びdoubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - CHHAYA CHEMISTRY (BENGALI ENGLISH)

ORGANIC CHEMISTRY : BASIC PRINCIPLES AND TECHNIQUES

Question Answer Zone For Board Examination

1. Which property of carbon is responsible for forming straight chains, branched chains or rings?

O
 Watch Video Solution

2. What are the reasons for the existence of a large number of organic compounds?
3. Find the number of σ - and π-bond in the molecule: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$.

Watch Video Solution

4. Predict the state of hybridisation of the carbon atoms: (1) $H C \equiv \mathrm{CCH}_{3}$

- Watch Video Solution

5. What is the shape of the molecule: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}$?

- Watch Video Solution

6. Give the shape of the molecule: $H C \equiv C-C \equiv C C I$
7. What is the state of hybridisation of a carbon atom linked to two other by two double bonds?

- Watch Video Solution

8. Arrange the following in order of increasing carbon-carbon bond length: ethane, entylene and acetylene.

- Watch Video Solution

9. What will be the shape of a hydrocarbon molecule containing two $s p^{2}-\& s p^{2}$ one $s p^{3}$-hybridised C-atom?

- Watch Video Solution

10. Arrange in order of increasing bond dissociation enthalpy: $C_{s p}-C_{s p^{3}}<C_{s p^{2}}-C_{s p^{2}}<C_{s p}-C_{s p}$.

- Watch Video Solution

11. Arrange the starred C -atoms in the following compound in order of increasing s-character of their hybridisation states:

$$
\stackrel{\mathbf{1}^{\mathbf{C}} \mathrm{H}_{3}}{-\mathrm{C}} \stackrel{2}{\mathrm{C}}=\stackrel{3_{*}}{\mathrm{C}} \mathrm{H}-\stackrel{4}{\mathrm{C}} \mathrm{H}=\stackrel{5 *}{\mathrm{C}}=\stackrel{6}{\mathrm{C}} \mathrm{H}-\stackrel{7}{\mathrm{C}} \mathrm{H}_{2}-\stackrel{8}{\mathrm{C}} \mathrm{H}_{3}
$$

- Watch Video Solution

12. Which is the correct bond - line structural formula of ${ }^{\mathrm{CH}} \mathrm{CH}(2)=\mathrm{CH}-\mathrm{C}=\mathrm{C}$ CH_(2)CH_(3)?
(i)

- View Text Solution

13. write the names of an alicyclic compound and a heterocyclic compound.

- Watch Video Solution

14. Give one example of each benzenoid and nonbenzenoid aromatic compound.

- Watch Video Solution

15. write down the IUPAC name of the compound represented by swastika sign.

(D) Watch Video Solution

16. Which one is the correct name of an alkyne containing five carbon atoms?
17. Mention the name of the alkyl group that may be obtained by removal of one $2^{\circ} \mathrm{H}$-atom from propane.

- Watch Video Solution

18. How many alkyl groups are expected to be obtained from $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$ by the removal of different nonequivalent H -atoms?

- Watch Video Solution

19. Which of the following has no existence? (1) $1^{\circ} \mathrm{H}$-atom, (2)
$3^{\circ} \mathrm{C}$ - atom, (3) $2^{\circ} \mathrm{H}$ - atom, (4) $4^{\circ} \mathrm{H}$-atom

- Watch Video Solution

20. How many $4^{\circ} \mathrm{C}$ atoms are there in 2,2,3,3 - tetramethylbutane?

- Watch Video Solution

21. How many $3^{\circ} \mathrm{H}$-atoms are there in 4 -ethly-2-methylhexane?

- Watch Video Solution

22. Write the band-line structural formula of an alkane with five carbon atoms which has only primary hydrogen atoms.

- Watch Video Solution

23. Give examples of two terminal functional groups.

- Watch Video Solution

24. How many univalent groups are expected to be obtained from toluene?

- Watch Video Solution

25. What are the primary suffixes used to write IUPAC names of $\mathrm{CH}_{3} \mathrm{CH}_{3}, \mathrm{CH}_{2}=\mathrm{CH}_{2}$ and $\mathrm{HC} \equiv \mathrm{CH}$?

- Watch Video Solution

26. Give an example of a saturated hydrocarbon which can be represented by the general formula, $C_{n} H_{2 n}$.

- Watch Video Solution

27. How many π - bonds are there in 3-methylidene-1,-4 pentadine?
28. Write names of the alkyl group(S) which may be obtained from $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{C}$.

- Watch Video Solution

29. Write the IUPAC name of a hydrocarban containing one sp, two \& two $s p^{2}$ - hybridised C-atoms.

- Watch Video Solution

30. How many alkyl groups are possible having the molecular formula, $\mathrm{C}_{4} \mathrm{H}_{9}$?

- Watch Video Solution

31. Which type of isomerism is exhibited by n - pentane and neopentane?
32. Write down the structure and the IUPAC name of the tautomer of butanal.

- Watch Video Solution

33. How many strutural isomers will be obtained by the displacement of two H -atoms of propane by two Cl-atoms? Write their structures.

- Watch Video Solution

34. Write structures and names of two compounds which are position isomers as well as metamers.

- Watch Video Solution

35. How are the two compounds, $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$ andrelated to each other?

- Watch Video Solution

36. Which two of the following are geometrical isomers?

View Text Solution
37. Which of the following compounds do not exhibit geometrical isomerism?
(1) $\mathrm{phCH}=\mathrm{CHPH}$
(2) $\mathrm{Me}_{2} \mathrm{C}=\mathrm{NOH}$
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$

- Watch Video Solution

38. Which of the given compounds are optically active?
39. Mention the type of the following reaction : $\mathrm{Me}_{3} \mathrm{CCH}_{2} \mathrm{OH}+\mathrm{HBr} \rightarrow \mathrm{Me}_{2} \mathrm{CBrCH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

40. How many types of non-equivalent H -atoms are present in the given compound?

- View Text Solution

41. In which of the given compounds, all the Hd-atoms are equivalent?

- View Text Solution

42. Calculate the double bond equivalent (DBE) of the compound having molecular formula, $C_{6} H_{8}$. Is the compound aromaatic?
43. How many monobromo derivatives are possible for each of ortho, meta and para-xylene?

- Watch Video Solution

44. Arrange the following groups in order of decreasing strenght of effect: -

- Watch Video Solution

45. Arrange the following free radicals in the decreasing order of their stability:

- View Text Solution

46. In which $\mathrm{C}_{-} \mathrm{C}$ bond of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$, the inductive effect is expected to be the least?

- Watch Video Solution

47. Arrange the following carbocations in increasing order of stability:

- View Text Solution

48. Arrange the following compounds in increasing order of number of hyperconjugable hydrogen atoms:
49. Arrange the following compounds in order of increasing bond dissociation enthalpy: (1) $\mathrm{CH}_{3}-\mathrm{H} \quad, \quad(2)\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{H}$,
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{H},(4) \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{H}$

- Watch Video Solution

50. Arrange the following in increasing order of stability:

- View Text Solution

51. How can aniline be purified?

- Watch Video Solution

52. How can glycerol be purified?
53. Suggest a method to separate a mixture of o-hydroxy-benzaldehyde and p-hydroxybenzaldehyde.

- Watch Video Solution

54. How will you separate a mixture of two solid compounds of different solubilities in the same solvent?

- Watch Video Solution

55. An organic liquid decomposes below its bolling point. How can it be purified?

- Watch Video Solution

56. Which technique can be used to purify iodine containing traces of common salt?

- Watch Video Solution

57. Suggest a method for the purification of a liquid contanining nonvolatile impurities.

- Watch Video Solution

58. How can anline (b. p. $184^{\circ} \mathrm{C}$) be separated from petroleum ether
(b. p. $40-60^{\circ} C$)?

- Watch Video Solution

59. Out of water and benzene, which can be used to purify benzoic acid containing naphthalene by fractional erystallisation?
60. Give example of a chromatophic technique in which both the mobile and stationary phases are liquids.

- Watch Video Solution

61. Mention two distillation processes in which organic liquids boil at temperatures below their respective boiling points.

- Watch Video Solution

62. Explain why the Lassaigne's extract should not be prepared by using tap water.
63. Give example of a compound which does not contain halogen but gives Beilstein's test.

- Watch Video Solution

64. In Carius method for estimation of phosphours, the precipitate of which compound is finally obtained?

- Watch Video Solution

65. A compound (A) after fusion with metallic sodium gives a precipitate when silver nitrate solution is added to a portion of th filtrate acidified with nitric acid. Compound (A) is likely to be: (1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO} \text { (3) } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}(4) \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}
$$

- Watch Video Solution

66. Give example of a nitrogenous organic comound to which Kjeldahl's method for the estimation of nitrogen is not applicable.

- Watch Video Solution

Short Answer Type

1. Which atoms in a toluene molecule always remain in the same plane and why? (2) Which atoms in a propyne molecule remain in a straight line and why?

- Watch Video Solution

2. Write the state of hybridisation of C -atoms in the following compounds ans perfect the shape of each of the molecules : (1) $\mathrm{H}_{2}=\mathrm{O}$ (2) $\mathrm{CH}_{3} \mathrm{CI}$ (3)

$$
H C \equiv N(4) \mathrm{CH}_{-}(2)=\mathrm{C}=\mathrm{CH}_{-}(2)(5) C H_{2}=\mathrm{C}=\mathrm{CCH}_{2}
$$

3. Write IUPAC name of the compound, mentioning secondary primary prefix, word root, primary suffix \& secondary suffix respectively.

D View Text Solution

4. Expand each of the following condensed formulas into their complete structural formulas:
(i) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(ii) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCOCH}_{3}$
(iii) $\mathrm{CH}_{3} \mathrm{C}=\mathrm{CCH}_{2} \mathrm{COOH}$
(2) Write bond line formulas of the following two compounds:
(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHBrCH} \mathrm{OH}_{2} \mathrm{OH}$
(ii) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{CHCH}_{2} \mathrm{OH}$
5. (1) How many σ and π bonds are present in (i) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CN}$ and $(i i) \mathrm{CH}_{2}=\mathrm{CCHCH}_{3}$?

- Watch Video Solution

6. Which of the given compounds may exist as two or more isomeric forms?

Give the strutures and names of the possible isomers.
(1) CHBr_{3}
(2) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{CI}_{4}$
(3) $C_{3} H_{3}$
(4) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~F}$
(5) $\mathrm{C}_{2} \mathrm{H}_{4} B r_{2}$
(6) $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CI}_{2}$

- Watch Video Solution

7. Write the structures and IUPAC names of the compounds with molecular formula, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$.

- Watch Video Solution

8. Write the structures and IUPAC names of the compounds with molecular formula, $C_{4} H_{10} O$.

- Watch Video Solution

9. Which of the following compounds will exhibit tautomerism and which do not? Give reasons.
(1) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COC}_{6} \mathrm{H}_{5}$
(3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$
(4) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
(5) Me COCHMe 3
10. Designte following pairs as metamers, chain isomers, position isomers, functional isomers, stereoisomers. Also, indicate which are not isomers at all.
(1) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{3},\left(\mathrm{CH}_{3}\right)_{4} \mathrm{C}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OHCH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
(3)
(4) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOCH}_{3},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CHO}$
$\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$

- View Text Solution

11. Which of the following compounds will exhibit geometrical isomerism and why? (1) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CCI}_{2}$
(2) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CCICH}_{2} \mathrm{CH}_{3}$
(3) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}$
12. Which of the following compounds are optically active and why?
$\mathrm{CH}_{3} \mathrm{CHBrCH} \mathrm{CH}_{3}$
(2) $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{3}$

- Watch Video Solution

13. Which type of stereoisomerism is exhibited by the compound, $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CHC}_{2} \mathrm{H}_{5}$? How many stereoisomers are possible? Draw the structured and designate them as E / Z.

- Watch Video Solution

14. Name a compound having two dissimilar asymmetric carbon atoms and write its struture. What type of isomulas does it exhibit? Draw Fischer projection formulas of the isomers and comment on their optical activity. How are the isomers related to each other?
15. Explain why the C-C bond length in benzene is in between the carboncarbon bond lenghts of ethylene $\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)$ and ethane $\left(\mathrm{CH}_{3}-\mathrm{CH}_{3}\right)$ respectively.

- Watch Video Solution

16. Arrange cis - but-2 ene, trans - but-2-ene and but-1 ene in increasing order of their stability and give reason.

- Watch Video Solution

17. $\mathrm{CH}_{3} \mathrm{Cl}$ is unreactive towards $S_{N} 1$ reaction - why?

- Watch Video Solution

18. Explain the orders of acidity of carboxylic acids:
(1) $\mathrm{Cl}_{3} \mathrm{CCOOH}>\mathrm{CI}_{2} \mathrm{CHCOOH}>\mathrm{ClCH}_{2} \mathrm{COOH}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOH}$

- Watch Video Solution

19. Arrange in order of increasing stability :
(1) $\left(\mathrm{CH}_{3}\right)_{2} \stackrel{\oplus}{C} H, C H_{3} \stackrel{\oplus}{C} H_{2},\left(\mathrm{CH}_{3}\right)_{3} \stackrel{\oplus}{C}, \stackrel{\oplus}{C} H_{3}$
(2) $\stackrel{\oplus}{C} H_{3},\left(\mathrm{CH}_{3}\right)_{2} \stackrel{\oplus}{C} H,\left(\mathrm{CH}_{3}\right)_{3} \stackrel{\oplus}{C}, \mathrm{CH}_{3} \stackrel{\oplus}{C} H_{2}$
(3) $\mathrm{CHH}_{3},\left(\mathrm{CH}_{3}\right)_{2} \dot{\mathrm{C}} \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \dot{\mathrm{C}}, \mathrm{CH}_{3} \mathrm{CH}_{2}$

- Watch Video Solution

20. Explain why an orgainc liquid vaporises below its boiling point when it undergoes steam distillation.

- View Text Solution

21. (1) Write the state of hybridisation of C - atoms menthoned in each of the following compounds:
(a) C - 4 of pent - 1 en - 4 - yne
(b) C-1 of Propanoic acid
(d) C-3 of Pentan-3-one and
(e) C-3 of 3,3 diethylpentane
(2) Which atoms of each of the following molecules / ions always remain in the same plane?
(a) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$
(b) $C_{6} H_{5} C \equiv C-C N$
(c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$
(d) $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}$
(e) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(f) $\mathrm{CH}-(3) \mathrm{CONH}_{2}$
(g) $\mathrm{CI} \mathrm{I}_{3} \mathrm{C}-\mathrm{CH}-\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{2}$
(h) $\left(C D_{3}\right)_{3} \stackrel{\oplus}{C}$
(i)
(j)
(k) $\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}$
(i)
(m) $\left(\mathrm{CH}_{3}\right)_{2} \stackrel{\oplus}{C} H-N H_{2}$
22. The boiling point of a pure organic liquid is $78^{\circ} \mathrm{C}$. There are two samples of this liquid having boiling range: (1) $76-78^{\circ} \mathrm{C}$ and $69-78^{\circ} \mathrm{C}$ respectively. Which one of them is more pure and why?

- Watch Video Solution

23. What is an azeotropic mixture? Give example.

- Watch Video Solution

24. A mixture contains two organic solids, A and B. The solubilities of A and B in water are 12 g per 100 ml . and 3 g per 100 ml respectively. How will you separate A and B from this mixture?
25. What is seeding?

- Watch Video Solution

26. Suggest methods for the separation of the compenents in each of the following mixtures:
(1) A mixture of liquid A (b.p.366K) and liquid B (b.p.355.5 K).
(2) A mixture of liquid C (b.p. 360 K) and liquid D (b.p. 420 K).

- Watch Video Solution

27. A mixture contains three amino acids. How can they be identified?

- Watch Video Solution

28. The R_{f} values of X and Y in a mixture determined by TLC method in a solvent mixrture are 0.75 and 0.25 respectively. If the mixture is separated
by column chromatography using the same solvent mixture as the mobile phase, which of the two components, will elute first and why?

- Watch Video Solution

29. Why is an organic compound fused with sodium for testing nitrogen, halogens sulphur?

- Watch Video Solution

30. (1) The electronic configuration of C - atoms is: $1 s^{2} 2 s^{2} 2 p^{2}$, yet its valency is four - why?
(2) The four $\mathrm{C}-\mathrm{H}$ bonds of methane molecule are equivalent - explain with reasons.
31. (1) Arrange $s p, s p^{2} \& s p^{3}$ - orbitals in increasing order of :
(a) bond length
(b) bond angle
(c) bond energy
(d) size of orbitals and
(e) s-character.
(2) Organic compounds are usually water insoluble. Why?
(3) Write the structure of the smallest hydrocarbon having empirical formula $C_{2} H$. What is the shape of the molecule?
(4) Draw the p - orbitals involed in forming π - bonds in the molecule, $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}$ and predict whether the molecule is planar or not.

- View Text Solution

32. Give the IUPAC names of the following compounds:
(1) $\mathrm{CH}_{3} \mathrm{CHCICHBrCH}$
(2) $\mathrm{CH}_{3} \mathrm{CHFOCH}_{2} \mathrm{CH}_{3}$
(3) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH}$
(4) $\mathrm{CH}_{3} \mathrm{COOCH}\left(\mathrm{CH}_{3}\right)_{2}$
(5) $\mathrm{CH}_{3} \mathrm{CHBrCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$
(6) $\mathrm{CH}_{3} \mathrm{CHOHCH}_{2} \mathrm{CHO}$
(7)
(8)
(9) $\mathrm{HC} \equiv \mathrm{CCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}=\mathrm{CH}_{2}$
(10) $\mathrm{CH}_{3} \mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$
(11) $\mathrm{CH}_{3} \mathrm{CHICH}_{2} \mathrm{CONH}_{2}$
(12) $\mathrm{BrCH}_{2} \mathrm{CBr}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CHCI}_{2}$
(13)
(14) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COCH}_{3}$

- View Text Solution

33. Write structures of the following:
(1) Hept - 5 ene - 1 - yne
(2) 1-bromo-2 ethoxyethane
(3) 3 - chloropropanoyl bromide
(4) 1-chloropropan-2-amine
(5) 4 - iodo-3-nitrobutanal
(6) 3 - phenylprop - 2 enoic acid
(7) Ethanoic methanoic anhydride
(8) 2 - carbomyl - propanoic acid
(9) Pentane - 2,4 - dione
(10) 5 - formyl-3 -oxopentanoic acid
(11) tert - butyl alcohol
(13) Trimethylacetic acid
(14) Diethyl - butane - 1,4 diaote
(15) 3 - (carboxymethyl) pentane - dioic acid
(16) 1,3-dimethylcyclohex-1-ene

D View Text Solution

34. Draw resonance strutures of following compounds.
(1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
(2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$
(3) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCHO}$
(4) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
(5) $C_{6} H_{5} \stackrel{\oplus}{C} H_{2}$
(6) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH} \stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}$

- Watch Video Solution

35. Explain: (1) A mixture of ether and water can be separated by simple distillation.
(2) Water present in rectified spirit can be removed by azeotropic distillation.
(3) Benzoic acid can be extarced from its aqueous solution using benzene.
(4) Sugar containing NaCl as impurity can be purified by crystallisation using ethanol but not water. '

- Watch Video Solution

Solved Wbchse Scanner

1. Give IUPAC name: $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCOOH}, \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$
2. How will you detect presence of sulphur in an organic compound?

- Watch Video Solution

$$
{ }^{1} \mathrm{CH}_{3}
$$

3. Write the formula of the compound: $\mathrm{H}_{3} \mathrm{C}-\mathrm{O}-{ }^{2} \mathrm{C}-\mathrm{CH}_{3}$

- Watch Video Solution

4. An organic compound containing $\mathrm{C}, \mathrm{H}, \mathrm{N}$ and Cl is fused with exces of metallic sodium and the fused mass is extracted with distilled water, Which radicals are expected to be present in the resulting aqueous solution?
5. How many $\sigma \& \pi$ bonds are present in buta $-1,3$ diyne?

- Watch Video Solution

6. Write the IUPAC names of the following compounds:

$$
\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH} \equiv \mathrm{CH} \text { and }\left(\mathrm{H}_{3} \mathrm{C}\right)_{3} \mathrm{C}-\mathrm{OH}_{3} \mathrm{C}-
$$

2-methylpropan-2-ol

- Watch Video Solution

7. In the Lassaigne's $\mathrm{NH}_{2} \mathrm{O} \cdot \mathrm{HCI}$ reponds to the test for the element chlorine but not for the element nitrogen. Explain.

- Watch Video Solution

8. Which of the following compounds does not respond to Lassaigne test for nitrogen -
A. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} . \mathrm{HCl}$
B. $\mathrm{H}_{2} \mathrm{NCONH} \mathrm{NH}_{2} . \mathrm{HCl}$
C. $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}$
D.

Answer: C

- Watch Video Solution

9. Which species is stablised by hyperconjugation -
A. $\mathrm{CH}_{2}=\mathrm{CH}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}$
B. CH_(3)-overset(CH_(3))overset(|)underset(CH_(3))underset(|)
(""^(oplus)C)'

D. $C H_{3}-C H=\stackrel{\ominus}{C} H$

Answer: B

- Watch Video Solution

10. What type of fission of a covalent bond produces free radicals? Give an example with proper sign.

- Watch Video Solution

11. Write down the IPUAC name of the following compound:
$\mathrm{CI}-\stackrel{\stackrel{\mathrm{Br}}{\stackrel{\mid}{\mathrm{C}}} \underset{\mathrm{H}}{ }-\mathrm{CH}_{2} \mathrm{OH} \text {. }}{ }$
12. Draw the structure of the following compound: 3,4-dimethylpentanoic acid

- Watch Video Solution

13. Draw the conanicals of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COO} \mathrm{\Theta}$. In which case resonance is more important?

- Watch Video Solution

14. Write the principal of estimation of carbon and hydrogen in an organic compound.

- Watch Video Solution

15. Which one of the carbanions is the most stable-
A. $\stackrel{\ominus}{C} H_{3}$
B. $C H_{3} \stackrel{\Theta}{C} H_{2}$
c. $\mathrm{CH}_{3}-\stackrel{\ominus}{\mathrm{C}} \underset{\mathrm{CH}}{ }$
D.

Answer: A

- Watch Video Solution

16. Write down the IUPAC name of the following compound:
$\underset{C I}{\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CHCOCH}_{3}}$

- Watch Video Solution

17. Write down the structural formula of the following compound: Hex-1en - 4 - yne
18. Arrange the following radicals in increasing order of - I effect: I , Br , CI , F

- Watch Video Solution

19. Write the structural formula of the following compound: 5-aminopent -

3 - enoic acid

D Watch Video Solution

20. Why is $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{\oplus}$ more stable than $\mathrm{CH}_{3} \mathrm{CH}_{2}^{\oplus}$?

- Watch Video Solution

21. Indicate the electrophilic centre of the following compounds: $\mathrm{CH}_{3} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{CN}$.
22. In which of the following compound chiral C - atom is present-
A. $\mathrm{CH}_{3} \mathrm{CHCHI}_{2}$
B. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$
D. $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})_{2} \mathrm{CH}_{2} \mathrm{COOH}$

Answer: C

- Watch Video Solution

23. Which one is most acidic among the given compounds-
A. $\mathrm{C}_{2} \mathrm{H}_{2}$
B. $C_{6} H_{6}$
C. $C_{2} H_{6}$
D. $\mathrm{CH}_{3} \mathrm{OH}$

- Watch Video Solution

24. If in an organic compound both N and S elements are present, in Lassaigne's test which ion may be found-
A. $C N^{\Theta}$
B. $S^{2^{\ominus}}$
C. $N^{2^{\ominus}}$
D. $S C N^{\ominus}$

Answer: D

- Watch Video Solution

25. Between $\mathrm{CH}_{3} \mathrm{COOH}$ and HCOOH which one is most acidic and why?

$$
\begin{aligned}
& \mathrm{CH}_{2}-\mathrm{OH} \\
& \\
& \hline
\end{aligned}
$$

26. Name IUPAC name of the following: $\mathrm{CH}_{2}-\mathrm{OH}$

- Watch Video Solution

27. Name IUPAC name of the following: $\mathrm{CH}_{3} \mathrm{CCI}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$

- Watch Video Solution

28. By which property the stability of $\left(\mathrm{CH}_{3}\right)_{3} C^{\oplus}$ ion could be explained?

- Watch Video Solution

29. Which of the following compounds is formed when a nitrogenous organic comound is heated with metallic sodium-
A. sodium nitrate
B. sodium nitrite
C. sodium amide
D. sodium cyanide

Answer: D

D Watch Video Solution

30. Which of the following is the stablest carbocation -
A. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{\oplus}{C} \mathrm{H}_{2}$
B. $H_{2} C=C H-\stackrel{\oplus}{C} H_{2}$
C. $C_{6} H_{5} \stackrel{\oplus}{C} H_{2}$
D. $\left(\mathrm{CH}_{3}\right)_{3} \stackrel{\oplus}{C}$

Answer: D

31. Explain the order of basicity of the following compounds.
A. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
B. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{N}-\mathrm{H}$
C. $\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{CN}$
D.

Answer:

- Watch Video Solution

32. A compound having molecular formula $\mathrm{C}_{8} H_{18}$ can form only one monobromo derivative. Draw the structure of the compound.
33. Is 2 - hydroxypropanoic acid optically active? Explain.

- Watch Video Solution

34. Which of the following is a carbanion -
A. $\mathrm{CH}_{3} \mathrm{O}^{\Theta}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{\ominus}$
c. $\mathrm{CH}_{3} \mathrm{COOH}^{\Theta}$
D. $C_{6} H_{5} O^{\Theta}$

Answer: B

- Watch Video Solution

35. In the Lassaigne's test, for the detection of nitrogen in an organic compound, with which of the following metals the organic compound is fused -
A. Li
B. Mg
C. Na
D. Zn

Answer: C

- Watch Video Solution

36. Between $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CI}$ and $\mathrm{CH}_{3}-\mathrm{CI}$ which compound undergoes heterolytic fission readily in water? Why?

- Watch Video Solution

37. Which reagent is called an electrophile in organic reaction? Write with an example.
38. Write the IUPAC names of the compound $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH} \mathrm{\& CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{C} \equiv \mathrm{CH}$

- Watch Video Solution

Sloved Ncert Exercise

1. What are hybridistion states of each C - atom in the compounds:
(1) $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{O}$
(2) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
(4) $\mathrm{CH}_{2}=\mathrm{CHCN}$
(5) $\left[C_{6} H_{6}\right]$

- Watch Video Solution

2. Indicate the σ and π bonds in the following molecules:
(1) $C_{6} H_{6}$
(2) $C_{6} H_{12}$
(3) $\mathrm{CH}_{2} \mathrm{CI}_{2}$
(4) $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}$
(5) $\mathrm{CH}_{3} \mathrm{NO}_{2}$
(6) $\mathrm{HCONHCH}_{3}$

- Watch Video Solution

3. Write bond line formulas for :
(i) Isopropyl alcohol (ii) 2, 3-Dimethylbutanal (iii) Heptan-4-one

- Watch Video Solution

4. Give the IUPAC names of the following compounds:
$\mathrm{CI}_{2} \mathrm{CHCH}_{2} \mathrm{OH}$

- Watch Video Solution

5. Which of the following represents the correct IUPAC name for the compounds concerned?
(1) 2,2-dimethylpentane or 2 - demethylpentane
(2) 2,4,7 - trimethyloctane or 2,5,7 - trimethyloctane
(3) 2-chloro - 4 - methylpentane or 4-chloro-2-methyl - pentane
(4) But-3-yne-1-ol-1-yne.

D View Text Solution

6. Draw formulas for the first 5 members of each homologous series beginning with given compounds:
(1) HCOOH
(2) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(3) $\mathrm{H}-\mathrm{CH}=\mathrm{CH}_{2}$

- Watch Video Solution

7. Give condensed and bond line structural formulas and identify the functional group(s) present, if any, for:
(1) 2,2,4 - trimethylpentane
(2) 2 - hydroxy - 1,2,3- propanetricarboxylic acid
(3) Hexanedial

- Watch Video Solution

8. Identify the functional groups in given compounds:

- View Text Solution

9. Which of the two: $\mathrm{O}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}^{-}$or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}$is expected to be more stable and why?

- Watch Video Solution

10. Explain why alkyl groups act as electron donors when attached to a π system.

- Watch Video Solution

11. Draw the resonante structures for the folloiwng compounds. Show the elrcton shift using curvedarrow notation :
(1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
(2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$
(3) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCHO}$
(4) $C_{6} H_{5}-\stackrel{\oplus}{C} H_{2}$
(6) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH} \stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}$

- Watch Video Solution

12. What are electrophiles and nucleophiles ? Explain with examples.

- Watch Video Solution

13. Identify the reagents underlined in the following equations as nucleophiles or electrophiles:
(1) $\mathrm{CH}_{3} \mathrm{COOH}+\underline{\mathrm{HO}}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{CH}_{3} \mathrm{COCH}_{3}+\stackrel{\ominus}{\mathrm{C}} \mathrm{N} \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{CN})(\mathrm{OH})$
(3) $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$

- Watch Video Solution

14. Classify the following reaction in one of the reacation type studied in this unit.
(1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{HS}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SH}+\mathrm{Br}^{-}$
(2) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{HCI} \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCI}-\mathrm{CH}_{3}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{HO}^{-} \rightarrow \mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Br}^{-}$
(4) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}+\mathrm{HBr} \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CBrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

15. What is the relationship between the members of following pairs of strutures? Are they structural or geometrical isomers or resonance contributors?

D View Text Solution

16. For the given bond cleavages, use curved - arrows to show the electron flow and classify each as homolysis or heterolysis. Identify reactive intermediate produced as free radical, carbocation and carbanion.

$$
\mathrm{CH}_{3} \mathrm{O}-\mathrm{OCH}_{3} \rightarrow \mathrm{CH}_{3} \dot{\mathrm{O}}+\dot{\mathrm{OCH}}{ }_{3}
$$

- Watch Video Solution

17. Explain the terms Inductive and Electromeric effects. Which electron displacement effect explains the given correct orders of acidity of te carboxylic acids?
(1) $\mathrm{CI}_{3} \mathrm{CCOOH}>\mathrm{CI}_{2} \mathrm{CHCOOH}>\mathrm{CICH}_{2} \mathrm{COOH}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CHCOOH}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOH}$

- Watch Video Solution

18. Give a brief description of the principles of the following techniques taking an example in each case.
(1) Crystallisation
(2) Distillation
(3) Chromatography

- Watch Video Solution

19. Describe the method, which can be used to separate 2 compounds with different solubilities in a solvent S .

- Watch Video Solution

20. What is the differecnce between distillation, distillation under reduced pressure and steam distillation?
21. Discuss the chemistry of Lassaigne's test.

(D) Watch Video Solution

22. Explain the principal of paper chromatography.

- Watch Video Solution

23. Why is nitric acid added to sodium extract before adding silver nitrate for testing halogens?

- Watch Video Solution

24. Explain the reason for the fusion of an organic compound with metallic sodium for testing nitrogen, sulphur and halogens.
25. Name a suitable technique to sepatate the components from a mixture of calcium sulphate \& camphor.

- Watch Video Solution

26. Explain, why an organic liquid vaporise at a temprature below its boiling point in its steam distillation?

- Watch Video Solution

27. Will $C C I_{4}$ give white precipitate of AgCl on heating it with silver nitrate?

Give reason for your answer.

D Watch Video Solution

28. Why is a solution of potassium hydroxide used to absorb carbon dioxide evoled during the estimation of carbon present in an organic compound?

- Watch Video Solution

29. Why is it necessary to use acetic acid and not sulphuric acid for acidification of sodium extract for testing sulphur by lead acetate test?

- Watch Video Solution

30. An organic compound contains 69% carbon and 4.8% hydrogen, the remainder being oxygen. Calculate the masses of CO_{2} and water produced when 0.20 g of this substance is subjected to complete combustion.

D Watch Video Solution

31. 0.05 g of an organic compound was treated according to Kjedahl's method. Ammonia evoled was absorbed in 50 ml of 0.05 (M) $\left.\mathrm{H}_{2} \mathrm{~S}\right)_{4}$. The residual acid required $60 \mathrm{ml} 0.5(\mathrm{M})$ solution of NaOH for neutralisation.

Find the percentage composition of N in the compound.

- Watch Video Solution

32. 0.3780 g of an organic chloro compound gave 0.5740 g of silver chloride in Carius estimation. Calculate the percentage of chlorine present in the compound.

- Watch Video Solution

33. In the estimation of S by Carius method, 0.468 g of an organic sulphur compound afforded 0.68 g barium sulphate. Find out the $\%$ of S in the given compound.
34. In $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$, the pair of hybridised orbitals involved in the formation of $C_{2}-C_{3}$ bond is:
(1) $s p-s p^{2}$
(2) $s p-s p^{3}$
(3) $s p^{2}-s p^{3}$
(4) $s p^{3}-s p^{3}$

- Watch Video Solution

35. In the Lassaigne's test, prussian blue colour is obtained due to formation of
(1) $N a_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(2) $F e_{4}\left[F e(C N)_{6}\right]_{3}$
(3) $\mathrm{Fe}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(4) $\mathrm{Fe}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{4}$
36. Which is most stable:
(1) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}{ }^{+} \mathrm{H}_{2}$
(2) $\left(\mathrm{CH}_{3}\right)_{3}{ }^{+}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$
$\mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{HCH}_{2} \mathrm{CH}_{3}$?

- Watch Video Solution

37. The best and latest technique for isolation, purification and sepration and separation of organic compounds is:
(1) Crystallisation
(2) Distillatiaon
(3) Sublimation
(4) Chromatography
38. The reaction: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}+\mathrm{KOH}(a q) \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{KI}$ is a type of :
(1) electrophillic substitution
(2) nucleophillic substitution
(3) elimination
(4) addition.

- Watch Video Solution

Higher Order Thinking Skill Hots Question

1. Depict the bonding in the following compounds in terms of atomic orbitals involed and predict all the bond angles:
(1) $\mathrm{CD}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
(2) $\mathrm{CH}_{-}(3) \mathrm{OCH}_{-}(3)^{`}$

- Watch Video Solution

2. Mention the number of primary $\left(1^{\circ}\right)$, secondary $\left(2^{\circ}\right)$ and tertiary $\left(3^{\circ}\right)$ hydrogen atoms in the following molecules:

- View Text Solution

3. How many alkyl groups can be derived from the alkane,
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ and why? Write their IUPAC names.

- Watch Video Solution

4. Write the IUPAC names of the following compounds:

- View Text Solution

5. Arrange the given carbocations in order of increasing stability and explain the order:
(\#\#_001.png" width="80\%">
$\mathrm{CH}_{2}=\mathrm{CH}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}(\mathrm{II}), \mathrm{CH}_{3} \stackrel{\oplus}{C} H_{2}(\mathrm{III}), \mathrm{CF}_{3} \stackrel{\oplus}{C} \mathrm{H}_{2}(\mathrm{IV})$

- Watch Video Solution

6. tert - Butyl chloride ($\mathrm{Me}_{3} \mathrm{CCI}$) does not participate in S_{N}^{2} reaction explain with reasons.

- Watch Video Solution

7. Write the resonance strucrures of $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CHO}$ and compare their stabilities.

- Watch Video Solution

8. Which is more stable and why: $\left(\mathrm{CH}_{3}\right)_{3} \stackrel{\oplus}{C},\left(C D_{3}\right)_{3} \stackrel{\oplus}{C}$?
9. (1) How many stereoisomers of formula, $\mathrm{CH}_{3} Y$ would be possible if methane was a pyramid with a rectangular base? Draw them.
(2) How many stereoisomers of formula, $\mathrm{CH}_{2} \mathrm{YZ}$ would be possible if methane was a pyramid with a square base? Draw them.
(3) What is the relationship (diastereoisomers, enantiomers, conformational isomers, homomers i.e., identical structures or constiturional isomers) between the members of given pairs of structures?

- View Text Solution

10. Although florine is more electonegative than chlorine, fluorobenzene has lower dipole moment ($\mu=1.63 D$) than chlorobenzene ($\mu=1.75 D$).

- Watch Video Solution

11. The posatively charged carbon atom in structure (I) is $s p^{2}$ - hybridised while the negatively charged carbon atom in (II) is $s p^{3}$ - hybridised - Explain.

- Watch Video Solution

12. Can you separate two liquids A (b. p. 413K) and B (b. p. 403K) present in a mixture by simple distillation?

- Watch Video Solution

13. Will $C C I_{4}$ give white precipitate of AgCl on heating it with silver nitrate solution? Give reason for your answer.

- Watch Video Solution

14. Is it possible to distinguish between phenylhydrazine hydrochloride and hydrazine hydrochloride by Lassigne's test? Give reason.
15. Explain the principles of adsorption chromatography and partition chromatography. Define R_{f} value. What is called descending paper chromatography?

- Watch Video Solution

16. Tendency of carbon to exhibit catenation is much higher than that of Si and S - why?

- Watch Video Solution

17. Melting and boiling points of organic compounds are usually very low Why?
18. Mention the number of primary $\left(1^{\circ}\right)$, secondary $\left(2^{\circ}\right)$ tertiary $\left(3^{\circ}\right)$ and quarternary $\left(4^{\circ}\right) \mathrm{C}$ - atoms present in the given molecules:

- View Text Solution

19. Write down the IUPAC name of a hydrocarbon having a $4^{\circ} \mathrm{C}$ - atom with molecular formula, $C_{6} H_{14}$. How many monobromo derivaties of this hydrocarbon is possible? Write their structures.

- Watch Video Solution

20. Racemic tartaric acid and meso - tartaric acid are both optically inactive why?

- Watch Video Solution

21. How many isomers of butene are possible? What type of isomerism do they exhibit?

- Watch Video Solution

22. Give examples of:
(1) an optically inactive compound cantaining asymmertic carbon atom,
(2) an optically active compound containing no asymmetric carbon.

- Watch Video Solution

23. Name a compound having two similar asymmetric carbon atoms and give its structure. What type of isomerism does it exhibit? Draw Fischer projection formulas of these isomers and comment on their optical activity. How are they related to each other?

- Watch Video Solution

24. (1) Give structure and IUPAC name of an optically active alkane having lowest molecular mass. Is there another alkane of the same molecular mass that is also optically active?
(2) Give example of a compound which exhibits both optical \& geometrical isomerism.

- Watch Video Solution

25. The following two isomers may be called diastereoisomers but not enantiomers - why? Explain why these are optically inactive.

- View Text Solution

26. P - nitrophenol is more acidic than phenol. Explain.

D Watch Video Solution

27. P- nitroanilin is a weaker base than aniline. Explain.

- Watch Video Solution

28. Dipole moment of vinyl chloride $\left(\mathrm{CH}_{2}=\mathrm{CHCI}\right)$ is less than the dipole moment of ethyl chloride $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CI}\right)$ - explain.

- Watch Video Solution

29. Arrange the following ions in order of increasing basicity and explain the order:
$\mathrm{CH}_{3} \stackrel{\oplus}{C} \mathrm{H}_{2}(I), \quad \mathrm{CH} \equiv \stackrel{\oplus}{C}(I I), \quad C H_{2}=\stackrel{\oplus}{C} H(I I I)$

- Watch Video Solution

30. Give example:
(1) a non - nuclephilic anion
(2) a planar carbocation
(3) an aromatic carbocation
(4) an aromatic carbanion
(5) a reagent which acts as source of carbanion
(6) a reaction which does not proceed through intermediate
(7) an aprotic polar solvent
(8) an ambident nucleophile
(9) a neutral electrophile
(10) a group which stabilises a carbocation
(11) a group which stabilies a carbanion
(12) an alkyl group whcih does not supply electrons to a double bond by hyperconjugation
(13) a carbocation which can be stored for years.

- View Text Solution

31. Explain the given basicity order in aqueous medium:
$\left(\mathrm{CH}_{3}\right)_{2} \dot{\mathrm{~N}} \mathrm{H}\left(2^{\circ}\right)>\mathrm{CH}_{3} \stackrel{\mathrm{~N}}{\mathrm{~N}} \mathrm{H}_{2}\left(1^{\circ}\right)>\left(\mathrm{CH}_{3}\right)_{3} \dot{\mathrm{~N}}\left(3^{\circ}\right)$
32. Which of the two: $\mathrm{O}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}^{\Theta}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{\Theta}$ is expected to be more stable and why?

- View Text Solution

33. $\mathrm{CH}_{3} \mathrm{CI}$ undergoes hydrolysis more easily than $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CI}$. Explain.

- Watch Video Solution

34. Benzyl chloride participates in $S_{N} 1$ reaction even through it is a primary $\left(1^{\circ}\right)$ substrate. Explain.

- Watch Video Solution

35. Bond dissociation enthalpy of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}-\mathrm{H}$ bond is much less than CH_{3} - H bond. Explain.
36. $\mathrm{N}, \mathrm{N}, 2,6$ - Tetramethylaniline is more basic than N, N - dimethylaniline.

Explain.

- Watch Video Solution

37. Chloroform is more acidic than fluoroform. Explain.

- Watch Video Solution

38. How can you separate benzoic acid and nitro benzene from their mixture by the technique of extraction using an approprite chemical reagent?

- Watch Video Solution

39. How will you separate benzyl alcohol (neutral) and phenol (acidic) from their mixed solution in ether by extraction using an appropriate chemical reagent?

- View Text Solution

40. Why is impure glycerol purified by distillation under reduced pressure?

- Watch Video Solution

41. Why is it necessary to use acetic acid and not sulphuric acid for acidification of sodium extract for testing sulphur by lead acetate test?

- Watch Video Solution

42. Preence of N is hydroxylamine hydrochloride cannot be detected by Lassaigne's test - why?
43. How can it be possible to detect the presence of nitrogen in hydrazine hydrochloride?

- Watch Video Solution

Entrance Question Bank Wbjee

1. The ease of dehydrohalogenation of akyl halide with alcohloic KOH is
A. $3^{\circ}<2^{\circ}<1^{\circ}$
B. $3^{\circ}>2^{\circ}>1^{\circ}$
C. $3^{\circ}<2^{\circ}>1^{\circ}$
D. $3^{\circ}>2^{\circ}<1^{\circ}$

Answer: B

Entrance Question Bank

1. Which will exhibit optical isomerism-
A. $\mathrm{HO}-\stackrel{\stackrel{H}{\mathrm{~L}}}{\substack{\mathrm{I} \\ H}}-\mathrm{CO}_{2} \mathrm{H}$
B. $\mathrm{H}_{3} \mathrm{C}-\stackrel{\stackrel{H}{\mathrm{C}}}{\stackrel{\text { I }}{\mathrm{I}}} \underset{\substack{\mathrm{OH} \\ \mathrm{CH}}}{ }-\mathrm{CO}_{2} \mathrm{H}$

D. $\mathrm{H}_{3} \mathrm{C}-\stackrel{\stackrel{+}{\mathrm{C}}}{\stackrel{+}{\mathrm{C}}} \mathrm{CI}-\mathrm{CO}_{2} \mathrm{H}$

Answer: B

- Watch Video Solution

2. Which of the following is sec-butyl pheyl vinyl methane-
3. The correct states of hybridisation of C_{2} and C_{3} in compound $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$ are-
A. $s p, s p^{3}$
B. $s p^{2}, s p$
C. $s p^{2}, s p^{2}$
D. sp , sp

Answer: B

- Watch Video Solution

4. Under identical conditions, the $S_{N} 1$ reaction will occur most efficiently with -
A. tert - butyl chloride
B. 1 -chlorobutane
C. 2-methyl-1-chloropropane
D. 2 - chlorobutane

Answer: A

- View Text Solution

5. Which one of the following characteristics belongs to an electrophile-
A. it is any species having electron definiency which reacts at an electron rich C - centre
B.it is may species having electron enrichment, that reacts at an electron defcient C-centre
C. it is cationic in nature
D. it is anionic in nature

Watch Video Solution

6. The most stabl enol tautomer of $\mathrm{MeCOCH} \mathrm{CO}_{2}$ Et is-
A. $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$
B. $\mathrm{MeC}(\mathrm{OH})=\mathrm{CHCO}_{2} \mathrm{Et}$
c. $\mathrm{MeCOCH}=C(O H) O E t$
D. $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{OH}) \mathrm{CH}=\mathrm{C}(\mathrm{OH}) \mathrm{OEt}$

Answer: B

- Watch Video Solution

7. Order of stability of the carbocations: $p h_{2} \stackrel{\oplus}{C} C H_{2} \mathrm{Me}(I), \quad p h \mathrm{CH}_{2} \mathrm{CH}_{2} \stackrel{\oplus}{C} H p h(I I), \quad p h_{2} C H \stackrel{\oplus}{C} H M e(I I I)$ and $p h_{2}$ is-
A. $(I V)>(I I)>(I)>(I I I)$
B. $(I)>(I I)>(I I I)>(I V)$
C. $(I I)>(I)>(I V)>(I I I)$
D. $(I)>(I V)>(I I I)>(I I)$

Answer: B

- Watch Video Solution

8. $\mathrm{MeCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ is stable than $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}_{2}$ because-
A. inductive effect of Me - group.
B. resonance effect of Me - group.
C. hyperconjugative effect of Me - group.
D. resonance and indutive effects of Me - grouo.

Answer: C

9. (+) and (-) - Lactic acid have the same molecular formula, $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$. They are related as-
A. structural isomers
B. geometric isomers
C. optical isomers
D. homomers

Answer: C

- Watch Video Solution

10. Which of the following statement is correct for 2 - butene-
A. the $C_{1}-C_{2}$ bond is an $s p^{3}-s p^{3} \sigma$ - bond
B. the $C_{2}-C_{3}$ bond is an $s p^{3}-s p^{2} \sigma$ - bond
C. the $C_{1}-C_{2}$ bond is an $s p^{3}-s p^{2} \sigma$ - bond
D. the $C_{1}-C_{2}$ bond is an $s p^{2}-s p^{2} \sigma$ - bond

- Watch Video Solution

11. Basicity of aniline is less than methyl amine, because-
A. hyperconjugative effect of Me - group in MeNH_{2}
B. resonance effect of phenyl group in aniline
C. molar mass of methylamine is less than that of aniline
D. resonance effect of Me - group in MeNH_{2}

Answer: B

- Watch Video Solution

12. Tautomerism is exhibited by-
A. $\left(\mathrm{Me}_{3} \mathrm{CCO}\right)_{3} \mathrm{CH}$
B.
c.
D.

Answer: A,B,D

- View Text Solution

13. Amongst the following, the one which can exist in free state as a stable compound is-
A. $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}$
B. $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}$
C. $C_{6} H_{11} O$
D. $C_{10} H_{17} O_{2}$
14. Correct pair of compounds which gives blue colouration/ precipitate and white precipitate, respectively, when their Lassaigne's test is separately done is
A. $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{HCI}$ and $\mathrm{CICH}_{2} \mathrm{COOH}$
B. $\mathrm{NH}_{2} \mathrm{CSNH}_{2}$ and $\mathrm{phCH} \mathrm{H}_{2} \mathrm{CI}$
C. $\mathrm{NH}_{2} \mathrm{CSNH}_{2}$ and $\mathrm{phCH} \mathrm{H}_{2} \mathrm{CI}$
D.

Answer: D

- View Text Solution

15. The IUPAC name of the compound X is-
A. 4-cyano-4-methyl-2-oxopentane
B. 2-cyano-2-methyl-4-oxopentane
C. 2,2-dimethyl-4-oxopentanenitrile
D. 4-cyano-4-methyl-2-pentanone

Answer: C

- View Text Solution

16. The optically active molecule is-
A.
B.

2
C.
D.

Answer: C

17. (+)-2-chloro-2-phenylethane in toluene racemises slowly in the presence of small amount of $S b C I_{5}$, due of the formation of-
A. carbanion
B. carbene
C. free - radical
D. carbocation

Answer: D

- Watch Video Solution

18. The order of decreasing ease of abstraction of hydrogen atoms in the following molecule is-
A. $H_{a}>H_{b}>H_{c}$
B. $H_{a}>H_{c}>H_{b}$
C. $H_{b}>H_{a}>H_{c}$
D. $H_{c}>H_{b}>H_{a}$

Answer: B

- View Text Solution

19. The most likely protonation site in the given molecule is-
A. C-1
B. C-2
C. C-3
D. C-6
20. The 4 - th higher homologue of ethane is-
A. butane
B. pentane
C. hexane
D. heptane

Answer: C

- Watch Video Solution

21. Among the following structures the one which is not a resonating structure of other is-
A. I
B. II
C. III
D. IV

Answer: D

- View Text Solution

22. The correct order of decreasing length of the bond as indicated by the arrow in the following structures is-
A. $I>I I>I I I$
B. $I I>I I I>I I I$
C. $I I I>I I>I$
D. $I>I I I>I I$

Answer: C

- View Text Solution

23. IUPAC name of the molecule, is-
A. 5,6-dimethylhept-2-ene
B. 2,3-dimethylhept-5-ene
C. 5,6-dimethylhept-3-ene
D. 5-isopropylhex-2-ene

Answer: A

- View Text Solution

24. The correct statement regarding the given compound is-
A. all three compounds are chiral
B. only I and II are chiral
C. I and II are diastereomers
D. only I and III are chiral

Answer: D

- View Text Solution

25. In the Lassaigne's test for the detection of nitrogen in an compound, the appearance of blue coloured compound is due to-
A. ferric ferricyanide
B. ferrous ferricyanide
C. ferric ferrocyanide
D. ferrous ferrocyanide

Answer: C

- Watch Video Solution

26. The reaction of methyl trichoroacetate $\left(\mathrm{CI}_{3} \mathrm{CCO}_{2} \mathrm{Me}\right)$ with sodium methoxide (NaOMe) generates-
A. carbocation
B. carbene
C. carbanion
D. carbon radical

Answer: B
27. In a mixture, two enantiomers are found to be present in the amount of 85% and 15% respectively. The enantiomeric excess (e.e) is-
A. 0.85
B. 0.15
C. 0.7
D. 0.6

Answer: C

- Watch Video Solution

28. In the following compound, the number of 'sp' hybridised carbon is

$$
\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}-\underset{\substack{\mathrm{C} \\ \mathrm{CN}}}{\mathrm{CH}}-\mathrm{C} \equiv \mathrm{CH}-
$$

A. 2
B. 3
C. 4
D. 5

Answer: C

D Watch Video Solution

29. Which of the following statement is /are correct-

- Watch Video Solution

30. The correct order of acid strenghts of benzoic acid (X), peroxyenzoic acid (Y) and p - nitrobenzoic acid (Z) is-
A. $Y>Z>X$
B. $Z>Y>X$
C. $Z>X>Y$
D. $Y>X>Z$

- Watch Video Solution

31. In the IUPAC system, $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ is named as-
A. 3 - phenylpropanoic acid
B. benzylacetic acid
C. carboxyethlbezene
D. 2 - pheylpropanoic acid'

Answer: A

- Watch Video Solution

32. The major product (s) obtained in the reaction is/are-
A.
B.
c.
D.

Answer: A,D

- View Text Solution

33. The possible product (s) to be obtained from the reaction of cyclobuty amine with HNO_{2} is/are-
A.
B. R
c. ${ }^{2}$
D.
34. Identify the compound that exhibits tautomerism-
A. lactic acid
B. 2 - pentanone
C. phenol
D. 2 - butene

Answer: B

- Watch Video Solution

35. How many chiral compounds are possible on monochlorination of 2 -methylbutane-
A. 2
B. 4
C. 6
D. 8

Answer: A

- Watch Video Solution

36. Which branched chain isomer of the hydrocarbon with molar mass 72 u gives only 1 monosubstituted alkyl halide-
A. neopentane
B. isohexane
C. neohexane
D. t - butly chloride

Answer: A

37. The order of stability of the following carbocation is-
A. $I I I>I>I I$
B. $I I I>I I>I$
C. $I I>I I I>I$
D. $I>I I>I I I$

Answer: A

- View Text Solution

38. Arrange the compounds in order of decreasing acidity-
A. $I V>I I I>I>I I$
B. $I I>I V>I>I I I$
C. $I>I I>I I I>I V$
D. $I I I>I>I I>I V$

Answer: D

- View Text Solution

39. A solution of (-)-1-chloro-1 pheylethane in toluene raceimess slowly in the presence of a small amount of $S b C I_{5}$, due of the formation of-
A. freee radical
B. carbanion
C. carbene
D. carbocation

Answer: D

40. In $S_{N} 2$ reactions, the correct order of reactivity for the compounds: $\mathrm{CH}_{3} \mathrm{CI}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CI},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCI}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCI}-$
A. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCI}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CI}>\mathrm{CH}_{3} \mathrm{CI}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCI}$
B. $\mathrm{CH}_{3} \mathrm{CI}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCI}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CI}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCI}$
C. $\mathrm{CH}_{3} \mathrm{CI}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CI}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCI}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CI}>\mathrm{CH}_{3} \mathrm{CI}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCI}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCI}$

Answer: C

- View Text Solution

41. For the estimation of nitrogen, 1.4 g of an organic compound was digested by Kjeldahl method and the evoled ammonia was absorbed in 60 mL of $\mathrm{M} / 10$ sulphuric acid. The unreacted aicd required 20 mL of $\mathrm{M} / 10$ sodium hydroxide for complete neutralisation. The precentage of nitrogen in the compound is-
A. 0.05
B. 0.06
C. 0.1
D. 0.03

Answer: C

- Watch Video Solution

42. In Carius method of estimation of halogens, 250 g of an organic compound gave 141 g AgBr . Precentage of Br in the compound $(A g=108, B r=80)-$
A. 48
B. 60
C. 24
D. 36

Answer: C

- Watch Video Solution

43. Which of the following compounds will exhibit geometrical isomersim-
A. 2 - phenyl-1-butene
B. 1,1-diphenyl-1-propene
C. 1-phenyl-2-butene
D. 3 - phenyl-1-butene

Answer: C

- Watch Video Solution

44. The increasing order of $S_{N} 1$ reactivity of the following compounds is-

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CI}$,
$p-\mathrm{CH}_{3} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2} \mathrm{CI}$
A. $(I)<(I I I)<(I I)$
B. $(I I)<(I I I)<(I)$
C. $(I I I)<(I I)<(I)$
D. $(I I)<(I)<(I I I)$

Answer: D

(D) Watch Video Solution

45. The resonance stability is minimum for the compound-
A.
(B)
B.

C.

Answer: B

- Watch Video Solution

46. Which of the following compounds will be suitable for Kjedahl's method of nitrogen estimation-

A.

B.

C.
D.

Answer: D

- Watch Video Solution

47. The increasing order of basicity of the following compounds is-
(a)

(b) $\sim \sim N H$
(c) $\stackrel{\mathrm{NH}_{2}}{\mathrm{~N}} \mathrm{NH}$
(d) NHCH_{3}
A. $(b)<(a)<(d)<(c)$
B. $(d)<(b)<(a)<(c)$
C. $(a)<(b)<(c)<(d)$
D. $(b)<(a)<(c)<(d)$

- Watch Video Solution

48. Consider the reactions:
(i)
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}_{2} \mathrm{Br} \xrightarrow{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}_{2} \mathrm{OC}_{2} \mathrm{Hd}_{5}+\mathrm{Br}^{-}$
(ii)
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}_{2} \mathrm{Br} \xrightarrow{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}-(2) \mathrm{OCH}_{2} \mathrm{H}_{5}+\mathrm{Br}^{-}$
The mechanism of reactions (i) and (ii) are respectively-
A. $S_{N} 1$ and $S_{N} 2$
B. $S_{N} 1$ and $S_{N} 1$
C. $S_{N} 2$ and $S_{N} 2$
D. $S_{N} 2$ and $S_{N} 1$

Answer: C

49. Which undergoes nucleophilic substitution most easily-

A.

B.

C.

D.

- Watch Video Solution

50. IUPAC name of the compound,
A. trans-2-chloro-3-iodo-2-pentene
B. cis-3-indo-4-chloro-3-pentene
C. trans-3-iodo-4-chloro-3-pentene
D. cis-2-chloro--3-iodo-2-pentene

Answer: A

- View Text Solution

51. Considering the state of hybridisation of C - atoms, which one among the following is linear-
A. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
B. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
C. $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
D. $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{C} \equiv \mathrm{CH}$

Answer: C

- Watch Video Solution

52. Which is a nucleophilic substitution reaction-
A. $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{HCN} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}$
B. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}^{+}} \mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
C. $\mathrm{RCHO}+\mathrm{R}^{\prime} \mathrm{MgX} \rightarrow \mathrm{R}-\mathrm{CH}(\mathrm{OH}) \mathrm{R}^{\prime}$
D.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Br}+\mathrm{NH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{NH}_{2}$
53. Which is most reactive towards an electrophilic reagent-
A.
B.
.
C.
D.

Answer: C

- View Text Solution

54. The correct order or increasing bond length $\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$ is-
A. $C-H<C-O<C-C<C=C$
B. $C-H<C=C<C-O<C-C$
C. $C-C<C=C<C-O<C-H$
D. $C-O<C-H<C-C<C=C$

Answer: B

- View Text Solution

55. $\mathrm{RCHO}+\mathrm{NH}_{2} \mathrm{NH}_{2} \rightarrow \mathrm{RCH}=\mathrm{N}-\mathrm{NH}_{2}$ What sort of reaction is it-
A. electrophilic addition - elimination reaction
B. free radical addition - elimination reaction
C. electrophilic substitution - elimination reaction
D. nucleophilic addition - elimination reaction

Answer: D

56. Which of the following acids do not exhibit optical isomerism-
A. malic acid
B. α-amino acids
C. lactic acid
D. tataric acid

Answer: A

- Watch Video Solution

57. The correct order of decreasing acid strenght of trichloroacetic acid (I), trifluoroacetic acid (II), acetic acid (III) and formic acid (IV) is-
A. $I I>I>I V>I I I$
B. $I I>I V>I I I>I$
C. $I>I I>I I I>I V$
D. $I>I I I>I I>I V$

- Watch Video Solution

58. Which nomeclature is not according to IUPAC system-
A. $\stackrel{\text { © }}{\substack{\text { (A) } \\ \mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CH}_{3} \\ \mathrm{CH}_{3}}} \begin{aligned} & \text { (2-methyl-3-phenylpentane) })\end{aligned}$
B. $\mathrm{CH}_{3}-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}(5$-oxohexanoic acid)
C. $\mathrm{Br}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$ (1-bromoprop-2-ene)
D. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{\mathrm{Br}}{\stackrel{\mathrm{CH}_{3}}{\mathrm{C}}}-\mathrm{CH}_{2}-\mathrm{CHCH}_{3}$ ("4 $-\quad$ bromo $-\quad 2,4$ dimethylhexane")

Answer: C

- Watch Video Solution

59. Stucture of the compound whose IUPAC name is 3 - ethyl - 2 - hydroxy - 4

- methylhex-3-ene-5-ynoic acid is-
A.
A.
B.
B.
c.
D.

Answer: D

- Watch Video Solution

60. Structure of isobutyl group in an organic compound is-
A. $\mathrm{CH}_{3}-\stackrel{\mathrm{CH}_{3}}{\mathrm{I}_{3}} \begin{gathered}\mathrm{C} \\ \vdots \\ \mathrm{CH}_{3}\end{gathered}-$
CH_{3}
B.
$\mathrm{CH}_{3}>\mathrm{CH}-\mathrm{CH}_{2}-$
C. $\mathrm{CH}_{3}-\underset{\text { I }}{ } \mathrm{H}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
D. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$

Answer: B

- Watch Video Solution

61. The order of stability of the following tautomeric forms is-

A. $I I>I I I>I$
B. $I>I I>I I I$
C. $I I I>I I>I$
D. $I I>I>I I I$

Answer: C

62. Which of the following compounds will undergo racemisation when solution of KHO hydrolyses-
(I)
(II) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CI}$
(III) $\mathrm{H}_{3} \mathrm{C}-\stackrel{\mathrm{CH}_{3}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2} \mathrm{CI}$
A. I and II
B. II and IV
C. III and IV
D. I and IV

Answer:

63. Most reactive towards nucleophilic addition reaction is-
A.
B.
в.
C. $\begin{array}{r}4 \\ \hline 4\end{array}$
D.

Answer: D

- View Text Solution

64. In the Kjeldahl's methodd for estimation of nitrogen present in a soil sample, ammonia evoled from 0.75 g of sample netralised 10 mL of $1 \mathrm{MH}_{2} \mathrm{SO}_{4}$. The precentage of nitrogen in the soil is-
A. 37.33
B. 45.33
C. 35.33
D. 43.33

Answer: A

- Watch Video Solution

65. The number of structural isomers possible from the molecular formula
$C_{3} H_{9} N$ is-
A. 4
B. 5
C. 2
D. 3

Answer: A

- Watch Video Solution

66. In an SN1 reaction on centres there is
A. 100% racemisation
B. inversion more than ratention leading to partial recemisation
C. 100% retention
D. 100% inversion

Answer: B

- Watch Video Solution

67. Which of the following statements is not correct for a nuclephile-
A. nucleophile is a Lewis acid
B. ammonia is a nucleophile
C. nucleophile attack low electrons density sites
D. nucleophilic are not electron seeking

Answer: A,B,C

- Watch Video Solution

68. Two possible stereo - structures of $\mathrm{CH}_{3} \mathrm{CHOH} \cdot \mathrm{COOH}$, which are optically active, are called-
A. diastereomers
B. atropisomers
C. enantiomers
D. mesomers

Answer: C

- Watch Video Solution

69. In which of the following molecules, all the atoms are coplanar-
A.
B.
(B) $\begin{aligned} & \mathrm{H}_{3} \mathrm{C} \\ & \mathrm{H}_{3} \mathrm{C}\end{aligned} \mathrm{C}=\mathrm{C}<\frac{\mathrm{CN}}{\mathrm{CN}}$
C.
(C)

D.

Answer: D

- Watch Video Solution

70. The correct order of acid strenghts of the given carboxylic acid is-
A. $I I>I>I I I$
B. $I>I I>I I I$
C. $I I>I I I>I$
D. $I I I>I I>I$

- View Text Solution

71. Which among the given molecules can exhibit tautomerism-
A. both I and III
B. both I and II
C. both II and III
D. III only

Answer: D

- View Text Solution

72. Which of the following biphenyl is optically active-
A.
B.
c.
D.

Answer: B

- View Text Solution

73. The pair of electrons in the given carbanion is present in which of the
following orbitals- $\mathrm{CH}_{3}-\stackrel{\ominus}{C} \stackrel{\ominus}{C}$
A. $s p$
B. $2 p$
C. $s p^{3}$
D. $s p^{2}$
74. The correct statement about the basicity of aryl amines is-
A. aryl amines are in genral more basic than alkyl amines because the N atom in aryl amines is sp - hybridised
B. aryl amines are in genral less basic than alkl amines because the unshared pair of electrons on nitrogen in aryl amines undergoes effective delocalisation with the ring π - electrons
C. aryl amines are in genral more basic than alkyl amines because the unshared pair of electrons on nitrogen in aryl amines does not undergo delocalisation with the ring π - electrons
D. aryl amines are more basic than alkyl amines due to the pressure of aryl groups

Answer: B
75. (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{KHO} \rightarrow \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{KBr}+\mathrm{H}_{2} \mathrm{O}$
(b)
(c)

Which one of the following statements for the given reactions is correct -
A. (a) is a substitution reaction but (b) and (c) are addition reactions.
B. (a) and (b) are elimination reactions, but (c) is an addtion reaction.
C. (a) is an elimination reaction, (b) is a substution reaction and (c) is an addition reaction.
D. (a) is an elimination reaction, but (b) and (c) are substitution reactions

Answer: C

76. The IUPAC name of the compound
A. 5 - formylhex-2-ene-3-one
B. 5-methyl-4 oxohex-2-en-5-al
C. 3 -keto - 2 -methylhex-5-enal
D. 3-keto-2-methylhex-4-enal

Answer: D

- View Text Solution

77. Which one is the most acidic compound-

OH
(B)

B.
C.

D.

Answer: C

Watch Video Solution
78. The most suitable method of separation of $1: 1$ mixture of ortho and para - nitrophenols is-
A. chromatography
B. crystallisation
C. steam distillation
D. sublimation

Answer: C

- Watch Video Solution

79. The correctr statement regarding electrophile is-
A. electrophile is a negatively charged species and can form a bond by accepting a pair of electrons from another electrophile
B. electrophiles are generally neutral speices and can form a bond by accepting a pair of electrons from a nucleophile
C. electrophiles can be either neutral of postively charged speices and can from a bond by accepting a pair of electrons from a nucleophile
D. electrophile is a negatively charged species and can form a bond accepting a pair of electrons from a nucleophile

Answer: C

- View Text Solution

80. Which of the following is correct with respect to -I effect of the subsitunets ($\mathrm{R}=$ alkyl) -
A. $-N R_{2}>-O R>-F$
B. $-N H_{2}>-O R<-F$
C. $-\mathrm{NH}_{2}>-\mathrm{OR}>-F$
D. $-N R_{2}<-O R<-F$

Answer: D

81. Which of the following carbocations is expected to be most stable-
A.
(B)

B.
(C)

C.
D.
(D)

Answer: C
82. Which of the following molecules represents the order of hybridisation $s p^{2}, s p^{2}, s p, s p$ from left to right atoms-
A. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
B. $H C \equiv C-C \equiv C H$
C. $\mathrm{CH}_{3}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
D. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$

Answer: D

- Watch Video Solution

83. $S_{N} 2$ reaction readily occurs in-
A. $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}$
B. $\mathrm{CH}_{3}-\stackrel{\stackrel{\mathrm{CH}_{3}}{\mid}}{\stackrel{\mid}{\mathrm{C}}} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$
C. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}$
D. $\mathrm{ph}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

Answer: A

- Watch Video Solution

84. The correct decreasing order of $p K_{a}$ is-
A. $I I>I V>I>I I I$
B. $I V>I I>I I I>I$
C. $I I I>I I>I V>I$
D. $I V>I>I I>I I I$
85.

The correct decreasing order of $p K_{b}$ is-
A. $I>I I>I I I>I V$
B. $I I I>I V>I I>I$
C. $I I>I I I>I V>I$
D. $I V>I I>I>I I I$

Answer: D

- View Text Solution

86. Find the number of stereosiomers of 1,2 - dihydroxycyclopentane-
A. 1
B. 2
C. 3
D. 4

- Watch Video Solution

87. Decreasing order of nucleophilicity is-
A. $O H^{\Theta}>\mathrm{NH}_{2}^{\Theta}>\mathrm{CH}_{3} \mathrm{O}^{\Theta}>\mathrm{RNH}_{2}$
B. $\mathrm{NH}_{2}^{\Theta}>\mathrm{OH}^{\Theta}>\mathrm{CH}_{3} \mathrm{O}^{\Theta}>\mathrm{RNH}_{2}$
C. $\mathrm{NH}_{2}^{\Theta}>\mathrm{CH}_{3} \mathrm{O}^{\Theta}>\mathrm{RNH}_{2}$
D. $\mathrm{CH}_{3} \mathrm{O}^{\Theta}>\mathrm{NH}_{2}^{\Theta}>\mathrm{OH}^{\Theta}>\mathrm{RNH}_{2}$

Answer: C

- View Text Solution

88. $p K_{a}$ increases in benzoic acid when substituent "x" is bonded at para position, then " x " is-
A. -COOH
B. $-\mathrm{NO}_{2}$
C. ' ${ }^{`}$ 'N
D. $-\mathrm{OCH}_{3}$

Answer: D

- Watch Video Solution

89. The IUPAC name of the given compound is $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}-$
A. 2,3,4,4 - tetramethylpentane
B. 1,2,2,4-tetramethylpentene
C. 2,2,4,4 - tetramethylpentane
D. 3,3-dimethylpentane

Answer: C

90. The purity of an organic compound is determined by -
A. chromataography
B. crystallisation
C. melting or boiling point
D. both (a) and (c)

Answer: D

- Watch Video Solution

91. Lassaigne's test for the detection of nitrogen fails in-
A. $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CO}-\mathrm{NHNH}_{2} \cdot \mathrm{HCI}$
B. $\mathrm{NH}_{2}-\mathrm{NH}_{2} \cdot \mathrm{HCI}$
C. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NH}-\mathrm{NH}_{2} \cdot \mathrm{HCI}$
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}_{2}$

Answer: B

- Watch Video Solution

92. Arrange the following nucleophiles in the decreasing order of nucleophilicty-
A. 2 -ethylalanine
B. 2 - methylglycine
C. 2 - hydroxymethylserine
D. tryptonhan

Answer: C

- View Text Solution

93. Arrange the following nucleophiles in the decreasing order of nucleophilicty-
(A) $\mathrm{CH}_{3} \mathrm{C}-\mathrm{O}^{\ominus}$
(B) $\mathrm{CH}_{3} \mathrm{O}^{\Theta}$
(C) $C N^{\Theta}$
(D)
A. C, B, A, D
B. A, B, C, D
C. D, C, B, A
D. B,C,A,D

Answer: D

- View Text Solution

94. Which of the following is an electronphile-
A. $\mathbb{C} I_{2}$
B. CH_{3}^{-}
C. $\mathrm{H}_{2} \mathrm{O}$
D. NH_{3}

Answer: A

- Watch Video Solution

95. Give IUPAC name of the following compound-
A. 5-hydroxycyclohex-3-ene-1-one
B. 3-hydroxycyclohex-5-en-1-one
C. 8 - hydroxycyclohex-3-en-1-one
D. 7-hydroxycyclohex - 5-en-1-one
96. Which of the following is the correct order of acidic strenght of the following compounds-
A. $(i)>(i i)>(i i i)$
B. $(i i)>(i i i)>(i)$
C. $(i)>(i i i)>(i i)$
D. $(i i i)>(i i)>(i)$

Answer: D

- View Text Solution

97. IUPAC name of the given compounds is-
A. 2-methoxy-4-bromonitrobenzene
B. 3-bromo-6-nitro-1-methoxybenzene
C. 3-methoxy-4-nitrobromobenzene
D. 5-bromo-2-nitro-1-methoxybenzene

Answer: D

- View Text Solution

Mcq Single Correct Type

1. The number of σ - and π-bonds in pent-1-en-4-yne molecule is respectively-
A. 8 and 2
B. 10 and 3
C. 6 and 4
D. 7 and 2

- Watch Video Solution

2. The hybrid orbitals involed in the formation of the $C_{2}-C_{3}$ bond in the following compound, $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$ are-
A. $s p-s p^{2}$
B. $s p-s p^{3}$
C. ${ }^{`} s p^{\wedge}(2)-s p^{\wedge}(3)$
D. $s p^{3}-s p^{3}$

Answer: C

D Watch Video Solution

3. The increasing order of electronegativity of the carbon atoms C-2, C-3 and C-4 in the compound $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$ is-
A. $C-3<C-2<C-4$
B. $C-4<C-3<C-2$
C. $C-2<C-4<C-3$
D. $C-3<C-4<C-2$

Answer: A

- Watch Video Solution

4. $\mathrm{CH}_{3} \mathrm{CONH}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CN}$, In this conversion, the charge in hybridisation state of the carbon atom of the functional group is-
A. $s p^{3}-s p$
B. $s p^{2}-s p$
C. $s p-s p^{3}$
D. $s p^{2}-s p^{3}$
5. The correct shapes of $C C_{4}$ and $C l_{2}=C=C=\mathbb{C} I_{2}$ molecules are respectively-
A. linear and tetrahedral
B. planar and pyrmidal
C. tetrahedral and planar
D. tetrahedral and linear

Answer: C

- Watch Video Solution

6. The number of C and H - atoms that in the same plane in a toluene $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right)$ molecule is respectively-

$$
\text { A. } 7 \text { and } 5
$$

B. 6 and 5
C. 7 and 3
D. 6 and 3

Answer: A

- Watch Video Solution

7. The number primary, secondary, tertiary and quaternary carbon atoms in

2,2,4 - trimethylpentane is respectively-
A. 5,1,1 and 1
B. 1,1,1 and 5
C. $4,1,1$ and 2
D. 1,5,1 and 1
8. In which of the following molecules does all the atoms lie on the same straight line-
A. $H C \equiv C-C \equiv C H$
B. $\mathrm{HC} \equiv \mathrm{C}-\mathrm{CH}_{3}$
c. $H C \equiv C C N$
D. $\mathrm{C}_{3} \mathrm{O}_{2}$

Answer: B

- View Text Solution

9. Hybridisation states of C-2,C-3,C-5 and C-6 in the compound, $\underset{\substack{\text { CH }}}{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCHCHC}} \equiv \mathrm{CH}$ are respectively-
A. $s p, s p^{3}, s p^{2}$ and $s p^{3}$
B. $s p^{3}, s p^{2}, s p^{2}$ and $s p$
C. $s p, s p^{2}, s p^{2}$ and $s p^{3}$
D. $s p, s p^{2}, s p^{3}$ and $s p^{2}$

Answer: A

D Watch Video Solution

10. IUPAC name of the compound,
$\stackrel{\stackrel{\mathrm{O}}{\|} \mathrm{CH}=\mathrm{CH}_{2}}{\mathrm{CH}} \underset{\mathrm{CH}}{\mathrm{C}} \mathrm{H}-\stackrel{\stackrel{\mid}{\mathrm{C}}}{ }-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ is-
A. 4-propyl-3-methylhex-5-en-2-one
B. 3-propyl-5 methylhex-1-en-5-one
C. 3-methyl-4-propylhex-5-en-2-one
D. 3-methyl-4-vinylheptan-2-one

Answer: C
11. Bond lenghts of C-H, C-O , C-C and C = C follow the sequence-
A. $C-H<C-O<C-C<C=C$
B. $C-H<C=C<C-O<C-C$
C. $C-C<C=C<C-O<C-H$
D. $C-O<C-H<C-C<C=C$

Answer: B

- Watch Video Solution

12.

A. 1-chloro-2-nitro-4-methylbenzene
B. 1-chloro-4-methyl-2-nitrobenzene
C. m - nitro - p - chlorotoluene
D. 2-chloro-1-nitro-5-methylbenzene

Answer: B

- Watch Video Solution

13. The hybridisation states of the carbon atom of amido and cyano group are respectively-
A. $s p^{3}$ and $s p^{2}$
B. $s p^{2}$ and $s p$
C. $s p$ and $s p^{2}$
D. $s p^{3}$ and $s p$

Answer: B

- Watch Video Solution

14. Which of the following pair of compounds are isomers-
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{OCH}_{3}$
B. $\mathrm{CH}_{3} \mathrm{OC}_{3} \mathrm{H}_{7}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{COCH}_{3}$
D.

Answer: D

- View Text Solution

15. Two aliphatic compounds will not be considered isomers if they are-
A. aldehyde and ketone
B. ether and alcohol
C. ether and aldehyde
D. carboxylic acid and ester

- View Text Solution

16. The number of organic compounds with molecular formula $C_{4} H_{10}$ are-
A. 7
B. 5
C. 6
D. 8

Answer: A

- Watch Video Solution

17. What happens when CHCl_{3} reacts with oxygen in presence of sunlight?
A. propane
B. pentane
C. butane
D. cyclohexane

Answer: D

- Watch Video Solution

18. Two enanitomers rotate the plane of polarisation of plane polarised light-
A. in different directions but keeping the angle same
B. in the same direction but with different angles
C. in the same direction and in the same angle
D. in different directions with different angles
19. Which of the following is an optically compoud-
A. $\mathrm{CH}_{3} \mathrm{CHCICH}=\mathrm{CH}_{2}$
B. $\mathrm{CH}_{3} \mathrm{CHCI}_{2}$
C. meso - tartaric acid
D. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}=\mathrm{CH}_{2}$

Answer: A

- Watch Video Solution

20. Which of the following compounds exhibit both geometrical and optical isomerism-
A. $\mathrm{CH}_{3} \mathrm{CHCICH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$
B. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-\mathrm{CHBrCH} \mathrm{CH}_{3}$
C. $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{CHCH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$

Answer: B

- Watch Video Solution

21. Which of the following compounds does not exhibit tautomerism-
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}=\mathrm{O}$
B. $\mathrm{CH}_{3} \mathrm{NO}_{2}$
C. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
D. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOC}_{6} \mathrm{H}_{5}$

Answer: D

- Watch Video Solution

22. The enol content in which of the following compounds is maximum-
A. $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COCH}_{3}$

(B)

B.
C. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CHO}$

Answer: A

- View Text Solution

23. The optically active alkane of lowest molecular mass which is also chiral is-
A. 3 - methylhexane
B. 2,3-dimethylpentane
C. 2 - methylhexane
D. 2,5 - dimethylhexane

- Watch Video Solution

24. Which of the following compounds possesses a centre of symmetry-
A. trans-1,3-dimethylcyclobutane
B. cis-1,3-dimethycyclobutane
C. trans-1-ethyl-3-methylcyclobutane
D. cis-1-ethyl-3-methylcylobutane

Answer: A

- Watch Video Solution

25. The compounds cis - 2 - butene and trans - 2 - butene can be differentiated by -
A. the number of products obtained due to their chlorination
B. the number of products obtained due to their bromination
C. their reaction with H_{2} in presence of nickel catalyst
D. their respectively boiling points

Answer: D

- Watch Video Solution

26. Which of the following is optically active -

A.

B.
C.

Answer: D

- View Text Solution

27. Which of the following is non - superimposable on its mirror image-

A.

B.
C.
COOH
(C)

(D) $\underset{\mathrm{H}^{\prime}}{\mathrm{H}_{3} \mathrm{C}} \mathrm{C}=\mathrm{C}^{\prime} \stackrel{\mathrm{CH}}{3}$
D.

- Watch Video Solution

28. The number of isomers formed by a compound whose molecular formula is $\mathrm{C}_{2} \mathrm{BrClFI}$ is
A. 3
B. 4
C. 5
D. 6

Answer: D

- Watch Video Solution

29. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{\ominus}} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$, In this reaction, the hydroxyacid obtained is-
A. (+) - enantiomer
B. (-) -enantiomer
C. $50 \%(+)$ and $80 \%(-)$ - enantiomer
D. 20\% (+) and 80\% (-) - enantiomer

Answer: C

- View Text Solution

30. Which of the following compounds will produce the most stable carbocation in presence of an acid-
A. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH}$
B. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH}$
C. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$
D. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
31. The correct order of stability of the given carbonions: para $\Theta \quad \Theta \quad \Theta$
$\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}(\mathrm{I}), \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$ (II) and para - $\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}(\mathrm{III})$ is-
A. $I>I I>I I I$
B. $I I>I>I I I$
C. $I I I>I I>I$
D. $I I>I I I>I$

Answer: A

- Watch Video Solution

32. The most stable carbocaation is-
A.
B.
c.
D.

Answer: D

- View Text Solution

33. The most stable carbanion is-

A.

B.
C.
Θ
D. : CH_{3}

Answer: B

- View Text Solution

34. Carbocation which does not undergo rearrangement is-
A. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}$
B. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \stackrel{\oplus}{\mathrm{C}} \mathrm{HCH}_{3}$
C. $\left(\mathrm{CH}_{3}\right)_{3} \stackrel{\oplus}{\mathrm{C}}$
D. $\left(\mathrm{CH}_{3}\right)_{3} C \stackrel{\oplus}{C} \mathrm{H}_{2}$

Answer: C

35. Which of the following carbocations is quite stable and can even be stored in the laboratory as a salt-
A. $\left(\mathrm{CH}_{3}\right)_{2} \stackrel{\oplus}{\mathrm{C}} \mathrm{H}$
B. $\left(C_{6} H_{5}\right)_{3} \stackrel{\oplus}{C}$
c. $\mathrm{CH}_{2}=\mathrm{CH}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}$
D. $\stackrel{\oplus}{C} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$

Answer: B

- Watch Video Solution

36. Compound in which hyperconjugation does not occur-
A. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
B. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$
C. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$
D. $C D_{3} \mathrm{CH}=\mathrm{CH}_{2}$

- Watch Video Solution

37. Which of the gven resonance structures is most stable-
A.

B.
C.

D.

38. Which of the given alicyclic compounds is most active-

A.
B.

C.

D.

- View Text Solution

39. $\dot{\mathrm{C}} \mathrm{H}_{3}(I), \mathrm{CH}_{3} \dot{\mathrm{C}} \mathrm{H}_{2}(I I), \mathrm{CH}_{2}=\mathrm{CH} \dot{C} \mathrm{H}_{2}(I I I), \mathrm{C}_{6} \mathrm{H}_{5} \dot{\mathrm{C}} \mathrm{H}_{2}(I V)$,

The correct order of stability of these free radicals is-
A. $I>I I>I I I>I V$
B. $I I I>I I>I>I V$
C. $I V>I I I>I I>I$
D. $I V>I>I I>I I I$

Answer: C

- Watch Video Solution

40. The strutures of carbocation and carbanion are respectively-
A. linear and planar
B. trigonal planar and trigonal pyrmidal
C. tetrahedral and trigonal planar
D. trigonal pyramidal and tetrahedral

Answer: B

- View Text Solution

41. Correct order of stability of the given three carbonions is-
A. $\stackrel{\ominus}{C} H_{3}>\stackrel{\ominus}{\mathscr{C}} F_{3}>\stackrel{\ominus}{C} C I_{3}$
B. $\stackrel{\ominus}{C} F_{3}>\stackrel{\ominus}{C} C I_{3}>\stackrel{\ominus}{C} H_{3}$
C. $\stackrel{\ominus}{C} C I_{3}>\stackrel{\ominus}{\ddot{C}} F_{3}>\stackrel{\ominus}{\mathscr{C}} H_{3}$
D. $\stackrel{\ominus}{C} C I_{3}>\stackrel{\ominus}{\ddot{C}} H_{3}>\stackrel{\ominus}{\ddot{C}} F_{3}$

Answer: C
42. Which of the following alkenes is most stable-
A. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$
B. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}=\mathrm{CH}_{2}$

Answer: A

D View Text Solution

43. In which of the following compounds, extent of resonance between the benzene ring and halogen atom is maximum-

> A.

C.

D.

Answer: A

- Watch Video Solution

44. The compound whose basicity is maximum in gaseous and aquious medium is-
A. NH_{3}
B. $\mathrm{CH}_{3} \mathrm{NH}_{2}$
C. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
D. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$

Answer: C

- Watch Video Solution

45. (+)-1-Chloro-1-pheylethane undergoes racemisation in presence of small amount of $S b C I_{5}$. The intemediate formed in this process is-
A. a carbene
B. a carbocation
C. a carbanion
D. a free radical

Answer: B
46. In which of the following compounds, presence of nitrogen cannot be detected by Lassaigne's test-
A. $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{HCI}$
B. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHNH}_{2} \cdot \mathrm{HCI}$
C. $P h N=N P h$
D. $\mathrm{NH}_{2} \mathrm{CONH}_{2}$

Answer: A

- Watch Video Solution

47. Which of the following compounds is responsible for the formation of Prussian blue during detection of nitrogen by Lassaigen's test-
A. $N a_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
B. $F e_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$
C. $F e_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
D. $F e_{3}\left[F e(C N)_{6}\right]_{4}$

Answer: B

- Watch Video Solution

48. The process by which essential oils can be extracted from flowers is-
A. distillation
B. crystallisation
C. vacuum distillation
D. steam distillation

Answer: D

- Watch Video Solution

49. The process which is suitable for detecing two different types of ink in any handwriten ancident document is-
A. column chromatography
B. solvent extraction
C. distillation
D. thin layer chromatography

Answer: D

- Watch Video Solution

50. Detection of which of the following functional groups is required to confirm the presence of nitrogen in the corresponding compound-
A. amido
B. carboxyl
C. carbonyl
D. alkoxycarbonyl

Answer: A

- Watch Video Solution

51. Which of the following compounds does not exhibit geometrical isomerism-
A. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{N}-\mathrm{OH}$
B.
C.
D. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$

Answer: C

- View Text Solution

52. The number of geometrical isomers of the compound, $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CHCH}_{3}$ is -
A. 3
B. 2
C. 4
D. 5

Answer: A

- Watch Video Solution

53. The number of optically active isomers of the compounds, $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ is
A. 4
B. 2
C. 3
D. none of these

Answer: B

- Watch Video Solution

54. The number of compounds formed on monobromination of
$\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{\mathrm{CH}_{3}}{\mathrm{C}} \mathrm{C} \underset{\mathrm{CH}_{3}}{\mathrm{H}} \mathrm{HCH}_{2} \mathrm{CH}_{3}$ is-
A. 3
B. 2
C. 5
D. 4

Answer: D

55. Double bond equivalent of $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{CIO}$ is
A. 4
B. 6
C. 3
D. 2

Answer: A

- Watch Video Solution

56.

The
correct order
of
basicity
of
$\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{I}),\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}(\mathrm{III})$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ in chlorobenzene is-
A. $I<I I I<I I$
B. $I I<I I I<I$
C. $I l<I<I I I$
D. $I I<I<I I I$

- View Text Solution

57. The correct order of stability of
$\left(\mathrm{CH}_{3}\right)_{2} \stackrel{\oplus}{\mathrm{C}} \mathrm{H}(\mathrm{I}), \mathrm{CH}_{3} \stackrel{\oplus}{\mathrm{C}} \mathrm{HOCH}_{3}(\mathrm{II})$ and $\mathrm{CICH}_{2} \stackrel{\oplus}{\mathrm{C}} \mathrm{HCH}_{3}$ is-
A. $I>I I>I I I$
B. $I I>I I I>I$
C. $I I>I>I I I$
D. $I I I>I I>I$

Answer: C

- Watch Video Solution

58.

$\mathrm{CH}_{3} \stackrel{\ominus}{\mathrm{C}} \mathrm{H}-\mathrm{CO}-\mathrm{CH}_{3}(\mathrm{I}), \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CO}-\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{2}(\mathrm{II})$ and $\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{2}-\mathrm{C}$
, The correct order of stability of these carbanious is-
A. $I I I<I<I I$
B. $I<I I I<I I$
C. $I I<I I I<I$
D. $I I I<I I<I$

Answer: A

- Watch Video Solution

59. In kjedahl's method, CuSO_{4} is used to-
A. catalyse the reaction
B. oxidise the reaction
C. reduce the reacation
D. increases boiling point
60. The number of optically active isomers among five probable alcohols of molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ is-
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

61. Which compound gives most unstable enol-
A.
B.
C.
D.

Answer: A

- View Text Solution

62. If 3.4% sulphur is present in insulin, then the minimum molecular mass of insulin will be-
A. 350
B. 470
C. 560
D. 940

Answer: D

63. The number three different asymmetric carbon atoms in a compound.

The number of possible stereoisomers of this compound is-
A. 8
B. 3
C. 9
D. 6

Answer: A

- Watch Video Solution

64. There are three different asymmetric carbon atoms in a compound. The number of possible stereoisomers of this compound is-
A. 8
B. 3
C. 9
D. 6

Answer: A

- Watch Video Solution

65. In which of the following compounds, the nucleophilic character of N atom is maximum-
A.

B. $\mathrm{H}_{3} \mathrm{C}^{-}=\mathrm{C}^{-} \mathrm{CN}$
C.

D.

66. Which of the following resonance structures is incorrect
A.
A. A
B.

C.

D.

Answer: C

- View Text Solution

67. Number of electrons in the p-orbital of methyl cation is-
A. 2
B. 3
C. 4
D. none of these

Answer: D

- Watch Video Solution

68. Which compound can exhibit geometrical isomerism-
A. acetone - oxime
B. isobutene
C. acetophnone-oxime
D. benzophenone - oxime

Answer: C

69. In which of the following molecules, all the constituent carbon atoms have the same state of hybridisation-
A. $H C \equiv C-C \equiv N$
B. $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{3}$
C. $\mathrm{CH}_{2}=C=C=C N_{2}$
D. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CHO}$

Answer: A::D

- Watch Video Solution

70. In which of the following molecules, all the atoms lie in the same plane-
A. $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}$
B. $\mathrm{CCl}_{2}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$
C. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}$
D. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$

- Watch Video Solution

71. Which of the following express a homologous series-
A. methanol, ethanol, 1 - propanol
B. 1 - hexene, 2 - hexene, 3 -hexene
C. formic acid, acetic acid, propionic acid
D. methane, methanol, methanal

Answer: A::C

- Watch Video Solution

72. Which of the following statements are incorrect-
A. heat of hydrogenation of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ is less than that of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}$
B. $\stackrel{\ominus}{C} C I_{3}$ is more stable than $\stackrel{\ominus}{C} F_{3}$
C. bond lenghts of three carbon - oxygen bonds in carbonate $\left(C O \frac{2^{-}}{3}\right)$ ion are not equal
D. free radicals are paramagnetic

Answer: A: C

- View Text Solution

73. Which of the following orders of stability are correct -
A. $\mathrm{CH}_{3} \stackrel{\oplus}{\mathrm{C}} \mathrm{HOCH}_{3}>\mathrm{CH}_{3} \stackrel{\oplus}{\mathrm{C}} \mathrm{HCH}_{2} \mathrm{OCH}_{3}$
B. $F \stackrel{\oplus}{C} H_{2}>\mathrm{FCH}_{2} \stackrel{\oplus}{C} \mathrm{H}_{2}$
C. $F \stackrel{\oplus}{C} H_{2}>\mathrm{FCH}_{2} \stackrel{\oplus}{C} \mathrm{H}_{2}$
D. $\mathrm{FCH}_{2} \mathrm{COO}^{\Theta}<\mathrm{CH}_{3} \mathrm{COO}^{\Theta}$

- View Text Solution

74. Which process is not represented correctly-
A.
B.

c.
c.
D.

Answer: A: C

- View Text Solution

75. Which of the following sets represent only elctrophiles-
A. $\mathrm{BF}_{3}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$
B. $A I C I_{3}, S O_{3}, \stackrel{\oplus}{N} O_{2}$
c. $\stackrel{\oplus}{\mathrm{N}} \mathrm{O}_{2} \stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{3}, \mathrm{CH}_{3} \stackrel{\oplus}{\mathrm{C}} \mathrm{O}$
D. $\mathrm{C}_{2} \mathrm{H}_{3}{ }^{\Theta}, \dot{C}_{2} \mathrm{H}_{5}, \mathrm{C}_{2} \mathrm{H}_{5}{ }^{\oplus}$

Answer: B::C

- View Text Solution

76. Delocalisation in hyperconjugation occurs-
A. in case of σ - bond electrons of C-H bond of any alkyl group directly linked to a double bond
B. in case of σ - bond electrons of C-H bond of any alkyl group directly
linked to a positive carbon atom
C. in case of π - electrons of $C=C$
D. in case of lone paira of electrons
77. Which of the following statements are incorrect-
A. sodium extract is first boiled with dilure HCl during detection of halogens by Lassaigne's test
B. if in an organic compound, both nitrogen and sulphur are present, then blood - red colouration is observed during detection of nitrogen by Lassaigne's test
C. organic compounds which dissociate at their melting points are purified by vacuum disillation
D. in paper chromatography, the stationary phase is solid while the mobile phase is liquid

Answer: A:D

78. Which of the following compounds give a red colouration in Lassaigne's test during detection of nitrogen-
A. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}$
B. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
c.
D.

Answer: C::D

- View Text Solution

79. Which of the following compounds give a red colouration in Lassigne's test during detection of N -
A. $\mathrm{NH}_{2} \mathrm{NH}_{2}+$ charcoal
B. $\mathrm{NH}_{4} \mathrm{CI}+\mathrm{NaNO}_{3}$
C. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{NaNO}_{3}$
D. $\mathrm{NH}_{2} \mathrm{NH}_{2}+\mathrm{NH}_{4} \mathrm{CI}$

Answer: A::C

- Watch Video Solution

80. Which of the following are optically active compounds -
A.
B.
C.
D.

Answer: B::C

- View Text Solution

81. In which of the following compounds the number of hyperconjugable hydrogen atoms same
A. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
B. $\mathrm{CH}_{3}-\mathrm{CH}=\stackrel{\mathrm{CH}_{2} \mathrm{CH}_{3}}{\mathrm{C}}-\mathrm{CH}_{2} \mathrm{CH}_{3}$
C. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$
(D) $\mathrm{CH}_{3} \mathrm{CH}=\square$

Answer: B::D

- Watch Video Solution

82. For which of the following compounds the number of compounds formed on monbromination are same-
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
B. $\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{4}$
C. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{3}$
D.

Answer: A::B

- View Text Solution

83. The carbocations which attain stability by resonance are-
A. $\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
B. $\stackrel{\oplus}{C} \mathrm{H}_{2}-\mathrm{CH}-\mathrm{OH}$
(C) $\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}-\bigcirc$
C.
D.
(ㄷ) ${ }^{\oplus} \mathrm{C}_{2}-\mathrm{CH}_{2}-\mathrm{O}$

Answer: A::C

84. Mixtures that can be separated by simple distillation are-
A. a mixture of ether and toluene
B. a mixture of hexane and toluene
C. a mixture of benzene and chloroform
D. a mixture of 95% ethanol and 5% water

Answer: A::C

- Watch Video Solution

85. Compound that can be purified by steam distillation are -
A. acetic acid
B. o-nitrophenol
C. ethanol
D. nitrobenzene
86. Which of the following statements are incorrect ?
A. quatitative estimation of nitrogen in any compound can be done by kjedalhl's method
B. quantitative estimation of sulphur in organic compounds can be done by Dumas method
C. quantitative estimation of halgoens in organic compounds can be done by Carius method
D. in Liebig's method of detecting carbon and hydrogen in organic compounds carbon is converted into carbon dioxide while hydrogen is converted into water

Answer: B::D

87. In which of the following processes, any organic liquid vapourises below its boiling point-
A. vacuum distillation
B. distillation
C. steam distillation
D. sublimation

Answer: A::C

- Watch Video Solution

88. Which exhibit optical and geometrical isomerism-
A. $\mathrm{CH}_{3} \mathrm{CHCICH}=\mathrm{CH}_{2}$
B. $\mathrm{CH}_{3}-\mathrm{CHCI}-\mathrm{CH}=\mathrm{CH}_{2}$
C. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{3}$
D. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{C}=\mathrm{CHCH}_{3}$

- Watch Video Solution

89. Which of the following are correct statements-
A. $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{C}^{+}$is more stable than $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}$
B. $\mathrm{Na}{ }^{+}$does not act as an electrophile
C. $P h_{3} C^{+}$can be stored in the form of $P h_{3} C^{+} B F_{4}^{-}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}$is less stable than $\mathrm{O}_{2} \mathrm{NCH}_{2} \mathrm{CHf}_{2} \mathrm{O}^{-}$

Answer: B::D

- Watch Video Solution

90. The nucleophilic reagents are-

$$
\text { A. } B F_{3}
$$

B. NH_{3}
C. : CCl_{2}
D. $C N^{\Theta}$

Answer: B::C::D

- Watch Video Solution

91. The electrophile reagents are-
A. $\stackrel{\oplus}{N} O_{2}$
B. $C I^{\oplus}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. SO_{3}

Answer: A::B::D

- Watch Video Solution

92. Which of the following statements regarding Lassaigne's test are correct-
A. N,S and halogens are detected by converting them into their corresponding inorganic salts
B. this test if done to detect N, S and hydrogen
C. organic compounds are fused with sodium metal
D. differect halogens can be distinguished

Answer: A::C::D

- Watch Video Solution

93. Which of the following exhibit keto - enol taulomerism-
A. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COC}_{6} \mathrm{H}_{5}$
B. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}=\mathrm{CH}_{2}$
C. C_(6) $\mathrm{H}_{-}(5) \mathrm{COCH}_{-}(2) \mathrm{COCH}_{-}(3)^{`}$
D. $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COCH}_{3}$

Answer: B::C::D

- Watch Video Solution

94. Which of the following do not exhibit optical activity-
A. 3 - methyl-1-pentene
B. 2-methyl-2-pentene
C. 4 - methyl-1-pentene
D. 3-methyl-2 - pentene

Answer: B::C::D

- Watch Video Solution

95. The correct statements are-
A. racemic mixture is an equimolecular mixture of a pair of enantiomers
B. configuration of a molecule means stable three - dimensional arrangement of the groups attached to a specific atom of the molecule
C. melting \& boiling points of 2 enantiomers are diferent
D. a molecule may be optically active or inactive if more than one asymmetric carbon is present in the molecule

Answer: A::B::D

- View Text Solution

96. Which of the following are planar-
A. tert - burtyl radical
B. tert - butyl carbocation
C. tert - butyl carbonion
D. allyl carbanion

Answer: A::B::D

- Watch Video Solution

97. Which can act as both electrophile and nucleophile-
A. $\mathrm{CH}_{3} \mathrm{OH}$
B. $\mathrm{CH}_{-}(3) \mathrm{Cl}^{`}$
C. $\mathrm{CH}_{-}(3) \mathrm{CN}^{`}$
D. HCHO

Answer: C::D

- Watch Video Solution

98. Which of the following can act neither as an electrophile nor as a nucleophile-
A. $\mathrm{H}_{3} \mathrm{O}^{\oplus}$
B. $R_{4} N^{\oplus}$
C. $C N^{\Theta}$
D. SO_{3}

Answer: A::B

- Watch Video Solution

99. Which of the following conditions favour E2 reaction
A. a strong base of high concentration
B. a solvent of low polarity
C. 3° alkyl halide as the substrate
D. alkyl iodide
100. Compounds that will not exhibit geometrical isomerism-
A. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
B.

C.

D.

Answer: A::B::C

101. In which of the following a plane of symmerty is present-

COOH

COOH
A.

B.
C.

D.

102. Three stereoisomers of $\mathrm{CH}_{2} Y Z$ are possible if the structure of methane be-
A. reactangular planar
B. square planar
C. square pyramidal
D. octahedral

Answer: A::B

- View Text Solution

Very Short Type Question

1. What is the value of $\mathrm{C}-\mathrm{C}=\mathrm{C}$ bond angle in benzene $\left(C_{6} H_{6}\right)$ molecule?

D Watch Video Solution

2. What is the value of $H-C \equiv C$ bond angle in acetylene $\left(C_{2} H_{2}\right)$ molecule?

- Watch Video Solution

3. Mention the state of hybridisation of C and N - atoms in $\mathrm{CH}_{3} \mathrm{NH}_{2}$.

- Watch Video Solution

4. Mention the state of hybridisation of the carbon atoms present in the molecule, $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$.

- Watch Video Solution

5. Give the name of a simple organic molecule which has a cylindrical π electron cloud?
6. Give example of a molecule in which all atoms lie in same plane.

- Watch Video Solution

7. Give example of a molecule in which all the aoms lie in a straight line.

- Watch Video Solution

8. Calculate the number of σ and π - bonds in the molecule, $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CHO}$.

- Watch Video Solution

9. What are the possible values of n if $C H_{2}=(C)_{n}=C H_{2}$ is a non planar molecule?
10. What are the possible values of n if $\mathrm{CH}_{2}=(C)_{n}=\mathrm{CH}_{2}$ is a non planar molecule?

- Watch Video Solution

11. Write the structure of a hydrocabon molecule which contanis one 4° carbon atom.

- Watch Video Solution

12. Give example of a compound which contanis primary $\left(1^{\circ}\right)$, secondary $\left(2^{\circ}\right)$ and tertiary $\left(3^{\circ}\right) \mathrm{H}$ - atoms.

- Watch Video Solution

13. How many alkyl groups can be derived from the alkane, $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$
14. Write the group prefix used for the - COOH group.

- Watch Video Solution

15. Write the IUPAC name.
$-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$

- Watch Video Solution

16. Write the IUPAC name:
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$

- Watch Video Solution

17. Write the structure and name of an alkane having five C - atoms which on bromination gives only one monobromo derivative.

- Watch Video Solution

18. Write structures of two compounds which are metamers as well as positon isomers.

- Watch Video Solution

19. Give example of a carbonyl compound in which tautomerism does not take place.

- Watch Video Solution

20. Give example of a 3° free radical containing six hyperconjugable hydrogens.

- Watch Video Solution

22. Which has greater resonance stabilisation $-P h \stackrel{\sim}{N} H_{2}$ or $P h \stackrel{\oplus}{N} H_{3}$?

D Watch Video Solution

23. Write the name of a cyclic compound which is isomeric with but-1-ene.

- Watch Video Solution

24. Write names of two non - polar solvents which are commonly employed for crystallisation.
25. What type of furnace is used in the Carius method for the estimation of halogens?

- Watch Video Solution

26. Mention the type of chromatography in which both the mobile and stationary phases are liquid.

- Watch Video Solution

27. With the help of which type of distillation process glycerol can be purified?

- Watch Video Solution

1. When four alkyl groups are attached to a carbon atom, that particular C atom is called \qquad carbon atom.

- Watch Video Solution

2. The shape of the molecule containing only $s p^{2}$ - hybridised carbon atoms is \qquad

- Watch Video Solution

3. The C-2 atom of propa $-1,2$ dience is \qquad hybridised.

- Watch Video Solution

4. The shape of the molecule containing only sp - hybridised carbon atoms is \qquad
5. The successive members of a homologous series differ by \qquad mass units.

- Watch Video Solution

6. The molecule, $\mathrm{HC} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$ contanis \qquad σ-bonds

- Watch Video Solution

7. The general formula of dihydric alcohol is \qquad

- Watch Video Solution

8. The compound 5-(1,2-dimethylpropyl) - 6 - ethyldecane contains 3° carbon atoms.
9. Stereoisomers have \qquad atoms - to - atom bonding sequence or connectivity.

- Watch Video Solution

10. The number of isomers of a benzenoid aromatic compound having molecular formula, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$ is \qquad

- Watch Video Solution

11. Ethoxyethane and 2 -methoxypropane are related as \qquad

- Watch Video Solution

12. The amount of negative charge present on each O - atom of carbonate ion is \qquad
13. The homoltic fission of a covalent bond requires \qquad energy than that required by its heterolytic fission.

- Watch Video Solution

14. \qquad involves delocalisation of σ - electrons of C-H bond of an alkyl group directly attached to an unsaturated system or to an atom with a vacant or singly p-orbital.

- Watch Video Solution

15. In paper chromaatography, both the staionary and mobile phases are

- Watch Video Solution

16. An impure sample of benzoic acid containing a little sodium chloride can be purified by \qquad

- Watch Video Solution

17. In steam distillation, the orgainc liquid boils at a temperature \qquad than its normal boiling point.

- Watch Video Solution

18. In Carius method of estimation, chlorine present in an organic compound is convered into \qquad

- Watch Video Solution

19. \qquad distillation is used to remove water from rectified spirit.

Short Type Questions

1. The bond dissociation energy of $C_{s p^{3}}-H$ is smaller than that of $C_{s p}-H$ bond - why?

- Watch Video Solution

2. Write structures and names of a cycloalkane and an alkene which are isomeric with each other.

- Watch Video Solution

3. How many organic groups can be derived from propene? Write their structures and names.

- Watch Video Solution

4. Write the structure of the compound $1,1,4$ - trimethylcychohexane.

- Watch Video Solution

5. How many strutural isomers having molecular formula $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Br}_{3}$ is possible?

- Watch Video Solution

6. Predict whether the ketone, PhCOPh will exhibit tautomerism or not.

- Watch Video Solution

7. Write structure of that geometric isomer of 2,3-dichlorobut - 2 - ene which has lower boiling point and explain this observation.

- Watch Video Solution

8.

$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CHCH}_{3}$ and $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \quad$ has higher heat of hydrogenation and why?

- Watch Video Solution

9. Explain why all $\mathrm{C}-\mathrm{O}$ bonds in $\mathrm{CO}_{3}^{2^{-}}$ion are equal in length.

- Watch Video Solution

10. Explain why 2 - fluorobutanoic acid is more acidic than 2 - chlorobutanoic acid.

- Watch Video Solution

11. Write structures of the ions expected to be formed by the heterolytic cleavage of a C - C bond of 2,2 - dimethylpropane and explain their formation.
12. Which out of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$ and $\mathrm{CH}_{3} \mathrm{CONH}_{2}$ is more basic and why?

- Watch Video Solution

13. How will you separate benzene from nitrobenzene mixed with their mixture and why?

- Watch Video Solution

14. Explain, why an organic liquid vaporise at a temprature below its boiling point in its steam distillation?
15. The presence of nitrogen in hydrocylamine hydrochloride cannot be detected by Lasaigne's test - why?

- Watch Video Solution

16. Before the tests for halogens the Lassaigne's extract is to be boiled with dil. HNO_{3} - why?

- Watch Video Solution

17. R_{f} values are usually expressed as decimal fraction - why?

- Watch Video Solution

1. The valency of carbon if four even though its electronic configuration is $1 s^{2} 2 s^{2} 2 p^{2}$ - explain.

- Watch Video Solution

2. No organic compound is known in which C^{4+} or C^{4-} ion exists explain.

- Watch Video Solution

3. What is the angle between any two adjacent valencies (bond) in the tetrahedral model of carbon?

- Watch Video Solution

4. Why are the four $\mathrm{C}-\mathrm{Cl}$ bonds in $\mathbb{C} I_{4}$ equivalent?.
5. Mention the angles between two $s p^{3}, s p^{2}$ and $s p$ orbitals.

- Watch Video Solution

6. Mention the state of hybridisation of the starred $(*)$ carbon atoms in each of the following compounds.
(i) $\mathrm{CH}_{2}=\dot{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}$
(ii) $\mathrm{CH}_{2}=\dot{\mathrm{C}}=\mathrm{CH}_{2}$
(iii) HCHO
(iv)
(v) $H C N$
(vi) $\mathrm{CH}_{3} \dot{\mathrm{C}}_{2} \mathrm{OH}$

- View Text Solution

7. How many σ and π - bonds are present in each of the following molecules?
(i) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$
(ii) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{C}=\mathrm{CHCH}_{3}$

- View Text Solution

8. Which atoms in each of the following molecules remain in the same plane and why?
(i) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
(ii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CCH}_{3}$
(iii) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}=\mathrm{C}=\mathrm{CHCH}_{3}$
(iv) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$

- Watch Video Solution

9. Which atoms in each of the following molecules lie in the same line and why?
(i) $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{N}$
(ii) $C H_{3} C \equiv C-C \equiv C-C I$

- Watch Video Solution

10. For what type of hybridisation of carbon atom an orgainc molecule possess three - dimensional shape?

- Watch Video Solution

11. A π - bond is weaker and more reactive than a σ - bond. Why?

- Watch Video Solution

12. Arrange $s p, s p^{2}, s p^{3}$ hybrid orbitals in order of their increasing size.

- Watch Video Solution

13. What is the shape of each of the given compounds?
(i) $\mathrm{H}_{2} \mathrm{C}=\mathrm{O}$
(ii) $\mathrm{CH}_{3} \mathrm{CI}$
(iii) HCN

- Watch Video Solution

14. Arrange $C_{s p}-H, C_{s p^{3}}-H$ and $C_{s p^{3}}-H \sigma$ - bonds in order of increasing bond length and explain the order.

- Watch Video Solution

15. Arrange $C_{s p}-C_{S p}, C_{s p^{2}}$ and $C_{s p^{3}}-C_{s p^{3}} \sigma$ - and explain the order.

- Watch Video Solution

16. Write down the bond - line structural formula of
(i) 2 -methylbutane,
(ii) 3,3-dimethylhexane,
(iii) 2 - bromo - octane and
(iv) chlorocyclopentane.

- Watch Video Solution

17. Which is the correct bond - line structural formula into $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{3}$

D View Text Solution

18. Expand each of the following condensed formula into their complete structural formulas:
(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CI}$
(ii) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$
(iii) $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{3}$
19. Write down the condensed structural formula and bond - line structural formula for each of the following molecules:
(i) $\mathrm{ICH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$
(ii)

- View Text Solution

20. Expand each of the following bond - line formulas to show all the atoms including carbon and hydrogen:

- View Text Solution

21. Give examples of
(i) Alicylic compound
(ii) Benzenoid aromatic compound
(iii) Non - benzenoid aromatic compound
(iv) Heterocyclic aromatic compound.
22. Identify the saturated compounds :
(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{O}$
(ii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2}$
(iii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(iv) $\mathrm{CH}_{2}=\mathrm{CHCOOH}$

- Watch Video Solution

23. Give examples of two terminal functional groups.

- Watch Video Solution

24. Give the structural difference of aldehydic \& ketonic groups.

- Watch Video Solution

25. Both formic acid (HCOOH) and acitic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ contain the same functional group, yet there are some difference in their chemical properties - explain.

- Watch Video Solution

26. Members of the same homologous series have similar chemical properties - explain.

- Watch Video Solution

27. Label the primary $\left(1^{\circ}\right)$,secondary $\left(2^{\circ}\right)$, tertiary $\left(3^{\circ}\right)$ and quaternary $\left(4^{\circ}\right)$ carbon atoms in the following compounds:
28. Write down the structure of an alkane which contains only primary $\left(1^{\circ}\right)$ carbon atoms and primary $\left(1^{\circ}\right)$ hydrogen atoms.

- Watch Video Solution

29. Give examples of the following :
(i) a mixed ether,
(ii) a tertiary alcohol,
(iii) an aromatic aldehyde,
(iv) a mixed anhydride and
(v) a secondary amine.

- Watch Video Solution

30. What is called alkyl group of alkyl radical? Give example.
31. Write down the IUPAC names of the alkyl groups having the molecular formula , $\mathrm{C}_{4} \mathrm{H}_{9}$.

- Watch Video Solution

32. Write down the IUPAC and common names of each of the given compounds:
(i) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
(ii) $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{3}(i i i) \mathrm{CH}_{-}(3) \mathrm{CHOHCH}_{-}(3)(i v) \mathrm{CH}_{-}(3) \mathrm{OCH}_{-}(2) \mathrm{CH}_{-}(2) \mathrm{CH}_{-}(3)$
$(v) \mathrm{CH}_{-}(3) \mathrm{CH}_{-}(2) \mathrm{CHO}(v i) \mathrm{CH}_{-}(3) \mathrm{COC}_{-}(2) \mathrm{H}_{-}(5)(v i i) \mathrm{C}_{-}(2) \mathrm{H}_{-}(5) \mathrm{COOH}(v i i i)$
C_(2)H_(5)COCI $(i x) \mathrm{CH}_{-}(3) \mathrm{CONH}_{-}(2)(x) \mathrm{CH}_{-}(3) \mathrm{CO}_{-}(2) \mathrm{C}_{-}(2) \mathrm{H}_{-}(5)(\xi)$
CH_(3)CH_(2)NH_(2) ($\xi i) \mathrm{CH}_{-}(3) \mathrm{NHCH}_{-}(2) \mathrm{CH}_{-}(3)(\xi i i)\left(\mathrm{CH}_{-}(3)\right)_{-}(2) \mathrm{NCH}_{-}(2) \mathrm{CH}_{-}(3)$
$(\xi v) \mathrm{CH}_{-}(3) \mathrm{CH}_{-}(2) \mathrm{CN}$

- Watch Video Solution

33. Write down the structures of the following compounds:
(i) 2 - lodoprapane
(ii) Hex-3-yne
(iii) pent-1-ene
(iv) 2,2 - Dichloropropane
(v) 1,1,1,2 - Tetrachloroethane
(vi) propan-2-ol
(vii) propane-1,3-diol
(viii)Butane-1,2,3, - triol.
(ix) 2 - Methoxypropane
(x) 2 - Methylpentanoic acid
(xi) 2,2 - Dimethylbutanal
(xii) Pentan-3-one
(xiii) Butanoyl chloride
(xiv) Acetic formic anhydride (xv) Ethyl methanoate
(xvi) N-Methylmethanamine
(xvii) N - Ethyl - N - methyl - ethanamine (xviii) Butanenitrile.
34. Write down the IUPAC names of the following compounds:
(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \underset{\substack{\text { | } \\ \mathrm{C}_{2} \mathrm{H}_{5}}}{\mathrm{C}} \mathrm{HCH}_{2} \underset{\text { | }}{\mathrm{C}} \mathrm{C}_{2} \mathrm{C}_{5} \mathrm{HCH}_{3}$
(ii) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC}_{2} \mathrm{H}_{5}$
(iii) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
(iv) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\underset{\text { । }}{\mathrm{C}} \mathrm{H}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$
(v) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \quad \mathrm{C} \quad \mathrm{HCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
(vi) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{CHCH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$
(vii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{\mathrm{C}_{2} \mathrm{H}_{5}}{\mathrm{C}} \mathrm{H}-\quad \stackrel{\mathrm{C}_{2}\left(\mathrm{CH}_{3}\right)_{3}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$

D View Text Solution

35. What is wrong with the following names? Draw the structures they represent and write their correct names.
(i) 1,1-dimethylhexane
(ii) 2 - methyl - 2 -propylhexane
(iii) 3 - methyl-5-ethylheptane
(iv) 4,4-dimethyl - 3 - ethyl - pentane
(v) 3,4,7 - trimethyloctane
(vi) 3,3-diethyl-2.4.4 trimethylpentane

- View Text Solution

36. Give the IUPAC name of the following alkane containing complex substituents:

D View Text Solution

37. Write the IUPAC names of the following compounds:
(i) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
(ii) $\mathrm{CH}_{2}=\mathrm{CH}-\stackrel{\stackrel{C}{C}^{\mathrm{C}_{5}}}{\stackrel{\mid}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}}$
(iii) $\mathrm{CH}_{2}={\left.\underset{C}{C} \mathrm{CH}_{3}\right)_{2}}_{\mathrm{C}}^{\mathrm{C}}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(iv) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$
(v) $\mathrm{CH}_{2}=\stackrel{\stackrel{\mathrm{CH}_{3}}{\stackrel{\mid}{\mathrm{C}}} \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}}{\mathrm{C}}$

(vi) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \underset{\substack{\mathrm{CCH} \\ \text { । } \\ \mathrm{CH}=\mathrm{CH}_{2} \\ \mathrm{CH}=\mathrm{CH}_{2}}}{ }-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
(vii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \quad \mathrm{C}$

(ix) $\mathrm{HC} \equiv \mathrm{C}-\mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
(x) $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\underset{\substack{\mid \\ \mathrm{CH=CH}_{2}}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}$

- View Text Solution

38. Write down the structure of the following compounds:
(i) Pent-3-en - 1 - yne
(ii) 3-methylpenta-1-4-diyne
(iii) 3 - (2-methyl propyl)hept - 1 - en - 4 - yne
(iv) 3 - ethylpenta-1,3 diene
(v) 5 - ethylnylhepta-1,3,6-triene
(vi) 4-ethyl-4-methylhex-1-yne
39. Write down the IUPAC names of the following compounds:
(i) $\mathrm{CH}_{3} \underset{\substack{\mathrm{C} \\ \mathrm{NO} \\ \mathrm{NO}_{2}}}{\mathrm{HCHICHOHCH}}$
(ii) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{COOH}$
(iii) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCO} \underset{\substack{\mathrm{C} \\ \mathrm{CH}_{3}}}{\mathrm{HOCH}_{3}}$
(iv) $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CHCOCI}$
(v) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCOCH} \mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right)_{2}$
(vi) $\mathrm{CH}_{3} \mathrm{CHCICHBr} \underset{\substack{\mathrm{C} \\ \mathrm{CH}_{3}}}{\mathrm{HCOOH}}$
(vii) $\mathrm{CH}_{3} \mathrm{CO} \underset{\substack{ \\\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}}}{\mathrm{C}} \mathrm{H}-\mathrm{C} \equiv \mathrm{CH}_{3}$
(viii) $\mathrm{HOOC}-\mathrm{COOH}$
(ix) $\mathrm{MeO}_{2} \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$
(x) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COCH}_{3}$
(xi)
(\#\#CHY_CHE_ORG_XI_P2_U12_E10_039_Q02.png" width="80\%">
40. Write down the structures of the following
(i) 2-methyl-butanoyl chloride
(ii) 5-chloro-3-ethylpentan-2-one
(iii) Diethyl butane-1,4 dioate
(iv) Methyl-2-methylprop-2-en-1-oate
(v) 3 - phenylprop-2-enoic acid
(vi) Propane - 1,2,3-tricarboxamide.

- View Text Solution

41. Arrange the following functional groups in order of preference as the principal funcitional groups:
$-\mathrm{CONH}_{2},-\mathrm{NH}_{2},-\mathrm{CHO},-\mathrm{CN},-\mathrm{COOH},-\mathrm{OH}$

- Watch Video Solution

42. Give the IUPAC names of the following compounds:
(i) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$
(ii) $\mathrm{H}_{2} \mathrm{NCH}-(2) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
(iii) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{CN}) \mathrm{CH}-(2) \mathrm{COCH}_{3}$

- Watch Video Solution

43. Write down the structures of the following compounds:
(i) 3 - formylpentanoic acid
(ii) 3-hydroxy-4-oxopentanal
(iii) 2,3-dihydroxybutanedioic acid
(iv) 3 - hydroxycyclo - hexanone
(v) 3-hydroxy-3-meyhylbutan - 2 - one

- Watch Video Solution

44. Write the structure of the following compounds:
(i) 2-chloro-2-methylbutan-1-ol
(ii) 4-amino-2-ethylpent - 2 - enal
(iii) Hex-4-yn-2-one
(iv) 1-bromo-3-chlorocyclohex-1-ene
(v) But-2-ene 1, 4 -dioic acid
(vi) 4-nitropent-1-yne
(vii) Ethyl 3-methoxy-4-nitrobutanoate

- Watch Video Solution

45. What type of structural isomerism is exhibited by the following pairs of isomers?
(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
(ii) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$
(iii) $\mathrm{CH}_{2}=\mathrm{CHOH}$ and $\mathrm{CH}_{3} \mathrm{CHO}$
(iv) $\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$ and
(vi) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$

- View Text Solution

46. Write the structures and IUPAC names of two metemers having molecular formula, $C_{5} H_{10} O$.

- Watch Video Solution

47. Give example of a ketone that does not exhibit tautomerism.

- Watch Video Solution

48. Arrange in the order in increasing enol content and give reasons:
$\mathrm{CH}_{3} \mathrm{COCH}_{3}$
$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COCH}_{3}$

- View Text Solution

49. Which tow of the following compounds are:
(i) position isomers
(ii) tautomers
(iii) ring - chain isomers
(iv) metamers
(v) chain isomers and
(vi) functional isomers?
(a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}$
(b)
(c)
(d) $\mathrm{CH}_{3} \mathrm{OCH}-(3)$
(e) $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{OH}$
(f) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{NOH}$
(g)
(h)
(i)
(j) (\#\#CHY_CHE_ORG_XI_P2_U12_E10_050_Q07.png" width="80\%">
(k)
(I) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

D View Text Solution
50. Identify the optically active and optically inactive compounds :
(i) $\mathrm{CH}_{3} \mathrm{CHOCHC}_{2} \mathrm{H}_{5}$
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(iii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHBrCH}\left(\mathrm{CH}_{3}\right)_{2}$
(iv)
(v) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHC}_{2} \mathrm{H}_{5}$

- View Text Solution

51. Which of the following will geometrical or cis - trans isomerism and which of them will not? Give reasons.
(i) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CBr}_{2}$
(ii) $\mathrm{BrCH}=\mathrm{CH}_{2} \mathrm{CH}_{3}$
(iii) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
(iv)
(v) $\mathrm{CH}_{2}=\mathrm{CHCH}=\mathrm{CHCH}=\mathrm{CH}_{2}$

- View Text Solution

52. Draw the Fischer projection formulas of all stereoisomers of $\mathrm{CH}_{3} \mathrm{CHBrCHCICOOH}$. Mention how they are related to each other.

- Watch Video Solution

53. Write down the structure and IUPAC name of two isomeric optically active alkanes having lowest molecular mass.

- Watch Video Solution

54. Which of the following compounds are meso - compounds and which are not? Give reasons.

D) View Text Solution

55. Write the structure and the IUPAC name of the alkane having lowest molecular mass and which on bromintion produces three monobromo derivatives.

- Watch Video Solution

56. How many types of non-equivalent H - atoms are threr in each of the following compounds:

- View Text Solution

57. Write the structure and the IUPAC name of alkane $\left(C_{18} H_{36}\right)$ which o bromination produces only I monobromo derivative.
58. Calculate the double bond equivalent (DEB) of each of the given compounds:
(i) $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrS}$
(ii) $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$

- Watch Video Solution

59. Calculate the double bond equivalent (DEB) of a compound having molecular formula, $\mathrm{C}_{5} \mathrm{H}_{8}$. On catalytic hydrogenation. Write the structures of all the possible isomers of the compound.

- Watch Video Solution

60. Arrange the following atoms or groups in increasing order of - I effect: -
$\mathrm{I},-\mathrm{Br},-\mathrm{Cl},-\mathrm{F}$

- Watch Video Solution

61. Arrange in decreasing order of their strenght and give reasons: $\mathrm{Me}_{2} \mathrm{CHCOOH}, \mathrm{Me} \mathrm{e}_{3} \mathrm{CCOOH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$

- Watch Video Solution

62. Arrange in increasing order of strenght and give reasons:
$\mathrm{CH}_{2}=\mathrm{CHCOOH}, \mathrm{HC} \equiv \mathrm{CCOOH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$

- Watch Video Solution

63. Why is $\mathrm{Bu}_{3} \mathrm{~N}$ more basic than BuNH_{2} in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CI}$ mediun?

- Watch Video Solution

64. Arrange in order of decreasing basic strenght and show reasons $C H_{3}-\mathrm{CH}=\stackrel{\mathrm{N}}{\mathrm{N}}, \mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{N}, \mathrm{CH}_{3}-\underset{\mathrm{N}}{2}$
65. Arrange in order of increasing acidity and give reasons:
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}, \mathrm{CH}_{3} \mathrm{OH},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$

- Watch Video Solution

66. Arrange the following anions in increasing order of stability and give reasons: $C H_{2}=\stackrel{\ominus}{C} H, C H_{3} \stackrel{\ominus}{C} H_{2}, C H \equiv \stackrel{\Theta}{C}$

- Watch Video Solution

67. Which of the following pairs do not represent two resonance structures and why?
(i)
(ii)
(iii) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ and $\mathrm{CH}_{3}-\stackrel{\stackrel{O H}{\mathrm{C}}=\mathrm{CH}_{2}}{ }$
(iv)
(v) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
68. In between $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COO}^{\Theta}$, which one is more resonance stabilised and why?

- Watch Video Solution

69. Which N - atom of guanidine $\left({ }^{\stackrel{\ddot{N} H_{2}}{H_{2}} \ddot{\mathrm{~N}}-\stackrel{1}{\mathrm{C}}=\ddot{\mathrm{N}} \mathrm{H}}\right)$ is more basic and why?

- Watch Video Solution

70. Which of the two N - atom of the following compound undergoes protonation and why?
71. Which resonance structure in each of the following cases contributes more towards the hybrid and why?
(i) $C H_{2}=\stackrel{\oplus}{N} H_{2} \leftrightarrow \stackrel{\oplus}{N} H_{2}$
(ii) $C H_{2}=O \leftrightarrow \stackrel{\oplus}{C} N_{2}-\stackrel{\ominus}{O}$
(iii) $\stackrel{\ominus}{C} H_{2}-C H=O \leftrightarrow C H_{2}=C H=\stackrel{\ominus}{O}$
(iv) $R_{3} \stackrel{\oplus}{N}-C H=O \leftrightarrow R_{3} \stackrel{\oplus}{N}-\stackrel{\oplus}{C} H-\stackrel{\ominus}{O}$
(v)

- View Text Solution

72. Which of the following compounds can be reperesented as a resonance hybrid and which of them cannot be? Give reasons.
(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(ii) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{NH}_{2}$
(iv) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}=\mathrm{CH}-\mathrm{NO}_{2}$
(v)
73. Why are the three carbon - oxygen bonds in carbonate $\left(\mathrm{CO}^{2^{-}} \frac{3}{3}\right)$ ion equal in length?

- Watch Video Solution

74. Which one between phenol and cyclohexanol is more acidic and why?

- Watch Video Solution

75. Arrange the following ions in order of increasing stability and give your reasons:
76. Which one between 2 - methylbut - 2 - ene and 2 - methylbut - 1 - ene has higher heat of hydrogenation and why?

- Watch Video Solution

77. The $\mathrm{C}-\mathrm{C}$ bond in acetaldehyde $\left.\left(\mathrm{CH}_{3} \mathrm{CHO}\right)\right)$ is shorter than that in ethane while the C - C bond in trifluoracetaldehyde $\left(\mathrm{CF}_{3} \mathrm{CHO}\right)$) is essentially the same as that in ethane. Explain.

- Watch Video Solution

78. Arrange the following isomeric alkenes in order of increasing stability and give your reasons:
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}[\mathrm{I}], \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}[\mathrm{II}]$
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)(2)[\mathrm{III}]$,
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}[\mathrm{IV}]$
79. Which one of the following two conformations of butane is more stable and why?

- View Text Solution

80. Which of the 2 geometric isomers of $\mathrm{Me}_{3} \mathrm{CCH}=\mathrm{CHCMe}_{3}$ has higher heat of combustion and why?

- Watch Video Solution

81. Explain the following observation

- View Text Solution

82. Label the following carbocations as $1^{\circ}, 2^{\circ}$ or 3° :

- View Text Solution

83. Arrange the following carbocations in order of increasing stability and explain the order:

- View Text Solution

84. Which of the carbocations is the most stable?
(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}$
(ii) $\mathrm{CH}_{2}=\mathrm{CH}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}$
(iii) $C_{6} H_{5} \stackrel{\oplus}{C} H_{2}$
(iv) All are equally stable.
85. Which one of the two carbanions $\triangle^{\Theta}, \triangle^{\Theta}$ is less stable and why?

- Watch Video Solution

Abstract

Θ 86. Which one between the two $\mathrm{CH}_{3} \mathrm{COCH}_{2}$ and $\mathrm{CH}_{3} \mathrm{COCHOCH} \stackrel{\ominus}{\mathrm{C}}$ is more stable and why?

- Watch Video Solution

87. Arrange the following free radicals in order of increasing stability and explain the order:

D View Text Solution

88. What are the shapes of the free radicals $\dot{C} H_{3}, \dot{C} F_{3}$ and why?
89. What is homolytic bond fission?

- Watch Video Solution

90. Which one between $C_{6} H_{5} \mathrm{CH}_{3}$ and CH_{4} has lower $C_{s p^{3}}-H$ bond dissociation enthalpy and why?

- Watch Video Solution

91. Arrange the following carbocation in order of increasing stability and explain the order:

- View Text Solution

92. Arrange the following carbonions in order of increasing stability and explain the order:

D View Text Solution

93. Designate the species as electrophile or nucleophile obtained on heterolytic cleavage of C-C bond in ethane.

- Watch Video Solution

94. Although $B F_{4}{ }^{\Theta}$ is an anion, it is not a nucleophile - why?

- Watch Video Solution

95. Why does : $C C I_{2}$ act as an eletrophile?
96. Classify the following species as electrophile or nucleophle and explain your choice:
(i) $\mathrm{CH}_{3} \ddot{O}:^{\ominus}$
(ii) $\mathrm{CH}_{3} \mathrm{COO} \ddot{\mathrm{O}}^{\Theta}$
(iii) : $C l^{\oplus}$
(iv) $B F_{3}$
(v) $\left(\mathrm{CH}_{3}\right)_{3} \stackrel{\oplus}{C}$
(vi) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
(vii) $R-X$

- Watch Video Solution

97. Formulate the following as a two - step reaction and designate the nucleophile and electrophile in each step:
$\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{Br}_{3} \rightarrow \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
98. CN^{-}and NO_{2}^{-}are called ambident nucleophiles. Explain

- Watch Video Solution

99. Mention the type of each of the following reactions:
(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{HS}^{\theta} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SH}+\mathrm{Br}^{\ominus}$
(ii) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{HCI} \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{CI}) \mathrm{CH}_{\#}$
(iii) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{3}+\mathrm{CI}_{2} \xrightarrow{400-600^{\circ} \mathrm{C}} \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CI}$
(iv) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{OEt}^{\Theta} \rightarrow \mathrm{CH}_{2}=\mathrm{EtOH}+\mathrm{Br}^{\Theta}$

- View Text Solution

100. Which one out of $S_{N} 1$ and $S_{N} 2$ reactions is more suceptible to steric effect and why?

- Watch Video Solution

101. Which of the following reactions do not invole an intermediate and why? $S_{N} 1, S_{N} 2, E I, E 2$

- Watch Video Solution

102. Mention the type of substitution reactions in which the attacking reagents are $N O_{2}^{\oplus}, O H^{\Theta}$ or $\dot{C I}$.

- Watch Video Solution

103. How will you purify a samople of benzoic acid that contains traces of common salt?

- Watch Video Solution

104. It is possible to get pure benzoic acid from a sample containing impurities of naphthalene through the process of recrystallisation using benzene as a solvent? Give reason-
105. Explain why glycerol cannot be purified by simple distillation. Mention a method which can be useful.

- Watch Video Solution

106. How do you separate a mixture of o-nitrophenol and p-nitrophenol?

- Watch Video Solution

107. Suggest a method to purify: (i) iodine containing traces of common salt:
(ii) Kerosene containing a little of water and
(iii) camphor containing a little benzoic acid.
108. Suggest a method for the separation of each of the following mixtures:
(i) A mixture of liquid A (b.p.365K) and liquid B (b.p.356K)
(ii) A mixture of liquid C (b.p.395K) and liquid D (b.p.360K)

- Watch Video Solution

109. Which technique is the most suitable one to separate the three components A, B and C from 10 mL of their mixture?

- Watch Video Solution

110. The R_{f} values of two compounds, X and Y in a mixture determined by TLC are 0.66 and 0.41 respectively. If the mixture is separated by column chromotography using the same solvent mixture as the mobile phase, which one of the two compounds will be eluted first and why?
111. Which physical properties are generally used to determine purity of organic compounds?

- Watch Video Solution

112. Explain why an organic liquid vaporises at a temperature below its boiling point in its steam distillation?

- Watch Video Solution

113. Give an example of each of:
(i) adsorption chromatography and
(ii) partition chromotography.

- Watch Video Solution

114. Which reagent is used to detect the presence of hydrogen in an organic compound?

- Watch Video Solution

115. Explain the reason for the fusion of an organic compound with metallic sodium in Lassaigne's test.

- Watch Video Solution

116. In the fusion test of orgainc compounds, the nitrogen of an organic, compoud it converted to - sodium nitrate, sodium nitriete, sodium amide, sodium cyanide.

- Watch Video Solution

117. Why is Lassaigne'extract not prepared with tap water?
118. Write down the formula of Prussian blue.

- Watch Video Solution

119. Why do diazonium salts not respond to Lassaigne's test ?

- Watch Video Solution

120. Explain why chlorine but not nitrogen in hydroxylamine hydrochloride $\left(\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCI}\right)$ can be detected by Lassaigne's test.

- Watch Video Solution

121. Is it possible to distinguish between hydrazine and phenyl-hydrazine by the Lassaigne's test? Give your reason.
122. Explain why the sodium extract is boiled with nitric acid before adding silver nitrate solution for detecting halogens.

- Watch Video Solution

123. Beilstein test cannot be considered as a confirmatory test for the presence of halogen in a compound - why?

- View Text Solution

124. Differentiate between the principles of Dumas method \& Kjedahl's method.

- Watch Video Solution

125. What is the role of $\mathrm{CuSO} \mathrm{S}_{4}$ and $\mathrm{K}_{2} \mathrm{SO}_{4}$ used in Kjedahl's method for the estimation of nitroge?

D Watch Video Solution

126. Which method is used to extimate N in food stuffs?

- Watch Video Solution

127. For which compounds, Kjedhal's method is not applicable for the estimaiton of nitrogen?

- Watch Video Solution

128. What is the principle of Carius method for estimation of S ?
129. The weitht of which compound is finally taken in Carius method for estimation of phosphours?

- Watch Video Solution

130. 0.495 g of an organic compound on combustion gave 0.99 g of CO_{2} and 0.405 g of water. Calculate the percentages of carbon and hydrogen in the compound.

- Watch Video Solution

131. 0.05 g of an organic compound when analysed by Dumas method produced 62.0 mL of nitrogen at STP. Determine the percentages of nitrogen in the compound.
132. 0.4 g of an organic compound containing N was Kjedahlised and NH_{3} obtained was passed into $50 \mathrm{~mL}(\mathrm{~N} / 2) \mathrm{H}_{2} \mathrm{SO}_{4}$ solution. Volumn of the acid solution was increased to 150 mL by adding distilled water. 20 mL of this acid solution required $31 \mathrm{~mL}(\mathrm{~N} / 20) \mathrm{NaOH}$ for complete neutralisation. Calculate the percentage of N .
