đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - PUNJAB BOARD PREVIOUS

YEAR PAPERS

ALTERNATING CURRENTS

Exersice

1. The instantaneous current from A.C.source is

I=55 Sin 3141 . What is the peak value of current

- Watch Video Solution

2. What is the peak value of 220 V ac ?

- Watch Video Solution

3. A 230 V variable frequency source is connected across a series combination of

$$
L=5 H, C=80 \mu i F, R=40 \Omega
$$

calculateFrequency of the source which derives the circuit in resonance

D Watch Video Solution

4. $A 230 \vee$ variable frequency source is connected across a series combination of $L=5 H, C=80 \mu i F, R=40 \Omega \quad$ calculate Impedence of the circuit at resonance
5. A $230 \vee$ variable frequency source is
connected across a series combination of
$L=5 H, C=80 \mu i F, R=40 \Omega$
calculateAmplitude of the current at resonance

D Watch Video Solution

6. A circuit consists of non inductive resistance
of 50Ω, an inductance of 0.3 Henry and a
capacitance of 40 microfarad in series and
supplied with acurrent of $200 \mathrm{~V}-50 \mathrm{~Hz}$.Find impedence and current in the circuit.

D Watch Video Solution

7. A 40Ω resistor, 3 m H inductor and $2 \mu F$
capacitor are connected in series to $110 \mathrm{~V}, 5000$

Hz AC source.Calculate Impedenceof the circuit and value of current in the circuit.
8. When an inductor L and resistor R in series
are connected across a 12 volts 50 Hertz
supply a current of 0.5 ampere flows in thecircuit the circuit current differs in phase from applied voltage by $\frac{\pi}{3}$ Calculate the value R.

- Watch Video Solution

9. A circuit consist of resistance 10 ohm and
capacitance 0.1 microfarad. If an alternating
e.m.f. (electromotive force) of 100 volt and frequency 50 Hertz is applied, calculate the current in the circuit.

D Watch Video Solution

10. In a series $C-R$ circuit $R=30$ ohms $C=0.25$
microfarad, (μf) e.m.f. (electromotive force) $=$ 100 volts and co $=10,000$ radian/second. Find the current in the circuit and calculate voltage across resistor and the capacitor.
11. A capacitor of capacitance 100μ and a coil of resistance 50Ω and inductance 0:5 henry are connected in series with a source of voltage

110 V and frequency 50 hertz. Calculate the current in the circuit.

D Watch Video Solution

12. An a.c. source of $200 \mathrm{~V}, 50 \mathrm{~Hz}$ is connected
across a 400Ω resistor and capacitor of 25 pF in series. Calculate reactance
13. An a.c. source of $200 \mathrm{~V}, 50 \mathrm{~Hz}$ is connected across a 300Ω resistor and capacitor of $\frac{25}{\pi}$ μF in series. Calculate (a) reactance: impedance

- Watch Video Solution

14. An a.c. source of $200 \mathrm{~V}, 50 \mathrm{~Hz}$ is connected across a 300Ω resistor and capacitor of $\frac{25}{\pi}$
μF in series. Calculate (a) reactance: current in the circuit.

D Watch Video Solution
15. An a.c. source of $200 \mathrm{~V}, 50 \mathrm{~Hz}$ connected across a 400Ω resistor and an inductor of $\frac{3}{\pi} H$
in series. Calculate impedance

D Watch Video Solution
16. An a.c. source of $200 \mathrm{~V}, 50 \mathrm{~Hz}$ connected across a 400Ω resistor and an inductor of $\frac{3}{\pi} H$ in series. Calculate impedance

D Watch Video Solution

17. An a.c. source of $200 \mathrm{~V}, 50 \mathrm{~Hz}$ connected across a 400Ω resistor and an inductor of $\frac{3}{\pi} H$ in series. Calculatecurrent in the circuit.
18. A capacitor of capacitance 100μ and a coil of resistance 50 ohm and inductance 0.5 Henry are connected in series with 110 volt and 50 Hz source. Calculate the impedance of the circuit.

- Watch Video Solution

19. A $230 \vee$ variable frequency source is connected across a series combination of
$L=5 H, C=80 \mu i F, R=40 \Omega$
calculateFrequency of the source which derives the circuit in resonance
20. A 230 V variable frequency source is connected across a series combination of

$$
L=5 H, C=80 \mu i F, R=40 \Omega \quad \text { calculate }
$$

Impedence of the circuit at resonance

- Watch Video Solution

21. A 230 V variable frequency source is connected across a series combination of
$L=5 H, C=80 \mu i F, R=40 \Omega$
calculateAmplitude of the current at resonance

D Watch Video Solution

22. A series circuit with $L=0.12 \mathrm{H}, \mathrm{C}=0.48 \mathrm{mF}$
and $R=25$ ohm, is connected to a 220 V
variable frequency power supply. At what frequency is the circuit current maximum ?
23. A capacitor of unknown value and an inductor of 0.1 H and a resistor of 10Ω are connectedin series to a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ ac source. It is foundthat the power factor of circuit is unity.Calculate the capacitance of capacitor and maximum amplitude of current

D Watch Video Solution

24. A $60 \mu F$ capacitor, a 0.3 H inductor and a
50Ω resistor are connected in series with a
$120 \mathrm{~V}-60 \mathrm{~Hz}$ a.c. source. Calculate the impedance of the circuit and current flowing in the circuit.

D Watch Video Solution

25. A series LCR circuit with $R=20 \Omega$ (Ohm), L
$=1,5 \mathrm{H}$ (Henry) and $C=35 \mu F$ (Micro farad) is
connected to a variable frequency 200 V (Volt)
a.c. supply. When the frequency of the supply
equals the natural frequency of the circuit,
what is the average power transferred to the circuit in one complete cycle ?

Watch Video Solution

26. What is the relation between peak value and root mean square value of alternating e.m.f. ?

D Watch Video Solution
27. What is the phase relationship between current and voltage in an inductor?
28. What do you mean by power factor of an a.c. circuit ?

D Watch Video Solution
29. Define inductive reactance of an inductor.
(Watch Video Solution
30. What is Wattless current ?
31. Define capacitive reactance of a capacitor.

D Watch Video Solution
32. What is an idle current?
(Watch Video Solution
33. Define impedance of an a.c. circuit.

34. What is the impedance of a circuit ?

D Watch Video Solution

35. What is impedance of circuit at resonance

?
(Watch Video Solution
36. For a circuit at resonance, voltage applied
is $E=E_{\circ}$ sin wt and current is $I=I_{\circ}$ sin wt,
then power consumption in the circuit is :

$$
\begin{aligned}
& \text { A. } \frac{E_{\circ} 1_{\circ}}{2} \\
& \text { B. } \frac{E_{\circ} 1_{\circ}}{\sqrt{2}} \\
& \text { C. } \sqrt{2} E_{\circ} I_{\circ} \\
& \text { D. } 0
\end{aligned}
$$

Answer:

- Watch Video Solution

37. For a circuit at resonance, voltage applied
is $E=E_{\circ}$ sin wt and current is $I=I_{\circ} \sin w t$,
then power consumption in the circuit is :

$$
\begin{aligned}
& \text { A. } \frac{E_{\circ} 1_{\circ}}{2} \\
& \text { B. } \frac{E_{\circ} 1_{\circ}}{\sqrt{2}} \\
& \text { C. } \sqrt{2} E_{\circ} I_{\circ} \\
& \text { D. } 0
\end{aligned}
$$

Answer:

- Watch Video Solution

38. Define resonant frequency of LCR series circuit.

D Watch Video Solution
39. Which is more dangerous in use :a.c or d.c.
? Explain, why
(D) Watch Video Solution
40. Define root mean square value of an alternating current.

- Watch Video Solution

41. The frequency of an ac supply is doubled, what happens to inductive reactance X_{L} and capacitive reactance X_{c} ?

- Watch Video Solution

42. How does capacitive reactance X_{c} of a capacitor vary in an a.c. and d.c. circuit ?

- Watch Video Solution

43. How does inductive reactance. X_{L} of an inductor vary in d.c.and high frequency a.c. circuit?

D Watch Video Solution
44. Define root mean square value of an alternating current.

- Watch Video Solution

45. Derive an our expressionforthe Power of an
L.C.R.alternating current circuit. (Without different cases).

D Watch Video Solution
46. Derive the relation for mean or average value of alternating current.

D Watch Video Solution

47. An alternating e.m.f is supplied through apure inductance. Investigate the relationship between current flowing through it and the applied e.m.f.
48. Derive an expression for average power in an LCR a.c. circuit.

- Watch Video Solution

49. Prove mathematically that the average value of alternating current over one complete cycle is zero.

- Watch Video Solution

50. Derive the expression for the impedance of an a.c. circuit with an inductor ' L , capacitor ' C ' and a resistor ' R ' in series. What iscondition of resonance?

- Watch Video Solution

51. Define root mean square value of an alternating current.

52. What do you mean by the average value of

 a.c. ? Derive the expression for it.
- Watch Video Solution

53. Define root mean square value of an alternating current.

- Watch Video Solution

54. With the help of phasor diagram derive an expression for impedance in LCR circuit.

- Watch Video Solution

55. Using phasor diagram, derive an expression for impedance of an a.c. circuit containing LCR in series.

- Watch Video Solution

56. Define root mean square value of an alternating current.

D Watch Video Solution
57. Derive a relation for the average power of an alternating current circuit containing LCR in series.How true power differ from virtual power in a.c. circuit.

D Watch Video Solution

58. Derive an expression for average power of an AC (alternating current) circuit.

- Watch Video Solution

59. Derive average power associated with pureinductor.

- Watch Video Solution

60. Define impedance of an electric circuit.

How it differs from ohmic resistance ? Find an expression for the impedance of an a.c. circuit containing L-C-R in series.

- Watch Video Solution

61. Define impedance of an electric circuit. How
it differs from ohmic resistance ? Find an expression for the impedance of an a.c. circuit containing L-C-R in series.
62. Derive an expression for average power of an AC (alternating current) circuit.

D Watch Video Solution

63. Find a phase relation between current and
voltage in an a.c. circuit containing a pure inductor. Why high frequency current can not passthrough a pure inductor easily?
64. Finda phase relation between current and voltage in an a.c. circuit containing a pure capacitance. A pure capacitor blocks directcurrent, why?

D Watch Video Solution

65. Derive an expression for average power of an AC (alternating current) circuit.
66. What is meant by mean or average value of alternating current? Show that mean value of ac over a complete cycle is zero.
(Watch Video Solution
