm{~g})+\mathrm{XeF}_{6}(\mathrm{~g}) \Leftrightarrow \mathrm{XeOF}_{4}(\mathrm{~g})+\mathrm{XeO}_{3} \mathrm{~F}_{2}(\mathrm{~g})$.

- Watch Video Solution

7. How will the following reaction equilibrium be affected if the volume of each reaction system is increased at constant temperature?
(1) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
(2) $\mathrm{C}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})$
8. The equilibrium of any reversible reaction may be shifted to the left or right by changing the conditions. Will this change cause any alteration in the value of equilibrium constant?

- Watch Video Solution

9. Constant temperature, the following reaction is at equilibrium in a closed container:

$$
C(s)+H_{2} O(g) \Leftrightarrow C O(g)+H_{2}(g)
$$

At constant pressure, if the amount of the solid carbon is reduced to half at equilibrium, then what will be the change in the concentration of $\mathrm{CO}(\mathrm{g})$?

D Watch Video Solution

10. At constant temperature, if the pressure is changed at equilibrium of a gaseous reaction, then will the values of K_{p}, K_{c} and K_{x} change?

- Watch Video Solution

11. How can the yield of the product be increased by changing the volume of the reaction system in the given reactions at constant temperature?
(1) $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
(2) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

- Watch Video Solution

12. Mention two factors for which the yields of the products in the given reaction increases.
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$ - heat.

- Watch Video Solution

13. At a particular temperature, for the reaction, $a A+b B \Leftrightarrow d C+c D$, equilibrium constant is K. Find out the equilibrium constants for the following reactions at the same temperature.
(1) $m a A+m b B \Leftrightarrow m d C+m c D$
(2) $\frac{1}{m} a A+\frac{1}{m} b B \Leftrightarrow \frac{1}{m} d C+\frac{1}{m} c D$

- Watch Video Solution

14. What would the effect on the yield of products be if temperature of the following reaction systems is changed at equilibrium ?
(1) $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g), \Delta H>0$
(2) $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}), \Delta H<0$

- Watch Video Solution

15. Identify Lewis acids and Lewis bases in the following reactions and give reactions: (1) $\mathrm{SiF}_{4}+2 \mathrm{~F}^{-} \rightarrow \mathrm{SiF}_{6}^{2-}$
(2) $\mathrm{RMgX}+2\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \ddot{O}: \rightarrow \mathrm{RMg}\left[\mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]_{2} X$
(3) $\mathrm{Ag}^{+}+2 \ddot{\mathrm{~N}} \mathrm{H}_{3} \rightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]+$
(4) $\stackrel{\ddot{N}}{\mathrm{~N}_{3}}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}$.

- Watch Video Solution

16. State the nature of aqueous solutions containing the following ions with reason: $\mathrm{NH}_{4}^{+}, \mathrm{F}^{-}, \mathrm{Cl}^{-}$.

- Watch Video Solution

17. The solubility of zinc phosphate in $\mathrm{S} \mathrm{mol} \cdot \mathrm{L}^{-1}$. Derive the mathematic expression of the solublity product of the compound.

- Watch Video Solution

18. At a certain temperature, the ionisation of two weak acids, HA and HB are $K_{a_{1}}$ and $K_{a_{2}}$, respectively. If $K_{a_{1}}>K_{a_{2}}$ and the concentration of the
aqueous solutions of both the acids be $0.1(\mathrm{M})$, then which solution will have a higher pH ?

(Watch Video Solution

19. What will be the change in concentrations of $\mathrm{H}_{3} \mathrm{O}^{+} \& \mathrm{OH}^{-}$and the ionic product of water $\left(K_{w}\right)$ if NaOH is added to pure water at a certain temperature?

(Watch Video Solution

20. 20 mL of $0.15(\mathrm{M}) \mathrm{HCl}$ solution is mixed with 50 mL of $0.1(\mathrm{M})$ $\mathrm{CH}_{3} \mathrm{COONa}$ solution. State whether the mixed solution will act as a buffer or not.
21. The pH of a buffer solution remains almost unchanged even after dilute- explain.

- Watch Video Solution

22. Consider the salts given below. For which salt(s) will the pH of the aqueous solution (s) be independent of the concentration of the salt? $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl},\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}, \mathrm{KCN}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$.

- Watch Video Solution

23. When $\mathrm{H}_{2} \mathrm{~S}$ gas is passed through an acidified solution of Cu^{2+} and Zn^{2+}, only CuS is precipitated-why?

- Watch Video Solution

24. Zinc sulphide is not precipitated from an acidic solution of zinc salt by passing $\mathrm{H}_{2} \mathrm{~S}$. Why?

- Watch Video Solution

25. What will happen when a solution of potassium chloride is added to a saturated solution of lead chloride? Give reason.

- Watch Video Solution

26. Why does not MgSO_{4} form any precipitate when it reacts with NH_{3} in presence of $\mathrm{NH}_{4} \mathrm{Cl}$?

- Watch Video Solution

27. Why is the aqueous solution of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ acidic?
28. In spite of being a neutral salt, the aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is alkline-why?

- Watch Video Solution

29. (1) HPO_{4}^{2-} can act both as a Bronsted base and as a Bronsted acid. Write the equation of equilibrium established by HPO_{4}^{2-} as an acid and a base in aqueous solution. Also write the expressions of $K_{a} \& K_{b}$ in two cases.
(2) What are the conjugate acid and base of HS^{-}?

- Watch Video Solution

30. Will the pH of pure water at $20^{\circ} \mathrm{C}$ be lower or higher than that at $50^{\circ} \mathrm{C}$?
31. An aqueous solution of sodium bisulphate is acidic, whereas an aqueous solution of sodium bicarbonate is basic-explain.

- Watch Video Solution

32. Both Cus and ZnS are precipitated if $\mathrm{H}_{2} \mathrm{~S}$ gas is passed through an alkaline solution of Cu^{2+} and Zn^{2+}. Explain.

- Watch Video Solution

33. $\mathrm{Ag}^{+}+\mathrm{NH}_{3} \Leftrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+}, \mathrm{K}_{1}=3.5 \times 10^{3}$
$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+}+\mathrm{NH}_{3} \Leftrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}, \mathrm{K}_{2}=1.7 \times 10^{3}$
Calculate the formation constant of $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$.

- Watch Video Solution

34. Write the correct order of increasing acid strength among $\mathrm{HCO}_{3}^{-}, \mathrm{H}_{3} \mathrm{O}^{-}, \mathrm{HSO}_{4}^{-}, \mathrm{HSO}_{3} \mathrm{~F}$.

- Watch Video Solution

35. The first and second dissociation constants of an acid $\mathrm{H}_{2} \mathrm{~A}$ are 1×10^{-5} and 5×10^{-10} respectively. Calculate the value of overall dissociation constant.

- Watch Video Solution

36. $\alpha-D$-glucose $\Leftrightarrow \beta-D$ glucose, equilibrium constant for this is 1.8 . calculate the percentage of $\alpha-\mathrm{D}$ glucose at equilibrium.

- Watch Video Solution

37. Solid $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is gradually dissolved in a $1.0 \times 10^{-4} \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. At what concentration of Ba^{2+} will a precipitate begin to form ? $\left(K_{\text {sp }}\right.$ for $\left.\mathrm{BaCO}_{3}=5.1 \times 10^{-9}\right)$.

- Watch Video Solution

38. 2.5 mL of $\frac{2}{5} M$ weak monoacidic base $\left(K_{b}=1 \times 10^{-12}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$ is titrated with $\frac{2}{15} \mathrm{M} \mathrm{HCl}$ in water at $25^{\circ} \mathrm{C}$. Calculate the concentration of H^{+}at equilibrium point. $\left(k_{w}=1 \times 10^{-14}\right)$

- Watch Video Solution

QUESTION ANSWER ZONE FOR BOARD EXAMINATION LONG ANSWER TYPE

1. State the law of chemical equilibrium and explain it.
2. Find out the value of equilibrium constant, for the reaction, $2 \mathrm{NH}_{3}(\mathrm{~g})+\frac{5}{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.

Consider K_{1}, K_{2} and K_{3} as the respective equilibrium constants of the given three reaction:

$$
\begin{align*}
& \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \ldots(1 \tag{1}\\
& \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{~g}) \ldots(2) \\
& \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \ldots(3 \tag{3}
\end{align*}
$$

- Watch Video Solution

3. When 1 mole of ethyl alcohol and 1 mole of acetic acid arc heated in a closed vessel even for adong time 1 mole of ester and 1 mole of water are never produced. Explain why?

- Watch Video Solution

4. $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$, for this reversible reaction at equilibrium Keeping temperature constant what will happen if (i) the volume of the
container is halved (ii) the partial pressure of H_{2} is halved (iii) He gas is introduced at constant temperature and pressure.

- Watch Video Solution

5. The following equilibrium is established during thermal dissociation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ in a closed vessel:
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
If the total pressure of the system be P , then find out the relation between equilibrium constant $\left(K_{p}\right)$ and the degree of dissociation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.

- Watch Video Solution

6. The equilibrium established during thermal dissociation of $\mathrm{PCl}_{5}(\mathrm{~g})$ in a closed vessel is as follows:
$\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
If the degree of dissociation of $\mathrm{PCl}_{5}(g)$ at equilibrium be ' x ', then show
that (1) ' x ' is inversely proportional to the square root of the total pressure of reaction mixture at equilibrium and (2) ' x ' increases with increase in volume of the system.

- Watch Video Solution

7. Explain the effect of addition of inert gas to the following systems at equilibrium at constant pressure and temperature-
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
(2) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
(3) $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})$.

- Watch Video Solution

8. The given reaction is carried out in a closed vessel: $\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}), \Delta H^{0}>0$. What would be the effect of the following changes on the equilibrium of the reaction if (1) solid CaCO_{3} is added to the reaction system, (2) some amount of CaO is removed from the reaction system, (3) $\mathrm{CO}_{2}(\mathrm{~g})$ is introduced into the reaction system at
constant volume and temperature.,
(4) temperature is increased, and (5) volume of the reaction vessel is reduced at constant temperature.

- Watch Video Solution

9. The concentration of each of the aqueous solutions of NaCl , $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NaCn}$ and HCl is $0.1(\mathrm{M})$. Arrange these solutions in the increasing order of their pH .

- Watch Video Solution

10. Derive the mathematical form of degree of ionisation of acetic acid in its dilute aqueous solution at a given temperature.

- Watch Video Solution

11. Explain the buffer action of the mixed aqueous soluton of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3}.

- Watch Video Solution

12. Arrange the following sparingly soluble ionic compounds in the increasing order of molar solubilities.
(1) $M X: K_{s p}=8.1 \times 10^{-17}$
(2) $A X_{2}, K_{s p}=4 \times 10^{-9}$
(3) $P X_{3}, K_{s p}=2.7 \times 10^{-19}$.

- Watch Video Solution

13. The equilibrium constant $K_{p_{1}}$ and $K_{p_{2}}$ for the reaction $X \Leftrightarrow 2 Y$ and $Z \Leftrightarrow P+Q$, respectively are in the ratio of 1:9. if the degree of dissociation of X and Z be equal, find the ratio of total pressure at these equilibriam.

SOLVED WBCHSE SCANNER

1. Ammonium chloride dissolves in water with absorption of heat. The solubility of ammonium chloride increases with \qquad in temperature.

- Watch Video Solution

2. Consider the givenr reaction:
$A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g), \Delta H<0$
How can the yield of $\mathrm{AB}(\mathrm{g})$ be increased?

- Watch Video Solution

3. $A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g)$, equilibrium constant of the given reaction at $100^{\circ} \mathrm{C}$ is 50 . A 1 L flask containing 1 mol of A_{2} is connected to a 2 L flask
containing 2 mol of B_{2}. Calculate theno. Of moles of AB at $100^{\circ} \mathrm{C}$ at equilibrium.

- Watch Video Solution

4. Fill in the blank: AgCl gets precipitated when the product of the concentrations of its ions exceed its \qquad .

- Watch Video Solution

$5.50 \mathrm{ml} 0.1 \mathrm{~N} \mathrm{CH} 3 \mathrm{COOH}_{3}$ solution is mixed with 25 ml 0.1 N NaOH solution.
What is the pH of the final solution? Given : $p \mathrm{~K}_{a}$ of $\mathrm{CH}_{3} \mathrm{COOH}=4.74$

- Watch Video Solution

6. What is common ion effect? Cite an example.
7. Calculate the solubility of SrSO_{4} in water in $\mathrm{mol} \cdot L^{-1}$ at $25^{\circ} \mathrm{C}$ (solubility product of SrSO_{4} at $25^{\circ} \mathrm{C}=7.6 \times 10^{-7} \mathrm{~mol}^{2} \cdot \mathrm{~L}^{-2}$).

- Watch Video Solution

8. Indicate the correct answer: for the reaction $\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{3}(\mathrm{~g})$, if $K_{p}=K_{c}(R T)^{x}$, then x is -
A. -1
B. $-\frac{1}{2}$
C. $+\frac{1}{2}$
D. 1

- Watch Video Solution

9. $I_{2}(g) \Leftrightarrow 2 I(g)$, Discuss the effect of the following changes on equilibrium of the mentioned endothermic reaction: (i) temperature is increased. (ii) pressure is increased at constant temperature.

- Watch Video Solution

10. The dissociation equilibrium of $A B_{2}$ gas is,
$2 A B_{2}(g) \Leftrightarrow 2 A B(g)+B_{2}(g)$
The degree of dissociation of $A B_{2}(g)$ is x and $x \ll 1$. Establish the relation among the degree of dissociation (x), equilibrium constant $\left(K_{p}\right)$ and total pressure (P).

- Watch Video Solution

11. Fill in the blanks: Addition of silver nitrate solution to saturated solution of AgCl produces turbidity. This is due to \qquad effect.
12. Indicate the correct answer: pH of $10^{-10}(M)$ aqueous solution of HCl is approximately-
A. 14
B. 10
C. 7
D. 1

- Watch Video Solution

13. An aqueous solution of chloroacetic acid of strength $0.2 \mathrm{~mol} \cdot L^{-1}$ has pH 1.7. calculate the degree of dissociation of the acid.

- Watch Video Solution

14. Calculate the amount of NaOH in gram present in 1 L NaOH solution of $\mathrm{pH}=12$.

Watch Video Solution

15. In the reaction, $\mathrm{H}_{2}(\mathrm{~g})+I_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$, the value of equilibrium constant $\left(K_{P}\right)$ changes with change in \qquad .

- Watch Video Solution

16. The equilibrium constant of the following equilibria $\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{3}(\mathrm{~g})$
$2 \mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ are given by K_{1} and K_{2} respectively. Find the relation between K_{1} and K_{2}.

- Watch Video Solution

17. What will be the effect of addition of an inert gas in the following equilibrium at constant temperature and volume?

$$
P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g) .
$$

- Watch Video Solution

18. For the relation, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$ show the equilibrium yield of the products is independent of pressure at constant temperature.

- Watch Video Solution

19. Fill in the blanks: For a ____electrolyte the degree of dissociation increases as its ____decreases.

- Watch Video Solution

20. Choose the correct answer:

At $40^{\circ} \mathrm{C}$ the ionic product of water being 2.92×10^{-14}, its pH is-
A. <7.0
B. >7.0
C. 7.0
D. 14.0

- Watch Video Solution

21. AgCl is dissolved separately in pure water and in $0.025(\mathrm{M}) \mathrm{NaCl}$ solution. Find the ratio of concentrations of Ag^{+}ion in pure water and in the NaCl solution. The solubility product of AgCl is 1.75×10^{-10}.

- Watch Video Solution

22. Give example of an acidic and an alkaline buffer solution. Explain the buffer action of any one of the solutions.

- Watch Video Solution

23. The equilibrium constant $\left(K_{P}\right)$ of a gaseous reaction is-
A. dependent on the total pressure
B. dependent on the pressure
C. dependent on the concentration of the reactants
D. dependent on the presence of an inert gas

- Watch Video Solution

24. Consider the equilibrium:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+$ heat. Apply the i.e., chatelier's principle to
explain the effect of pressure, temperature and addition of inert gas at constant volume on the equilibrium yield of NH_{3}.

- Watch Video Solution

25. What is buffer solution? Give one example.

- Watch Video Solution

26. At 318 K and 2 atm total pressure the degree of dissociation (α) is 28% at the equilibrium condition for the reaction $N_{2} \mathrm{O}_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$. Calculate $K_{p} \& K_{c}$.

- Watch Video Solution

27. Calculate the pH of $0.1(\mathrm{M}) \mathrm{NH}_{4} \mathrm{OH}$ at $25^{\circ} \mathrm{C}$. The dissociation constant of $\mathrm{NH}_{4} \mathrm{OH}$ at $25^{\circ} \mathrm{C}$ is 1.76×10^{-5}.
28. The pH of aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ is \qquad than 7 and the pH of aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is \qquad than 7.

- Watch Video Solution

29. Ionic product of water \qquad with increase in temperature and therefore pH of water \qquad with increase in temperature.

- Watch Video Solution

30. The solubility of a sparingly soluble $A_{2} B$ salt at a given temperature being $x(M)$, its solubility product is-
A. x^{3}
B. $2 x^{2}$
C. $4 x^{3}$
D. $2 x^{3}$

D Watch Video Solution

31. What is buffer solutio? Give one example of acidic buffer. In which case of acidic buffer $\mathrm{pH}=\mathrm{pKa}$.

D Watch Video Solution

32. 1.37 g of a mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} was dissolved in water. The solution was titrated with $0.5(\mathrm{M}) \mathrm{HCl}$ solution first with phenolphthalein followed by methyl orange indicator. The first and second titrations required 10 mL and 30 mL of acid solution respectively. calculate the amounts (in g) of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} present in the mixture.

- Watch Video Solution

33. For the reversible reaction $A+2 B \Leftrightarrow C+$ heat, the forward reaction will proceed at-
A. low temperature and low pressure
B. low pressure
C. high pressure and low pressure
D. high pressure and high temperature

- Watch Video Solution

34. $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. Write the K_{p} and K_{c} values for the above reaction and also make a relation between them.

- Watch Video Solution

35. What is meant by solubility product?
36. pH of $0.2 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$ chloroacetic acid is 1.7. find out the degree of dissociation of this chloroacetic acid.

- Watch Video Solution

37. At 1000K temperature CO_{2} has a pressure of 0.5 atm in a closed container. On adding some amount of graphite inside the container, some amount of CO_{2} is converted to CO . at equilibrium the pressure becomes 0.8 atm . Find out the value of K_{p}.

- Watch Video Solution

38. What amount of $\mathrm{CH}_{3} \mathrm{COONa}$ is to be added to one litre of $0.1(\mathrm{M}) \mathrm{CH}_{3} \mathrm{COOH}$ solution so that the pH becomes $4.0 ?\left[K_{a}=1.8 \times 10^{-3}\right]$
39. What is meant by common ion effect?

- Watch Video Solution

40. $P l_{5} \Leftrightarrow P C l_{3}(g)+\mathrm{Cl}_{2}(g)$. For this reaction at the chemical equilibrium condition which of the following is correct-
A. $K_{p}=K_{c}$
B. $K_{c}=K_{p} \times R T$
C. $K_{p}=K_{c} \times R T$
D. $K_{p}=\frac{1}{K_{c}}$
41. (i) State law of mass action.
(ii) For the reaction $N_{2}+3 H_{2} \Leftrightarrow 2 N H_{3}$ equilibrium constant is K_{1} and that of for the reaction $N H_{3} \Leftrightarrow \frac{1}{2} N_{2}+\frac{3}{2} H_{2}$ is K_{2}. Then calculate the relation between K_{1} and K_{2}.
(iii) Calculate the pH of 0.01 (M) $\mathrm{CH}_{3} \mathrm{COOH}$ at $25^{\circ} \mathrm{C}$. $\left(K_{a}\right.$ of $\left.\mathrm{CH}_{3} \mathrm{COOH}=1.75 \times 10^{-5}\right)$.

- Watch Video Solution

42. What is buffer solutio? Give one example of acidic buffer. In which case of acidic buffer $\mathrm{pH}=\mathrm{pKa}$.

- Watch Video Solution

43. In which of the following cases chemical reaction goes to complete in high extent-
A. $K=10^{6}$
B. $K=10^{-6}$
C. $K=10^{-8}$
D. $K=1$
44. What is the pH of $10^{-7}(\mathrm{M}) \mathrm{HCl}$ solution-
A. 7
B. 6.79
C. 6.12
D. 7.1
45. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$. Total pressure of the system is P and mole-fraction of NH_{3} is x . express K_{p} of the reaction with respect to x and P , where value of x is very small.

- Watch Video Solution

46. (i) Aqueous solution of borax basic? Explain.
(ii) Calculate the pH of $0.05(\mathrm{M}) \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?
(iii) What is the formula of the conjugate base of $\left[\mathrm{Al}_{\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}}\right]^{3+}$?

- Watch Video Solution

47. The relation betweenn K_{p} and K_{c} for the following reaction$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{SO}_{3}(g)$
A. $K_{p}=K_{c}$
B. $K_{p}=K_{c}(R T)^{-1}$
C. $K_{p}=K_{c}(R T)$
D. $K_{p}=K_{c}(R T)^{2}$

- Watch Video Solution

48. State the law of mass action.

- Watch Video Solution

49. What is buffer solution? Give example of an acidic buffer solution.

- Watch Video Solution

50. If the concentration of ammonia of ammonium chloride in a buffer solution of ammonia-ammonium chloride are 0.2 M and 0.3 M respectively, determine the pH of the solution. [Given $K_{b}\left(\mathrm{NH}_{3}\right)=1.76 \times 10^{-5}$]
51. Determine the pH of 0.1 M acetic acid solution. ($p K_{a}$ of acetic acid=4.75). Is there any OH^{-}present in this solution of acetic acid? Answer with reason.

- Watch Video Solution

52. Why does rate of dissociation of $\mathrm{H}_{2} \mathrm{~S}$ solution decrease in the presence of HCl ?

- Watch Video Solution

SOLVED NCERT EXERCISE

1. A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
(1) What is the initial effect of the change on vapour pressure?
(2) How do rates of evaporation \& condensation change initially?
(3) What happens when equilibrium is restored finally and what will be the final vapour pressure?

- Watch Video Solution

2. What is K_{c} for the following equilibrium when the equilibrium concentration of each substance is:
$\left[\mathrm{SO}_{2}\right]=0.60(\mathrm{M}),\left[\mathrm{O}_{2}\right]=0.82(\mathrm{M})$ and $\left[\mathrm{SO}_{3}\right]=1.90(\mathrm{M})$?
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$.

- Watch Video Solution

3. At a certain temperature \& total pressure of $10^{5} \mathrm{~Pa}$, iodine vapour contians 40% by volume 1 atoms, $I_{2}(g) \Leftrightarrow 2 I(g)$. Calculate K_{p} for the equilibrium.

- Watch Video Solution

4. Write the expression for the equilibrium constant, K_{c} for each of the following reactions: $2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$.

- Watch Video Solution

5. Write the expression for the equilibrium constant, K_{c} for each of the following reactions: $2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \Leftrightarrow 2 \mathrm{CuO}(\mathrm{s})+4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

- Watch Video Solution

6. Write the expression for the equilibrium constant, K_{c} for each of the following reactions:

$$
\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})
$$

- Watch Video Solution

7. Write the expression for the equilibrium constant, K_{c} for each of the following reactions: $\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \Leftrightarrow \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})$

(Watch Video Solution

8. Write the expression for the equilibrium constant, K_{c} for each of the following reactions: $I_{2}(s)+5 F_{2} \Leftrightarrow 2 I F_{5}$

- View Text Solution

9. Find out the value of K_{c} for each of of the following equilibria from the value of K_{p} :
$2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}), K_{p}=1.8 \times 10^{-2}$ at 500 K

- Watch Video Solution

10. Find out the value of K_{c} for each of of the following equilibria from the value of K_{p} :
$\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{p}}=167$ at 1073 K.
11. For the following equilibrium, $K_{c}=6.3 \times 10^{14}$ at 1000 K : $\mathrm{NO}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$. Both The forward and reverse reactions in the equilibrium are elementary bimolecular reactions. What is K_{c} for the reverse reaction?

- Watch Video Solution

12. Explain why pure liquids and solids can be ignored while writing the equilibrium constant expression

- Watch Video Solution

13. Reaction between N_{2} and O_{2} takes place as follows: $2 N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N_{2} O(g)$. If a mixture of 0.482 mol of N_{2} and 0.933 mol of O_{2} is placed in a 10 L reaction vessel and allowed to form $\mathrm{N}_{2} \mathrm{O}$ at a temperature for which $K_{c}=2.0 \times 10^{-37}$, determine the composition of equilibrium mixture.
14. Nitric oxide reacts with Br_{2} and gives nitrosyl bromide as per reaction gives below:
$2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NOBr}(\mathrm{g})$
When 0.087 mol of NO and 0.0437 mol of Br_{2} are mixed in a closed container at constant pressure, 0.0518 mol of NOBr is obtained at equilibrium. calculate equilibrium amount of NO and Br_{2}.

- Watch Video Solution

15. At $450 \mathrm{~K}, K_{p}=2.0 \times 10^{10} / \mathrm{bar}$ for the given reaction at equilibrium, $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}(g)$. What is K_{c} at this temperature.

- Watch Video Solution

16. A sample of $\mathrm{HI}(\mathrm{g})$ is placed in flask at a pressure of 0.2 atm. At equilibrium the partial pressure of $\mathrm{HI}(\mathrm{g})$ is 0.04 atm . What is K_{p} for the
given equilibrium?
$2 \mathrm{HI}(\mathrm{g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$.

- Watch Video Solution

17. A mixture of 1.57 mol of $N_{2}, 1.92 \mathrm{~mol}$ of $\mathrm{H}_{2} \& 8.13 \mathrm{~mol}$ of NH_{3} is introduced into a 20 L reaction vessel at 500 K . at this temperature, the equilibrium constant, K_{c} for the reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{3}(\mathrm{~g})$ is 1.7×10^{2}. is the reaction mixture at equilibrium ? if not, what is the direction of the net reaction?

- Watch Video Solution

18. The equilibrium constant expression for a gas reaction is, $K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{\left[\mathrm{NO}^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}\right.}$. Write the balanced chemical equation
corresponding to this expression.
19. One mole of $\mathrm{H}_{2} \mathrm{O}$ and one mole of CO are taken in 10 L vessel and heated to 725 K . at equilibrium 40% of water (by mass) reacts with CO according to the equation $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$.

Calculate the equilibrium constant for the reaction.

- Watch Video Solution

20. At 700K, equilibrium constant for the reaction: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$ is 54.8 . if $0.5 \mathrm{~mol} \cdot L^{-1}$ of $\mathrm{H}(\mathrm{g})$ is present at equilibrium at 700 K , what are the concentrations of $\mathrm{H}_{2}(\mathrm{~g})$ and $I_{2}(g)$ assuming that we initially started with $\mathrm{HI}(\mathrm{g})$ and allowed it to reach equilibrium at 700 K ?

- Watch Video Solution

21. What is the equilibrium concentration of each of the substances in the equilibrium when the initial concentration of ICl was $0.78(\mathrm{M})$?
$2 I C l(g) \Leftrightarrow I_{2}(g)+\mathrm{Cl}_{2}(g), K_{c}=0.14$.
22. $K_{p}=0.04 \mathrm{~atm}$ at 899 K for the equilibrium shown below. What is the equilibrium concentration of $\mathrm{C}_{2} \mathrm{H}_{6}$ when it is placed in a flask at 4.0 atm pressure and allowed to come to equilibrium?
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$.

- Watch Video Solution

23. Ethyl acetate is formed by the reaction between ethanol and acetic acid and the equilibrium is represented as:
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(1) Write the concentration ration (reaction, quotient), Q_{C}, for this reaction (note: Water is not in excess and is not a solvent in this reaction).
(2) At 293 K , if one starts with 1.00 mol of acetic acid and 0.18 mol of ethanol, there is 0.171 mol of ethyl acetate in the final equilibrium mixture. calculate the equilibrium constant.
(3) Starting with 0.5 mol of ethanol and 1.0 mol of acetic acid and maintaining it at $293 \mathrm{~K}, 0.214 \mathrm{~mol}$ of ethyl acetate is found after sometime. has equilibrium been reached?

- Watch Video Solution

24. A sample of pure PCl_{5} was introduced into an evacuated vessel at 473 K. after equilibrium was attained, concentration of PCl_{5} was found to be $0.5 \times 10^{-1} \mathrm{~mol} \cdot L^{-1}$, if value of K_{c} is 8.3×10^{-3}, what are the concentration of PCl_{3} and Cl_{2} at equilibrium?

- Watch Video Solution

25. One of the reaction that takes place in producing steel from iron ore is the reduction of iron (II) oxide by carbon monoxide to give iron metal and $\mathrm{CO}_{2} \cdot \mathrm{FeO}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{K}_{p}=0.265 \mathrm{~atm}$ at 1050 K . What are the equilibrium partial pressures of CO and CO_{2} at 1050 K if the initial partial pressures are: $p_{\mathrm{CO}}=1.4 \mathrm{~atm} \& p_{\mathrm{CO}_{2}}=0.80 \mathrm{~atm}$?
26. Equilibrium constant, K_{c} for the reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ at 500 K is 0.061 . at a particular time, the analysis shows that composition of the reaction mixture is
$\mathrm{mol} \cdot \mathrm{L}^{-1} \quad \mathrm{~N}_{2}, 2.0 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \quad \mathrm{H}_{2}$ and $0.5 \mathrm{~mol} \cdot L^{-1} \mathrm{NH}_{3}$. is the reaction at equilibrium? If not in which direction does the reaction tend to proceed to reach equilibrium ?

- Watch Video Solution

27. Bromine monochloride, BrCl decomposes into bromine and chlorine and reaches the equilibrium: 500 K . If initially pure BrCl is present at a concentration of $3.3 \times 10^{-3} \mathrm{~mol} \cdot \mathrm{~L}^{-1}$, what is its molar concentration in the mixture at equilibrium?

- Watch Video Solution

28. At $1127 \mathrm{~K} \& 1 \mathrm{~atm}$, a gaseous mixture of CO and CO_{2} in equilibrium with solid carbon has 90.55% CO by mass $C(s)+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{g})$. Calculate K_{C} for this reaction at the above temperature.

- Watch Video Solution

29. Calculate (1) ΔG^{0} and (2) The equilibrium constant for the formation of NO_{2} from NO and O_{2} at 298 K .
$\mathrm{NO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{NO}_{2}(\mathrm{~g})$
where $\Delta_{f} \Delta G^{0}\left(\mathrm{NO}_{2}\right)=52.0 \mathrm{~kJ} / \mathrm{mol}$,
$\Delta_{f} G^{0}(\mathrm{NO})=87.0 \mathrm{~kJ} / \mathrm{mol}, \Delta_{f} G^{0}\left(O_{2}\right)=0 \mathrm{~kJ} / \mathrm{mol}$

Watch Video Solution

30. Does the number of moles of reaction products increase, decrease of remain same when each of the following equilibria is subjected to a decrease in pressure by increasing the volume?

$$
P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)
$$

- Watch Video Solution

31. Does the number of moles of reaction products increase, decrease of remain same when each of the following equilibria is subjected to a decrease in pressure by increasing the volume?

$$
\mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CaCO}_{3}(\mathrm{~s})
$$

- Watch Video Solution

32. Does the number of moles of reaction products increase, decrease of remain same when each of the following equilibria is subjected to a decrease in pressure by increasing the volume?
$3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$.

- Watch Video Solution

33. Which of the following reactions will get affected by increasing the pressure? Also, mention whether change will cause the reaction to go
into forward or backward direction.
(1) $\mathrm{COCl}_{2}(g) \Leftrightarrow \mathrm{CO}(g)+\mathrm{Cl}_{2}(g)$
(2) $\mathrm{CH}_{4}(g)+2 \mathrm{~S}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CS}_{2}(g)+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
(3) $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{g})$
(4) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
(5) $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
(6) $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.

- Watch Video Solution

34. The equilibrium constant for the followingg reaction is 1.6×10^{5} at $1024 \mathrm{~K}, \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HBr}(\mathrm{g})$. Find the equilibrium pressure of all gases if 10.0 bar of HBr is intoroduced into a sealed container at 1024 K .

- Watch Video Solution

35. Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$
Write an expression for K_{p} for the above reaction.

- Watch Video Solution

36. Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$
How will the values of K_{p} and composition of equilibrium mixture be affected by
(i) Increasing the pressure (ii) Incresing the temperature (iii) using a catalyst ?

- Watch Video Solution

37. Describe the effect of:

Addition of H_{2}.
38. Describe the effect of:

Addition of $\mathrm{CH}_{3} \mathrm{OH}$.

- Watch Video Solution

39. Describe the effect of:

Removal of CO.

- Watch Video Solution

40. Describe the effect of:
removal of $\mathrm{CH}_{3} \mathrm{OH}$ on the equilibrium of: $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$.

- Watch Video Solution

41. At 473 K , equilibrium constant K_{c} for decomposition of $P C l_{5}$ is
8.3×10^{-3}. If decomposition is depicted as, $\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$,
$\Delta H_{r}^{0}=124.0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
Write an expression for the reaction.

- Watch Video Solution

42. At 473K, equilibrium constant K_{c} for decomposition of PCl_{5} is 8.3×10^{-3}. If decomposition is depicted as, $\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$, $\Delta H_{r}^{0}=124.0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

What is the value of K_{c} for the reverse reaction at the same temperature?

- Watch Video Solution

43. At 473 K , equilibrium constant K_{c} for decomposition of PCl_{5} is
8.3×10^{-3}. If decomposition is depicted as, $\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$,
$\Delta H_{r}^{0}=124.0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
What would be the effect on K_{c} if (i) more PCl_{5} is added (ii) presure is increased (iii) the temperature is increased?
44. Dihydrogen gas used in Haber's process is produced by reacting methane from natural gas with high temperature steam. The first stage of two stage reaction involves the formation of CO and H_{2}. In second stage, $C O$ formed in first stage is reacted with more steam in water gas shift reaction.

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

If a reaction vessel at $400^{\circ} \mathrm{C}$ is charged with an equimolar mixture of CO and steam such that $p_{\mathrm{CO}}=p_{\mathrm{H}_{2} \mathrm{O}}=4.0$ bar, what will be the partial pressure of H_{2} at equilibrium? $\mathrm{K}_{p}=10.1$ at $400^{\circ} \mathrm{C}$.

- View Text Solution

45. Predict which of the following reaction will have appreciable concentration of reactants and products:
$C l_{2}(g) \Leftrightarrow 2 \mathrm{Cl}(\mathrm{g}), K_{c}=5 \times 10^{-39}$

- Watch Video Solution

46. Predict which of the following reaction will have appreciable concentration of reactants and products:

$$
\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NOCl}(\mathrm{~g}), K_{c}=3.7 \times 10^{8}
$$

- Watch Video Solution

47. Predict which of the following reaction will have appreciable concentration of reactants and products:
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}), \mathrm{K}_{\mathrm{c}}=1.8$.

- Watch Video Solution

48. The value of K_{c} for the reaction $3 O_{2}(g) \Leftrightarrow 2 O_{3}(g)$ is 2.0×10^{-50} at $25^{\circ} \mathrm{C}$. If the equilibrium concentration of O_{2} in air at $25^{\circ} \mathrm{C}$ is 1.6×10^{-2}, what is the concentration of O_{3} ?

- Watch Video Solution

49. The reaction $\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is at equilibrium at 1300K in a 1L flask. It also contains 0.30 mol of $\mathrm{CO}, 0.10 \mathrm{~mol}$ of H_{2} and 0.02 mol of $\mathrm{H}_{2} \mathrm{O}$ and an unknown amount of CH_{4} in the flask. Determine the concentration on CH_{4} in the mixture. the equilibrium constant, K_{c} for the reaction at the given temperature is 3.90 .

- Watch Video Solution

50. What is meant by the conjugate acid-base pair? Find the conjugate acid/base for the following species: $\mathrm{HNO}_{2}, \mathrm{CN}^{-}, \mathrm{HClO}_{4}, \mathrm{~F}^{-}, \mathrm{OH}^{-}, \mathrm{CO}_{3}^{2-}$, and S^{2-}.

- Watch Video Solution

51. Which of the following are Lewis acids? $\mathrm{H}_{2} \mathrm{O}, \mathrm{BF}_{3}, \mathrm{H}^{+}$and NH_{4}^{+}

- Watch Video Solution

52. What will be the conjugate bases for the Bronsted acids: $\mathrm{HF}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and HCO_{3}^{-}?

- Watch Video Solution

53. Write the conjugate acids for the following Bronsted bases: $\mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}$ and HCOO^{-}.

- Watch Video Solution

54. The species: $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}^{-}, \mathrm{HSO}_{4}^{-}$and NH_{3} can act both as Bronsted acids and bases. For each case give the corresponding conjugate acid and base.

- Watch Video Solution

55. Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base: (1) OH^{-}
(2) F^{-}
(3) H^{+}
(4) BCl_{3}.

- Watch Video Solution

56. The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3}(M)$, what is its pH ?

Watch Video Solution

57. The pH of a sample of vinegar is 3.76 . calculate the concentration of hydrogen ion in it.

- Watch Video Solution

58. The ionisation constant of $\mathrm{HF}<\mathrm{HCOOH}$ and HCN at 298 K are $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ and 4.8×10^{-9} respectively. Calculate the ionisation
constant of the corresponding conjugate base.

- Watch Video Solution

59. The ionisation constant of phenol is 1.0×10^{-10}. What is the concentration of phenolate ion in $0.05(\mathrm{M})$ phenol solution ? What will be its degree of ionisation if the solution is also $0.01(M)$ in sodium phenolate?

- Watch Video Solution

60. The first ionisation constant of $\mathrm{H}_{2} \mathrm{~S}$ is 9.1×10^{-8}. Calculate the concentration of HS^{-}ion in its $0.1(\mathrm{M})$ solution. How this concentration be affected if the solution is $0.1(\mathrm{M})$ in HCl also? If the second dissociation constant of $\mathrm{H}_{2} \mathrm{~S}$ is 1.2×10^{-13}, calculate the concentration of S^{2-} under both conditions.

- Watch Video Solution

61. The ionisation constant of acetic acid is ${ }^{~} 1.74 \times \times 10^{\wedge}(-5)$. Calculate the degree of dissociation of acetic acid in its $0.05(M)$ solution. Calculate the concentration of acetate ion in the solution and its pH .

- Watch Video Solution

62. It has been found that pH of a $0.01(\mathrm{M})$ solution of an organic acid is 4.15. calculate the concentration of anion, ionisation constant of the acid and its $p K_{a}$.

- Watch Video Solution

63. Assuming complete dissociation, calculate the pH of the following solutions: 0.003 (M) HCl

- Watch Video Solution

64. Assuming complete dissociation, calculate the pH of the following solutions: 0.005 (M) NaOH

D Watch Video Solution

65. Calculate the pH of $0.002(\mathrm{M}) \mathrm{HBr}$ solution

- Watch Video Solution

66. $0.002(\mathrm{M}) \mathrm{KOH}$

- Watch Video Solution

67. Calculate the pH of the following solution:

2 g of TIOH dissolved in water to give 2 litre of solution.
68. Calculate the pH of the following solution:
0.3 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ dissolved in water to give 500 mL of solution.

- Watch Video Solution

69. Calculate the pH of the following solution:
0.3 g of NaOH dissolved in water to give 200 mL of solution.

- Watch Video Solution

70. Calculate the pH of the following solution:

1 mL of $13.6(\mathrm{M}) \mathrm{HCl}$ is diluted with water to give 1 litre of solution.

- Watch Video Solution

71. The degree of ionisation of a $0.1(\mathrm{M})$ bromoacetic acid solution is 0.132 . calculate the pH of the solution and the $p K_{a}$ of bromoacetic acid.
72. The pH of $0.005(\mathrm{M})$ codeine $\left(\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}\right)$ solution is 9.95 . calculate its ionisation constant and $p K_{b}$.

- Watch Video Solution

73. What is the pH of $0.001(\mathrm{M})$ aniline solution? The ionisation constant of aniline can be taken from standard table. Calculate the degree of ionisation of aniline in the solution. Also calculate the ionisation constant of the conjugate acid of aniline.

- Watch Video Solution

74. Calculate the degree of ionisation of $0.05(\mathrm{M})$ acetic acid if its $p K_{a}$ value is 4.74. How is the degree of dissociation affected when its solution also contain (1) $0.01(\mathrm{M})$ in HCl
(2) $0.1(\mathrm{M})$ in HCl ?
75. The ionisation constant of dimethylamine is 5.4×10^{-4}. Calculate its degree of ionisation in its $0.02(M)$ solution. What percentage of dimethylamine is ionised if the solution is also $0.1(\mathrm{M})$ in NaOH ?

- Watch Video Solution

76. Calculate the hydrogen ion concentration in the folowing biological fluids whose pH are given below:

Human muscle-fluid, 6.83.

- Watch Video Solution

77. Calculate the hydrogen ion concentration in the folowing biological fluids whose pH are given below:

Human stomach fluid, 1.2.
78. Calculate the hydrogen ion concentration in the folowing biological fluids whose pH are given below:

Human blood, 7.38.

- Watch Video Solution

79. Calculate the hydrogen ion concentration in the folowing biological fluids whose pH are given below:

Human saliva, 6.4.

- Watch Video Solution

80. The pH of milk, black coffe, tomato juice, lemon juice and egg white are 6.8, 5.0, 4.2, 2.2 and 7.8 respectively. Calculate corresponding hydrogen ion concentration in each.
81. 0.561 g KOH is dissolved in water to give 200 mL of solution at 298 K . Calculate the concentrations of $\mathrm{K}^{+}, \mathrm{H}^{+}$and OH^{-}ions. What is its pH ?

- Watch Video Solution

82. The solubility of $\mathrm{Sr}(\mathrm{OH})_{2}$ at 298 K is $19.23 \mathrm{~g} / \mathrm{L}$ of solution. Calculate the concentrations of stronium and hydroxyl ions and the pH of the solution.

- Watch Video Solution

83. The ionisation constant of propanoic acid is 1.32×10^{-5}. Calculate the degree of ionisation of the acid in its $0.05(\mathrm{M})$ solution and also its pH . What will be its degree of ionisation if the solution is $0.01(\mathrm{M})$ in HCl also?

- Watch Video Solution

84. The pH of 0.1 M solution of cyanic acid (HCNO) is 2.34 . calculate the ionisation constant of the acid and its degree of ionisation in the solution.

- Watch Video Solution

85. The ionisation constant of nitrous acid is 4.5×10^{-4}. Calculate the pH of 0.04 M sodium nitrite solution and also its degree of hydrolysis.

D Watch Video Solution

86. A 0.02 M solution of pyridinium hydrochloride has $\mathrm{pH}=3.44$. calculate the ionisation constant of pyridine.

- Watch Video Solution

87. Predict if the solutions of the following salts are neutral, acidic or basic: $\mathrm{NaCl}, \mathrm{KBr}, \mathrm{NaCN}, \mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{NaNO}_{2}$ and KF .

Watch Video Solution

88. The ionisation constant of chloroacetic acid is 1.35×10^{-3}. What will be the pH of 0.1 M acid and its 0.1 M sodium salt solution?

- Watch Video Solution

89. Ionic product of water at 310 K is 2.7×10^{-14}. What is the pH of neutral water at this temperature?

- Watch Video Solution

90. Calculate the pH of the resultant mixtures: (1) 10 mL of 0.2 M
$\mathrm{Ca}(\mathrm{OH})_{2}+25 \mathrm{~mL}$ of 0.1 M HCl
(2) 10 mL of $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL}$ of $0.01 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$.
(3) 10 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL}$ of 0.1 M KOH .

- Watch Video Solution

91. Determine the solubilities of silver chromate, barium chromate, ferric hydroxide, lead chloride and mercurous iodide at 298 K from their solubility product constant given in the standard table. Determine also the molarities of individual ions. Silver chromate, $1.1 \times 10-12$ Barium chromate, $1.2 \times 10-10$ Ferric hydroxide, $1.0 \times 10-38$ Lead dichloride, $1.6 \times 10-5$ Mercurous iodide, $4.5 \times 10-29$

- Watch Video Solution

92. The solubility product constant of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ and AgBr are 1.1×10^{-12} and 5.0×10^{-13} respectively. Calculate the ratio of the molarities of their saturated solutions.
93. Equal volumes of 0.002 M solutions of sodium iodate and cupric perchlorate are mixed together. Will it lead to precipitation of copper iodate? (for cupric iodate, $K_{s p}=7.4 \times 10^{-8}$).

- Watch Video Solution

94. The ionisation constant of benzoic acid is 6.46×10^{-5} and $K_{s p}$ for silver benzoate $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOAg}\right)$ is 2.5×10^{-13}. How many times is silver benzoate more soluble in a buffer of pH 3.19 compared to its solubility in pure water?

- Watch Video Solution

95. What is the maximum concentration of equimolar solutions of FeSO_{4} and $\mathrm{Na}_{2} \mathrm{~S}$ so that when mixed in equal volumes, there is no precipitation of iron sulphide? (For iron sulphide, $K_{s p}=6.3 \times 10^{-18}$).
96. What is the minimum volume of water requires to dissolve 1 g of calcium sulphate at 298 K ? (For calcium sulphate, $K_{s p}$ is 9.1×10^{-6}).

- Watch Video Solution

97. The concentration of sulphide ion in 0.1 M HCl solution saturated with hydrogen sulphide is $1.0 \times 10^{-19} \mathrm{M}$. If 10 mL of this is added to 5 mL of 0.04 M solution of the following: $\mathrm{FeSO}_{4}, \mathrm{MnCl}_{2}, \mathrm{ZnCl}_{2}$ and CdCl_{2} in which of these solutions precipitation will take place?

- Watch Video Solution

HIGHER ORDER THINKING SKILL (HOTS) QUESTIONS

1. In case of a gaseous reaction, the different between the heat change at constant volume and the heat change at constant pressure is $2 R T$. Find
out the ratio of K_{p} to K_{c} of that reaction.

- Watch Video Solution

2. "All chemical reaction are reversible"-Is the statement true? Given reason for your answer.

- Watch Video Solution

3. The following reaction is at equilibrium at a particular temperature:
$A B(g) \Leftrightarrow A(g)+B(g)$. Show that when the compound $A B$ gets 50% dissociated, then the total pressure of the system becomes three times the numerical value of K_{P}.

- Watch Video Solution

4. The given graph indicates the change in concentrations of A and B of a reversible reaction, $A \Leftrightarrow n B$ at constant temperature. If the value of
equilibrium constant of the reaction is 1.2 at that temperature, then find

> Time(hr)
the value of n.

- Watch Video Solution

5. Under a particular reaction condition if the value of the reactionquotient (Q) is 1 , then find out the change in the value of free energy (ΔG).

- Watch Video Solution

6. We know, $\Delta G^{0}=-R T \ln K_{c}$ and $\Delta G^{0}=-R T \ln K_{p}$. State whether the value of ΔG^{0} will be same or not provided the numerical values of both K_{p} and K_{c} are different.

- Watch Video Solution

7. At $25^{\circ} \mathrm{C}$, the value of equilibrium $\left(K_{c}\right)$ for the reaction, $A(s)+4 B(g) \Leftrightarrow 2 C(l)+3 D(g)$ is 16 . if the reaction is initiated with 0.2 mol of each of the component taken in a closed vessel of 1 L volume, then in which direction the reaction will occur at a higher rate to attain the equilibrium?

- Watch Video Solution

8. In which type of gaseous reactions, the ratio of K_{p} to K_{c} (i.e., K_{p} / K_{c}) is influenced by temperature? In which type of gaseous reactions, this ratio remains unaffected by temperature?
9. "When $\mathrm{NH}_{4} \mathrm{SCN}$ (colourless) is added to dilute solution of FeCl_{3} (light yellow), the colour o the solution becomes deep red but on addition of $\mathrm{NH}_{4} \mathrm{Cl}$ solution (colourless) the red colour faded." Why?

- Watch Video Solution

10. Sodium salts of three monobasic acids, HA, HB and HC are $\mathrm{HaA}, \mathrm{NaB}$ and NaC , respectively. The concentration of each of the aqueous solution of the aqueous solution of these salts is $0.1(\mathrm{M})$ and the pH of their solutions are 7,9 and 10 , respectively. Among HA, HB and HC , which is (are) strong acid(s)?

- Watch Video Solution

11. $\mathrm{Mg}(\mathrm{OH})_{2}$ is sparingly soluble in water but highly soluble in aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution-explain.
12. The pH of two aqueous solutions of HCl and NaOH are 2 and 12 , respectively. If 200 mL HCl solution is mixed with 300 mL NaOH solution, then what will be the pH of the mixed solution?

- Watch Video Solution

13. You are asked to prepare a 100 mL buffer solution of $\mathrm{pH}=5.0$. for this purpose, you are supplied with acetic acid $\left(p K_{a}=4.74\right)$, benzoic acid $\left(p K_{a}=4.20\right)$, formic acid $\left(p K_{a}=3.75\right)$ and their sodium salts. Which one of the acids will you use to prepare the most effective buffer?

- Watch Video Solution

14. If $50 \mathrm{~mL} 0.1(\mathrm{M}) \mathrm{NaOH}$ solution is added to $20 \mathrm{~mL} 0.25(\mathrm{M}) \mathrm{CH}_{3} \mathrm{COOH}$ solution, then what will be the pH of mixed solution? $\left[p K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=4.74\right]$.

- Watch Video Solution

15. Determine the pH of an aqueous $1.0(\mathrm{M}) \mathrm{CH}_{3} \mathrm{COOH}$ solution. If 1 L of this acid solution is diluted with distilled water, then calculate the volume of the dilute solution for a two-fold increase in the pH of the solution? $\left[K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.8 \times 10^{-5}\right]$.

- Watch Video Solution

16. $p K_{a}$ values of three weak acids HA, HB and HC are $4.74,3.35$ and 5.24 respectively. The concentration of aqueous solutions of each of the three acids is $0.01(\mathrm{M})$. Arrange them in order of increasing pH values.

- Watch Video Solution

17. Show that, degree of dissociation of a weak monobasic acid, $\alpha=\frac{1}{1+10\left(p K_{a}-p H\right)}$, where, K_{a} is the dissociation constant of the weak
acid at experimental temperature.

- Watch Video Solution

ENTRANCE QUESTIONS BANK

1. 2 g of metal carbonate is neutralised completely by 100 mL of $0.1(\mathrm{~N}) \mathrm{HCl}$.

The equilvalent weight of metal carbonate is-
A. 50
B. 100
C. 150
D. 200
2. If the equilibrium constants of the following equilibrium $\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \Leftrightarrow \mathrm{SO}_{3}$ and $2 \mathrm{SO}_{3} \Leftrightarrow 2 \mathrm{SO}_{2}+\mathrm{O}_{2}$ are given by K_{1} and K_{2} respectively, then which of the following relations is correct-
A. $K_{2}=\left(\frac{1}{K_{1}}\right)^{2}$
B. $K_{1}=\left(\frac{1}{K_{2}}\right)^{3}$
C. $K_{2}=\left(\frac{1}{K_{1}}\right)^{2}$
D. $K_{2}=\left(\left(K_{1}\right)^{2}\right.$.

- Watch Video Solution

3. The pH of an aqueous solution of $\mathrm{CH}_{3} \mathrm{COONa}$ of concentration $\mathrm{C}(\mathrm{M})$ is given by-
A. $7-\frac{1}{2} p K_{a}+\frac{1}{2} \log C$
B. $\frac{1}{2} p K_{w}+\frac{1}{2} p K_{b}+\frac{1}{2} \log C$
C. $\frac{1}{2} p K_{w}-\frac{1}{2} p K_{b}-\frac{1}{2} \log C$
D. $\frac{1}{2} p K_{w}+\frac{1}{2} p K_{a}+\frac{1}{2} \log C$

Watch Video Solution

4. The solubility of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ in water is $\mathrm{y} \mathrm{mol} / \mathrm{L}$. its solubility product is:
A. $6 y^{4}$
B. $36 y^{4}$
C. $64 y^{5}$
D. $108 y^{5}$

Answer: D

- Watch Video Solution

$5.20 \mathrm{~mL} 0.1(\mathrm{~N})$ acetic acid is mixed with $10 \mathrm{~mL} 0.1(\mathrm{~N}) \mathrm{NaOH}$ solution. pH of the resulting solution is ($p K_{a}$ of acetic acid is 4.74)-
A. 3.74
B. 4.74
C. 5.74
D. 6.74

- Watch Video Solution

6. The weight of oxalic acid that will be required to prepare a 100 mL ($\mathrm{N} / 20$) solution is-
A. $\frac{126}{100} g$
B. $\frac{63}{40} g$
C. $\frac{63}{20} g$
D. $\frac{126}{20} g$

- Watch Video Solution

7. A $100 \mathrm{~mL} 0.1(\mathrm{M})$ solution of ammonium acetage is diluted by adding 100 mL of water. The pH of the resulting solution will be ($p K_{a}$ of acetic acid is nearly equal to $p K_{b}$ of $\left.\mathrm{NH}_{4} \mathrm{OH}\right)$ -
A. 4.9
B. 5.0
C. 7.0
D. 10.0

- Watch Video Solution

8. In a reversible chemical reaction at equilibrium, if the concentration of any one of the reactants is doubled then the equilibrium constant will-
A. also be doubled
B. be halved
C. remain the same
D. become one-fourth

- Watch Video Solution

9. $1 \times 10^{-3} \mathrm{~mol}$ of HCl is added to a buffer solution made up of 0.01 (M) acetic acid and $0.01(\mathrm{M})$ sodium acetate. The final pH of the buffer will be ($p K_{a}$ of acetic acid is 4.75 at $25^{\circ} \mathrm{C}$)-
A. 4.60
B. 4.66
C. 4.75
D. 4.8
10. Number of hydrogen ions present in 10 million part of $1.33 \mathrm{~cm}^{3}$ of pure water at $25^{\circ} \mathrm{C}$ is-
A. 6.023 million
B. 60 million
C. 80.1 million
D. 80.23 million

- Watch Video Solution

11. At $25^{\circ} \mathrm{C}, \mathrm{pH}$ of a $10^{-8}(\mathrm{M})$ aqueous KOH solution will be-
A. 6
B. 7.02
C. 8.02
D. 9.02

- Watch Video Solution

12. At $25^{\circ} \mathrm{C}$, the solubility product of a salt of $M X_{2}$ type is 3.2×10^{-8} in water. The solubility (in $\mathrm{mol} / \mathrm{L}$) of $M X_{2}$ in water at the same temperature will be
A. 1.2×10^{-3}
B. 2×10^{-3}
C. 3.2×10^{-3}
D. 1.75×10^{-3}
13. The standard Gibbs free energy $\left(\triangle G^{\circ}\right)$ at $25^{\circ} \mathrm{C}$ for the dissociations of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ to $\mathrm{NO}_{2}(\mathrm{~g})$ is (given : equilibrium constant
$=0.15, R=8.314 \mathrm{~J} \cdot \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
A. 1.1 KJ
B. 4.7 KJ
C. 8.1 KJ
D. 38.2 KJ

- Watch Video Solution

14. pH of a solution of $10^{-4}(\mathrm{M}) \mathrm{KOH}$ is
A. 4
B. 11
C. 10.5
D. 10

- Watch Video Solution

15. The ratio of volumes of $0.1(\mathrm{~N}) \mathrm{CH}_{3} \mathrm{COOH}$ to $0.1(\mathrm{~N}) \mathrm{CH}_{3} \mathrm{COONa}$ required to prepare a buffer solution of pH 5.74 is (given : $p K_{a}$ of $\mathrm{CH}_{3} \mathrm{COOH}$ is 4.74 -
A. 10:1
B. 5:1
C. 1:5
D. 1:10
16. For the reaction $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ at 300 K , the value of ΔG° is - 690.9R. The equilibrium constant value for the reaction at that temperature is (R is gas constant)
A. $10 \mathrm{~atm}^{-1}$
B. 10atm
C. 10
D. 1

- Watch Video Solution

17. In which of the following mixed aqueous solutions $p H=k e a$ at equilibrium-
A. (I) is correct
B. (II) is correct
C. (III) is correct
D. both (I) and (II) are correct

- View Text Solution

18. The molar solubility (in mol L^{-1}) of a sparingly soluble salt $M X_{4}$ is 's' the corresponding solubility products is $K_{s p}$'s' in terms of $K_{s p}$ is given by the reaction-
A. $S=\left(\frac{K_{s p}}{128}\right)^{1 / 4}$
B. $S=\left(\frac{K_{s p}}{256}\right)^{1 / 5}$
C. $S=\left(256 K_{s p}\right)^{1 / 5}$
D. $S=\left(128 K_{s p}\right)^{1 / 4}$
19. Which of the following plots represents an exothermic reaction-
(A) 光

(B)

B.

C. .
(D) 트

D.
20. Of the following compounds, which one is the strongest acid in an
aqueous solution-
A. HClO_{3}
B. HClO_{2}
C. HOCl
D. HOBr

- Watch Video Solution

21. Dissolving NaCN in demonized water will result in a solution having
A. $\mathrm{pH}>7$
B. $\mathrm{pH}=7$
C. $\mathrm{pOH}=7$
D. $\mathrm{pH}<7$

(Watch Video Solution

22. Equilibrium constants for the following reactions at 1200 K are given :

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}): \mathrm{K}_{1}=6.4 \times 10^{-8}
$$

$2 \mathrm{CO}(\mathrm{g}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}): \mathrm{K}_{2}=1.6 \times 10^{-6}$
The equilibrium constant for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at 1200 K will be-
A. 0.05
B. 20
C. 0.2
D. 5
23. Your are supplied with 500 mL each of $2(\mathrm{~N}) \mathrm{HCl}$ and $5(\mathrm{~N}) \mathrm{HCl}$. What is the maximum volume of $3(\mathrm{M}) \mathrm{HCl}$ that you can prepare using only these two solution-
A. 250 mL
B. 500 mL
C. 750 mL
D. 1000 mL

- Watch Video Solution

24. The following euilibrium constants are given:
${ }^{\mathrm{N}} \mathrm{N}_{-} 2+3 \mathrm{H}_{-} 2{ }^{\mathrm{H}} \mathrm{H}_{-} 2+1 / 2 \mathrm{O}^{\wedge} 2$ The equilibrium constant for the oxidation of 2 mol of NH_{3} to give NO is-
A. $K_{1} \times \frac{K_{2}}{K_{3}}$
B. $K_{2} \times \frac{K_{3}^{3}}{K_{1}}$
C. $K_{2} \times \frac{K_{3}^{2}}{K_{1}}$
D. $K_{2}^{2} \times \frac{K_{3}}{K_{1}}$
25. The equilibrium constant $\left(K_{c}\right)$ for the reaction $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$ at temperature T is 4×10^{-4} The value of K_{c} for $N O(g) \rightarrow \frac{1}{2} N_{s}(g)+\frac{1}{2} O_{2}(g)$ at the same temperature is
A. 2.5×10^{2}
B. 4×10^{-4}
C. 50
D. 0.02

- Watch Video Solution

27. The pH of a 0.1 molar solution of the acid HQ is 3 . The value of the ionisation constant K_{a} of this acid is
A. 1×10^{-3}
B. 1×10^{-5}
C. 1×10^{-7}
D. 3×10

Watch Video Solution

28. How many litres of water mutt be added to 1 litre of of an a
solution of HCl with a pH of 1 to create an aqueous solution with pH of 2
A. 9.0 L
B. 0.9 L
C. 0.1 L
D. 2.0 L
29. The molarity of a solution obtained by mixing 750 mL of $0.5(\mathrm{M}) \mathrm{HCl}$ with 250 mL of $2(\mathrm{M}) \mathrm{HCl}$ will be
A. $0.975(\mathrm{M})$
B. 1.00 (M)
C. $0.875(\mathrm{M})$
D. 1.75 (M)

- Watch Video Solution

30. For the reaction ${ }^{\text {SO}} \mathbf{S O} 2(\mathrm{~g})+1 / 2 \mathrm{O}_{-} 2(\mathrm{~g})$
A. 1
B. -1
C. $-\frac{1}{2}$
D. $\frac{1}{2}$

View Text Solution

31. The following reaction is performed at 298 K
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
Standard free energy of formation of $\mathrm{NO}(\mathrm{g})$ is $86.6 \mathrm{kJ}. \mathrm{~mol}^{-1}$ at 298 K . What is the standard free energy of formation of $\mathrm{NO}_{2}(\mathrm{~g})$ at 298 K $\left(K_{p}=1.6 \times 10^{12}\right)$
A. $8660-\frac{\operatorname{In}\left(1.6 \times 10^{12}\right)}{R(209)}$
B. $0.5\left[2 \times 86600-R(298) \operatorname{In}\left(1.6 \times 10^{12}\right)\right]$
C. $R(298) \operatorname{In}\left(1.6 \times 10^{12}\right)-86600$
D. $86600+R(298) I n\left(1.6 \times 10^{12}\right)$
32. The standard Gibbs energy change at 300 K for the reaction ${ }^{2} 2 \mathrm{~A} \leftrightharpoons \mathrm{~B}+\mathrm{C}$ is 2494.2 J . At a given time, the composition of the reaction mixture is [A] $=21$, $[B]=2$ and $[C]=21$. The reaction proceeds in the : [$\mathrm{R}=8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mol}, \mathrm{e}=2.718$]
A. forward direction because $Q>K_{-} \subset$
B. reverse direction because $\mathrm{Q}>\mathrm{K}_{c}$
C. forward direction because Q
D. reverse direction because Q

- View Text Solution

33. The equilibrium constant at 298 K for a reaction, ${ }^{\wedge} \mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$ is 100 . If the initial concentration of all the four species were 1 M each, then equilibrium concentration of D (in mol L-1) will be:
B. 0.818
C. 1.818
D. 1.182
34. $p K_{a}$ of a weak acid (HA) and $p K_{b}$ of a weak base (BOH) are 3.2 and 3.4, respectively. The pH of their salt (AB) solution-
A. 7
B. 1
C. 7.2
D. 6.9
35. Which of the following salts is most basic in aqueous solution-
A. $\mathrm{CH}_{3} \mathrm{COOK}$
B. FeCl_{3}
C. $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3}$
D. $\mathrm{Al}(\mathrm{CN})_{2}$

- Watch Video Solution

36. An alkali is titrated against an acid with methyl orange as indicator.

Which of the following is a correct combination-
A. Base-Weak, Acid-Strong, End point- Colourless to pink
B. Base-Strong, Acid-Strong, End point-Pinkish red to yellow
C. Base-Weak , Acid-Strong, End point-Yellow to pinkish red
D. Base-Strong, Acid-Strong, End point-Pink to colourless

(D) Watch Video Solution

37. An aqueous solution an unknown concentration of Ba^{2+} When 50 mL of a $1(\mathrm{M})$ solution of $\mathrm{Na}_{S} \mathrm{O}_{4}$ is added BaSO_{4} just begins to precipitate. The final volume is 500 mL . The solubility product of BsSO_{4} is 1×10^{10} What is the original concentration of $B a^{2+}$
A. $5 \times 10^{-9}(M)$
B. $2 \times 10^{-19}(M)$
C. $1.1 \times 10^{-9}(M)$
D. $1.0 \times 10^{-10}(M)$

- Watch Video Solution

38. An aqueous solution contains 0.10 (M) $\mathrm{H}_{2} \mathrm{~S}$ and 0.20 (M) HCl . If the equilibrium constants for the formation of HS^{-}from $\mathrm{H}_{2} \mathrm{~S}$ is 1.0×10^{-7}
and that of S^{2-} from HS^{-}ions is 1.2×10^{13}, then the concentration of S^{2-} ions in aqueous solution is-
A. 5×10^{-8}
B. 3×10^{-20}
C. 6×10^{-21}
D. 5×10^{-19}

- Watch Video Solution

39. Which of the following lines correctly show the temperature dependence of equilibrium constant, K , for an exothermic reaction-
A. A and B
B. B and C
C. C and D

D. A and D

- View Text Solution

40. For the reaction, $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N o(g)$ equilibrium constant is K_{1}. The equilibrium constant is K_{2} for the reaction. $2 \mathrm{NO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$. What is K for the reaction, $\mathrm{NO}_{2}(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+\mathrm{O}_{2}(g)-$
A. $\frac{1}{2 K_{1} K_{2}}$
B. $\frac{1}{4 K_{1} K_{2}}$
C. $\left[\frac{1}{K_{1} K_{2}}\right]^{1 / 2}$
D. $\frac{1}{K_{1} K_{2}}$
41. Given the reaction between 2 gases represented by A_{2} and B_{2} to give the compound $A B(g)$ is $A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g)$. At equilibrium, concentration of $A_{2}=3.0 \times 10^{-3}(M)$. If the reaction takes place in a sealed vessel at $527^{\circ} \mathrm{C}$, then value of K_{C} will be-
A. 1.9
B. 0.62
C. 4.5
D. 2

- Watch Video Solution

42. Given that the equilibrium constant for the reaction
'2SO_2(g)+O_2(g) 'SO_3(g)
A. 3.6×10^{-3}
B. 6.0×10^{-2}
C. 1.3×10^{-5}
D. 1.8×10^{-3}

- Watch Video Solution

43. A buffer solution is prepared in which the concentration of NH_{3} is $0.30(\mathrm{M})$ and the concentration of NH_{4}^{+}is $0.20(\mathrm{M})$. The equilibrium constant K_{b} for NH_{3} equals 1.8×10^{-5}. What is the pH of this solution-
A. 8.73
B. 9.08
C. 9.43
D. 11.72
44. Equimolar solutions of the following substances were prepared separately. Which one of these will record the highest pH value-
A. LiCl
B. BaCl_{2}
C. BeCl_{2}
D. AlCl_{3}

- Watch Video Solution

45. pH of a saturated solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 12 . The value of solubility product $\left(\mathrm{K}_{\text {sp }}\right)$ of $\mathrm{Ba}(\mathrm{OH})_{2}$ is-
A. 4.0×10^{-6}
B. 5.0×10^{-6}
C. 3.3×10^{-7}
D. 5.0×10^{-7}

- Watch Video Solution

46. Buffer solutions have constant acidity and alkalinity because-
A. They have large excess of H^{+}or OH^{-}ions
B. they have fixed value of pH
C. These give unionised acid or base on reaction with added acid or alkali
D. acids and alkalis in these solutions are shielded from attack by other ions.

- Watch Video Solution

47. KMnO_{4} can be prepared from $\mathrm{K}_{2} \mathrm{MnO}_{4}$ as per the reaction $` 3 \mathrm{MnO}_{-} 4^{\wedge}(2-)+2 \mathrm{H}_{-} 2 \mathrm{O}$
A. SO_{2}
B. CO_{2}
C. KOH
D. HCl

D Watch Video Solution

48. For a given exothermic reaction, K_{P} and K_{p}^{\prime} are the equilibrium constants at temperature T_{1} and $T_{2}\left(T_{2}>T_{1}\right)$ respectively. Assuming the heat of reaction is constant in temperature range between T_{1} and T_{2}, it is readily observed that
A. $K_{p}>K_{p}^{\prime}$
B. $K_{p}<K_{p}^{\prime}$
C. $K_{p}=K_{p}^{\prime}$
D. $K_{p}=\frac{1}{K_{p}}$

- Watch Video Solution

49. For the reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+$ heat the equilibrium shifts in forward direction-
A. By increasing the concentration of $\mathrm{NH}_{3}(\mathrm{~g})$
B. By increasing pressure and decreasing temperature
C. by decreasing the concentration of $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$
D. By decreasing the pressure

- Watch Video Solution

50. Using the Gibbs energy change $G^{\circ}=+63.3 \mathrm{~kJ}$ for the given reaction:
$\mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \Leftrightarrow 2 \mathrm{Ag}^{+}(a q)+\mathrm{CO}_{3}^{2-}(\mathrm{aq})$, the $K_{\text {sp }}$ of $\mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ in water at $25^{\circ} \mathrm{C}$ is $\left(R=8.314 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$
A. 3.2×10^{-26}
B. 2.9×10^{-3}
C. 8.12×10^{-12}
D. 7.9×10^{-12}
51. What is the pH of resulting solution when equal volumes of $0.1(\mathrm{M})$ NaOH and $0.01(\mathrm{M}) \mathrm{HCl}$ are mixed-
A. 12.65
B. 2
C. 7
D. 1.04
52. Which one of the following pairs of solution is not an acidic buffer?
A. HClO_{4} and NaClO_{4}
B. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$
C. $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$
D. $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{Na}_{3} \mathrm{PO}_{4}$
53. If equilibrium constant for ${ }^{\top} \mathrm{N} 2(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g})$
A. $K^{1 / 2}$
B. $\frac{1}{2} K$
C. K
D. K^{2}

- Watch Video Solution

54. MY and NY_{3}, two nearly insoluble salts have the same $-K_{s p}$ values of 6.4×10^{13} at room temperature. Which statement would be true in regard to MY and NY_{3}
A. The salts of My and NY_{3} are more soluble in 0.5 (M) KY than in pure water
B. the addition to the salt of KY to solutions of MY and NY_{3} will have no effect on their solubilities
C. The molar solubilities of MY and NY_{3} in water are identical
D. The molar solubility of MY in water is less than that of $N Y_{3}$
55. The percentage of pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ that forms pyridinium ion $\left(C_{5} H_{5} N^{+} H\right)$ in a $0.10(M)$ aqueous pyridine solution $\left(K_{b}\right)$ for $\left.C_{5} H_{5} N=107 \times 10^{9}\right)$ is
A. 0.0060 \%
B. 0.013 \%
C. 0.0077
D. 0.016

- Watch Video Solution

56. The solubility of $\mathrm{AgCl}(\mathrm{s})$ with solubility product 1.6×10^{-10} in $0.1(\mathrm{M})$ NaCl solution would be-
A. $1.26 \times 10^{-5}(\mathrm{M})$
B. $1.6 \times 10^{-9}(\mathrm{M})$
C. $1.6 \times 10^{-11}(\mathrm{M})$
D. zero

- Watch Video Solution

57. A 20 litre container at 400 K contains $\mathrm{CO}_{2}(\mathrm{~g})$ at pressure 0.4 atm and an excess of SrO (neglect the volume of solid SrO). the volume of the container is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when pressure of CO_{2} attains its maximum value, will be-
(Given that: ${ }^{\text {SrCO_3 }} 3(\mathrm{~s}) K_{p}=1.6 \mathrm{~atm}$
A. 10 litre
B. 4 litre
C. 2 litre
D. 5 litre

- Watch Video Solution

58. Which one of the following statements is not correct
A. The value of equilibrium constant is changed in the presence of a catalyst in the reaction at equilibrium
B. enzymes catayse mainly biochemical reactions
C. Coenzymes increase the catalytic acitivity of enzyme
D. Catalyst does not initiate any reaction

- Watch Video Solution

59. Concentration of the Ag^{+}ions in a saturated solution of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is $2.2 \times 10^{-4} \mathrm{~mol} . \mathrm{L}^{-1}$. Solubility product of $A G_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is
A. 2.66×10^{-12}
B. 4.5×10^{-11}
C. 5.3×10^{-12}
D. 2.42×10^{-8}

- Watch Video Solution

60. The equilibrium constants of the following are:
'N_2+3H_2 'N_2+O_2 'H_2+1/2O_2 The equilibrium constant (K) of the reaction:
'2NH_3+5/3O_2overset(K)
A. $\frac{K_{2} K_{3}^{3}}{K_{1}}$
B. $\frac{K_{2} K_{3}}{K_{1}}$
C. $\frac{K_{2}^{3} K_{3}}{K_{1}}$
D. $\frac{K_{1} K_{3}^{3}}{K_{1}}$

- Watch Video Solution

61. Which one of the following conditions will favour maximum formation of product in the reaction

$$
A_{2}(g)+B_{2}(g) \Leftrightarrow X_{2}(g), \Delta_{r} \Delta H=x^{\prime} k J-
$$

A. low temperature and low pressure
B. low temperature and low pressure
C. high temperature and high pressure
D. high temperature and low pressure

- Watch Video Solution

62. The solubility of BaSO_{4} in water is $2.42 \times 10^{-3} \mathrm{~g} \cdot \mathrm{~L}^{-1}$ at 298 K . The value of its solubility product $\left(K_{s p}\right)$ will be
(Given molar mass of $\mathrm{BaSO}_{4}=233 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$)
A. $1.08 \times 10^{-10} \mathrm{~mol}^{2} \cdot L^{-2}$
B. $1.08 \times 10^{-12} \mathrm{~mol}^{2} \cdot \mathrm{~L}^{-2}$
C. $1.08 \times 10^{-14} \mathrm{~mol}^{2} \cdot \mathrm{~L}^{-2}$
D. $1.08 \times 10^{-8} \mathrm{~mol}^{2} \cdot \mathrm{~L}^{-2}$

- View Text Solution

63. Following the solutions were prepared by mixing different volumes of NaOH and HCl of different concentration-pH of which one of them will be equal to 1 ?
A. $60 \mathrm{~mL} \cdot \frac{M}{10} \mathrm{HCl}+40 \mathrm{~mL} \cdot \frac{M}{10} \mathrm{NaOH}$
B. $55 \mathrm{~mL} . \frac{\mathrm{M}}{10} \mathrm{HCl}+45 \mathrm{~mL} . \frac{M}{10} \mathrm{NaOH}$
C. $75 \mathrm{~mL} . \frac{\mathrm{M}}{5} \mathrm{HCl}+25 \mathrm{~mL} . \frac{\mathrm{M}}{10} \mathrm{NaOH}$
D. $100 \mathrm{~mL} \cdot \frac{M}{10} \mathrm{HCl}+100 \mathrm{~mL} \cdot \frac{M}{10} \mathrm{NaOH}$
64. $25 \mathrm{~mL}, 0.2 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ is neutralised by 10 mL of 1 M HCl . then pH of resulting solution is-
A. 1.37
B. 9
C. 12
D. 7
65. Which of the following is not a characteristic of equilibrium-
A. rate is equal in both directions
B. measurable quantities are constant at equilibrium
C. equilibrium occurs in reversible condition
D. equilibrium occurs only in open vessel at constant temperature.

Answer: D

- Watch Video Solution

66. $K_{s p}$ of $\mathrm{CaSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is 9×10^{-6}, find the volume for 1 g of CaSO_{4} (M.mass=136)
A. 2.45 litre
B. 5.1 litre
C. 4.52 litre
D. 3.2 litre

- Watch Video Solution

67. At $60^{\circ} \mathrm{C}$ and 1 atm, $\mathrm{N}_{2} \mathrm{O}_{4}$ is 50% dissociated into NO_{2} then K_{p} is -
A. 1.33atm
B. 2atm
C. 2.67atm
D. 3atm
68. $\frac{K_{p}}{K_{c}}$ for following reaction will be-
$\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
A. RT
B. $\frac{1}{R T}$
C. $\frac{1}{\sqrt{R T}}$
D. $\frac{R T}{2}$
69. Which has the highest pH^{-}

A. $\mathrm{CH}_{3} \mathrm{COOK}$

B. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C. $\mathrm{NH}_{4} \mathrm{Cl}$
D. NaNO_{3}

- Watch Video Solution

70. Which is correct?
A. $\triangle T=0$
B. $\triangle S=0$
C. $\triangle H=0$
D. $\triangle G^{0}=0$

- Watch Video Solution

71. What will be the solubility product of $A X_{3}-$
A. $27 S^{4}$
B. $4 S^{2}$
C. $36 S^{4}$
D. $9 S^{3}$

Answer: A

- Watch Video Solution

72. The equilibrium constant for the reaction, $\frac{1}{2} \mathrm{H}_{2}(g)+\frac{1}{2} I_{2}(g) \rightarrow \mathrm{HI}(\mathrm{g})$ is K_{c}
then find equilibrium constant for $2 \mathrm{HI}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
A. $1 / K_{C}$
B. $1 /\left(K_{C}\right)^{2}$
C. $2 / K_{C}$
D. $2 /\left(K_{c}\right)^{2}$
73. K_{p} for the reaction $A \rightarrow B$ is 4. If initially only A is present then what will be the partial pressure of B after equilibrium-
A. 1.2
B. 0.8
C. 0.6
D. 1
74. K_{a} for HCN is 5×10^{-10} at $25^{\circ} \mathrm{C}$. For maintaining a constant $\mathrm{pH}=9$, the volume of 5 M KCN solution required to be added to 10 mL of 2 M HCN solution is-
A. 4 mL
B. 2.5 mL
C. 2 mL
D. 6.4 mL

- Watch Video Solution

75. Which of the following pairs of substances cannot exist together in solution
A. $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{NaOH}$
B. $\mathrm{NaHCO}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3}$
C. $\mathrm{NaHCO}_{3}+\mathrm{NaOH}$
D. $\mathrm{NaOH}+\mathrm{NaCl}$

- Watch Video Solution

76. For the reaction, $\mathrm{H}_{2}+\mathrm{I}_{2} \Leftrightarrow 2 \mathrm{HI}, \mathrm{K}=47.6$. If the initial number of moles of each reactant and product is 1 mol then at equilibrium
A. $\left[I_{2}\right]=\left[H_{2}\right],\left[I_{2}\right]>[H I]$
B. $\left[I_{2}\right]=\left[H_{2}\right],\left[I_{2}\right]<[H I]$
C. $\left[I_{2}\right]=\left[H_{2}\right],\left[I_{2}\right]=[H I]$
D. $\left[I_{2}\right]>\left[H_{2}\right],\left[I_{2}\right]=[H I]$

- Watch Video Solution

77. Calculate ionisation constant for pyridinium hydrogen Chloride. (given that H^{+}ion concentration is $3.6 \times 10^{-4} \mathrm{M}$ and its concentration is 0.02 M)-
A. 6.48×10^{-2}
B. 6×10^{-6}
C. 1.5×10^{-9}
D. 12×10^{-8}

- Watch Video Solution

78. For the reaction. $H_{2}+I_{2} \Leftrightarrow 2 H I, K=47.6$. If the initial number of moles of each reactant product is 1 mol then at equilibrium-
A. $[12]=[\mathrm{H} 2],[12]>[\mathrm{HI}]$
B. $[12]=[\mathrm{H} 2],[12]<[\mathrm{HI}]$
C. $[12]<[\mathrm{H} 2],[12]=[\mathrm{HI}]$
D. $[12]>[\mathrm{H} 2],[12]=[\mathrm{H} 1]$

- Watch Video Solution

79. If for the reaction $2 \mathrm{ICl} \rightarrow \mathrm{I}_{2}+\mathrm{Cl}_{2}, K_{c}=0.14$ and initial concentration of ICl is 0.6 M then equilibriurn concentration of $I 2$ is
A. 0.37 M
B. 0.128 M
C. 0.228 M
D. 0.748 M
80. When $50 \mathrm{~mL} 0.1 \mathrm{NH}_{3}$ is mixed with 10 mL of 0.1 M HCl when what is the pH of resultant solution? $\left(p K_{b}=4.75\right)$ -
A. 9.25
B. 10
C. 9.85
D. 4.15

- Watch Video Solution

81. When $\mathrm{CH}_{3} \mathrm{COOH}_{3}+\mathrm{HCl}$ is titrated with NaOH then at neutral point the colour of phenolphthalein becomes colourless from pink due to-
A. Formation of $\mathrm{CH}_{3} \mathrm{OH}$
B. formation of $\mathrm{CH}_{3} \mathrm{COOH}$ which acts as a weak acid
C. phenolphthalein vaporises
D. presence of HCl

D Watch Video Solution

SINGLE CORRECT TYPE (MCQ HOTSPOT)

1. Some reactions, their equilibrium constants are as follows:

$$
\begin{aligned}
& \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}), \mathrm{K}_{1} \\
& \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}), \mathrm{K}_{2} \\
& \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}), \mathrm{K}_{2}
\end{aligned}
$$

The relation among K_{1}, K_{2} and K_{3} is
A. $K_{3} \times K_{2}^{3}=K_{1}^{2}$
B. $K_{1} \sqrt{K_{2}}=K_{3}$
C. $K_{2} \times K_{3}=K_{1}$
D. $K_{3}=K_{1} \times K_{2}$

Answer: D

- Watch Video Solution

2. At a given temperature, the reaction, $A(g) \Leftrightarrow 2 N(g)$, is in equilibrium in a closed flask. At the same temperature, the reaction $c(g) \Leftrightarrow D(g)+E(g)$ is in equilibrium in an another closed flask. Values of equilibrium constants of these two reactions are $K_{p 1}$ and $K_{p 2}$ respectively and the total pressures of the equilibrium mixtures are P_{1} and P_{2} respectively. If $K_{p 1}: K_{p 2}=1: 4$ and $P_{1}: P_{2}=1: 4$ then the ratio of degree of dissociation of $\mathrm{A}(\mathrm{g})$ and $\mathrm{C}(\mathrm{g})$ are (assume the degrees of dissociation of both are very small compared to 1)-
A. 0.15
B. 0.5
C. 1
D. 1.5

Answer: B

- Watch Video Solution

3. At given temperature the reaction $A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g)$ was started with 0.4 mol of $A_{2}(g)$ and 0.6 mol of $B_{2}(g)$ in a flask of volume 2 L . When the reaction achieved equilibrium, it was found that the reaction mixture contained 0.5 mol of AB . The equilibrium constant $\left(K_{C}\right)$ for the reaction is-
A. 8.3
B. 4.76
C. 10.27
D. 6.49

Answer: B

4. At a given temperature, if degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ in the following reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ be a, and total pressure of the equilibrium mixture be P, then it can be shown that equilibrium constant for the reaction, $K_{P}=a^{2} P$ (assuming a is very small compared to 1). Which of the following comments is true for this relation
A. K_{p} increases as P increases
B. K_{p} increases as P increases
C. value of K_{p} does not depend on P but depends on \propto
D. the value of K_{p} depends neither on P nor on \propto

Answer: D

- Watch Video Solution

5. For the reactions. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})$ \& $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ if the equilibrium constant are K_{1}, K_{2} and K_{3}
respectively, then the equilibrium constant for the reaction $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is
$K_{2} K_{3}^{2}$
A. $\frac{K_{1}}{}$
$K_{2}^{2} K_{3}^{2}$
B. $\frac{}{K_{1}}$
C. $\frac{K_{1}^{3} K_{2}^{2}}{K_{3}}$
$K_{2}^{2} K_{3}^{6}$
D. $\frac{}{K_{1}^{2}}$

Answer: D

- Watch Video Solution

6. For a hypothetical reaction, $K_{c}=0.9$ and $K_{p}=538$. Which of the following equations can represent the reaction properly at $25^{\circ} \mathrm{C}$
A. $A(g)<\Rightarrow 2 C(s)+D(g)$
B. $B(g)<\Rightarrow C(l)+D(l)$
C. $A(l)+2 B(g)<\Rightarrow 2 C(g)$
D. $A(g)+B(s)<\Rightarrow 3 C(g)$

Answer: D

- Watch Video Solution

7. When a mixture containing N_{2} and H_{2} in the molar ratio 1:3 is heated in presence of a catalyst in a closed vessel the following equilibrium is established:
${ }^{\prime} \mathrm{N}_{2} 2(\mathrm{~g})+3 \mathrm{H}_{-} 2(\mathrm{~g})$ equilibrium, if the mole fraction of NH_{3} is 0.6 and the total pressure of the equiHbrium mixture is 10 atm then K_{P} for the reaction ${ }^{2} \mathrm{NH}_{3} 3(\mathrm{~g})$
A. $1.33 \mathrm{~atm}^{-2}$
B. $0.75 \mathrm{~atm}^{2}$
C. $1.333 \mathrm{~atm}^{2}$
D. $0.75 \mathrm{~atm}^{-2}$

D Watch Video Solution

8. The reaction $A(g)+4 B(g) \Leftrightarrow 2 C(g)+3 D(g)$ is carried out in a closed vessel of volume 2 L by taking 3 mol of $\mathrm{A}(\mathrm{g})$ and 4 mol of $\mathrm{B}(\mathrm{g})$. At equilibrium, if the amount of $\mathrm{C}(\mathrm{g})$ be 1 mol . then K_{c} for the reaction is-
A. 0.056
B. 0.038
C. 0.084
D. 1.24

Answer: C

9. The total pressure at equilibrium of the reaction, $X Y(g) \Leftrightarrow X(g)+Y(g)$ is P. If the equilibrium constant for the reaction is K_{p} and $K_{p}=\frac{P}{8}$, then the percent dissociation of $X Y$ is
A. 0.3049
B. 0.3333
C. 0.419
D. 0.1926

Answer: B

- Watch Video Solution

10. At 500 K , for the reaction, $\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ the equilibrium constant, $\mathrm{KP}=0.52$. In a closed container, these three gases are mixed together. If the partial pressure of each of these gases be 1 atm, then in the reaction system-
A. The number of moles of PCl_{5} will increase
B. the number of moles of PCl_{3} will increase
C. the reaction will attain equilibrium when 50% of the the reaction
gets completed
D. the reaction will attain equilibrium when 75% of the reaction gets completed

Answer: A

- Watch Video Solution

11. For the reaction : $A(g)+B(g) \Leftrightarrow C(g)+D(g)$, two moles of each A and B were taken into a flask which of following relation between the concentration terms is true when the system attains equilibrium
A. $[\mathrm{A}]=[\mathrm{B}]$
B. $[\mathrm{A}]<[\mathrm{B}]$
C. $[\mathrm{B}]=[\mathrm{C}]$
D. $[\mathrm{A}]>[\mathrm{B}]$

Answer: B

- Watch Video Solution

12. The reaction $2 A(g)+B(g) \rightarrow C(s), \Delta H<0$ is in equilibrium in a closed vessel. Which of the following changes at equilibrium will increase the yield of $C(s)$ -
A. temperature is increased
B. at constant volume and temperature, some amount of $\mathrm{B}(\mathrm{g})$ is added
to the reaction system
C. at constant volume and temperature, some amount of $\mathrm{C}(\mathrm{s})$ is removed from the reaction system
D. pressure is decreased at constant temperature

Answer: B

13. At 300 K the reaction $A(g)+B(g) \Leftrightarrow C(s)$ is in equilibrium in a closed, vessel. At the beginning of the reaction, the partial pressures of A and B gases are 0.2 and 0.3 atrn respectively and total pressure of the equilibrium mixture is $0.3 \mathrm{~atm} . K_{C}$, for the reaction is-
A. $6.06 \times 10^{4} \mathrm{~L}^{2} \mathrm{Mol}^{-2}$
B. $2.59 \times 10^{3} \mathrm{~L}^{2} \mathrm{Mol}^{-2}$
C. $3.03 \times 10^{4} \mathrm{~L}^{2} \mathrm{Mol}^{-2}$
D. $8.2 \times 10^{-2} \mathrm{~L}^{2} \mathrm{Mol}^{-2}$

Answer: C

- View Text Solution

14. At 300 K for the reaction ${ }^{`} \mathrm{AB}_{3} 3(\mathrm{~g}) K_{p}=1.66$. At the same temperature, ΔG^{0} for the reaction, ${ }^{\wedge} \mathrm{AB}_{-} 2(\mathrm{~g})+\mathrm{B}_{-} 2(\mathrm{~g})$
A. +2.19 kJ
B. -2.52 kJ
C. +3.85 kJ
D. -3.26 kJ

Answer: B

- View Text Solution

15. At a given temperature, when a reversible reaction is carried out in absence of catalyst, the ratio of the rate constants for the forward and reverse reactions is found to be 8.0. At the same temperature, if the reaction is carried out in presence of catalyst, then the ratio will be A. $g t 8.0$
B. It8.0
C. 8
D. It8.0

Answer: C

- Watch Video Solution

16. At a given temperature, a closed vessel contains NH_{3} gas and solid $\mathrm{NH}_{4} \mathrm{HS}$. The pressure of NH_{3} gas in the vessel is 0.50 atm . On dissociation, $\mathrm{NH}_{4} \mathrm{HS}$ produces NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ gases. The total pressure in the flask at equilibrium is 0.84 atm. The equilibrium constant for the dissociation reaction (KP) of $\mathrm{NH}_{4} \mathrm{HS}$ is-
A. $0.30 \mathrm{~atm}^{2}$
B. $0.16 \mathrm{~atm}^{-2}$
C. $0.11 \mathrm{~atm}^{2}$
D. $0.22 \mathrm{~atm}^{-2}$

Answer: C

17. $\mathrm{N}_{2} \mathrm{O}_{4}$ is dissociated to 33% and 40% at total pressures P_{1} and P_{2} atm respectively. Hence, the ratio of P_{1} to P_{2} is
A. $\frac{7}{3}$
B. $\frac{8}{3}$
C. $\frac{8}{5}$
D. $\frac{7}{4}$

Answer: C

- Watch Video Solution

18. The reaction $A(g)+2 B \Leftrightarrow 2 C(g)+D(g)$ was studied using an initial concentration of B which was 1.5 times that of A. The equilibrium concentration of A and C were found to be equal. So, K_{c} for the equilibrium is-
A. 4
B. 0.32
C. 2.73
D. 8.17

Answer: B

- Watch Video Solution

19. The equilibrium constant $K_{p 1}$ and $k_{p 2}$ for the reactions $x \Leftrightarrow 2 y$ and $z \Leftrightarrow p+q$ respectively are in the ratio of $1: 9$. If the degree of dissociation of X and z be equal then the ratio of total pressure at these equilibrium is-
A. 1:36
B. 1: 1
C. 1:3
D. $1: 9$

D Watch Video Solution

20. If the equilibrium constant for mutarotation $\propto-0$-glucose β-Dglucose is 1.8 . Then the percentage of the a -form in the equilibrium mixture is-
A. 64.5
B. 35.7
C. 53.7
D. 44.8

Answer: B

21. The reaction, $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{g})$ is at equilibrium in a closed vessel under a given set of conditions. If the degree of dissociation of CO_{2} at equilibrium is α and the total pressure of the equilibrium mixture and the value of equilibrium constant are P and K_{p} respectively, then α
A. $\frac{K_{p}}{\sqrt{2 P}}$
B. $\frac{1}{2} \sqrt{\frac{K_{p}}{P}}$
C. $\frac{\sqrt{K_{p}}}{P}$
D. $\sqrt{\frac{P}{K_{p}}}$

Answer: B

- View Text Solution

22. At a given temperature, the equilibrium constant K_{c} for the reaction, $A+B \rightarrow C$ is 10 . At the same temperature the reaction is allowed to occur in a closed vessel of volume 1L. At a particular moment of time
during the reaction, if the amount of A, B and C in the reaction system are $0.1,0.4$ and 0.3 mol respectively then-
A. the reaction is in equilibrium at that moment
B. the reaction will occur to a greater extent towards left to attain equilibrium
C. the reaction will occur to a greater extent towards right to attain equilibrium
D. reaction will occur to greater extent towards left for achieving equilibrium and concentrations of reactants and products will be the same at new equilibrium

Answer: C

Watch Video Solution

23. A mixture containing N_{2} and H_{2} in a mole ratio $1: 3$ is allowed to attain equilibrium when 50% of the mixture has reacted. If P is the
pressure at equilibrium, then the partial pressure of NH_{3} formed is
A. $P / 3$
B. $P / 2$
C. P/9
D. $\mathrm{P} / 5$

Answer: A

- Watch Video Solution

24. If the concentration of OH^{-}ions in the reaction ${ }^{`} \mathrm{Fe}(\mathrm{OH})_{-} 3(\mathrm{~s})$
A. 64 times
B. 4 times
C. 8 times
D. 16 times

Answer: A

25. The equilibrium constant $\left(K_{P}\right)$ for the decomposition of gaseous $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$, is related to degree of dissociation (\propto) at a total pressure (P) as-
A. $K_{p}=\frac{\alpha^{3} p^{1 / 2}}{(1+\alpha)(2+\alpha)^{1 / 2}}$
B. $K_{p}=\frac{\alpha^{3} p^{3 / 2}}{(1+\alpha)(2+\alpha)^{1 / 2}}$
C. $K_{p}=\frac{\alpha^{3} p^{2 / 2}}{(1+\alpha)(2+\alpha)^{1 / 2}}$
D. $K_{p}=\frac{\alpha^{3 / 2} p^{1 / 2}}{(1-\alpha)(2+\alpha)^{1 / 2}}$

Answer: D

- Watch Video Solution

26. 2 mol of $\mathrm{PCl}_{5}(\mathrm{~g})$ is heated at a given temperature in a closed vessel of volume 2L. As a result, $\mathrm{PCl}_{5}(\mathrm{~g})$ dissociates and forms $\mathrm{PCl}_{3}(\mathrm{~g})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$.

When the dissociation reaction reaches equilibrium, it is found that 50% of $\mathrm{PCl}_{5}(\mathrm{~g})$ has dissociated. K_{c} for the reaction is
A. 0.15
B. 0.3
C. 0.25
D. 0.5

Answer: D

- Watch Video Solution

27. At a given temperature, the reaction, 'SO_2Cl_2(g)
A. The concentration of $\mathrm{SO}_{2}(\mathrm{~g})$ will increase
B. the concentration of $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ will increase
C. the concentration of $\mathrm{SO}_{2}(\mathrm{~g}), \mathrm{Cl}_{2}(\mathrm{~g}), \mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ will remain the same
D. the value of equibrium constant will decrease

Answer: C

D View Text Solution

28. The reaction $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(g) \Leftrightarrow 2 \mathrm{CO}_{2}(g)$ is in a state of equilibrium in a closed vessel at a constant temperature. The equilibrium of the reaction will shift towards left and get re-established if at constant temperature and volume some amount of-
A. $C(s)$ is removed from the reaction system
B. $\mathrm{CO}_{2}(\mathrm{~g})$ is added to the reaction system
C. $\mathrm{CO}_{2}(\mathrm{~g})$ is removed form the reaction system
D. $\mathrm{CO}(\mathrm{g})$ is removed from the reaction system

Answer: C

D Watch Video Solution

29. The pair of compound which cannot exist together in solution is-
A. NaHCO_{3} and NaOH
B. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3}
C. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOH
D. NaHCO_{3} and NaCl

Answer: A

- Watch Video Solution

30. Equimolar solutions of the following were prepared in water separately. Which of the solutions will have the highest pH -
A. SnCl_{2}
B. BaCl_{2}
C. MgCl_{2}
D. CaCl_{2}

Answer: B

- Watch Video Solution

31. A student wants to prepare a saturated solution of Ag^{+}ion He has got only three samples of $\mathrm{Ag}-\mathrm{AgCl}$
$\left(K_{s p}=1.8 \times 10^{-18}\right)$,
AgBr
$\left(K_{s p}=5 \times 10^{-13}\right) \quad$ and
$\mathrm{Ag}_{2} \mathrm{CrO}_{4}\left(K_{\text {sp }}=2.4 \times 10^{-12}\right)$. Which compound should he take to obtain maximum $\left[\mathrm{Ag}^{+}\right]$
A. AgCl
B. AgBr
C. $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$
D. none of these

Answer: C

32. Correct relationship between pH of isomolar solutions of sodium oxide $\left(p H_{1}\right)$, sodium sulphide $\left(p H_{2}\right)$, sodium selenide $\left(p H_{3}\right)$ and sodium telluride $\left(\mathrm{pH}_{4}\right)$ is-
A. $p H_{1}>p H_{2}>p H_{3}>p H_{4}$
B. $\mathrm{pH}_{1}<\mathrm{pH}_{2}<\mathrm{pH} \mathrm{H}_{3}<\mathrm{pH}_{4}$
C. $\mathrm{pH}_{1}<\mathrm{pH} \mathrm{H}_{2}<\mathrm{pH} \mathrm{H}_{3}<\mathrm{pH}_{4}$
D. $p H_{1}>p H_{2}=p H_{3}>p H_{4}$

Answer: A

- Watch Video Solution

33. Solubility product constant $\left(K_{s p}\right)$ of salts of type $M X M X_{2} \& M_{3} X$ at temperature TK are $4.0 \times 10^{-8}, 3.2 \times 10^{-14} \& 2.7 \times 10^{-15}$ respectively. Solubility $\left(\right.$ moldm $\left.{ }^{-3}\right)$ of the salts at temperature T are in the order-

$$
\text { A. } M X>M X_{2}>M_{3} X
$$

B. $M_{3} X>M X_{2}>M X$
C. $M X_{2}>M_{2} X>M X$
D. $M X>M_{3} X>M X_{2}$

Answer: D

- Watch Video Solution

34. If the solubilities of AgCl in $\mathrm{H}_{2} \mathrm{O}, 0.01(\mathrm{M}) \mathrm{CaCl}_{2}, 0.01(\mathrm{M}) \mathrm{NaCl}$ and $0.05(\mathrm{M}) \mathrm{AgNO}_{3}$ are S_{1}, S_{2}, S_{3} and S_{4} respectively, then-
A. $A S_{1}>S_{2}>S_{3}>S_{4}$
B. $S_{1}>S_{2}=S_{3}>S_{4}$
C. $S_{1}>S_{3}>S_{2}>S_{4}$
D. $S_{4}>S_{2}>S_{3}>S_{1}$

Answer: C

35. The degree of hydrolysis of a salt of weak acid and weak base in its $0.01(\mathrm{M})$ solution is found to be 50%. If the molarity of the solution is $0.2(M)$, the percentage hydrolysis of the salt should be
A. 1
B. 0.5
C. 0.25
D. 0.1

Answer: B

- Watch Video Solution

36. The first and second dissociation constants of an acid $\mathrm{H}_{2} \mathrm{~A}$ are 1.0×10^{-5} and 5.0×10^{10} respectively. The overall dissociation constant of the acid will be-
A. 5.010^{-5}
B. 5.0×10^{15}
C. 5.0×10^{-15}
D. 0.2×10^{5}

Answer: C

- View Text Solution

37. If three salts $P_{2} X, Q Y_{2}$ and $R Z_{3}$ have the same solubilities in water then the correct relation among their $K_{s p}{ }^{\text {' }}$ values is-
A. $K_{s p}\left(P_{2} X\right)=K_{s p}\left(Q Y_{2}\right)<K_{s p}\left(R Z_{3}\right)$
B. $K_{s p}\left(P_{2} X\right)>K_{s p}\left(Q Y_{2}\right)=K_{s p}\left(R Z_{3}\right)$
C. $K_{s p}\left(P_{2} X\right)=K_{s p}\left(Q Y_{2}\right)=K_{s p}\left(R Z_{3}\right)$
D. $K_{s p}\left(P_{2} X\right)>K_{s p}\left(Q Y_{2}\right)>K_{s p}\left(R Z_{3}\right)$
38. The pH of the solution obtained by mixing 20 mL of $0.01(\mathrm{M}) \mathrm{Ca}(\mathrm{OH})_{2}$ and 30 mL of 0.1 (M) HCl solution is-
A. 0.32
B. 9.85
C. 11.3
D. 4.74

Answer: C

D View Text Solution

39. The pH of an aqueous solution of HCl is 3.0 and that of an aqueous solution of NaOH is 12 . The pH of the solution obtained by mixing 100 mL of NaOH solution with 500 ml of HCl solution is-
A. 6.71
B. 10.92
C. 12.05
D. 3.08

Answer: B

- Watch Video Solution

40. At $25^{\circ} \mathrm{C}$, the pH of $0.1(\mathrm{M})$ aqueous solution of NH_{3} is 11.13. At the same temperature, the pH of a solution containing 0.1 (M) of $\mathrm{NH}_{4} \mathrm{Cl}$ and $0.01(\mathrm{M})$ of NH_{3} is
A. 4.74
B. 6.25
C. 8.26
D. 9.34

- Watch Video Solution

41. $800 \mathrm{~mL} 0.1(\mathrm{M}) \mathrm{HCl}$ solution is mixed with $200 \mathrm{~mL} 0.5(\mathrm{M})$
$\mathrm{CH}_{3} \mathrm{NH}_{2}$ solution. In the resulting solution, concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions is $\left[\mathrm{K}_{b}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)=5 \times 10^{-4}\right]$ is
A. $3 \times 10^{-5}(M)$
B. $1.25 \times 10^{-4}(M)$
C. $8 \times 10^{-11}(M)$
D. $7.2 \times 10^{-10}(M)$

Answer: C

D Watch Video Solution

42. A solution of a weak acid $\left(K a=10^{-5}\right)$ has a molarity of $(M / 5)$. IOmL of this solution is neutralised completely with a NaOH solution of molarity $(M / 20)$. At the neutralisation point, concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions $\left(\mathrm{mol} \cdot \mathrm{L}^{-1}\right)$ is -
A. 4.39×10^{-5}
B. 1.25×10^{-6}
C. 7.02×10^{-6}
D. 1.58×10^{-9}

Answer: D

- View Text Solution

43. At $25^{\circ}, K_{s p}$ for PbCl_{2} is 1.6×10^{-5} in water. At the same temperature, the amount of PbCl_{2} (molar mass $=278.19 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$) that remains in dissolved state in 100 mL of a saturated solution of PbCl_{2} is-
A. 0.28 g
B. 0.44 g
C. 0.17 g
D. 0.35 g

Answer: B

- Watch Video Solution

44. At $25^{\circ} \mathrm{C}$, the solubility product for $\mathrm{Cd}(\mathrm{OH})_{2}$ in water is 1.2×10^{-14}. What would be the pH of an aqueous solution of $0.01(\mathrm{M}) C d^{2+}$ ions when $\mathrm{Cd}(\mathrm{OH})_{2}$ will start precipitating-
A. 4.29
B. 5.6
C. 8.04
D. 7.56

Answer: C

D Watch Video Solution

45. At 25° the solubility product of a salt $A B_{2}$ in water is 4.0×10^{-15}. If 0.1 mol of A^{2-} ions is added to 1 L of a saturated solution of the salt (assuming volume of the solution does not change on addition of A^{2-} ions), then
A. solubility product of $A B_{2}$ will increase
B. solubility product of $A B_{2}$ will decrease
C. conc. Of B^{-}ions in solution will be $2 \times 10^{-7} \mathrm{~mol} \cdot L^{-1}$
D. solubility of $A B_{2}$ in solution will be $4 \times 10^{-10} \mathrm{molL} \cdot-1$

Answer: C

- Watch Video Solution

46. At $25^{\circ}, K_{\text {sp }}$ for $\mathrm{Al}(\mathrm{OH})_{3}$ in water is 2×10^{-33}. In an aqueous solution of $P H=13$, the solubility of $\mathrm{Al}(\mathrm{OH})_{3}$ is 2×10^{-x}. The value of x is-
A. 10
B. 15
C. 22
D. 30

Answer: D

- Watch Video Solution

47. At $25^{\circ}, K_{a}$ for a weak acid, HA in water, is $10^{-5}, V_{2} m L$ of $0.1(\mathrm{M}) \mathrm{NaOH}$ solution is added to $V_{1} m L$ of $0.1(\mathrm{M})$ solution of HA. How many time would V_{1} be of V_{2} so that pH of the solution be 6-
A. 2 times
B. 1.5 times
C. 1.1 times
D. 1.4 times

Answer: C

- View Text Solution

48. In a buffer solution consisting of NaCN and $\mathrm{HCN},[\mathrm{NaCN}]=0.18(\mathrm{M})$ and $[\mathrm{HCN})=0.16(\mathrm{M})$. If 2 millimoles of HCl is added to 100 mL of this buffer solution (assuming volume of the solution remains the same because of the addition of HCl), then pH of the buffer will-
A. increase by 0.021 unit
B. decrease by 0.102 unit
C. increase by 0.11 unit
D. decrease by 0.012 unit

Answer: B

49. At $25^{\circ} \mathrm{C}, \mathrm{K}_{b}$ for $\mathrm{CH}_{3} \mathrm{COO}^{0-}$ ion in water is 5.55×10^{-10} If 100 mL of $0.025(\mathrm{M}) \mathrm{HCl}$ solution is added to 50 mL of $0.1(\mathrm{M})$ solution of $\mathrm{CH}_{3} \mathrm{COONa}$, pH of the resulting solution will be-
A. 3.82
B. 8.64
C. 4.74
D. 7.8

Answer: C

- Watch Video Solution

50. Which of the given mixed solutions will not lead to precipitation at 25° water (Given: $K_{s p}\left(\mathrm{CaF}_{2}\right)=3.9 \times 10^{-11}, K_{s p}\left[\mathrm{Zn}(\mathrm{OH})_{2}\right]=4.5 \times 10^{-17}$, $K_{\text {sp }}\left[\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right]=9.0 \times 10^{-12}$ and $\left.K_{\text {sp }}\left[\mathrm{PbSO}_{4}\right]=1.8 \times 10^{-8}\right)$.
A. solution of $10^{-3}(\mathrm{M}) \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ and $10^{-3}(\mathrm{M}) \mathrm{NaF}$ are mixed in equal volumes
B. solution of $10^{-3}\left(\mathrm{M}_{\mathrm{ZnCl}}^{2} 2\right.$ and $10^{-2}(\mathrm{M}) \mathrm{NaF}$ are mixed in equal volumes
C. solution of $10^{-4}(\mathrm{M}) \mathrm{AgNO}_{3}$ and $10^{-4}(\mathrm{M}) \mathrm{NaF}$ are mixed in equal volumes
D. solution of $2 \times 10^{-4}(\mathrm{M}) \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and $10^{-3}(\mathrm{M}) \quad \mathrm{Na}_{2} \mathrm{SO}_{4}$ are mixed in equal volumes

Answer: C

- View Text Solution

51. 100 mL of ($\mathrm{M} / 10$) aqueous solution of a monoprotic acid is titrated with a solution of NaOH . When one-third of the acid is neutralised, pH of the solution becomes 3.9. pH of the solution at half-neutralisation point is-
A. 5.8
B. 4.2
C. 3.6
D. 6.3

Answer: B

- Watch Video Solution

52. At $25^{\circ} \mathrm{C}, \mathrm{K}_{\text {sp }}$ value for $\mathrm{Hg}_{2} \mathrm{Br}_{2}$ and $\mathrm{Hg}_{2} \mathrm{I}_{2}$ are 1.3×10^{-22} and 1.1×10^{-18} respectively. In a solution containing KBr and KI , concentration of each is $0.01(\mathrm{M})$. To this solution, a $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}$, solution is added drop by drop. The concentration of the remaining Br^{-}ions at the $K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.8 \times 10^{-5}$ then increasing order of the pH values of the solutions-
A. $3.2 \times 10^{-4}(M)$
B. $1.08 \times 10^{-4}(M)$
C. $6.50 \times 10^{-7}(M)$
D. $4.61 \times 10^{-7}(M)$

Answer: B

- View Text Solution

53. The concentration of the aqueous solutions of each of the following salts is 0.01 (M)
$\mathrm{KF}, \mathrm{CH}_{3} \mathrm{~N}^{\oplus} \mathrm{H}_{3} \mathrm{C}^{\oplus} \mathrm{l}, \mathrm{KCl}, \mathrm{CH}_{3} \mathrm{COOH}$
If

$$
K_{a}(H F)=7.0 \times 10^{-4}, K_{b}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)=5 \times 10^{-4} \quad \text { and }
$$

$K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.8 \times 10^{-5}$ then increasing order of the pH values of the solutions-
A. $\mathrm{KCl}<\mathrm{KF}<\mathrm{CH}_{3} \mathrm{~N}^{\oplus} \mathrm{H}_{3} \mathrm{Cl}^{\oplus}<\mathrm{CH}_{3} \mathrm{COOH}$
B. $\mathrm{KCl}<\mathrm{KCl}<\mathrm{CH}_{3} \mathrm{~N}^{\oplus} \mathrm{H}_{3} \mathrm{Cl}^{\oplus}<\mathrm{CH}_{3} \mathrm{COOH}$
C. $\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{CH}_{3} \mathrm{~N}^{\oplus} \mathrm{H}_{3} \mathrm{C}^{\oplus} \mathrm{I}<\mathrm{KCl}<\mathrm{KF}$
D. $\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{KCl}<\mathrm{CH}_{3} \mathrm{~N}^{\oplus} \mathrm{H}_{3} \mathrm{C}^{\oplus} \mathrm{l}<\mathrm{KF}$

Answer: C

- View Text Solution

54. An aqueous solution of a monoacidic base(B) is neutralised with 50 mL of $0.2(\mathrm{M}) \mathrm{HCl}$ solution. After neutralisation, 200 mg of NaOH is added to the solution The pH of the solution will be $\left[K_{b}(B)=10^{-5}\right]$
A. 6
B. 7.5
C. 8.3
D. 9

Answer: D

- Watch Video Solution

55. At a given temperature, pH of $0.01(\mathrm{M})$ aqueous solution o. nitrous acid is 2.67 . The concentration of OH^{-}ions in $0.1(\mathrm{M})$ aqueous solution of nitrous acid is-
A. $2.57 \times 10^{-10}(M)$
B. $1.48 \times 10^{-12}(M)$
C. $3.07 \times 10^{-9}(M)$
D. $1.17 \times 10^{-9}(M)$

Answer: B

- Watch Video Solution

56. Which of the following solution will have a pH of 10 (B is a weak base and its $p K_{b}=5$)
A. 75 mL of $(\mathrm{M} / 10) \mathrm{B}+25 \mathrm{~mL}$ of $(\mathrm{M} / 10) \mathrm{HCl}$
B. 55 mL of $(\mathrm{M} / 10) \mathrm{B}+45 \mathrm{~mL}$ of $(\mathrm{M} / 20) \mathrm{HCl}$
C. 50 mL of $11 / 10) \mathrm{B}+50 \mathrm{~mL}$ of $(\mathrm{M} / 10) \mathrm{HCl}$
D. 40 mL of $(\mathrm{M} / 10) \mathrm{B}+60 \mathrm{~mL}$ of $(\mathrm{M} / 10) \mathrm{HCl}$

Answer: C

- Watch Video Solution

57. A and B are two solutions, each of which has a volume of 1 L . The solution A contains 1 mol of $\mathrm{NH}_{4} \mathrm{CI}$ and $1 \mathrm{~mol}<\mathrm{NaOH}$, while the solution B contains 1 mol of $\mathrm{NH}_{4} \mathrm{Cl}$ and 1 mol of NH_{3}. If pH values of the solutions A and are (pH) A and (pH) 8 respectively and pK b for $\mathrm{NH}_{3} 4.74$, then the ratio of $(\mathrm{pH})_{A}$ and $(\mathrm{pH})_{B}$ is-
A. 1.85
B. 1.25
C. 2.01
D. 2.46

- View Text Solution

58. In a closed vessel, the reaction $2 A+3 B \Leftrightarrow 4 C+2 D$ is maintained at a constant temperature. Initially the no. of moles of A was twice to that of B and at equilibrium B and D have equals no. of moles. At equilibrium the convert order of no. moles of A, B, C and D are-
A. $A<B<D$
B. $A>C>D$
C. $B<C<D$
D. $A>B>C$

Answer: B::C

- Watch Video Solution

59. Which of the relations are correct for the given physical change :
A. $K_{p}=p_{\mathrm{H}_{2} \mathrm{O}}^{2}$
B. $K_{c}=\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]^{2}$
C. $K_{p}=K_{c}(R T)^{2}$
D. $K_{C}=K_{p}(R T)^{2}$

Answer: A::B::C

- Watch Video Solution

60. At a given temperature, $K_{c}=6.3 \times 10^{-6}$ for the reaction $S_{8}(g) \Leftrightarrow 4 S_{2}(g)$. At the same temperature, if the reaction is started with 2 moles of $S_{8}(g)$ and 0.2 mol of $S_{2}(g)$ in a closed vessel of volume 1 L , then which of the following comments are true regarding this reaction-
A. at the beingning of the reaction $Q_{c}=8.0 \times 10^{-4}$
B. the reaction will occur to a greater extent towards right to attain equilibrium
C. the reaction will occur to a greater extent towards left to attain equilibrium
D. the concentration of S_{8} at equilibrium is greater than $2 \mathrm{~mol} \cdot L^{-1}$

Answer: A::C::D

- Watch Video Solution

61. $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, is in equilibrium in a closed container of volume 1 L at a given temperature. If the reaction is started with $1 \mathrm{~mol} \mathrm{NH}_{3}(\mathrm{~g})$ and 1 mol of $\mathrm{O}_{2}(\mathrm{~g})$ and the number of mol of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at equilibrium is 0.6 mol , then at equilibrium-
A. $\left[\mathrm{NH}_{3}\right]=[\mathrm{NO}]$
B. $[\mathrm{NO}]<\left[\mathrm{O}_{2}\right]$
C. $[\mathrm{NO}]>\left[\mathrm{NH}_{3}\right]$
D. $\left[\mathrm{O}_{2}\right]<\left[\mathrm{H}_{2} \mathrm{O}\right]$

D View Text Solution

62. The reaction, $C(s)+H_{2} O(g) \Leftrightarrow C O(g)+H_{2}(g), \Delta H>0$, is in equilibrium. At equilibrium-
A. if temperature is increased, the partial pressure of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ will decrease
B. concentration of $\mathrm{H}_{2}(\mathrm{~g})$ will decrease if an inert gas is added at constant temperature and volume
C. concentration of $\mathrm{CO}(\mathrm{g})$ will increase if pressure is increased at constant temperature
D. the equilibrium will move towards right if an inert gas is added at constant temperature and pressure

Answer: A::C::D

63. The reaction, $2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}), \Delta H>0$ is in equilibrium. Which of the following changes at equilibrium will decrease the yield of NO (g)-
A. at constant temperature and volume, some amount of $\mathrm{NOCl}(\mathrm{g})$ is added to the reaction system
B. at constant temperature and volume, some amount of $\mathrm{Cl}_{2}(\mathrm{~g})$ is added to the reaction system
C. temperature is decreased at equilibrium
D. at constant temperature and pressure some amount of He gas is added to the reaction system

Answer: B::C

- Watch Video Solution

64. Vapour density of the equilibrium mixture of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ is found to be 40 for the given equilibrium $N_{2} O_{4}(g) \Leftrightarrow 2 N O_{2}(g)$. For the equilibrium-
A. 1 mole percent of $\mathrm{NO}_{2}(\mathrm{~g})$ present in the mixture is 59%
B. 1 mole percent of NO_{2} present in the mixture is 26%
C. degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 0.45
D. degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 0.15

Answer: B::D

- Watch Video Solution

65. The vapour pressure of liquid methanol at $50^{\circ} \mathrm{C}$ is 55.5 kPa .. Which are correct for equilibrium reaction attained in a closed vessel of 5 L at $50^{\circ} \mathrm{C}$ for the following equilibrium ${ }^{`} \mathrm{CH} 3 \mathrm{OH}(\mathrm{I})$
A. $K_{p}=55.5 K p a$
B. $K_{c}=0.021 \mathrm{~mol} \cdot l^{-1}$
C. $K_{-} \mathrm{c}=0.555 \mathrm{~mol}^{*}{ }^{\wedge}(-1)^{\wedge}$
D. K_p $=0.555 \mathrm{kPa}$

Answer: A::B

D Watch Video Solution

66. The reactions in which the yield of the products cannot be increased by the application of high pressure are-
A. $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}<\Rightarrow 2 \mathrm{SO}_{3}(g)$
B. $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s})<\Rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~s})$
C. $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})<\Rightarrow 2 \mathrm{NO}_{2}(g)$
D. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})<\Rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

Answer: B::C

67. Aqueous solutions of which of the following compound on dilution do not suffer any change in pH value-
A. $\mathrm{PhCOONH}_{4}$
B. $\mathrm{NH}_{4} \mathrm{CN}$
C. HCOONa
D. $\mathrm{NH}_{4} \mathrm{Cl}$

Answer: A::B

- Watch Video Solution

68. Which can act as an acid as well as a base-
A. SO_{4}^{2-}
B. HS^{-}
C. HCO_{3}^{-}
D. HSO_{4}^{-}

D Watch Video Solution

69. Which mixtures (in molar ratio) can act as buffer-
A. $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{NaOH}(3: 2)$
B. $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{NaOH}(3: 4)$
C. $\mathrm{NH}_{3}+\mathrm{HCl}(5: 4)$
D. $\mathrm{NH}_{3}+\mathrm{HCl}(4: 5)$

Answer: A::C

- Watch Video Solution

70. If equal volumes of the given solutions are mixed, precipitation of $\operatorname{AgCl}\left(K_{s p}=1.8 \times 10^{-11}\right)$ will occur only with -
A. $10^{-4}(\mathrm{M}) \mathrm{Ag}^{+}$and $10^{-4}(\mathrm{M}) \mathrm{Cl}^{-}$
B. $10^{-5}(\mathrm{M}) \mathrm{Ag}^{+}$and $10^{-5}(\mathrm{M}) \mathrm{Cl}^{-}$
C. $10^{-6}(\mathrm{M}) \mathrm{Ag}^{+}$and $10^{-6}(\mathrm{M}) \mathrm{Cl}^{-}$
D. $10^{-10}(\mathrm{M}) \mathrm{Ag}^{+}$and $10^{-10}(\mathrm{M}) \mathrm{Cl}^{-}$

Answer: A::B

- Watch Video Solution

71. Which of the following are true regarding $H_{3} \mathrm{PO}_{4}{ }^{-}$
A. $K_{a}=K_{a 1} \times K_{a 2} \times K_{a 3}$
B. $K_{a 1}<K_{a 2}<K_{a 3}$
C. $K_{a 1}>K_{a 2}>K_{a 3}$
D. $K_{a 1}=K_{a 2}=K_{a 3}$

Answer: A:C

72. Select the non-buffer solution-
A. $0.8(M) H_{2} S+0.8(M) K H S$
B. $2(M) C_{6} H_{5} \mathrm{NH}_{2}+2(M) C_{6} H_{5} N^{+} H_{3} \bar{B} r$
C. $3(\mathrm{M}) \mathrm{H}_{2} \mathrm{CO}_{3}+2(\mathrm{M}) \mathrm{KHCO}_{3}$
D. $0.05(\mathrm{M}) \mathrm{KClO}_{4}+0.05\left(\mathrm{M}_{\mathrm{MClO}}^{4}\right.$

Answer: A::B::C

- View Text Solution

73. The solubility of BaSO_{4} will be almost same in-
A. $0.1(\mathrm{M}) \mathrm{H}_{2} \mathrm{SO}_{4}$
B. $0.1(\mathrm{M}) \mathrm{Ba}(\mathrm{OH})_{2}$
C. $0.1(\mathrm{M}) \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
D. $0.2(\mathrm{M}) \mathrm{HCl}$

Answer: A::B::C

- Watch Video Solution

74. The species that can act both as Bronsted acid and as Bronsted base in water are-
A. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
B. PO_{4}^{3-}
C. HCO_{3}^{-}
D. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: A:C

75. Among the following salts, whose aqueous solutions will tum blue litmus paper red-
A. NaHCO_{3}
B. FeCl_{3}
C. KCN
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}^{\oplus} \mathrm{H}_{3} \mathrm{Cl}^{-\mathrm{o}}$

Answer: B::D

- Watch Video Solution

76. At a given temperature, the first and the second ionisation constants of the acid, $\mathrm{H}_{2} \mathrm{~A}$ are 1.0×10^{-5} and 5.0×10^{-10} respectively. Which of the following comments are true regarding this acid-
A. The concentration of A^{2-} ions in $0.01(\mathrm{M})$ aqueous solution of $\mathrm{H}_{2} \mathrm{~A}$ is
B. the overall ionisation constant for $H_{2} A$ is 5.0×10^{-15}
C. in $0.01(M)$ aqueous solution of $H_{2} A$, the molar concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions is twicet that A^{2-} ions.
D. in $0.01(\mathrm{M})$ aqueous solution of $\mathrm{H}_{2} \mathrm{~A},\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \approx\left[\mathrm{Ha}^{-}\right]$

Answer: B::D

- Watch Video Solution

77. At $25^{\circ}, K_{b}$ for $C N^{-}$(conjugate base of HCN) is 2.5×10^{-5}. If 25 mL of $0.01(\mathrm{M})$ aqueous NaOH solution is added to 50 mL of $0.01(\mathrm{M}) \mathrm{HCN}$ solution, then-
A. pH of the resulting solution is 11.2
B. pH of the resulting solution is 9.4
C. at $25^{\circ} \mathrm{C}$ the ionisation constant for HCN is 4×10^{-10}
D. at $25^{\circ} \mathrm{C}$ the ionisation constant for HCN is 2.5×10^{-5}

- Watch Video Solution

78. At a given temperature, if the solubility products for $M X, M A_{2}$ and $M_{3} B_{2}$ in water are $10^{-16}, 10^{-22}$ and 10^{-33} respectively and their solubilities are S_{1}, S_{2} and $S_{3} \mathrm{molL}^{-1}$ respectively, then-
A. $S_{1}<S_{3}$
B. $S_{3}>S_{2}$
C. $S_{2}>S_{1}$
D. $S_{2}=S_{3}$

Answer: A:B:C

79. At 25° temperature, the solubility products for BaCrO_{4} and SrCrO_{4} salts are 2.4×10^{-10} and 3.6×10^{-6} respectively. If an aqueous solution of $\mathrm{K}_{2} \mathrm{CrO}_{4}$ is added drop by drop to an aqueous solution containing Ba^{2+} and Sr^{2+} ions with concentrations of 10^{-4} and $10^{-3}(\mathrm{M})$ respectively then-
A. BaCrO_{4} will be precipitated first
B. SrCrO_{4} will be precipitated first
C. the concentration of Sr^{2+} ions will be $6.6 \times 10^{-8} \mathrm{~mol} \cdot \mathrm{~L}^{-1}$ when
Sr^{2+} ions start precipitating
D. the concentration of Ba^{2+} ions will be $6.6 \times 10^{-8} \mathrm{~mol} \cdot \mathrm{~L}^{-1}$ when Sr^{2+} ions that precipitating

Answer: A:D

- View Text Solution

80. In a buffer solution composed of NaCN and HCN
$\left(p K_{1}=9.4\right),[\mathrm{NaCN}]=0.2(\mathrm{M})$ and $[\mathrm{HCN}]=0.4(\mathrm{M})$. An aqueous solution solution contains $\mathrm{Zn}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Mn}^{2+}$ and Cr^{3+} ions, each of which has a concentration of $0.1(M)$. If 500 mL of the buffer solution is added to 500 mL of this aqueous solution, then the ions that will precipitate in theresulting solution $\quad K_{s p}\left[\mathrm{Zn}(\mathrm{OH})_{2}\right]=4.6 \times 10^{-17}$
$K_{s p}\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=8 \times 10^{-6} \quad, \quad K_{s p}\left[\mathrm{Mn}(\mathrm{OH})_{2}\right]=4.46 \times 10^{-14} \quad$ and $\left.K_{s p}\left[C r(O H)_{3}\right]=6.67 \times 10^{-31}\right]$ are -
A. $Z n^{2+}$
B. Ca^{2+}
C. $M n^{2+}$
D. Cr^{3+}

Answer: A::C::D

- View Text Solution

81. At $25^{\circ} \mathrm{C}, p K_{b}(N H)_{3}=4.74, p K_{a}(H F)=3.14$ and $p K_{a}(H C N)=9.4$ Hence-
A. aqueous solution of $\mathrm{NH}_{4} \mathrm{~F}$ is acidic
B. aqueous solution of $\mathrm{NH}_{4} \mathrm{CN}$ is acidic
C. the pH of an aqueous solution of $\mathrm{NH}_{4} \mathrm{CN}$ is greater than that of an aqueous solution of $\mathrm{NH}_{4} \mathrm{~F}$
D. the pH of an aqueous solution of both $\mathrm{NH}_{4} \mathrm{CN}$ and $\mathrm{NH}_{4} \mathrm{~F}$ are independent of the concentration of the solutions

Answer: A::C::D

- Watch Video Solution

82. Which of the following comments are true-
A. if $p K_{a}$ value for the acids HA and HB are 4 and 5 respectively. Then the concentration of OH^{-}ions in $0.1(\mathrm{M})$ aqueous solution of HB will
be greater that that in $0.1(\mathrm{M})$ aqueous solution of HA
B. pH of pure water at $0^{\circ} \mathrm{C}$ is smaller than that at $25^{\circ} \mathrm{C}$
C. The degree of hydroysis of $\mathrm{NH}_{4} \mathrm{~F}$ in its $0.1(\mathrm{M})$ and $0.2(\mathrm{M})$ aqueous solutions is the same at a particular temperature
D. pH of an acid is 5 implying that the acid is weak

Answer: A:C

- Watch Video Solution

83. A certain buffer solution contains equal concentration of A^{-}and HA. K_{b} for A^{-}is 10^{-10}. Hence-
A. K_{a} for HA is 10^{-5}
B. K_{a} for HA is 10^{-4}
C. pH of the buffer is 4
D. pH of the buffer is 9

- Watch Video Solution

84. A buffer solution containing NH_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$ has a pH value of 9. pK b for NH_{3} is 4.7. If in the buffer solution total concentration of buffering reagents is $0.6 \mathrm{~mol}^{-1}$, then the amount of-
A. NH_{3} in the solution is $3.4 \mathrm{~g} \cdot L^{-1}$
B. $\mathrm{NH}_{4} \mathrm{Cl}$ in the solution is $8.9 \mathrm{~g} \cdot L^{-1}$
C. $\mathrm{NH}_{4} \mathrm{Cl}$ in the solution is $21.4 \mathrm{~g} \cdot L^{-1}$
D. NH_{3} in the solution is $17.5 g \cdot L^{-1}$

Answer: A:C

- Watch Video Solution

1. A liquid in an open vessel cannot remain in equilibrium with its vapour. Justify.

Watch Video Solution

2. At $0^{\circ} \mathrm{C}$ and 1 atm pressure, the relative amounts of water and ice remain unchanged with time in the equilibrium water `

- Watch Video Solution

3. At a constant temperature and pressure, what is the value of ΔG for a reaction at equilibrium ?

- Watch Video Solution

4. For a chemical reaction, $K_{c}>1$. Will the value of ΔG^{0} for this reaction be negative or positive ?
5. Find the relation between K_{p} and K_{c} for the following system :
'2NaHCO_3(s)

- Watch Video Solution

6. The values of equilibrium constant for a particular reaction at $25^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ are 0.08 and 0.12 respectively. State whether it is an exothermic or an endothermic reaction.

- Watch Video Solution

7. If $\mathrm{mol} \cdot L^{-1}$ and 'atm' be the units of concentration and pressure respectively, then what will be the value of K_{p} / K_{c} for the reaction, 'N_2O_4(g)
8. Give an example of a reaction for which, $K_{p}=K_{c}=K_{x}$

- Watch Video Solution

9. Consider the reaction : $A(s)+2 B_{2}(g) \rightarrow A B_{4}(g), \Delta H<0$. At equilibrium, what would be the effect of increasing temperature on the concentration of $B_{2}(g)$?

- Watch Video Solution

10.

For
the
reaction,
'N_2O_4(g)0
mentiontwofac \rightarrow rswhosechan \geq atequilibriumofthereactionwill \in creasetheyiel،
NO_2(g)'

- View Text Solution

11. Give an example of a reaction for which K_{p} / K_{c} Independent of temperature.

Watch Video Solution

12. At a given temperature, if the total pressure of the equilibrium mixture of the reaction,
$A(s) \Leftrightarrow B(g)+C(g)$ is P , then what is the value of K_{p} ?

- Watch Video Solution

13. What are the conjugate acid and conjugate base of HPO_{4}^{2-}

- Watch Video Solution

14. What are the conjugate acid and conjugate base of $\mathrm{H}_{2} \mathrm{O}$?
15. K_{b} for $\mathrm{NH}_{3}=1.8 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$. What is the value of K_{a} for NH_{4}^{+}ion at the same temperature ?

- Watch Video Solution

16. For pure water, $p K_{w}=12$ at a certain temperature. At this temperature, what is the molar concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$in a neutral aqueous solution?

- Watch Video Solution

17. At a certain temperature, $p K_{w}$ for pure water is 12 . At the same temperature, the concentration of $H_{3}^{O} \wedge+$ in aqueous solution is $10^{-8} \mathrm{~mol} \cdot \mathrm{~L}^{-1}$. Is this solution acidic or basic?

- Watch Video Solution

18. pH of a sample of pure water is x at a certain temperature. Find the value of $p K_{w}$ at that temperature

- Watch Video Solution

19. $p K_{a}$ values for two acids, HA and HB are 4 and 6 respectively. Which one is the stronger acid?

- Watch Video Solution

20. $p K_{a}$ values for two acids, HA , and HB are 4 and 5 respectively.' If each of the acid solution has a concentration of $0.1(M)$, then in which solution the molar concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ion is greater ?

- Watch Video Solution

21. At $25^{\circ} \mathrm{C}, p K_{a}$ for weak acid, $\mathrm{HA}=\mathrm{x}$ and $p K_{b}$ for A^{-}the conjugate base of $\mathrm{HA}=\mathrm{y}$. find the value of $(\mathrm{x}+\mathrm{y})$ at this temperature.

Watch Video Solution

22. Give examples of two salts in case of which the pH value of their aqueous solutions are independent of their concentrations

- Watch Video Solution

23. For a weak acid, $\mathrm{HA} p K_{a}=5$. What is the effective range of pH for a buffer comprised of HA and its salt, NaA ?

- Watch Video Solution

24. Give examples of two buffer solutions prepared by mixing two salt solutions of a polybasic acid

- Watch Video Solution

25. In a buffer solution comprising a weak base (B) and its ion $\left(B H^{+}\right),[\mathrm{B}]=\left[B H^{+}\right]$. If K_{b} for the weak base $=10^{-5}$ Then find the pH value of the buffer solution.

- Watch Video Solution

26. 100 mL of 0.05 (M) NaOH solution is added to a 100 mL of 0.1 (M)
$\mathrm{NaH}_{2} \mathrm{PO}_{4}$ solution. Will the mixed solution act as a buffer ?

- Watch Video Solution

FILL IN THE BLANKS

1. At a given temperature for a reversible reaction, $\mathrm{K}<\mathrm{I}$. The rate constant of the forward reaction is \qquad than that of the reverse reaction.
2. If $K<I$ for a reaction at a particular temperature, then the value of ΔG^{0} is \qquad

- Watch Video Solution

3. For a gaseous reaction, $K_{p}>K_{C}$ Increase in pressure at constant temperature will \qquad the concentration of the product.

- Watch Video Solution

4. If $\mathrm{C}(\mathrm{s})$ is added to the reaction system $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{g})$ at constant temperature and volume, then the concentration of $\mathrm{CO}_{2}(\mathrm{~g})$ will

- Watch Video Solution

5. For the reaction ,'COCl_2(g)0', increase in temperature at equilibrium will increase the concentration of \qquad

- Watch Video Solution

6. Addition of inert gas to the reaction-system
‘PCl_5(g)

- Watch Video Solution

7. At a particular temperature, $p K_{w}$ for pure water=12. Its pH will be \qquad

- Watch Video Solution

8. First and second ionisation constants of $\mathrm{H}_{2} \mathrm{~S}$ in its aqueous solution are x and y respectively. So, x is \qquad than y .
9. The conjugates base of $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is

- Watch Video Solution

10. The conjugate acid and conjugate base of HPO_{4}^{2-} are \qquad and respectively.

Watch Video Solution
11. The $25^{\circ} \mathrm{C}$, in an aqueous solution of HA, K_{a} for $\mathrm{HA}=10^{-6} . K_{b}$ for A^{-}ion is \qquad
12. If the solubility of $\mathrm{Ag}_{3} \mathrm{PO}_{4} \mathrm{n}$ its saturated aqueous solution be $\mathrm{S}(\mathrm{M})$, then, its solubility product will be \qquad

Watch Video Solution

13. The solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in an aqueous solution of AgNO_{3} is than its solubility in pure water.

- Watch Video Solution

14. Addition of $\mathrm{CH}_{3} \mathrm{COONa}$ to an aqueous solution of $\mathrm{CH}_{3} \mathrm{COOH}$ the pH value.

- Watch Video Solution

SHORT TYPE QUESTIONS

1. At a particular temperature, the values of equilibrium constants for the reactions, $X+Y \Leftrightarrow X Y$ and $M+N \Leftrightarrow M N$ are 10^{3} and 10^{-2} respectively. At this temperature, which one is more stable, XY or MN ?

- Watch Video Solution

2. At constant temperature, melting of ice is favoured by increase in pressure-why?

- Watch Video Solution

3. If the reaction ${ }^{\mathrm{Fe}}$ - $2 \mathrm{O} 3(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g})$

- View Text Solution

4. Under what conditions of pressure and temperature, will the yield of $\mathrm{Cl}(\mathrm{g})$ be increased in the reaction

$\mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{Cl}(\mathrm{g}) ?$

- Watch Video Solution

5.

Given
'PCI_5(g)0
.Mentiontwofac $\rightarrow r$ swhosechan \geq atequilibriumwill \in creasetheyieldof PCI_5(g)'

D View Text Solution

6. Will the same result be obtained if $\mathrm{CaCO}_{3}(s)$ is heated in an open vessel and in a closed vessel separately?

- Watch Video Solution

7. The equilibrium constant of a reversible reaction at a particular temperature is K. What Will be the values of reaction quotient (Q) at the beginning and at equilibrium of the reaction?
8. ${ }^{\mathrm{NH}}$ _ 4 CO _2 $2 \mathrm{NH}_{2} 2(\mathrm{~s})$

- View Text Solution

9. Would there be any change in the values of K_{p} and K_{c} if the partial pressure of each of the constituents of the reaction system, $2 \mathrm{~A}(\mathrm{~g})$

- Watch Video Solution

10. Show with proper examples that both HPO_{4}^{2-} ion and $\mathrm{H}_{2} \mathrm{O}$ can act as Bronsted acid as well as Bronsted base.

- Watch Video Solution

11. Mention the conjugate base for each of the following:
$\mathrm{HS}^{-}, \mathrm{CH}_{3} \mathrm{~N}^{+} \mathrm{H}_{3},\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$

- Watch Video Solution

12. Mention the conjugate acids of the given bases: OH^{-}, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}, \mathrm{CO}_{3}^{2-}, \mathrm{N}_{3}^{-}$

- Watch Video Solution

13. Concentrations of $\mathrm{CH}_{3} \mathrm{COOH}$ in the two aqueous solutions, A and B , are $10^{-2}(\mathrm{M})$ and $10^{-4}(\mathrm{M})$ respectively. Show that, the difference in pH values of the two solutions is one unit.

- Watch Video Solution

14. $p K_{a}(H A)>p K_{a}(H B)>p K_{a}(H C)$, where HA, HB and HC are three weak acids. Arrange these acids in the increasing order of their pH values if the concentration of each of them is $0.1(\mathrm{M})$.

- Watch Video Solution

15. Show that $p H+p O H=14$ for pure water at $25^{\circ} \mathrm{C}$

- Watch Video Solution

16. Show that at any temperature, for pure water $p H=p O H=\frac{1}{2} p K_{w}$

- Watch Video Solution

17. Show that, $p K_{a}+p K_{b}=p K_{b}$ where K_{b} and K_{a} are the ionisation constants of weak base (B) and its conjugate acid. $\left(\mathrm{BH}^{+}\right)$respectively.
18. Will the pH values of $0.1(\mathrm{M}) \mathrm{HCl}$ and $0.1(\mathrm{M}) \mathrm{CH}_{3} \mathrm{COOH}$ solutions be the same or different? Give reason.

- Watch Video Solution

19. Discuss the buffer action of a buffer solution prepared by mixingm $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ solutions.

- Watch Video Solution

20. With rise in temperature, the pH of pure water decreases. Explain.

- Watch Video Solution

21. How is the normal pH of human blood maintained?
22. pH of a buffer does not change remarkably with dilution. Why?

- Watch Video Solution

23. $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ undergoes hydrolysis, although its aqueous solution is neutral. Explain with reason

- Watch Video Solution

24. What will happen if a solution of KCl is added to a saturated solution of PbCl_{2} ? Given reason.

- Watch Video Solution

25. Why does not ZnS get precipitated when $\mathrm{H}_{2} \mathrm{~S}$ is passed through an acidic solution of Zn -salt?

LONG TYPE QUESTIONS

1. Define law of mass action. Mention two important characteristics of chemical equilibrium.

- Watch Video Solution

2. Establish the relation between K_{p} and K_{c} in case of the reaction,
'3A(g) $+2 \mathrm{~B}(\mathrm{~g})$

- Watch Video Solution

3. All chemical reaction are reversible in nature-Explain

-
 Watch Video Solution

4. ${ }^{`}{ }^{\text {CaCO_3 }} 3(\mathrm{~s})$ For the given reaction at equilibrium, prove that pco_{2} always has a fixed value at a particular temperature and it is independent of the amount of $\mathrm{CaCO}_{3}(\mathrm{~s})$

- Watch Video Solution

5. If a chemical reaction occurs in two or more steps, then the equilibrium constant of the net reaction is equal to the product of equilibrium constants of the individual steps.

(Watch Video Solution

6. The value of equilibrium constant of a reaction at a particular temperature does not depend on the initial concentrations of the reactants.
7. Equilibrium constant is unitless. Explain.

- Watch Video Solution

8. Explain the equilibrium established in the evaporation of a liquid in a closed vessel at a particular temperature from the molecular point of view.

- Watch Video Solution

9. Chemical equilibrium is dynamic in nature. Prove it with the help of a proper example.

- Watch Video Solution

10. $2 A B_{2}(g) \rightarrow 2 A B(g)+B_{2}(g)$ If the total pressure of the reaction mixture
$=\mathrm{P}$, number of moles of $B_{2}(g)=x$ and equilibrium constant $=K_{p}$, then
prove that, $x=\left(\frac{2 K_{p}}{P}\right)^{1 / 3}$ (Suppose, $\mathbf{x}<1$)

- Watch Video Solution

11. Discuss the effect of the following on equilibrium of the reaction:
$C(s)+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}), \Delta \mathrm{H}^{0}>\mathrm{O}$
temperature is decreased

- Watch Video Solution

12. Discuss the effect of the following on equilibrium of the reaction:
'C(s)+H_2O(g)0`

Concentration of $\mathrm{C}(\mathrm{s})$ is increased

- Watch Video Solution

13. Discuss the effect of the following on equilibrium of the reaction: ' $\mathrm{C}(\mathrm{s})+\mathrm{H}_{-} 2 \mathrm{O}(\mathrm{g}) \mathrm{OH}_{-} \mathbf{2 O}^{\circ}(\mathrm{g})$ is introduced into the system

- Watch Video Solution

14. What is the difference between reaction quotient (Q) and equilibrium constant (K) of a reaction?

- Watch Video Solution

15. Under the following conditions, in which direction will, the reaction shift to attain its equilibrium?

Q>K (b) Q
16. Under the following conditions, in which direction will, the reaction shift to attain its equilibrium? under which condition, $\mathrm{Q}=\mathrm{K}$?

- Watch Video Solution

17. $A+2 B \rightarrow C$, equilibrium constant $=K_{1}$
$C+D \rightarrow 3 A$, equilibrium constant $=K_{2}$
What is the value of equilibrium constant for the reaction, $6 B+D \rightarrow 2 C$?

- Watch Video Solution

18. $A B(g)+\frac{1}{2} B_{2}(g) \rightarrow A B_{2}(g)$, equilibrium constant $=K_{1}$
$2 A B_{2}(g) \rightarrow 2 A B(g)+B_{2}(g)$, equilibrium constant $=K_{2}$.
Find the relation between K_{1} and K_{2}
19. For the reaction,
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
occurring in a closed vessel at a particular temperature. the initial concentrations of the reactants are $\left[\mathrm{H}_{2}\right]=\left[\mathrm{CO}_{2}\right]=1 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$. Before reaching the equilibrium, if $\mathrm{x} \mathrm{mol} \cdot L^{-1}$ of H_{2} has reacted then prove that
$: x=\frac{\sqrt{K_{c}}}{1+\sqrt{K_{C}}}$ where $K_{c}=$ equilibrium constant.

- Watch Video Solution

20. For the reaction, $A+B \Leftrightarrow C, K_{c}=2$ at a particular temperature. Initial concentrations of A, B and C are $2 \mathrm{~mol} \cdot \mathrm{~L}^{-1}, 1 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \& 1 \mathrm{~mol} \cdot L^{-1}$ respectively. Express graphically the change in concentrations of A, B and C with time.

- Watch Video Solution

21. State Ostwald's dilution law and deduce its mathematical expression in case of a weak acid, HA

- Watch Video Solution

22. Deduce the expression for the degree of ionization of a dilute aqueous acetic acid solution at a given temperature. Discuss the effect of addition sodium acetate solution separately to this solution.

- Watch Video Solution

23. VL aqueous solution of the weak acid, HA , contains 1 mol of the acid. If x mol of HA on dissociation gives rise to equilibrium state, show that: x
$=\sqrt{K_{a} \times V}$
[$K_{a}=$ ionisation constant of HA]

- Watch Video Solution

24. The extent of ionisation of a weak acid is greater in its dilute solution than in its concentrated solution. Does it mean that the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions is greater in the dilute solution ? Explain

- Watch Video Solution

25. Mention the factors on which the pH of a buffer, depends.

- Watch Video Solution

26. You are supplied with two acid solutions, one of which contains $\mathrm{HCOOH}\left(\mathrm{pK}_{b}=3.75\right)$ and the other $\mathrm{CH}_{3} \mathrm{COOH}\left(\mathrm{pK}_{a}=4.74\right)$ and their respective salts to prepare a 100 mL buffer solution having $\mathrm{pH}=4$. Which acid and its salt would you choose for the purpose ? Give reason

[^0]27. What is solubility product? Why does the solubility product expression does not contain the concentration term of undissolved solid?

Watch Video Solution

28. At $25^{\circ} \mathrm{C}, \mathrm{K}_{\text {sp }}$ for zinc hydroxide $\left[\mathrm{Zn}(\mathrm{OH})_{2}\right.$ is 3.0×10^{-16}. What is the value of pH of saturated aqueous solution of zinc hydroxide $\left[\mathrm{Zn}(\mathrm{OH})_{2}\right]$?

- Watch Video Solution

29. Solubilities of certain sparingly soluble salts increase in the presence of common ion. Explain with proper example.

- Watch Video Solution

30. Mention whether the following solution will act as bugger solutions

100 mL of $\mathbf{0 . 1}(\mathrm{M}) \mathrm{CH}_{3} \mathrm{COOH}+100 \mathrm{~mL}$ of $0.1(\mathrm{M}) \mathrm{HCl}$

- Watch Video Solution

31. Why is the solubility of AgCl less in an aqueous solution of KCl compared with that in pure water?

- Watch Video Solution

32. Pure NaCl is manufactured by passing HCl gas through a saturated aqueous solution of impure NaCl . Explain how the solubility product principle is used for this process.

- Watch Video Solution

33. Calculate the value of K_{P} for the given reactions:
$\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=8.1 \times 10^{-5}\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$
34. Calculate the value of K_{P} for the given reactions:

$$
C(s)+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=0.153\left(\text { at } 854^{\circ} \mathrm{C}\right)
$$

- Watch Video Solution

35. Calculate the value of K_{c} for the given reactions:
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{p}}=\mathbf{1 1}\left(\right.$ at $\left.100^{\circ} \mathrm{C}\right)$

- Watch Video Solution

36. Calculate the value of \boldsymbol{K}_{c} for the given reactions:
$\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g}), \mathrm{K}_{\mathrm{p}}=2.2\left(\right.$ at $\left.100^{\circ} \mathrm{C}\right)$

- Watch Video Solution

37. For the reaction, $A(g)+B(g) \rightarrow C(g)+D(g)$ occuring in a closed vessel of 1 L volume, the value of equilibrium constant is 16 at a particular temperature. If the number of moles of each of the constituents be 1 , then in which direction will the reaction occur to a greater extent to attain equilibrium? Also, calculate the molar concentrations of $\mathrm{B}(\mathrm{g})$ and $\mathrm{D}(\mathrm{g})$ at equilibrium

- Watch Video Solution

38. At $25^{\circ} \mathrm{C}$, the thermal decomposition of PCl_{5} occuring in a closed vessel of volume 1 L gives rise to the equilibrium: $\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$. How many moles of PCl_{5} is to be added so that the concentration of $\mathrm{Cl}_{2}(\mathrm{~g})$ at equilibrium will be $0.1 \mathrm{~mol} \cdot L^{-1}$? [Given : $K_{p}=1.78$ (at $250^{\circ} \mathrm{C}$]

-
 Watch Video Solution

39. A sample of air consisting mainly of N_{2} and O_{2} is heated at 2500 K till the given equilibrium attains- $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})$. If the value of equilibrium constant $\left(K_{c}\right)$ at this temperature is 2.1×10^{-3} and the percentage of number of moles of $\mathrm{NO}(\mathrm{g})$ in the above equilibrium mixture is 1.8%, then what will be the mole fractions of N_{2} and O_{2} in the sample of air used'?

- Watch Video Solution

40. At $986{ }^{\circ} \mathrm{C}$ the value of equilibrium constant $\left(K_{c}\right)$ for the reaction, $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$ is 0.63At this temperature, 1 mol of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is allowed to react with 3 mol of $\mathrm{CO}(\mathrm{g})$. This results in the above equilibrium in which the observed pressure is 2.0 atm. Find the number of moles of $\mathrm{H}_{2}(\mathrm{~g})$ produced at equilibrium and the partial pressure of each gas

- Watch Video Solution

41. K_{p} of the reaction, $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})$ at 773 K is 640 mm of Hg . If the equilibrium pressure is 160 mm of Hg , then what percent of $\mathrm{N}_{2} \mathrm{O}_{4}$ will be dissociated? At what pressure will its degree of dissociation be 50% ?

- Watch Video Solution

42. At 300 K , the partial pressures of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ and $\mathrm{NO}_{2}(\mathrm{~g})$ in an equilibrium mixture of the reaction: $\mathbf{N} \mathbf{N} 2 \mathrm{O} \mathbf{4}$ (g)

- Watch Video Solution

43. Two moles of PCl_{5} are heated at $327^{\circ} \mathrm{C}$ in a closed vessel of volume
44. When equilibrium is established, it is found that 40% of $P C I_{5}$ has dissociated into PCl_{3} and Cl_{2}. Calculate the equilibrium constant for the reaction.

- Watch Video Solution

44. At a given temperature, NH_{3} gas is in a state of equilibrium with N_{2} and H_{2} gases in a closed container. If the partial pressures of N_{2} and $\mathrm{H}_{\mathbf{2}}$ in the mixture are 1.34 and 0.67 atm respectively and the total pressure of the reaction mixture is 4.67 atm , then determine the value of K_{p} for the reaction : 'N_2(g)+3H_2(g)

- View Text Solution

45. At 400° and 10 atm pressure, the reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ is in a state of equilibrium. If at equilibrium the amount of NH_{3} is 3.85% by volume, then calculate K_{P} for the reaction.

- Watch Video Solution

46. The reaction, $\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{5}(\mathrm{~g})$ is started with 1 mol of $\mathrm{PCl}_{3}(\mathrm{~g})$ and 2.5 mol of Cl_{2} at $300^{\circ} \mathrm{C}$ in a vessel of volume 2 L . At equilibrium of the reaction $\mathrm{PCl}_{5}(\mathrm{~g})$ is found to have an amount of 0.65 mol . Calculate $\boldsymbol{K}_{\boldsymbol{c}}$, for the reaction.
47. When 5.1 g of solid $\mathrm{NH}_{4} \mathrm{HS}$ is heated at 637 K in a closed vessel of volume SL, the given equilibrium establishes: 'NH_4HS(s)-$\mathrm{NH}_{-} 3(\mathrm{~g})+\mathrm{H}_{-} 2(\mathrm{~g})+\mathrm{H}_{-} \mathbf{2 S}(\mathrm{g})+\mathrm{H}_{-} 2 \mathrm{~S}(\mathrm{~g})$. If 3.06 g of $\mathrm{NH}_{-} 4 \mathrm{HS}$ remains at equilibrium, then find the value of $K _p$

- View Text Solution

48. The reaction, $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$ is allowed to occur with 0.1 mol of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at $700^{\circ} \mathrm{C}$ in a closed vessel of volume 1 L at equilibrium. If the partial pressure of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is found to decrease by 5.6 atm, then find the value of K_{P} for the reaction. What would be the minimum amount of $\mathrm{C}(\mathrm{s})$ so that the above equilibrium can establish?
49. At a given temperature, the reaction $A(g)+2 B(g) \rightarrow C(g)$, is at equilibrium. At the start of the reaction, $p_{A}=0.25$ atm and $p_{B}=0.5 \mathrm{~atm}$. When the reaction reaches equilibrium, 50% of $\mathrm{C}(\mathrm{g})$ is found to have formed. Calculate the K_{P} for the reaction. What initial pressure should $\mathrm{B}(\mathrm{g})$ have for the production of $75 \% \mathrm{C}(\mathrm{g})$?

- View Text Solution

50. The equilibrium constant, K_{P}, for the reaction
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ is 900 atm at 800 K . A mixture containing SO_{3} and O_{2} having initial pressure of 1 and 2 atrn respectively is heated at constant volume to equilibrium. Calculate the partial pressure of each gas at 800K

- View Text Solution

51. When 3.06 g of solid $\mathrm{NH}_{4} \mathrm{HS}$ is introduced into a 21 evacuated flask at $27^{\circ} \mathrm{C}, 30 \%$ of the solid decomposes into gaseous ammonia and hydrogen

sulphide.

Calculate K_{c} and K_{p} for the reaction at $27^{\circ} \mathrm{C}$

- Watch Video Solution

52. When 3.06 g of solid $\mathrm{NH}_{4} \mathrm{HS}$ is introduced into a 21 evacuated flask at $27^{\circ} \mathrm{C}, 30 \%$ of the solid decomposes into gaseous ammonia and hydrogen sulphide.
what would happen to the equilibrium when more solid $\mathrm{NH}_{4} \mathrm{HS}$ is introduced into the flask?

- Watch Video Solution

53. For the reaction, $2 A+B \rightarrow 2 C, \Delta G^{0}=2 \mathrm{kJ}. \mathrm{Mol}^{-1}$ at 500 K . Calculate the value of equilibrium constant for the reaction, $A+\frac{1}{2} B \rightarrow C$, at the same temperature.
54. Calculate the value of K_{P} for the reactfon, $P C I_{5}(g) \Leftrightarrow \operatorname{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)$ at 298K [Given : $\Delta G_{f}^{0}\left(C l_{2}\right)=0,\left(\Delta G_{f}^{0}\right)\left(P C I_{3}\right)=-68.42 \mathrm{kcal}^{2} \mathrm{~mol}^{-1}$ and $\Delta G_{f}^{0}\left(P C l_{5}\right)=-77.6 \mathrm{kcal} \mathrm{mol}^{-1}$]

- Watch Video Solution

55. In the following equilibrium, $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ when 5 moles of each is taken and the temperature is kept at 298 K , the total pressure was found to be 20 bar. Given : $\Delta G_{f}^{0}\left(N_{2} \mathrm{O}_{4}\right)=100 \mathrm{~kJ}, \Delta G_{f}^{0}\left(\mathrm{NO}_{2}\right)=50 \mathrm{~kJ}$ Find ΔG for the reaction at 298 K

- View Text Solution

56. In the following equilibrium, $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ when 5 moles of each is taken and the temperature is kept at 298K, the total pressure was found to be 20 bar. Given : $\Delta G_{f}^{0}\left(N_{2} O_{4}\right)=100 \mathrm{~kJ}, \Delta G_{f}^{0}\left(\mathrm{NO}_{2}\right)=50 \mathrm{~kJ}$ Find the direction of the reaction.
57. If the ionisation constant $\left(K_{a}\right)$ of acetic acid at 298 K si 1.8×10^{-5}, then what will be the degree of ionisation of $0.001(\mathrm{M})$ acetic acid solution?

- Watch Video Solution

58. Calculate the ionisation constant of a monobasic acid which gets 1% ionised in $0.1(\mathrm{M})$ solution.

- Watch Video Solution

59. If the degree of ionisation of an acetic acid solution at 298 K is 5%, then find its molar concentration. [Given: $\mathrm{K}_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.8 \times 10^{-5}$]
60. The concentration of a monobasic acid is $0.01(\mathrm{M})$. If the dissociation constant of this acid is 1×10^{-5} at 298 K , What will be the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ions in the acid solution?

- Watch Video Solution

61. The ionisation constant of ammonia at 298 K is 1.8×10^{-5} Calculate (a) the degree of ionisation, (b) concentration of OH^{-}ions in $0.01(\mathrm{M})$ aqueous solution of ammonia.

- Watch Video Solution

62. The ionisation constant of ammonia at 298 K is 1.8×10^{-5} Calculate (a) the degree of ionisation, (b) concentration of OH^{-}ions in $0.01(\mathrm{M})$ aqueous solution of ammonia.

- Watch Video Solution

63. In $0.01(\mathrm{M})$ acetic acid solution, $\mathrm{pH}=3.37$. What is the degree of ionisation of the acid?

- Watch Video Solution

64. If 8.2 g of anhydrous sodium acetate is added to 11 of $0.1(\mathrm{M})$ acetic acid solution, then what will be the change in degree of ionisation of the acid? [Given: $\mathrm{K}_{1}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.8 \times 10^{-5}$]

- View Text Solution

65. Concentration of an aqueous solution of weak acid, HA is 0.1 (M) . How many times this acid solution is to be diluted so that the degree of dissociation of HA becomes 2 times that of the initial solution?

- Watch Video Solution

66. Determine the pH of the following:
$\operatorname{0.01(M)} \mathrm{H}_{2} \mathrm{SO}_{4}$

- Watch Video Solution

67. Determine the pH of the following:

1(M)NaOH
(Watch Video Solution
68. Determine the pH of the following:
$0.005(\mathrm{M}) \mathrm{Ca}(\mathrm{OH})_{2}$

(Watch Video Solution

69. pOH values of the two aqueous solutions, A and Bare 10 and 8 respectively. Which one is more acidic? How many times will it be more
acidic than the other?

- Watch Video Solution

70. What will be the pH of the resulting solution when two solutions, A and B having respective pH values of 3 and 5 are mixed in equal volumes?

- Watch Video Solution

71. What is the pH value of $0.1(\mathrm{M}) \mathrm{HCOOH}$ solution if its ionisation constant, K is 1.78×10^{-4} at $25^{\circ} \mathrm{C}$? How much water is to be added to 1L of this solution so that the pH of the solution becomes double of its initial value?

- View Text Solution

72. Calculate the pH of the solution obtained by mixing $100 \mathrm{~mL} 0.075(\mathrm{M})$
$\mathrm{Ca}(\mathrm{OH})_{2}$ solution with $100 \mathrm{~mL} 0.1(\mathrm{M}) \mathrm{HCl}$ solution
73. $100 \mathrm{~mL} \mathrm{O.1(M)} \mathrm{HCl} \mathrm{solution} \mathrm{is} \mathrm{added} \mathrm{to} 100 \mathrm{~mL} 0.1(\mathrm{M}) \mathrm{Ca}(\mathrm{OH})_{2}$ solution. The excess $\mathrm{Ca}(\mathrm{OH})_{2}$ remaining in the resulting solution is completely neutalised by $100 \mathrm{~mL}_{2} \mathrm{SO}_{4}$ solution. Calculate the concentration and pH of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution.

- Watch Video Solution

74. The concentration of an aqueous solution of the weak acid, HA is O.1(M). Calculate the pH and concentrations of A^{-}ion and HA at equilibrium in the solution. Given: $K_{b}(H A)=1.35 \times 10^{-3}$

- Watch Video Solution

75. The concentration of a weak monobasic acid is $0.2(\mathrm{M})$. If the acid is 2% ionised in the solution, then find the pH of the solution and ionisation constant of the acid.

Watch Video Solution

76. The concentration of an aqueous solution of ammonia is $0.01(M)$. What is the pH of the solution? If 0.001 mol of $\mathrm{NH}_{4} \mathrm{Cl}$ is added to 100 mL of that solution, state whether the pH of the solution will increase or decrease. Mention the change in the value of $\mathrm{pH} .\left[p K_{b}\left(\mathrm{NH}_{3}\right)=4.74\right]$

- Watch Video Solution

77. pH of an aqueous solution of $\mathrm{HCl}=3.0$. How many moles of $\mathrm{H}_{3} \mathrm{O}$ or OH^{-}ions are to be added per litre of this solution in order to increase its pH from 3.0 to 3.4 ?

- Watch Video Solution

$78.30 \mathrm{~mL} \mathrm{o.2(N)} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is mixed with $20 \mathrm{~mL} \mathrm{O.3(N)} \mathrm{H}_{2} \mathrm{SO}_{4}$. What will be the pH of the mixed solution?
79. 0.20 g of NaOH is dissolved per litre of a caustic soda solution. If $12.5 \mathrm{~mL} 0.1(\mathrm{~N}) \mathrm{H}_{-} 2 \mathrm{SO}_{\mathbf{\prime}} 4^{\text { }}$ solution is added to 250 mL of that caustic soda solution, then what will be the pH of the mixed solution?

- Watch Video Solution

80. Calculate the pH of the buffer solution containing $50 \mathrm{~mL} 0.2(\mathrm{M})$

$$
\begin{array}{lllll}
\mathrm{CH}_{3} \mathrm{COOH} \text { and } 50 \mathrm{~mL} & 0.1(\mathrm{M}) & \mathrm{CH}_{3} \mathrm{COONa} \text { solution. } \\
{\left[\mathrm{pK}_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=4.74\right]}
\end{array}
$$

- Watch Video Solution

81. The pH of a buffer solution obtained by the combination of a weak base (B) and its conjugate acid $\left(B H^{+}\right)$is 9 . If the concentrations of B and $B H^{+}$in the buffer are $0.2(M)$ and $0.02(M)$ respectively, then find the ionisation constant of the weak base.
82. The pH of 1L of a buffer obtained by the combination of a weak acid (HA) and its salt (NaA) is 5.0 . What will be the ionisation constant of HA if the concentrations of HA and NaA in the buffer are $0.3(\mathrm{M})$ and 0.4 (M) respectively?

- Watch Video Solution

83. In 1L of a buffer obtained by the combination of HA and NaA, [HA] = $0.075(\mathrm{M})$ and $[\mathrm{NaA}]=0.15(\mathrm{M})$. If the ionisation constant of HA is $\mathbf{4} \times 10^{-4}$, then find the concentration of the $\mathrm{H}_{3} \mathrm{O}^{+}$ions in the buffer.

- Watch Video Solution

84. How much of $\mathrm{NH}_{4} \mathrm{Cl}$ should be added to $1 \mathrm{~L} 0.1(\mathrm{M}) \mathrm{NH}_{3}$ solution so that the pH of the mixed solution becomes 9.0 ? Assume that addition of
$\mathrm{NH}_{4} \mathrm{Cl}$ does not change the volume of the solution. IGiven: $\left.p K_{b}\left(\mathrm{NH}_{3}\right)=4.74\right]$

- Watch Video Solution

85. 1L of a buffer solution contains $0.1(\mathrm{M}) \mathrm{CH}_{3} \mathbf{C O O H}$ and $0.1(\mathrm{M})$ $\mathrm{CH}_{3} \mathrm{COONa}$. If $1 \mathrm{~mL} 10(\mathrm{M}) \mathrm{HCl}$ solution is added to this solution then find the change in the pH value. $\left[\mathrm{pKa}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=4.74\right.$, change in volume can be neglected]

- View Text Solution

86. 0.1 mol of NH_{3} and 0.1 mol of $\mathrm{NH}_{4} \mathrm{Cl}$ are dissolved in 1L of a buffer.

What change in pH will be observed if-(a) 0.02 mol HCl gas, (b) 0.02 mol NaOH is dissolved in the solution?

- Watch Video Solution

87. How many gram-mole of HCl will be required to prepare one litre of buffer solution (containing NaCN and HCN) of pH 8.5 using 0.01g formula weight of NaCN ?

- Watch Video Solution

88. Freshly precipitated aluminium and magnesium hydroxides are stirred vigorously in a buffer solution containing $0.25 \mathrm{molL}^{-1}$ of $\mathrm{NH}_{4} \mathrm{Cl}$ and 0.05(M) of ammonium hydroxide. Calculate the concentration of aluminium and magnesium ions in solution.
$K_{b}\left(\mathrm{NH}_{4} \mathrm{OH}\right)=1.8 \times 10^{-5}, K_{\text {sp }}\left[\mathrm{Al}(\mathrm{OH})_{3}\right]=6 \times 10^{-32}$
$\left.K_{s p}\left[\mathrm{Mg}(\mathrm{OH})_{2}\right)\right]=8.9 \times 10^{-12}$

- Watch Video Solution

89. 0.01 gram-mole of NaCN is dissolved in 1L of an aqueous solution. How many gram-moles of HCl should be added to this solution in order to
make it a buffer solution of $\mathrm{pH}=8.5\left[K_{a}(H C N)=4.1 \times 10^{-10}\right]$

- Watch Video Solution

90. Calculate

(i) pH of the solution,
(ii) degree of hydrolysis of NaCN ,
(iii) hydrolysis constant for a 0.1M NaCN solution at $25^{\circ} \mathrm{C}$. $\left[\right.$ Given : $K_{a}(H C N)=4.0 \times 10^{-10}$

- Watch Video Solution

91. Calculate

(i) pH of the solution,
(ii) degree of hydrolysis of NaCN ,
(iii) hydrolysis constant for a 0.1 M NaCN solution at
25° C. $\left[\right.$ Given : $K_{a}(H C N)=4.0 \times 10^{-10}$
92. Calculate
(i) pH of the solution,
(ii) degree of hydrolysis of NaCN ,
(iii) hydrolysis constant for a $0.1 \mathrm{M} \quad \mathrm{NaCN}$ solution at
25° C. [Given: $K_{a}(H C N)=4.0 \times 10^{-10}$

- Watch Video Solution

93. Find the degree of hydrolysis, pH of the solution and hydrolysis constant for a $0.001(\mathrm{M}) \quad \mathrm{NH}_{4} \mathrm{Cl}$ solution at $25^{\circ} \mathrm{C}$ provided $K_{b}\left[\mathrm{NH}_{3}\right]=1.8 \times 10^{-5}$

- Watch Video Solution

94. The concentration of Ca^{2+} ions in a saturated CaF_{2} solution is 8.4 $\mathrm{mg} \cdot \mathrm{L}^{-1}$ at $25^{\circ} \mathrm{C}$. Calculate the solubility product of CaF_{2} at that temperature.

(D) Watch Video Solution

95. Calculate the concentrations of Ca^{2+} and PO_{4}^{3-} ions in a saturated $\left[\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right]$ solution. Given:
$K_{\text {sp }}\left[\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right]=2.0 \times 10^{-29}\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$

- Watch Video Solution

96. What will be the solubility of $\mathrm{Pb}(\mathrm{OH})_{2}$ in buffer of $\mathrm{pH}=9$ at $25^{\circ} \mathrm{C}$ provided the solubility of $\mathrm{Pb}(\mathrm{OH})_{2}$ in water is $6.67 \times 10^{-6}(\mathrm{M})$?

- Watch Video Solution

97. A solution contains $\mathrm{Ag}^{+}, \mathrm{Ca}^{2+}$ and Al^{3+} each having a concentration of $0.1(\mathrm{M}) . \mathrm{Na}_{3} \mathrm{PO}_{4}$ is added to the solution. Which will be precipitated first when the concentration of PO_{4}^{-3} in the solution is the lowest ? [Given :
$K_{s p}$ values of $\mathrm{Ag}_{3} \mathrm{PO}_{4}, \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ and AlPO_{4} and $10^{-16}, 10^{-33}$ and 10^{-20} respectively]

- Watch Video Solution

98. If equal volumes of $0.02(\mathrm{M}) \mathrm{CaCl}_{2}$ and $0.0003(\mathrm{M}) \mathrm{Na}_{2} \mathrm{SO}_{4}$ solutions are mixed, will CaSO_{4} be precipitated ? [Given : $\left.K_{s p}\left(\mathrm{CaSO}_{4}\right)=2.4 \times 10^{-15}\right]$

- Watch Video Solution

99. What will be the value of pH at which $\mathrm{Mg}(\mathrm{OH})_{2}$ starts to precipitate from 0.1(M) of MgCl_{2} solution?

$$
\left[K_{s p}\left[M g(\mathrm{OH})_{2}\right]=1.0 \times 10^{-11}\right)
$$

100. if $K_{\text {sp }}\left(\mathrm{CaF}_{2}\right)=4 \times 10^{-11}$ at $25^{\circ} \mathrm{C}$ then find the molar solubility of CaF_{2} in

pure water

- Watch Video Solution

101. if $K_{s p}\left(\mathrm{CaF}_{2}\right)=4 \times 10^{-11}$ at $25^{\circ} \mathrm{C}$ then find the molar solubility of 'CaF_2 in
$0.01(\mathrm{M}) \mathrm{NaF}$ solution and

- Watch Video Solution

102. if $K_{\text {sp }}\left(\mathrm{CaF}_{2}\right)=4 \times 10^{-11}$ at $25^{\circ} \mathrm{C}$ then find the molar solubility of CaF_{2} in
$0.01(\mathrm{M}) \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ solution respectively.

- Watch Video Solution

103. $10^{-4} \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}, 10^{-4} \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ and $10^{-3} \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$ are added to 500 mL of water. Will there be any precipitation? If so, which will be precipitated? [Given: $\quad K_{S p}\left(\mathrm{PbCO}_{3}\right)=7.4 \times 10^{-14} \quad$ and $\left.K_{\text {sp }}\left(\mathrm{CaCO}_{3}\right)=6.0 \times 10^{-9}\right]$

- Watch Video Solution

104. A solution contains a mixture of $\mathrm{Ag}^{+}(\mathbf{0 . 1 M})$ and $\mathrm{Hg}^{2+}(0.1 \mathrm{M})$ which are to be separated by selective precipitation. Calculate the maximum concentration of iodide ion at which one of them gets precipitated almost completely. What percentage of that metal ion is precipitated?
$K_{\text {sp }}(A g I)=8.5 \times 10^{-17}, K_{\text {sp }}\left(\mathrm{HgI}_{2}\right)=2.5 \times 10^{-26}$

- Watch Video Solution

105. The solubility product $\left(K_{s} p\right)$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ at $25^{\circ} \mathrm{C}$ is 4.42×10^{-5}. A 500 mL of saturated solution of $\mathrm{Ca}(\mathrm{OH}) 2$ is mixed with equal volume of $0.4(\mathrm{M}) \mathrm{NaOH}$. How much $\mathrm{Ca}(\mathrm{OH})_{2}$ in milligrams is precipitated?
106. An aqueous solution of a metal bromide $\mathrm{MBr}_{2}(0.05 \mathrm{M})$ is saturated with $\mathrm{H}_{2} \mathrm{~S}$. What is the minimum pH at which MS will precipitate. $K_{s p}$ for M.S $=6.0 \times 10^{-21}$, conc. Of saturated $H_{2} S=0.1(M)$ and $K_{1}=10^{-7}$ and $K_{2}=1.3 \times 10^{-13}$ for $\mathrm{H}_{2} \mathrm{~S}$

- Watch Video Solution

107. The molar concentration of an aqueous $\mathrm{CH}_{3} \mathrm{COONa}$ solution is 0.01(M). Calculate hydrolysis constant of $\mathrm{CH}_{3} \mathrm{COONa}$

- Watch Video Solution

108. The molar concentration of an aqueous $\mathrm{CH}_{3} \mathrm{COONa}$ solution is 0.01(M). Calculate

Watch Video Solution

109. The molar concentration of an aqueous $\mathrm{CH}_{3} \mathrm{COONa}$ solution is 0.01(M). Calculate
pH of the solution. $\left[K e a=1.8 \times 10^{-5}\right]$

- Watch Video Solution

110. Determine the hydrolysis constant and pH of an aqueous $1.0(\mathrm{M})$

> ammonium format solution
> Given
> $p K_{a}(\mathrm{HCOOH})=3.8$ and $p K_{b}\left(\mathrm{NH}_{3}\right)=4.74$

- Watch Video Solution

PRACTICE TEST 7

1. Which pair of solution is not an acidic buffer-
A. HClO_{4} and NaClO_{4}
B. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$
C. $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$
D. $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{Na}_{3} \mathrm{PO}_{4}$
2. Among the following salts, whose aqueous solutions will turn blue litmus paper red-
A. NaHCO_{3}
B. FeCl_{3}
C. HCO_{3}^{-}
D. NaOH
3. At equilibrium which is correct-
A. $\Delta G=0$
B. $\Delta S=0$
C. $\Delta H=0$
D. $\Delta G^{0}=0$

- Watch Video Solution

4. Identify the incorrect statement regarding chemical equilibrium
A. It can be attained from either side
B. $Q_{c}=K_{c}$ at equilibrium
C. Equilibrium is achieved when the reactant product concentration
D. Presence of catalyst influences the position of equilibrium

- Watch Video Solution

5. Which of the following mol ecules acts as a lewis acid
A. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~B}$
B. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{O}$
C. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}$
D. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$

- Watch Video Solution

6. ${ }^{\text {A }}$ 2 $2(\mathrm{~g})+\mathrm{B} _2$ (g$)$
7. Calculate the solubility of SrSO_{4} in water in $\mathrm{mol} \cdot \mathrm{L}^{-1}$ at $25^{\circ} \mathrm{C}$. (solubility product of SrSO_{4} at $25^{\circ} \mathrm{C}=7.6 \times 10^{-7} \mathrm{~mol}^{2} . \mathrm{L}^{-2}$)

Watch Video Solution

8. At 1127 K \& 1 atm, a gaseous mixture of CO and CO_{2} in equilibrium with solid carbon has $\mathbf{9 0 . 5 5 \%}$ of $\mathbf{C O}$ by mass ${ }^{\mathrm{C}}(\mathrm{g})+\mathrm{CO}$ _ $2(\mathrm{~g})$

- Watch Video Solution

9. At a certain temperature, K_{w} of pure water $=10^{-12}$ What will be the pH of a neutral solution at that temperature?

- Watch Video Solution

10. Show that in pure water, $\mathrm{pH}=\mathrm{pOH}=\frac{1}{2} p K_{w}$
11. What will happen when a solution of potassium chloride is added to a saturated solution of lead chloride? Give reason.

- Watch Video Solution

12. Which of the two processes-occur at the same rate at the equilibrium obtained by the evaporation of a liquid at a particular temperature?

- Watch Video Solution

13.0561 g of KOH is dissolved in water to give 200 mL of solution at 298 K . Calculate the concentrations of $\mathrm{K}^{+}, \mathrm{H}^{+}$and OH^{-}ions. What is its $\mathrm{pH}{ }^{\prime}$?

- Watch Video Solution

14. $20 \mathrm{ml} 0.15(\mathrm{M}) \mathrm{HCl}$ solution is mixed with 50 mL 0.1 (M) $\mathrm{CH}_{3} \mathrm{COONa}$ solution. State whether the mixed solution will acts as a buffer or not.

[^0]: - Watch Video Solution

