©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - CHHAYA CHEMISTRY (BENGALI ENGLISH)

SOLID STATE

Example

1. Sodium (atomic mass $=23 g \cdot \mathrm{~mol}^{-1}$)
many unit cell does 9.2 g of sodium metal contain ?

D Watch Video Solution

2. Copper (atomic mass $=63.5 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$) has a crystal structure of cubical shape. A 6.35 g sample of copper contains 1.506×10^{22} unit cells. What type of unit cell does the copper crystal consists of ?

- Watch Video Solution

3. A crystalline ionic compound consisting of
M^{+}and X^{-}ions crystallises in cubic
structure. The unit cell of the compound has
M^{+}ions at its corners and an X^{-}ion at its
body centre. Determine the simplest formula of the compound.

- Watch Video Solution

4. A substance consisting of elements A and B
crystallises in a cubical lattice structure with a
unit cell having B atoms at the centre of its
face and A atoms at its corners. Determine the simplest formula of the compound.

D Watch Video Solution

5. A compound of elements P and Q has a crystalline structure based on cubic unit cells.

The corners and face centres of the unit cell are occupied by P atoms, while its body centre and edge centres are occupied by Q atoms.

Predict the probable formula of the compound.
6. A compound of element A and B crystallises in the form of face-centered cubic lattice. The unit cell of the lattice contains A atom at each of its corner and a B atom at the centre of its each face. If a B atom from one of the faces is found missing, then what would be the formula of the compound?
7. Silver crystallises in a face-centred cubic structure with unit cells having an edge length of 407 pm . What is the radius of a silver atom in nm unit?

- Watch Video Solution

8. Chromium crystallises in a body-centred cubic structure. The radius of a chromium atom is 125 pm . What is the edge length of a unit cell in chromium crystal?
9. Sodium crystallises in a body-centred cubic lattice with unit cells of edge length $4.29 \AA$.

Calculate the radius of a sodium atom and the distance between the nearest neighbours in the lattice.

- Watch Video Solution

10. An element crystallises in a face-centred cubic lattice. The distance between the
nearest neighbours in the unit cell is 282.8 pm .

Calculate the edge length of the unit cell, and the radius of an atom of the element.

D Watch Video Solution

11. Iron crystallises in a body-centred cubic
lattice. The edge length of a unit cell in the
lattice is 288pm. What is the density of iron?
Atomic mass of iron $=55.85 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$.

D Watch Video Solution

12. Copper crystallises in a face-centred cubic lattice. Molar mass and density of copper are $63.5 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ and $8.9 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ respectively.

Calculate the edge length of a unit cell in copper lattice and the radius of a copper atom.

- Watch Video Solution

13. A metal with a molar mass of $75 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ crystallises in a cubic lattice structure with unit cells of an edge length of $5 \AA$. If the
density of the metal is $2 g \cdot \mathrm{~cm}^{-3}$, calculate the radius of metal atom.

D Watch Video Solution

14. A metal, under different sets of conditions,
can crystallise in a face-centred cubic (fcc)
structure with a unit cell edge length of $3.5 \AA$
and in a body-centered cubic (bcc) structure with a unit cell edge length of $3.0 \AA$. Find the ratio of the densities of fcc and bcc structures.
15. A crystalline compound consists of elements A and B. Atoms of element B from the cubic close-packed structure, in which half of the tetrahedral voids are occupied by A atoms. Determine the empirical formula of the compound.

- Watch Video Solution

16. A crystalline compound is made of elements X and Y . Y atoms form hexagonal
close-packed (hcp) structure with X atoms occupying half of the octahedral voids in the structure. Determine the empirical formula of the compound.

D Watch Video Solution

17. The two ions A^{+}and B^{-}have radii 102
and 200 pm respectively. Predict the coordination number of A^{+}and crystal structure of compound $A B$.
18. For $S r F_{2}$, the radius of $S r^{2+}$ is $1.13 \AA$, and that of F^{-}is $1.35 \AA$. What structure is $\operatorname{Sr} F_{2}$
likely to assume?

D Watch Video Solution

19. Radii of K^{+}and O^{2-} ions are $1.51 \AA$ and
$1 . .62 \AA$, respectively. Predict the structure of $\mathrm{K}_{2} \mathrm{O}$.
20. The arrangement of X^{-}ions around A^{+}
ion in solid $A X$ is given in the figure (not drawn
to scale). If the radius of X^{-}is 250pm, what is
the radius of A^{+}?

- View Text Solution

Warm Up Exercise

1. Why does a solid substance possess a definite shape \& volume?

- Watch Video Solution

2. A solid usually possesses high density and incompressibility. Explain with reasons.
(D) Watch Video Solution
3. (a) What are crystalline solids? Give two examples.
(b) Why is a solid incompressible?

D Watch Video Solution

4. Mention two characteristics of a crystalline solid which are the expressions of its internal regularity.
5. What are amorphous solids? Give two examples.

- Watch Video Solution

6. Why is an amorphous solid sometimes regarded as a supercooled liquid of high viscosity?

- Watch Video Solution

7. A crystalline solid is anisotropic, whereas an

 amorphous solid is isotropic. Explain with reasons.
D Watch Video Solution

8. The coefficients of thermal expansion of a solid are found to be the same when measured in different directions. Is this an amorphous or crystalline?
9. Both quartz and glass are made up of silica
$\left(\mathrm{SiO}_{2}\right)$. However, quartz exists in crystalline
form, whereas glass in amorphous form. Why is this difference?

- Watch Video Solution

10. Why are the lower parts of the glass panes
in the windows of very old buildings found to be thicker than the upper parts?
11. Classify the following substances as molecular, covalent, or ionic crystalline solids.

Boron nitride, ice, solid CHCl_{3}, silicon carbide, Cacl_{2}, silicon, Lil, Solid P_{4}, solid Ar, zinc sulphide.

D Watch Video Solution

12. A very hard crystalline solid that melts at
very high temperature, cannot conduct
electricity either in solid state or in molten state. What kind of crystalline solid is this?

What type of constituent particles does this solid consist of? What is the nature of forces that holds the particles in this solids?

D Watch Video Solution

13. Define the terms (a) crystal (b) crystal lattice (c) lattice point.

D Watch Video Solution

14. What is unit cell of a crystal lattice? What parameters are used to characterise a unit cell?

- Watch Video Solution

15. Define (a) simple or primitive unit cell (b) body-centred unit cell (c) face-centred unit cell (d) end-centred unit cell.
16. Which type of unit cells are called nonprimitive unit cells?

D Watch Video Solution
17. How many types of two-dimensional lattices are possible?

- Watch Video Solution

18. How many types of crystal systems are there? Name them.

- Watch Video Solution

19. How many Bravais lattice are there? How many of these do belong to the types of primitive, body-centred face-centred or endcentred?

D Watch Video Solution

20. Which crystal systems have the following axial characteristics? (i) a = b=c, (ii) $a \neq b \neq c$.

Watch Video Solution

21. Which crystal system has all possible types of unit cells, i.e., primitive, body-centred, facecentred and end-centred?

- Watch Video Solution

22. Name a compound and an element whose crystals consist of cubic unit cell.
23. Name a compound and an element whose crystals consist of hexagonal unit cell.

D Watch Video Solution

24. Calculate the number of particles per unit cell of three possible cubic crystal structures,
i.e., (a) Simple or Primitive (b) Body-centred (c)

Face-centred.

D Watch Video Solution

25. Calculate the number of particles per unit

cell of the following two-dimensional lattices.

D View Text Solution

26. The given figure represents the unit cell of a solid with a cubic crystal structure consisting of elements A, B and C. Calculate the total number of atoms present in the unit cell, and predict the simplest formula of the

compound.

D View Text Solution

27. Molar mass of an element is $\mathrm{Mg} \cdot \mathrm{mol}^{-1}$.

The element crystallises in a cubic structure with face-centred unit cells. What will be the number of unit cells in $x g$ of the element?
28. A metal (molar mass $=108 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$)
crystallises in a cubic structure. If 1.08 g of the metal contains 1.5057×10^{21} unit cells, then how many atoms are there in a unit cell?

- Watch Video Solution

29. A cubic unit cell contains one atom at each
of its corner and two atoms on each of its body diagonal. How many atoms does the unit cell contain?
30. A crystalline compound formed by elements A and B has facecentred cubic unit cell. The corners and the face-centred of the unit cell are occupied by A and B atoms, respectively. If one of the corner-atoms is found to be missing, then what would the formula of the compound be?

D Watch Video Solution
31. What is packing efficiency of a unit cell?

Show that the packing efficiency of a simple cubic unit cell is 52.4%.

D Watch Video Solution

32. Show that 32% of the total space within a body-centred cubic unit cell remains unoccupied.
33. Silver crystallises in a face-centred cubic structure. If the edge length of the unit cell be a and the diameter of Ag -atom be d , then show that $a=d \sqrt{2}$. What fraction of the total volume in the unit cell is occupied by Ag atoms?

- Watch Video Solution

34. In a simple, body-centred and face-centred
cubic unit cell, the radii of constituent particles are r_{1}, r_{2} and r_{3}, respectively. If the
edge length of each type of these unit cells be a, then find the ratio of r_{1}, r_{2} and r_{3}.

D Watch Video Solution

35. Show that for a body-centred cubic unit cell made up of identical particles, the radius
is 0.43 times the edge length of the unit cell.

- Watch Video Solution

36. A cubic unit cell with an edge length of a cm consists of identical particles. The mass of
each particle is mg and the density of the unit cell is $\frac{4 m}{a^{3}} g \cdot c m^{-3}$. Identify the type of the cubic unit cell.

- Watch Video Solution

37. What do you mean by coordination number of a constituent particle in a crystal lattice? What are the coordination numbers in
each of the close-packing of spheres:
square close-packing (b) hexagonal closepacking in two dimensions?

D Watch Video Solution

38. In two dimensions, which one represents
the close-packed structure of spheres with highest packing efficiency, a square closepacking or a hexagonal close-packing? Explain in it terms of coordination number of sphere in each case.

Watch Video Solution

39. Which close-packed structure is represented by $A B A B$... arrangement, and which one by $A B C A B C$... arrangement?

- Watch Video Solution

40. What are hcp and ccp structures? What are their unit cells? In what ways are these structures similar?
41. What are tetrahedral and octahedral voids in a close-packed structure of particles? How many voids are there in a ccp structure of ' N ' atoms? Why is the number of octahedral voids in an hcp or a ccp arrangement of particles equal to the number of packed particles?

D View Text Solution

42. In a crystalline compound $A B, B$ atoms
form hexagonal close-packed structure. What is the total number of voids in 0.25 mol of the compound?

D Watch Video Solution

43. The crystal lattice of the compound $M_{x} O_{y}$
has cubic close-packed array of oxygen atom
with M atoms occupying two-thirds of the
octahedral voids. Determine the values of x and y.

D Watch Video Solution

44. The crystal structure of a compound consisting of atoms M and N shows that it has
a cubic-packed array of N atoms, with M atoms occupying one-third of the tetrahedral voids. Determine the formula of the compound.
45. Nickel (density $=8.9 g \cdot \mathrm{~cm}^{-3}$, atomic mass
$=58.7 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$) crystallise in a cubical crystal
structure with unit cells having an edge length
of 359 pm. What kind of unit cell does its crystal associate with?

D Watch Video Solution

46. What do you mean by defect in a crystal?

What are point defects in a crystal?

Watch Video Solution

47. What are vacancy and interstitial defects?

How do these defects affect the density of a non-ionic crystal?

- Watch Video Solution

48. What is Schottky defect? Is it a stoichiometric or non-stoichiometric defect?

What type of ionic crystals are likely to show this type of defect? Does the presence of this
defect in a crystal increase or decrease the density of the crystal? Explain.

D Watch Video Solution

49. What is Frenkel defect? What type of ionic solids are likely to develop this defect? Why does the presence of Frenkel defect in a crystal not affect the density of the crystal?

- Watch Video Solution

50. What type of stoichiometric defect are shown by the following compounds? NaCl , $\mathrm{AgCl}, \mathrm{ZnS}, \mathrm{CsCl}$

- Watch Video Solution

51. What are non-stoichiometric defects in an ionic crystal? Explain how metal excess defects occur in an ionic crystal.

52. What is F-centre? Why is it called colour

 centre? What kind of defect is associated withF-centres?

- Watch Video Solution

53. Why does the colour of NaCl turn yellow when it is heated in an atmosphere of Na vapour?
54. How are vacancies created in the crystal lattice of NaCl when a small amount of SrCl_{2}
is introduced into NaCl crystal?

D Watch Video Solution

55. What will be the number of cation vacancies if $10^{-3} \mathrm{~mol} \%$ of $C d C l_{2}$ is added to
the crystal of AgCl ?

D Watch Video Solution
56. Based on band theory, explain why metals are good conductors of electricity, while insulators are non-conductors of electricity.

- Watch Video Solution

57. Explain with the help of band theory why a semiconductor is neither a good conductor nor a good insulator.
58. In terms of band theory, what is the difference (i) between a conductor and an insulator (ii) between a conductor and a semiconductor.

D Watch Video Solution

59. What are intrinsic and extrinsic
semiconductors? Give two examples of each type.
60. (a) On raising the temperature, electrical conductivity of a metal decreases, while that of a semiconductor increases. Explain. (b) At very low temperature (OK), intrinsic semiconductors behave like insulators but their electrical conductivities increase with rise in temperature. Why?

- Watch Video Solution

61. Write two ways by which the electrical conductivity of a semiconductor can be increased.

D Watch Video Solution

62. What are n-type and p-type semiconductors?

D Watch Video Solution
63. Why is the electrical conductivity of phosphorus-doped silicon is more than that of pure silicon?

D Watch Video Solution

64. Mention the type of semiconductor (n-type or p-typr) that is formed when germanium is doped with each of the following elements. (a)
$\mathrm{Al}(\mathrm{b}) \mathrm{Sb}(\mathrm{c}) \mathrm{B}(\mathrm{d}) \mathrm{As}$
65. Why does a substance exhibit magnetic property?

D Watch Video Solution

66. What are paramagnetic substances? What
is the reason of paramagnetism? Give two examples of paramagnetic substance.

D Watch Video Solution

67. What are diamagnetic substances? Give two examples of this substance. What causes diamagnetism in a substance?

D Watch Video Solution

68. Define: (i) ferromagnetic (ii) ferrimagnetic and (iii) anti-ferromagnetic substance. Give one example of each substance.

D Watch Video Solution

69. Which of the following substances can exist in a permanently magnetised state even when the magnetic field is removed, and why?
(i) Paramagnetic (ii) Ferromagnetic

Ferrimagnetic

D Watch Video Solution

70. Why does an anti-ferromagnetic substance have zero resultant magnetic moment?

Very Short Answer Type

1. What are the constituent particles in a network or covalent solid?

- Watch Video Solution

2. Between crystalline and amorphous solids,
which one is isotropic and which one is anisotropic?
3. Corners and face-centres of a cubic unit cell are occupied by atoms. What fractions of a corner particle and a face-centred particle belong to the unit cell?

D Watch Video Solution

4. Differentiate between a crystalline and an
amorphous solid on the basis of the order of arrangement of their constituent particles.

- Watch Video Solution

5. A crystalline solid has high melting point and high heat of fusion. It is rigid and brittle in nature. It is a non-conductor of electricity in its solid state, but can conduct electricity in its molten state or in dissolved state. What type of crystalline solid is this?

- Watch Video Solution

6. How many of 14 Bravais lattices belong to simple or primitive type?

D Watch Video Solution
7. How many particles are there in a bodycentred and a face-centred cubic unit cell?
(D) Watch Video Solution
8. The packing efficiency of a face-centred unit cell is 74%. What does it mean?

D Watch Video Solution

9. What is the relation between the edge length (a) and the radius of the constituent particle (r) of a simple cubic unit cell?

D Watch Video Solution

10. What is the distance between the nearest neighbours of a face-centred cubic unit cell?

- Watch Video Solution

11. What is the unit cell in a cubic close-packed
(ccp) structure of particles?

- Watch Video Solution

12. What is the unit cell in a hexagonal closepacked (hcp) structure of particles?

D Watch Video Solution
13. What is the coordination number of each atom in HCP and CCP structures?
14. What are the packing efficiencies in ccp and hcp structures of particles?

- Watch Video Solution

15. Which of the following defects in a nonionic crystal causes increase or decrease in density of the crystal?
(1) Vacancy defect (2) Interstital defect.
16. Which defect causes decrease in density of an ionic crystal, Schottky defect or Frenkel defect?

- Watch Video Solution

17. Name a crystalline solid which is likely to develop both Schottky and Frenkel defects.

- Watch Video Solution

18. Which defect in an ionic crystal is a combination of a vacancy defect and an interstitial defect?

- Watch Video Solution

19. What type of defect arises in nonstoichiometric sodium chloride formed when

NaCl is heated in an atmosphere of $\mathrm{Na}-$ vapour?
20. What type of defect arises in nonstoichiometric zinc oxide formed when ZnO is heated?

D Watch Video Solution

21. Arrange the following solids in order of their increasing electrical conductivities.

Metal, Semiconductor, Insulator.
22. An n-type semiconductor is produced when
pure Si or Ge is doped with an element. To which group of the periodic table does this element belong?

- Watch Video Solution

23. What type of semiconductor (n-type or p-
type) is formed when pure Ge is doped with a trace amount of group-13 element?
24. Between a semiconductor and a metal, whose electrical conductivity decreases on increasing temperature?

D Watch Video Solution

25. A substance when placed in a magnetic
field in strongly attraceted by the field. The substance retains its magnetised state even when the magnetic field in removed. What type of magnetic substance is this?

- Watch Video Solution

26. Rank the following magnetic substances in order of their magnetic moments in presence of a magnetic field: Ferrimagnetic,

Ferromagnetic, Anti-ferromagnetic

- Watch Video Solution

27. Name an ionic compound, a trace amount of which when added into the crystal structure
of AgCl , results in cationic vacancies.

D Watch Video Solution

28. What is the coordination number of a particle in a crystalline solid with rock-salt structure?

- Watch Video Solution

29. How can you distinguish a metal and an ionic solid on the basis of their electrical

conductance?

- Watch Video Solution

30. What kind of intermolecular forces of attraction hold the molecules in a polar solid substance?

D Watch Video Solution

31. "Crystalline solids are anisotropic" - What does this statement mean?
32. Apart from the metallic lustre, mention one property by which one can distinguish a metal from an ionic solid.

- Watch Video Solution

33. How is it possible to enhance the electrical conductivity to an intrinsic semiconductor?

- Watch Video Solution

34. Which type of magnetism does the following arrangement of magnetic moments indicate?

- View Text Solution

35. Why are gases and liquids considered as fluid?
36. How can a crystalline solid be converted into an amorphous solid?

D Watch Video Solution
37. What are voids or holes in a crystal?

D Watch Video Solution

38. How one and two-dimensional lattices are

formed?

- Watch Video Solution

39. Identify the following unit cell:
$a=b \neq c, \alpha=\beta=\gamma=90^{\circ}$
$a \neq b \neq c, \alpha=\beta=\gamma=90^{\circ}$

D Watch Video Solution

40. Mention the constituent particles and kinds of forces holding the particles in the
following crystalline solids. (1) Solid methane (2) Solid ammonia.

D Watch Video Solution

41. Classify the following crystalline solids as molecular ionic, covalent and metallic solids:
$C a C l 2, \mathrm{Si}, \mathrm{Ag}, \mathrm{Glucose}, \mathrm{Hg}, \mathrm{HCl}, \mathrm{BN}, \mathrm{KOH}$

D Watch Video Solution

42. Arrange the following cubic unit cells in increasing order of their particle number.
(1) Simple (2) Body-centred (3) Face-centred

D Watch Video Solution

43. Arrange simple, body-centred and facecentred cubic unit cells in increasing order of their packing efficiencies.

- Watch Video Solution

44. Which of the following defects are stoichiometric or non-stoichiometric?
(1) Metal excess defect (2) Schottky defect (3)

Metal deficiency defect (4) Frenkel defect.

D View Text Solution

45. Draw and mention the shape of the hole generated in a hexagonal close-packing of identical spheres in a plane.

D Watch Video Solution

46. How many types of close-packing are possible when identical spheres pack together in a plane? Which one of these represents the highest efficiency in close-packing in two dimensions? Mention coordination number in each of these close-packing.

D Watch Video Solution

47. Is the shape of a tetrahedral void tetrahedral? If not, why is it so called?
48. Why does LiCl crystal containing excess lithium ions show pink colour?

D Watch Video Solution

49. What types of magnetism are likely to be observed when magnetic moments align in the same direction, and when they align is opposite directions but in unequal numbers?
50. What is the distance between two nearest neighbours in a bcc unit cell with an edge length of a?

D Watch Video Solution

51. An element with atomic mass $\mathrm{Mg} \cdot \mathrm{mol}^{-1}$ crystallises in a cubical structure. W g of the element is found to contain n unit cells. How
many atoms is its unit cell likely to have?
(Assume : Avogadro's number $=\mathrm{Nmol}^{-1}$)

D Watch Video Solution

52. In an ionic crystal, Schottky defect decreases the density of the crystal but

Frenkel defect does not cause any change in density of the crystal. Explain.
53. Write down two significances of radius ratio rule.

D Watch Video Solution
54. Why does the electrical conductivity of a metal decrease with increase in temperature?

D Watch Video Solution

55. Calculate the packing efficiency of the twodimensional square unit cells as given in the figure.

- Watch Video Solution

56. If the density and the dimension of unit cells of a metal are known, then how can you determine the atomic mass of the element?
57. Under one experimental condition, an element crystallises in face-centred cubic structure with a unit-cell edge length of a_{1}, while under another experimental condition, it crystallises in body-centred cubic structure with a unit-cell edge length of a_{2}. Find the ratio of the densities of these structures.

D Watch Video Solution

58. Have a look at the following defect in the crystal and answer the questions given below:
(1) What kind of stoichiometric defect does the crystal exhibit? (2) How does density of the crystal get affected by this defect? (3) What kind of ionic compounds are likely to show this defect?

D View Text Solution
59. A solid with a formula $A B$ has the rock-salt type of structure. If all the atoms touching one
body-diagonal plane are removed, then what would the formula of the compound be?

D Watch Video Solution

60. Explain the electrical non-conductivity of an insulator with the help of band theory.

- Watch Video Solution

Solved Wbchse Scanner

1. (i) Which type of semiconductor is sillicon having arsenic as impurity?
(ii) An elements (density $=7.2 g \cdot \mathrm{~cm}^{-3}$) crystallises in a body-centred cubic structure having its cell edge length $2.88 \AA$. Calculate the number of atoms and the number of unit cells present in 156 g of the element.

- Watch Video Solution

2. What is the number of unit cells in 6.4 g of X

(atomic mass $=64$) (X crystallises in body centred cubic-lattice)

$$
\begin{aligned}
& \text { A. } \frac{N_{A}}{10} \\
& \text { B. } \frac{N_{A}}{20} \\
& \text { C. } \frac{N_{A}}{5} \\
& \text { D. } 2 N_{A}
\end{aligned}
$$

Answer: B
3. What is the number of particles per unit cell in a face-centred cubic lattice-
A. 1
B. 2
C. 3
D. 4

Answer: D

D Watch Video Solution
4. Silver crystallises in face-centred cubic lattice. If edge length of the unit cell is $4.07 \times 10^{-8} \mathrm{~cm}$ and density of silver is $10.48 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, determine the relative atomic mass of silver.
or, (i) What is Schottky defect? (ii) Find out packing efficiency in a simple cubic lattice.

D Watch Video Solution

5. Which of the following solids is a covalent crystal-
A. sodium chloride
B. quartz
C. sucrose
D. iodine

Answer: B

D Watch Video Solution

6. (i) What is ferromagnetic substance?
(ii) KBr crystallises in face-centred cubic (fcc)
crystals. The density and formula mass of KBr
crystal are $2.65 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ and $119 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ respectively. Find the distance between
K^{+}and Br^{-}ions in KBr crystal.
or, (i) Which kind of defect in ionic crystal does not alter the density?
(ii) An element X has atomic mass $60 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ and density $6.23 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. The edge length of its unit cell is 400 pm . Identify the type of the unit cubic cell. Calculate the radius of X atom.

7. The number of Cl^{-}ions present around

 each Na^{+}ion in NaCl crystal lattice is-A. 3
B. 4
C. 8
D. 6

Answer: D

D Watch Video Solution
8. (i) What is the total number of voids in cubic close-packed lattice?
(ii) Metallic gold (Au) crystallises in facecentred cubic lattice. What is the number of unit cells in 2.0 g of gold? [$\mathrm{Au}=197]$
or, (i) What is a p-type semiconductor?
(ii) A cubic crystal is made up of elements A and $B . B$ is located at the corners of the unit cell and A is at the body-centre. What will be the probable formula of the compound?

D View Text Solution

1. What is meant by 'doping' in a semiconductor?

D Watch Video Solution

2. Tungsten crystallizes in body-centred cubic unit cell. If the edge of the unit cell is 316.5 pm , what is the radius of tungsten atom?
3. Iron has a body-centred cubic unit cell dimension of 286.65 pm . The density of iron is $7.874 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. Use the information to calculate Avogadro's number [Atomic mass of $\mathrm{Fe}=55.845 \mathrm{u}]$

D Watch Video Solution

4. An element with density $2.8 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ forms
a fcc unit cell with edge length $4 \times 10^{-8} \mathrm{~cm}$.

Calculate the molar mass of the element.
[Given: ${ }^{`} \mathrm{~N}_{-}(\mathrm{A})=6.022 \times x 10^{\wedge}(23) \mathrm{mol}^{\wedge}(-1)$]

D Watch Video Solution

5. (a) Write the type of magnetism observed when magnetic moments are aligned in parallel and anti-parallel directions in unequal numbers. (b) Which stoichiometric defect decreases the density of crystal?

D Watch Video Solution

6. What is the formula of a compound in which
the element Y forms ccp lattice and atoms of X occupy $\frac{1}{3} \mathrm{rd}$ of tedrahedral voids.

- Watch Video Solution

7. An element with molar mass $27 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
froms a cubic unit cell with edge length
$4.05 \times 10^{-8} \mathrm{~cm}$. If its density is $2.7 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, what is the nature of the cubic unit cell?
8. What type of stoichiometric defect is shown by AgCl ?

- Watch Video Solution

9. Silver crystallises in fcc lattice. If edge length of the unit cell is $4.077 \times 10^{-8} \mathrm{~cm}$, then calculate the radius of silver atom.

- Watch Video Solution

10. What type of magnetism is shown by a substance if magnetic moments of domains are arranged in the same direction?

D Watch Video Solution

11. An element crystallises in a fcc lattice with cell edge of 250 pm. Calculate the density if 300 g of this element contain 2×10^{24} atoms.
12. Give an example each of a molecular solid and an ionic solid.

- Watch Video Solution

13. An element crystallises in a bcc lattice with cell edge of 500 pm . The density of the element is $7.5 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. How many atoms are present is $300 \mathrm{~g} / \mathrm{mol}$ of the element?
14. (a) An element has atomic mass 93 $g \cdot \mathrm{~mol}^{-1}$ and density $11.5 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. If the edge length of its unit cell is 300 pm, identify the type of unit cell.
(b) Write any two differences between amorphous solids and crystalline solids.

D Watch Video Solution

15. (a) Calculate the number of unit cell in 8.1g of aluminium if it crystallises in a fcc structure.
(Atomic mass of $\mathrm{Al}=27 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$)
(b) Give reasons:
(i) In stoichiometric defects, NaCl exhibits

Schottky defect and not Frenkel defect.
(ii) Silicon on doping with Phosphorous forms n-type semiconductor.
(iii) Ferrimagnetic substances show better magnetism than anti-ferromagnetic substances.
16. Calculate the number of unit cells in 8.1 g of
aluminium if it crystallises in face-centred
cubic (fcc) structure. (Atomic mass of $\mathrm{Al}=27$
$g \cdot \mathrm{~mol}^{-1}$)

- Watch Video Solution

17. (a) Based on the nature of intermolecular
forces, classify the following solids: Silicon carbide, Argon.
(b) ZnO turns yellow on heating. Why?
(c) What is meant by groups 12-16 compounds? Give an example.

D Watch Video Solution

18. (a) Based on the nature of intermolecular forces, classify the following solids: Benzene,

Silver.
(b) AgCl shows Frenkel defect while NaCl does not. Give reason.
(c) What type of semiconductor is formed when Ge is doped with Al ?

Watch Video Solution

19. (a) Based on the nature of intermolecular forces, classify the following solids: Sodium sulphate, Hydrogen.
(b) What happens when CdCl_{2} is doppd with

AgCl ?
(c) Why do ferrimagnetic substances show better magnetism than antiferromagnetic substances?
20. Analysis shows that FeO has a nonstoichiometric composition with formula $F e_{0.95} O$. Give reason.

D Watch Video Solution

21. An element ' X ' (atomic mass $=40 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$)
having fcc structure, has unit cell edge length of 400 pm . Calculate the density of ' X ' and the number of unit cell in 4 g of ' X '. $\left(N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}\right)$

Solved Ncert Textbook Problems

1. Why are solids rigid?
(D) Watch Video Solution

2. Why do solids have a definite volume?

- Watch Video Solution

3. Classify the following as amorphous or crystalline solids: Polyurethane, naphthalene, benzoic acid, teflon, potassium nitrate, cellophane, polyvinyl chloride, fibre glass, copper.

- Watch Video Solution

4. Why is glass considered a super cooled
liquid?

D Watch Video Solution
5. Refractive index of a solid is observed to have the same value along all directions.

Comment on the nature of this solid, would it show cleavage property?

D Watch Video Solution

6. Classify the following solids based on the nature of intermolecular forces operating in them: Potassium sulphate, tin, benzene, urea, ammonia, water, zinc sulphide, graphite, rubidium, argon, silicon carbide.
7. Solid A is a very hard electrical insulator in solid as well as in molten state and melts at extremely high temperature. What type of solid is it?

- Watch Video Solution

8. Ionic solids conduct electricity in molten state but not in solid state. Explain.
9. What type of solids are electrical conductors, malleable and ductile?

D Watch Video Solution

10. Give the significance of a 'lattice point'.

- Watch Video Solution

11. Name the parameters that characterise a unit cell.

D Watch Video Solution

12. Distinguish between- (i) the hexagonal and monoclinic unit cells (ii) the face-centred and end-centred unit cells.

D Watch Video Solution
13. Explain how much portion of an atom
located (i) corner and (ii) body centre of a cubic unit cell is part of its neighbouring unit cell.

- Watch Video Solution

14. What is the two dimensional coordination
number of a molecule in square close-packed
layer?
15. A compound forms hexagonal close-packed structure. What is the total number of voids in
0.5 mol of it? How many of these are tetrahedral voids?

D Watch Video Solution

16. A compound is formed by two elements, M and N. N forms ccp \& atoms of M occupy $\frac{1}{3}$ rd of tetrahedral voids. What is the formula of the compound?

- Watch Video Solution

17. Which of the following lattice has the highest packing efficiency (i) simple cubic (ii) body-centred cubic (iii) hexagonal closepacked lattice.

- Watch Video Solution

18. An element with molar mass
$2.7 \times 10^{-2} \mathrm{~kg} \cdot \mathrm{~mol}^{-1}$ forms a cubic unit cell
with edge length 405 pm . If its density is
$2.7 \times 10^{3} \mathrm{~kg} \cdot \mathrm{~m}^{-3}$, what is the nature of the cubic unit cell?

D Watch Video Solution

19. What type of defect can arise when a solid
is heated? Which physical property is affected by it, in what way?
20. What type of stoichiometric defect is shown by : (i) ZnS (ii) AgBr

D Watch Video Solution

21. Ionic solids, which have anionic vacancies due to metal excess defect, develop colour.

Explain.

D Watch Video Solution
22. A group 14 element is to be converted into n-type semiconductor by doping it with a suitable impurity. To which group should this impurity belong?

D Watch Video Solution

23. What type of substances would make
better permanent magnets, ferromagnetic or ferrimagnetic? Justify.
24. Define the term 'amorphous'. Give a few example of amorphous solids.

- Watch Video Solution

25. What makes a glass different from a solid
such as quartz? Under what conditions could
quartz be converted into glass?

- Watch Video Solution

26. Classify each of the following solids as ionic, metallic, molecular, network (covalent) or amorphous. (i) Tetraphosphorous decoxide $\left(P_{4} O_{10}\right) \quad$ (ii) Ammonium phosphate, $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ (iii) SiC (iv) I_{2} (v) P_{4} (vi) Plastic (vii) Graphite (viii) Brass (ix) Rb (x) LiBr (xi) Si

- Watch Video Solution

27. (i) What is meant by the term 'coordination number'?
(ii) What is the coordination number of atom:
(a) in a cubic close-packed structure (b) in a body-centred cubic structure?

D Watch Video Solution

28. How can you determine the atomic mass of an unknown metal having cubic crystal structure if you know its density and the dimension of its unit cell? Explain.
29. Stability of a crystal is reflected in the magnitude of its melting points'. Comment.

Collect melting points of solid water, ethyl alcohol, diethyl ether and methane from a data book. What can you say about the intermolecular forces between these molecules?

- Watch Video Solution

30. How will you distinguish between the following pairs of terms?
(i) Hexagonal close-packing and cubic closepacking
(ii) Crystal lattice and unit cell
(iii) Tetrahedral void and octahedral void

D Watch Video Solution

31. How many lattice points are there in one call of each of the following lattices? (i) Face-
centred cubic (ii) Face-centred tetragonal (iii) Body-centred.

D Watch Video Solution
32. Explain- (i) The basis of similarities and differences between metallic and ionic crystal
(ii) Ionic solids are hard and brittle.

- Watch Video Solution

33. Calculate the efficiency of packing in case of a metal crystal for (i) simple cubic (ii) bodycentred cubic (iii) face-centred cubic (with the assumptions that atoms are touching each other)

- Watch Video Solution

34. Silver crystallises in fcc lattice. If edge length of the cell is $4.07 \times 10^{-8} \mathrm{~cm}$ and
density is $10.5 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, calculate the atomic mass of silver.

- Watch Video Solution

35. A cubic solid is made of two elements P and Q . Atoms of Q are at the corners of the cube and P at the body centre. What is the formula of the compound? What are the coordination number of P and Q ?
36. Niobium crystallises in body-centred cubic structure. If density is $8.55 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, calculate atomic radius of nionium using its atomic mass 93 u .

- Watch Video Solution

37. If radius of the octahedral void is r, radius
of the atom in close packing is R, derive relation between r \& R.
38. Copper crystallises into a fcc lattice with edge length $3.61 \times 10^{-8} \mathrm{~cm}$. Show that the calculated density is in agreement with its measured value of $8.96 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$.

- Watch Video Solution

39. Analysis shows that nickel oxide has the
formula $N i_{0.98} O_{1.00}$. What fractions of nickel exist as $N i^{2+}$ and $N i^{3+}$ ions.
40. What is a semiconductor? Describe two main types of semiconductor and contrast their conduction mechanism.

D Watch Video Solution

41. Non-stoichiometric cuprous oxide, $\mathrm{Cu}_{2} \mathrm{O}$
can be prepared in laboratory. In this oxide, copper to oxygen ratio is slightly less than $2: 1$
. Can you account for the fact that this substance is a p-type semiconductor?

- Watch Video Solution

42. Ferric oxide crystallises in a hexagonal close-packed array of oxide ions with two out of every three octahedral holes occupied by ferric ions. Derive the formula of the ferric oxide.

- Watch Video Solution

43. Classify each of the following as being either a p-type or a n-type semiconductor: (i)

Ge doped with P (ii) Si doped with In

D Watch Video Solution

44. Gold ($r=0.144 n m$) crystallises in a facecentred unit cell. What is the length of a side of the cell?
45. In terms of band theory, what is the difference (i) between a conductor and an insulator (ii) between a conductor and a semiconductor.

D Watch Video Solution

46. Explain the following terms with suitable examples: (i) Schottky defect (ii) Frenkel defect
(iii) Interstitials and (iv) F-centre.
47. Aluminium crystallises in a cubic closepacked structure. Its metallic radius is 125 pm .
(i) What is the length of the side of the unit cell? (ii) How many unit cells are there in $1.00 \mathrm{~cm}^{3}$ of aluminium?

- Watch Video Solution

48. If NaCl is doped with $10^{-3} \mathrm{~mol} \% \mathrm{SrCl}_{2}$, what is the concentration of cation vacancies?
49. Explain the following with suitable examples:
(i) Ferromagnetism

Paramagnetism (iii) Ferrimagbetism (iv) Antiferromagnetism (v) 12-16 and 13-15 group compounds

D Watch Video Solution

Higher Order Thinking Skill Hots Questions

1. The distance between the nearest neighbours of a body-centred cubic unit cell is equal to 0.866 times the edge length of the unit cell. What is the relation between the edge length and the radius of the constituent particle of this unit cell?

D Watch Video Solution

2. In the crystal structure of metallic Zn , the
layers of Zn atoms have stacking sequence

ABABAB... . What type of close-packed structure
is formed in the crystal of Zn ? How many Zn atoms are there in the unit cell of Zn crystal?

D Watch Video Solution

3. Iron crystallises into a crystal structure in which the layer of Fe atoms form close-packed arrangement with stacking sequence $A B C A B C$...
. What is this close-packed arrangement called? How many Fe atoms are there in the unit cell of Fe crystal?

Watch Video Solution

4. Iron crystallises in a cubic close-packed (ccp) structure. How many voids or holes are there in 0.1 mol of iron?

D Watch Video Solution

5. Determine the ratio of radii of particles in simple, body-centred and face-centred cubic unit cells. Assume the edge length of each type of unit cell is a.
6. How many type of holes are generated in a hexagonal and a cubic close-packed arrangement of identical spheres?

- Watch Video Solution

7. Determine the packing efficiency of the unit cell in hexagonal close-packed (hcp) structure of particles.
8. Show that the radius of the particle that can be placed in a tetrahedral void of an hap or a cap structure of particles, without disturbing the close-packed structure, should not exceed 0.225 times the radius of the packed particles.

D Watch Video Solution

9. Determine the percentages of
Fe^{2+} and Fe^{3+} ions in the crystal of
$F e_{0.88} O$.

- Watch Video Solution

10. Why does CsCl adopt the crystal structure of NaCl when it is heated at $-480^{\circ} \mathrm{C}$?

- Watch Video Solution

11. In a crystalline solid having formula $\mathrm{AB}_{2} \mathrm{O}_{4}$
, oxide ions are arranged in a cubic closepacked lattice while cations A and B are
present in tetrahedral and octahedral voids respectively. What percentages of tetrahedral and octahedral voids are occupied by A and B ions respectively?

- Watch Video Solution

12. What is piezoelectric crystal?

D Watch Video Solution
13. Why is coordination number of 12 not found in ionic crystal?

D Watch Video Solution

Advanced Level Numerical Bank

1. An element crystallises in a cubic crystal structure. The edge length of its unit cell is
$3.15 \AA$. The atomic mass and the density of the
element are 96 amu and $10.2 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. Predict
the crystal lattice possessed by the element.

D Watch Video Solution

2. A unit call of NaCl has four formula units. In

NaCl crystal, radius ratio $\left(r_{+} / r_{-}\right)$is 0.69 and edge-length of the unit cell is twice the sum of the radii of Na^{+}and Cl^{-}ions. If the radius of $N a^{+}$is 116 pm then find the density of NaCl crystal. Formula mass of $\mathrm{NaCl}=58.5 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$.
3. An element having atomic radius 144 pm crystallises in a ccp structure. The density of the element is $10.6 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. Identify the element.

- Watch Video Solution

4. Crystal has face centred cubic structure,
having atomic weight $6.023 \mathrm{ygmol}^{-1}$. If the minimum distance between two atoms is $y^{1 / 3}$
nm and the observed density is $20 \mathrm{kgm}^{-3}$ find type of defect in crystal lattice.

D Watch Video Solution

5. An element crystallises in a body-centred cubic crystal structure with the unit cell edge
length of 291pm. The density of the element is
$7.54 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. How many unit cells are there in 168 g of the element?

D Watch Video Solution

6. An element crystallises in a body-centred cubic structure. The atomic radius of the element is 190pm. Calculate: (1) the distance between two nearest neighbours (2) the body diagonal and the edge length of the unit cell.

- Watch Video Solution

7. Nickel crystallises in a cubic close-packed structure. In this structure, the distance between two nearest neighbours is 250 pm . If
the atomic mass of nickel is 58.7amu, then calculate the density of nickel crystal.

D Watch Video Solution

8. Calcium fluoride $\left(C a F_{2}\right)$ crystallises in a cubic crystal structure. Unit cell of this structure contains four Ca^{2+} ions and eight
F^{-}ions. If density of $C a F_{2}$ is $3.2 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$,
then calculate the edge length of the unit cell in pm.
9. A compound consists of element A and B. It crystallises in a cubic crystal structure with unit cell having A atoms at the corners of the cell and B atom at the face centres of the cell.

If the edge-length of the unit cell is $5 \AA$, and the atomic masses of A and B are 60 and 90 respectively, then calculate the density of the compound.
10. The density of CaO is $3.35 \times 10^{3} \mathrm{~kg} \cdot \mathrm{~m}^{3}$.

This oxide crystallises in one of the cubic system with $\mathrm{a}=480 \mathrm{pm}$. Calculate the number of formula units in the unit cell of the oxide. Which type of cubic system is it?

- Watch Video Solution

11. KBr crystallises in a face-centred cubic crystal. The density of KBr crystal is
$2.65 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. If formula mass of KBr is
$119 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, then find the distance between
K^{+}and $B r^{-}$in KBr crystal.

D Watch Video Solution

12. From X-ray diffraction study it is observed that solid Ar possesses cubic close packed structure. If the density of solid Ar is $1.70 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, then find (1) edge length of the unit cell of Ar crystal (2) the radius of Ar atom.

D Watch Video Solution

13. Polonium crystallises in a primitive cubic structure. The radius of polonium atom and the density of polonium are $1.68 \AA$ and $9.27 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ respectively. If the atomic mass of polonium is $210 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, then find the value of Avogadro's number.

- Watch Video Solution

14. Crystal structure of the oxide $A B_{2} O_{4}$ is
bassed on the cubic close packed (ccp) array of
O^{2-} ions, with A^{2+} ions occupying some
tetrahedral voids and B^{3+} ions occupying some octahedral voids. If a crystal of this oxide contains $1 \mathrm{~mol} A B_{2} O_{4}$ formula unit, then calculate (1) total number of voids in the crystal (2) total number of tetrahedral voids occupied by A^{2+} ions (3) total number of octahedral voids occupied by B^{3+} ions.

- Watch Video Solution

15. The crystal structure of Zinc blende (ZnS)
consists of cubic close-packed (ccp) array of
S^{2-} ions. If the radii of $Z n^{2+}$ and S^{2-} ions are 0.74 and $1.84 \AA$ respectively, then which type of voids (tetrahedral or octahedral) formed in ccp array of S^{2-} ions are occupied by Zn^{2+} ions? What fraction of total number of this void remains unoccupied?

- Watch Video Solution

16. An element has an fcc crystal structure with
a unit cell edge length of 200 pm . If the
element has a density of $10 \mathrm{~g} / \mathrm{cm} 3$, then what will its atomic mass be?

D Watch Video Solution

17. Sodium crystallises in a bcc lattice having unit cell with an edge length of $4.29 \AA$.

Calculate the number of unit cells present in
2.3 g of Na metal. Determine the number of atoms present in 1 cc of unit cell.

D Watch Video Solution

1. Suppose the mass of a single Ag atom is ' m '.

Ag metal crystallises in fcc lattice with unit cell
of length 'a'. The density of Ag metal in terms
of 'a' and ' m ' is-
A. $\frac{4 m}{a^{3}}$
B. $\frac{2 m}{a^{3}}$
C. $\frac{m}{a^{3}}$
D. $\frac{m}{4 a^{3}}$

D Watch Video Solution

2. Ionic solids with Schottky defect may contain-
A. cation vacancies only
B. cation vacancies and interstitial cations
C. equal number of cation and anion
vacancies

D. anion vacancies and interstitial anions

Answer: C

D Watch Video Solution

3. In a close-packed body-centred cubic lattice of potassium, the correct relation between the atomic radius (r) of potassium and the edge length (a) of the cube is -

$$
\text { A. } r=\frac{a}{\sqrt{2}}
$$

$$
\begin{aligned}
& \text { B. } r=\frac{a}{\sqrt{3}} \\
& \text { C. } r=\frac{\sqrt{3}}{2} a \\
& \text { D. } r=\frac{\sqrt{3}}{4} a
\end{aligned}
$$

Answer: D

D Watch Video Solution

4. A compound formed by elements X and Y crystallises in the cubic structure, where X atoms are at the corners of a cube and Y -
atoms are at the centres of the body. The

formula of the compound is-

A. $X Y$
B. $X Y_{2}$
C. $X_{2} Y_{3}$
D. $X Y_{3}$

Answer: A
(Watch Video Solution
5. In a face-centred cubic lattice, atom A occupies the corner and atom B occupies the face-centred positions. If one atom of B is missing from one of the face-centred points, the formula of the compound is-
A. $A_{2} B_{5}$
B. $A_{2} B$
C. $A B_{2}$
D. $A_{2} B_{3}$

Answer: A
6. Lithium forms body-centred cubic structure.

The length of the side of its unit cell is 351 pm.
Atomic radius of lithium will be-
A. 300pm
B. 240 pm
C. 152pm
D. 75 pm
7. Which exists as covalent crystals in the solid state-
A. iodine
B. silicon
C. sulphur

D. phosphorus

Answer: B
8. The correct statement for the molecule,
$C s I_{3}$, is-
A. it contains $C s^{+}, I^{-}$and lattice I_{2}
molecule
B. it is a covalent molecule
C. it contains $C s^{+}$and I_{3}^{-}ions
D. it contains $C s^{3+}$ and I^{-}ions

Answer: C

- Watch Video Solution

9. CsCl crystallises in body-centred cubic lattice. If 'a' is its edge length then which of the following expressions is correct-

$$
\begin{aligned}
& \text { A. } r_{C s^{+}}+r_{C l^{-}}=\sqrt{3} a \\
& \text { B. } r_{C s^{+}}+r_{C l^{-}}=3 a \\
& \text { C. } r_{C s^{+}}+r_{C l^{-}}=\frac{3 a}{2} \\
& \text { D. } r_{C s^{+}}+r_{C l^{-}}=\frac{\sqrt{3}}{2} a
\end{aligned}
$$

10. Sodium metal crystallises in a bodycentreed cubic lattice with a unit cell edge of
$4.29 \AA$. The radius of sodium atom is approximately-
A. $1.86 \AA$
B. $3.22 \AA$
C. $5.72 \AA$
D. $0.93 \AA$

Answer: A

- Watch Video Solution

11. Which of the following compounds is metallic and ferromagnetic-
A. TiO_{2}
B. $\mathrm{CrO} \mathrm{O}_{2}$
C. $V O_{2}$
D. MnO_{2}

Answer: B

D Watch Video Solution

12. A metal crystallises in a face-centred cubic structure. If the edge length of its unit cell is
'a', the closest approach between two atoms in metallic crystal will be-
A. $\sqrt{2} a$
B. $\frac{a}{\sqrt{2}}$
C. 2a

D. $2 \sqrt{2} a$

Answer: B

D Watch Video Solution

13. Which type of defect has the presence of cations in the interstitial sites-
A. Frenkel defect
B. metal deficiency defect
C. Schottky defect

D. vacancy defect

Answer: A

- Watch Video Solution

14. A solid cmpound $X Y$ has NaCl structure. If
the radius of the cation is 100 pm , the radius of
the anion $\left(Y^{-}\right)$will be-
A. 275.1pm
B. 322.5 pm
C. 241.5 pm
D. 165.7 pm

Answer: C

D Watch Video Solution

15. Structure of a mixed oxide is cubic closepacked (ccp). The cubic unit cell of mixed oxide is composed of oxide ions. One-fourth of the tetrahedral voids are occupied by divalent metal A and the octahedral voids are occupied
by a monovalent metal B. The formula of the oxide is-
A. $A_{2} B O_{2}$
B. $A_{2} B_{3} O_{4}$
C. $A B_{2} O_{2}$
D. $A B O_{2}$

Answer: C

D Watch Video Solution
16. A metal crystallises with a face-centred
cubic lattice. The edge of the unit cell is 408pm. The diameter of the metal atom is-
A. 114 pm
B. 204pm
C. 288pm
D. 408pm

Answer: C

D Watch Video Solution
17. The number of octahedral void(s) per atom present in a cubic close-packed structure is-
A. 2
B. 4
C. 1
D. 3

Answer: B

D Watch Video Solution
18. The number of carbon atoms present per unit cell of diamond is-
A. 1
B. 4
C. 8
D. 6

Answer: C

D Watch Video Solution
19. Which of the following statements about the interstitial compounds is incorrect-
A. they have higher melting points than
the pure metal
B. they retain metallic conductivity
C. they are chemically reactive
D. they are much harder than the pure metal

Answer: C

20. If a is the length of the side of a cube, the distance between the body-centred atom and one corner-atom in the cube will be-

$$
\begin{aligned}
& \text { A. } \frac{2}{\sqrt{3}} a \\
& \text { B. } \frac{4}{\sqrt{3}} a \\
& \text { C. } \frac{\sqrt{3}}{4} a \\
& \text { D. } \frac{\sqrt{3}}{2} a
\end{aligned}
$$

- Watch Video Solution

21. The correct statement regarding defects in the crystaline solid is-
A. Schottky defects have no effect on the density of crystalline solids
B. Frenkel defects decrease the density of
crystalline solid
C. Frenkel defect is a dislocation defect
D. Frenkel defect is found in halides of

alkaline metals

Answer: C

D Watch Video Solution

22. The vacant space in bcc lattice cell is-
A. 0.26
B. 0.48
C. 0.23
D. 0.32

Answer: D

D Watch Video Solution

23. In calcium fluoride, having the fluorite structure, the coordination number for calcium ion $\left(C a^{2+}\right)$ and fluoride ion $\left(F^{-}\right)$ are-
A. 4 and 2
B. 6 and 6
C. 8 and 4
D. 4 and 8

Answer: D

D Watch Video Solution

24. The ionic radii of A^{+}and B^{-}ions are
$0.98 \times 10^{-10} m$ and $1.81 \times 10^{-10} m . \quad$ The coordination number of each ion in $A B$ is-
A. 2
B. 6
C. 4
D. 8

Answer: B

D Watch Video Solution

25. Lithium has bcc structure. Its density is $530 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$ and its atomic mass is
$6.94 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$. Calculate the edge length of a
unit cell of lithium metal

$$
\left(N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)
$$

A. 527 pm
B. 264 pm
C. 154 pm
D. 352 pm

Answer: D
(Watch Video Solution
26. Which is the incorrect statement-
A. density decreases in case of crystals with

Schottky defect

B. $\mathrm{NaCl}(\mathrm{s})$ is insulator, silicon is

semiconductor, silver is conductor,
quartz is piezo-electric crystal
C. Frenkel defect is favoured in those ionic
compounds in which sizes of cation and
anions are almost equal

D. $\mathrm{Fe} \mathrm{O}_{0.98}$ has non-stoichiometric metal

deficiency defect

Answer: C

D Watch Video Solution

27. Iron exhibits bcc structure at room temperature. Above $900^{\circ} \mathrm{C}$, it transforms to
fcc structure. The ratio of density of iron temperature to that at $900^{\circ} \mathrm{C}$ (assuming
molar mass and atomic radii of iron remains constant with temperature) is-
A. $\frac{1}{2}$
B. $\frac{\sqrt{3}}{\sqrt{2}}$
C. $\frac{3 \sqrt{3}}{}$
$4 \sqrt{2}$
D. $\frac{4 \sqrt{3}}{3 \sqrt{2}}$

Answer: C

- Watch Video Solution

28. Schottky defect is-
A. vacancy of ions
B. delocalisation of ions
C. interstitial vacancy of ions
D. vacancy of only cations

Answer: A
29. CsCl has bcc arrangement. Its unit cell edge
length is 400 pm. Its inter-ionic distance is-
A. 400 pm
B. 800 pm
C. $\sqrt{3} \times 100 \mathrm{pm}$
D. $\frac{\sqrt{3}}{2} \times 400 \mathrm{pm}$

Answer: C

D Watch Video Solution
30. If Si is doped with B -
A. n-type semiconductor is formed
B. p-type semiconductor is formed
C. insulator is formed
D. polymer is formed

Answer: B
(Watch Video Solution

31. In bcc structure contribution of corner and

 central atom is-$$
\begin{aligned}
& \text { A. } \frac{1}{8}, 1 \\
& \text { B. } \frac{1}{4}, \frac{1}{8} \\
& \text { C. } \frac{1}{8}, \frac{1}{2} \\
& \text { D. } 1, \frac{1}{2}
\end{aligned}
$$

Answer: A

32. In a solid, atom M occupies ccp lattice and
$1 / 3$ rd of tetrahedral voids are occupied by atom N. Find the formula of solid formed by M and N -
A. $M_{3} N_{2}$
B. $M_{2} N_{3}$
C. $M_{4} N_{3}$
D. $M_{3} N_{4}$

Answer: A
33. A forms hcp lattice and B are occupying

1/3rd of tetrahedral voids, then the formula of compound is-
A. $A B$
B. $A_{3} B_{2}$
C. $A_{2} B_{3}$
D. $A B_{4}$

Answer: B
34. $C a^{2+}$ and F^{-}are located in $C a F_{2}$
crystal, respectively at face-centred cubic
lattice points and in-
A. tetrahedral voids
B. half of tetrahedral voids
C. octahedral voids
D. half of octahedral voids

Answer: A
35. Addition of group-13 elements to intrinsic semiconductors result in-
A. creation of conduction band slightly
above the valence band
B. creation of conduction band slightly
below the valence band
C. creation of valence band slightly above
the conduction band

D. overlapping of valence band and

 conduction band
Answer: A

D Watch Video Solution

36. The yellow colour in NaCl crystals is due to-
A. excitation of electrons in F-centres
B. reflection of light from Cl^{-}ions on the
surface

C. refraction of light from Na^{+}ions

D. all of the above

Answer: A

- Watch Video Solution

37. Which of the following is an amorphous solid-
A. iron

B. graphite

C. diamond

D. glass

Answer: D

- Watch Video Solution

38. If an atom crystallises in bcc lattice with $r=$ $4 \AA$ then the edge length will be-
A. $2 \AA$
B. $8 \AA$
C. $2.39 \AA$
D. $9.23 \AA 8$

Answer: D

D Watch Video Solution

39. ZnO is white when cold and yellow when heated. It is due to the development of-
A. Frenkel defect
B. metal excess defect

C. Schottky defect

D. metal deficiency defect

Answer: B

- Watch Video Solution

40. A forms hcp lattice and B are occupying

1/3rd of tetrahedral voids, then the formula of compound is-
A. $A B$
B. $A_{3} B_{2}$
C. $A_{2} B_{3}$
D. $A B_{4}$

Answer: B

- Watch Video Solution

41. F-centre is-
A. anion vacancy occupied by unpaired
electron
B. anion vacancy occupied by paired electrons
C. cation vacancy occupied by electron
D. anion present in interstitial site

Answer: A

D Watch Video Solution
42. What colour is observed when ZnO is heated-
A. yellow
B. violet
C. green
D. blue

Answer: A

- Watch Video Solution

Solved Ncert Exemplar Problems

1. Which of the following conditions favours
the existence of a substance in the solid state-
A. high temperature
B. low temperature
C. high thermal energy
D. weak cohesive forces

Answer: B
(Watch Video Solution
2. Which of the following is not a characteristic of a crystalline solid-
A. definite and characteristic heat of fusion
B. isotropic nature
C. a regular periodically repeated pattern
of arrangement of constituent particles
in the entire crystal

D. a true solid

Answer: B
3. Which of the following is an amorphous solid-
A. graphite (C)
B. quartz glass $\left(\mathrm{SiO}_{2}\right)$
C. chrome alum
D. silicon carbide (SiC)

Answer: B
4. Which arrangements shows schematic alignment of magnetic moments of antiferromagnetic substances-
A.
B.
C.
D.

Answer: D
5. Which of the following is true about the value of refractive index of quartz glass-
A. same in all directions
B. different in different directions
C. cannot be measured
D. always zero

Answer: A

- Watch Video Solution

6. Which of the following statements is not true about amorphous solids-
A. on heating they may become crystalline
at certain temperature
B. they may become crystalline on keeping
for long time
C. amorphous solids can be moulded by
heating
D. they are anisotropic in nature

Answer: D

D Watch Video Solution

7. The sharp melting point of crystalline solids
is due to-
A. a regular arrangement of constituent particles observed over a short distance in the crystal lattice
B.a regular arrangement of constituent particles observed over a long distance in the crystal lattice
C. same arrangement of constituent particles in different directions
D. different arrangement of constituent

particles in different directions

Answer: B

D Watch Video Solution

8. Iodine molecules are held in the crystal
lattice by-
A. London forces
B. dipole-dipole interactions
C. covalent bonds
D. coulombic forces

Answer: A

D Watch Video Solution
9. Which of the following is a network solid-
A. $S O_{2}(s)$
B. I_{2}
C. diamond
D. $\mathrm{H}_{2} \mathrm{O}$ (ice)

Answer: C

- Watch Video Solution

10. Which of the given solids is not an electrical conductor-
(i) $\mathrm{Mg}(\mathrm{s})$ (ii) TiO (s) (iii) I_{2} (s) (iv) $\mathrm{H}_{2} \mathrm{O}$ (s)
A. (i) only
B. (ii) only
C. (iii) and (iv)
D. (ii), (iii) and (iv)

Answer: C

D Watch Video Solution
11. Which of the following is not characteristic of ionic solids-
A. very low electrical conductivity in the molten state
B. brittle nature
C. very strong forces of interactions
D. anisotropic nature

Answer: A

12. Graphite is a good conductor of electricity due to the presence of-
A. lone pair of electrons
B. free valence electrons
C. cations
D. anions

Answer: B

D Watch Video Solution
13. Which of the following oxides behaves as conduator or insulator depending upon temperature-
A. TiO
B. SiO_{2}
C. TiO_{3}
D. MgO

Answer: C
14. Which of the following oxides shows electrical properties like metals-
A. SiO_{2}
B. MgO
C. $\mathrm{SO}_{2}(\mathrm{~s})$
D. CrO_{2}

Answer: D

- Watch Video Solution

15. The lattice site in a pure crystal cannot be occupied by-
A. molecule
B. ion
C. electron
D. atom

Answer: C

D Watch Video Solution

16. Graphite cannot be classified as-

A. conducting solid

B. network solid

C. covalent solid

D. ionic solid

Answer: D

17. Cations are present in the interstitial sites in-
A. Frenkel defect
B. Schottky defect
C. vacancy defect
D. metal deficiency defect

Answer: A
(Watch Video Solution
18. Schottky defect is observed in crystals when-
A. some cations move from their lattice site
to interstitial sites
B. equal number of cations and anions are missing from the lattice
C. some lattice sites are occupied by
electrons
D. some impurity is present in the lattice

Answer: B
19. Which of the following is true about the charge acquired by p-type semiconductors-
A. positive
B. neutral
C. negative
D. depends on concentration of pimpurity

Answer: B
20. To get an n-type semiconductor from silicon, it should be doped with a substance with valence-
A. 2
B. 1
C. 3
D. 5
21. The total number of tetrahedral voids in the face-centred unit cell is-
A. 6
B. 8
C. 10
D. 12

Answer: B
22. Which of the following point defect are shown by AgBr crystals: (i) Schottky defect (ii)

Frenkel defect (iii) Metal excess defect (iv)
Metal deficiency defect-
A. (i) and (ii)
B. (iii) and (iv)
C. (i) and (iii)
D. (ii) and (iv)
23. In which pair most efficient packing is present-
A. hcp and bcc
B. hcp and ccp
C. bcc and ccp
D. bcc and simple cubic cell

Answer: B
24. The percentage of empty space in a bodycentred cubic arrangement is-
A. 74
B. 68
C. 32
D. 26

Answer: C

- Watch Video Solution

25. Which of the following statements is not true about the hexagonal close packing-
A. the coordination number is 12
B. it has 74\% packing efficiency
C. tetrahedral voids of the second layer are
covered by the spheres of the third layer
D. in this arrangement spheres of the
fourth layer are exactly aligned with
those of the first layer

Answer: D

- Watch Video Solution

26. In which of the following structures
coordination number for cations and anions in
the packed structure will be same-
A. $C l^{-}$ion form fcc lattice and $N a^{+}$ions
occupy all octahedral voids of the unit
cell
B. $C a^{2+}$ ions form fcc lattice and F^{-}ions occupy all the eight tetrahedral voids of the unit cell
C. O^{2-} ions form fcc lattice and Na^{+}ions
occupy all the eight tetrahedral voids of
the unit cell
D. S^{2-} ions form fcc lattice and $Z n^{2+}$ ions
go into alternate tetrahedral voids of
the unit cell
27. What is the coordination number in a square close-packed structure in two dimensions-
A. 2
B. 3
C. 4
D. 6
28. Which kind of defects are introduced by doping-
A. dislocation defect
B. Schottky defect
C. Frenkel defect
D. electronic defects

Answer: D
29. Silicon doped with electron-rich impurity
forms-
A. p-type semiconductor
B. n-type semiconductor
C. intrinsic semiconductor
D. insulator

Answer: B

D Watch Video Solution
30. Which of the following statements is not true-
A. paramagnetic substances are weakly attracted by magnetic field
B. ferromagnetic substances cannot be
magnetised permanently
C. the domains in anti-ferromagnetic
substances are oppositely oriented with

D. pairing of electrons cancels their

 magnetic moment in the diamagnetic substancesAnswer: B

D Watch Video Solution
31. Which of the given is not true about the ionic solids-
A.bigger ions form the close-packed structure
B.smaller ions occupy either the
tetrahedral or the octahedral voids
depending upon their size
C. occupation of all the voids is not
necessary
D. the fraction of octahedral or tetrahedral
voids occupied depends upon the radii
of the ions occupying the voids

Answer: D

D Watch Video Solution

32. A ferromagnetic substance becomes a permanent magnet when it is placed in a magnetic field because-
A. all the domains get oriented in the direction of magnetic field
B. all the domains get oriented in the direction opposite to the direction of
magnetic field
C. domains get oriented randomly
D. domains are not affected by magnetic
field

Answer: A

D Watch Video Solution
33. The correct order of the packing efficiency
in different types of unit cells is-
A.fcc $<$ bcc $<$ simple cubic
B. fcc $>$ bcc $>$ simple cubic
C. fcc $<$ bcc $>$ simple cubic
D. $\mathrm{bcc}<$ fcc $>$ simple cubic

Answer: B

D Watch Video Solution
34. Which of the following defects is also known as dislocation defect-
A. Frenkel defect
B. Schottky defect
C. non-stoichiometric defect
D. simple interstitial defect

Answer: A

D Watch Video Solution
35. In the cubic close packing, the unit cell has-
A. 4 tetrahedral voids each of which is shared by four adjacent unit cells
B. 4 tetrahedral voids within the unit cell
C. 8 tetrahedral voids each of the which is
shared by four adjacent unit cells

D. 8 tetrahedral voids within the unit cells

Answer: D

D Watch Video Solution

36. The edge lengths of the unit cells in terms of the radius of spheres constituting fcc, bcc and simple cubic unit cell respectively-

$$
\begin{aligned}
& \text { A. } 2 \sqrt{2} r, \frac{4 r}{\sqrt{3}}, 2 r \\
& \text { B. } \frac{4 r}{\sqrt{3}}, 2 \sqrt{2} r, 2 r \\
& \text { C. } 2 r, 2 \sqrt{2} r, \frac{4 r}{\sqrt{3}} \\
& \text { D. } 2 r, \frac{4 r}{\sqrt{3}}, 2 \sqrt{2} r
\end{aligned}
$$

Answer: A

- Watch Video Solution

37. Which of the following represents correct

order of conductivity in solids-

A.
$K_{\text {metals }} \gg K_{\text {insulators }}<K_{\text {semiconductors }}$
B.
$K_{\text {metals }} \ll K_{\text {insulators }}<K_{\text {semiconductors }}$
C. $K_{\text {metals }}, K_{\text {semiconductors }}>K_{\text {insulators }}=0$
D.
$K_{\text {metals }}<K_{\text {semiconductors }}>K_{\text {insulators }} \neq 0$

Answer: A

D Watch Video Solution

38. Which is not true about the voids formed in three dimensional hexagonal close-packed structure-
A. a tetrahedral void is formed when a
sphere of the second layer is present
above triangular void in the first layer
B. all the triangular voids are not covered
by the spheres of the second layer
C. tetrahedral voids are formed when the
triangular voids in the second layer lie
above the triangular voids in the first
layer and the triangular shapes of these
voids do not overlap
D. octahedral voids are formed when the
triangular voids in the second layer
exactly overlap with similar voids in the

first layer

Answer: C::D

D Watch Video Solution

39. The value of magnetic moment is zero in
the case of anti-ferromagnetic substances
because the domains-
A. get oriented in the direction of applied
magnetic field
B. get oriented opposite to the direction of
the applied magnetic field
C. are oppositely oriented with respect to
each other without the application of
magnetic field
D. cannot out each other's magnetic
moment

- Watch Video Solution

40. Which of the following statements are not true-
A. vacancy defect results in a decrease in
the density of the substance
B. interstitial defects results in an increase
in the density of the substance
C. impurity defect has no effect on the density of the substance

D. Frenkel defect results in an increase in

 the density of the substance
Answer: C::D

D Watch Video Solution

41. Which of the following are true about metals-
A. valence band overlaps with conductions
band
B.the gap between valence band and conduction band is negligible
C.the gap between valence band and conduction band cannot be determined
D. valence band may remain partially filled

Answer: A::B::D

D Watch Video Solution

42. Under the influence of electric field, which of the following statements is true about the movement of electrons and holes in a p-type semiconductor-
A. electron will move towards the positvely
charged plate through electron holes
B. holes will appear to be moving towards
the negatively charged plate
C. both electrons and holes appear to move towards the positively charged
plate

D. movement of electrons is not related to

the movement of holes

Answer: A::B

D Watch Video Solution

43. Which of the following statements are true about semiconductors-
A. silicon doped with electron rich impurity
is a p-type semiconductor
B. silicon doped with an electron rich
impurity is an a n-type semiconductor
C. delocalised electrons increase the
conductivity of doped silicon
D. an electron vacancy increases the
conductivity of n-type semiconductor

Answer: B::C
44. An excess of potassium ions makes KCl crystal appear violet or lilac in colour since-
A. some anionic sites are occupied by an
unpaired electron
B. some anionic sites are occupied by a pair of electrons
C. there are vacancies at some anionic sites
D. F-centres are created which impart colour to the crystals

D Watch Video Solution

45. No. of tetrahedral voids per unit cell in

NaCl crystal is-
A. 4
B. 8
C. twice the number of octahedral voids
D. four times the number of octahedral
voids

Answer: B::C

- Watch Video Solution

46. Amorphous solid can also be called-
A. pseudo solids
B. true solids
C. supper cooled liquids

D. super cooled solids

Answer: A::C

D Watch Video Solution

47. A perfect crystal of silicon is doped with some elements as given in the options. Which
of thses options show n-type semiconductors-
A. As
B. B
C. P
D. Al

Answer: A::C

- Watch Video Solution

48. Which of the following statements are correct-
A. ferrimagnetic
substances
lose
ferrimagnetism on heating and become
paramagnetic
B. ferrimagnetic substances do not lose
ferrimagnetism on heating and remain
ferrimagnetic
C. antiferromagnetic substances have
domain structures similar to
ferromagnetic substances and their magnetic moments are not cancelled by
each other
D. in ferromagnetic substances all the domains get oriented in the direction of magnetic field and remain as such even after removing magnetic field.

Answer: A::D

D Watch Video Solution

49. Which of the features are not shown by quartz glass-
A. this is a crystalline solid
B. refractive index is same in all the directions
C. this has definite heat of fusion
D. this is also called super cooled liquid

Answer: A::C

D Watch Video Solution

50. Which cannot be regarded as molecular solid-
A. SiC
B. AIN
C. diamond
D. I_{2}

Answer: A::B::C

D Watch Video Solution
51. In which of the following arrangements octahedral voids are formed-
A. hcp
B. bcc
C. simple cubic
D. fcc

Answer: A::D

D Watch Video Solution

52. Frenkel defect is also known as-

A. stoichiometric defect

B. dislocation defect
C. impurity defect
D. non-stoichiometric defect

Answer: A::B
53. Which of the following defects decrease the density-
A. interstitial defect
B. vacancy defect
C. Frenkel defect
D. Schottky defect

Answer: B::D
(Watch Video Solution

Short Answer Type

1. Why are liquids and gases categorised as fluids?

- Watch Video Solution

2. Why are solids incompressible?

- Watch Video Solution

3. In spite of long range order in the arrangement of particles why are the crystals ususally not perfect?

D Watch Video Solution

4. Why does table salt, some times appear yellow in colour?

D Watch Video Solution

5. Why is $\mathrm{FeO}(\mathrm{s})$ not formed in stoichiometric

 composition?- Watch Video Solution

6. Why does white $\mathrm{ZnO}(\mathrm{s})$ becomes yellow upon heating?

- Watch Video Solution

7. Why does the electrical conductivity of semiconductors increase with rise in temperature?

D Watch Video Solution

8. Explain why does conductivity of germanium crystals increase on doping with galium.

D Watch Video Solution

9. In a compound, nitrogen atoms (N) make cubic close packed lattice and metal atoms (M) occupy one-third of the tetrahedral voids present. Determine the formula of the compound formed by M and N ?

D Watch Video Solution

10. Under which situations can an amorphous substance change to crystalline form?

Matching Type

1.

- View Text Solution

2.
3.

D View Text Solution

4.

- View Text Solution

5.

- View Text Solution

Assertion Reason Type

1. Assertion(A) : The total number of atoms
present in a simple cubic unit cell is one.
Reason (R) : Simple cubic unit cell has atoms
at its corners, each of which is shared between
eight adjacent unit cells.
A. (A) and (R) both are correct statements
and (R) is correct explanation for (A).
B. (A) and (R) both are correct statements
but (R) is not correct explanation for (A).

C. (A) is correct statement but (R) is wrong

statement.
D. (A) is wrong statement but (R) is correct
statement.

Answer: A

D Watch Video Solution
2. Assertion(A) : Graphite is a good conductor of electricity however diamond belongs to the category of insulators.

Reason (R) : Graphite is soft in nature on the other hand diamond is very hard and brittle.
A. (A) and (R) both are correct statements and (R) is correct explanation for (A).
B. (A) and (R) both are correct statements
but (R) is not correct explanation for (A).
C. (A) is correct statement but (R) is wrong statement.
D. (A) is wrong statement but (R) is correct
statement.

Answer: B

D Watch Video Solution

3. Assertion (A) : Total number of octahedral voids present in unit cell of cubic close packing including the one that is present at the body centre, is four.

Reason (R) : Besides the body centre there is one octahedral void present at the centre of each of the six faces of the unit cell and each
of which is shared between two adjacent unit cells.
A. (A) and (R) both are correct statements
and (R) is correct explanation for (A).
B. (A) and (R) both are correct statements
but (R) is not correct explanation for (A).
C. (A) is correct statement but (R) is wrong
statement.
D. (A) is wrong statement but (R) is correct
statement.

Answer: C

- Watch Video Solution

4. Assertion(A) : The packing efficiency is maximum for the fcc structure.

Reason (R) : The coordination number is 12 in
fcc structures.
A. (A) and (R) both are correct statements
and (R) is correct explanation for (A).
B. (A) and (R) both are correct statements
but (R) is not correct explanation for (A).
C. (A) is correct statement but (R) is wrong
statement.
D. (A) is wrong statement but (R) is correct
statement.

Answer: B
(Watch Video Solution
5. Assertion(A) : Semiconductors are solids
with conductivities in the intermediate range
from $\left(10^{-6}-10^{4} o h m^{-1} \cdot \mathrm{~m}^{-1}\right)$.
Reason (R) : Intermediate conductivity in semiconductor is due to partially filled valence band.
A. (A) and (R) both are correct statements
and (R) is correct explanation for (A).
B. (A) and (R) both are correct statements
but (R) is not correct explanation for (A).
C. (A) is correct statement but (R) is wrong
statement.
D. (A) is wrong statement but (R) is correct
statement.

Answer: C

- Watch Video Solution

Long Answer Type

1. Show that in a cubic close packed structure, eight tetrahedral voids are present per unit cell.

- Watch Video Solution

2. How does the doping increase the conductivity of semiconductors?

- Watch Video Solution

3. A sample of ferrous oxide has actual formula
$F e_{0.93} O_{1.00}$. In this sample what fraction of metal ions are $F e^{2+}$ ions? What type of nonstoichiometric defect is present in this sample?

D Watch Video Solution

Mcq Hotspot

1. Crystalline quartz $\left(\mathrm{SiO}_{2}\right)$ is-
A. an ionic solid
B. a covalent solid
C. a polar molecular solid
D. a non-polar molecular solid

Answer: B

D Watch Video Solution
2. In which of the following solids are the constituent particles held by London and dipole-dipole forces-
A. O_{2}
B. He
C. SO_{2}
D. graphite

Answer: C

D Watch Video Solution
3. A crystalline solid has the given
characteristics: (i) soft (ii) very low melting
point (iii) non-conductor of heat and
electricity both in solid and liquid states.

Which of the following crystalline solids generally show these characteristics-
A. ionic
B. covalent
C. metallic
D. molecular

Answer: D

D Watch Video Solution
4. Which of the following characteristics is true for an ionic crystalline solid-
A. the constituent particles are not arranged orderly
B. isotropic substance
C. the arrangement of particles has long
range order
D. the arrangement of particles has short range order

Answer: C

- Watch Video Solution

5. Boron nitride (BN) is-
A. an amorphous solid
B. ionic crystalline solid
C. covalent crystalline solid

D. molecular solid

6. Which one of the following solids is a molecular solid-
A. silicon carbide
B. sodium fluoride
C. ice
D. diamond

Answer: C

7. How many three dimentional crystal systems

 are possible from different types of crystals-A. 5
B. 9
C. 14
D. 7

Answer: D

D Watch Video Solution

8. The number of Bravais lattices is-

A. 12
B. 14
C. 7
D. 16

Answer: B

- Watch Video Solution

9. The number of simple or primitive lattices among Bravais lattices is-
A. 7
B. 14
C. 8
D. 3

Answer: A

10. Which of the following crystal systems does not have body-centred lattice-
A. orthorhombic
B. tetragonal
C. monoclinic
D. cubic

Answer: C

- Watch Video Solution

11. Which of the following crystal systems has unit cell with $a=b \neq c$ ($\mathrm{a}, \mathrm{b} \& \mathrm{c}$ are the edge lengths)-
A. orthorhombic
B. tetragonal
C. trigonal
D. triclinic

Answer: B
12. Which of the following crystal systems has
unit cell with $\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$ (where
α, β and γ are interfacial angles)-
A. orthorhombic
B. triclinic
C. trigonal
D. hexagonal

Answer: D

D Watch Video Solution
13. On crystallisation an element ' A ' forms
cubic crystal. The corners of the unit cell are occupied by A atoms. The coordination number of A in the unit cell-
A. 8
B. 6
C. 12
D. 10

Answer: B
14. An element forms face-centred cubic lattice. Each atom in the lattice has a coordination number of-
A. 12
B. 8
C. 6
D. 10
15. The edge length of body-centred cubic unit cell is $a \sqrt{3}$. The distance between two nearest neighbours in this unit cell is-
A. a
B. 0.5 a
C. 1.5a
D. 2a

- Watch Video Solution

16. The edge length of a face-centred cubic unit cell is $x \sqrt{2}$. The distance between two nearest neighbours in this unit cell is-

$$
\begin{aligned}
& \text { A. } \frac{x}{2 \sqrt{2}} \\
& \text { B. } \frac{x}{2} \\
& \text { C. } x \sqrt{2} \\
& \text { D. } \mathrm{x}
\end{aligned}
$$

17. The volume of a cubic unit cell is $x \mathrm{~cm}^{3}$ whose 26% remains unoccupied by the constituent particles. If the radius of each particle is $0.3535 x^{1 / 3} \mathrm{~cm}$, then the number of particles per unit cell is-
A. 1
B. 2
C. 4
D. 3

Answer: C

D Watch Video Solution

18. The number of unit cells in 1.08 g of an
element (atomic mass 108) forming cubic crystal, is 1.5057×10^{21}. The number of particles in the unit cell is-
A. 2
B. 4
C. 1
D. 3

Answer: B

- Watch Video Solution

19. A crystalline solid consisting of elements A,
B and C, crystallises in cubic crystal. The corners, body centre and edge centres of the unit cell of the crystal are occupied by atoms
A, B and C respectively. The chemical formula of the solid is-
A. $A_{2} B_{2} C_{3}$
B. $A B_{3} C_{2}$
C. $A_{2} B C_{3}$
D. $A B C_{3}$

Answer: D
(Watch Video Solution
20. Which of the following statement is not true for a square close-packed arrangement of identical spheres-
A. unit cell is a square
B. coordination number of each sphere is 4
C. packing efficiency of the unit cell is $=$

68\%
D. number of particles per unit cell is $=2$

Answer: C
21. A metal crystallises in bcc lattice structure with unit cell edge of 0.288 nm . The density of the metal is $7.8 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. How many unit cells are present in 28 g of it-
A. 2.7×10^{22}
B. 3.5×10^{24}
C. 6.7×10^{20}
D. 1.5×10^{23}

Answer: D

D Watch Video Solution

22. An element (atomic mass $=31$) crystallises
in a cubic structure. The density of the metal is
$5.4 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. The number of unit cells is 3.1 g of
metal is 6.022×10^{22}. The number of atoms
per unit cell is-
A. 6
B. 1
C. 4
D. 2

Answer: B

D Watch Video Solution

23. The number of packed particles in a cubic
close-packed structure is x. If the number of
tetrahedral and octahedral holes in this
structure are y and z, then-
A. $x=y=z$
B. $x=y=2 z$
C. $x=2 y=2 z$
D. $x=\frac{y}{2}=z$

Answer: D

D Watch Video Solution

24. Which of the following statements is not
true regarding hexagonal and cubic closepacked structures-
A.for both structures coordination
number is the same
B. both structures have the same packing efficiencies
C. packing efficiency of hexagonal closepacked structure is less than that of cubic close-packed structure
D. the number of particles per unit cell in
hexagonal close-packed structure is
more than that in cubic close-packed

structure

Answer: C

D Watch Video Solution

25. In a ccp structure, the number of unit cell
is N. The number of tetrahedral voids in this
structure is-
A. 2 N
B. 4 N
C. 6 N
D. 8 N

Answer: D

D Watch Video Solution

26. LiAg is an interstitial alloy with cubic crystalline structure. In the unit cell of the crystal both Li and Ag have coordination number of 8 . The unit is-
A. simple cubic
B. body-centred cubic
C. face-centred cubic
D. unpredictable

Answer: B

D Watch Video Solution

27. Metallic potassium (atomi mass $=39$) has a body centred crystal structure. In the unit cell of this crystal, the distance between two
nearest neighbour is $4.52 \AA$. The density of potassium (in $\mathrm{kg} \cdot \mathrm{m}^{-3}$) is-
A. 887.34
B. 728.7
C. 910.87
D. 175.3

Answer: C

- Watch Video Solution

28. Crystalline solid $A B$ has face-centred cubic unit cell. Corners and the face centres of unit cell are occupied by atoms A. The edge centres and body centre of the unit cell are occupied by atoms B. If all the face-centred atoms along one of the axes are removed, then resulting chemical formula of the solid will become-
A. $A B$
B. $A_{4} B_{3}$
C. $A_{2} B_{3}$
D. $A_{3} B_{4}$

Answer: D

D Watch Video Solution

29. An ionic crystal with Schottky defects has-
A. only anion vacancies
B. only cation vacancies
C. both cation and anion vacancies

D. anion vacancies as well as interstitial

anions

Answer: C

D Watch Video Solution

30. NaCl crystal is doped with $10^{-3} \mathrm{~mol} \%$ of
SrCl_{2}. The concentration of cation vacancies in doped NaCl is-
A. $2 \times 10^{-3} \mathrm{~mol} \%$
B. $10^{-2} \mathrm{~mol} \%$
C. $4 \times 10^{-3} \mathrm{~mol} \%$
D. $10^{-3} \mathrm{~mol} \%$

Answer: D

D Watch Video Solution

31. F -centres are created when KCl is heated in presence of potassium vapour. F-centre is-
A. an anion vacancy
B. an interstitial site filled with an unpaired electron
C. an anion vacancy filled with an unpaired
electron
D. an anion vacancy filled with a pair of
electrons

Answer: C

- Watch Video Solution

32. Frenkel defects arise due to-
A. cation vacancies
B. anion vacancies
C. interstitial defects
D. both cation vacancies and interstitial defects

Answer: D

33. Non-stoichiometric compound $F e_{x} O$
(where $0.84<x<0.96$) is formed due to
metal deficiency defects in the crystal
structure of EeO. The electrical neutrality of the crystal of $F e_{x} O$ is maintained because when one Fe^{2+} ion leaves the crystal-
A. one oxide ion in the form of $O_{2}(g)$
leaves the crystal
B. one Fe^{2+} ion and one Fe^{3+} ion get reduced
C. two $F e^{2+}$ ions and two $F e^{3+}$ ions get reduced

D. two Fe^{2+} ions oxidise to two $F e^{3+}$ ions

Answer: D

D View Text Solution

34. Which of the following statements is true-
A. in hexagonal close-packed arrangement of spheres, the spheres of the first and
fourth layers have the same vertical
alignment
B.in cubic close-packed arrangement of
spheres, the sphere of the first and third
laters have the same vertical alignment
C. in cubic close-packed structure, the fifth
layer repeats the second layer
D. hexagonal arrangement in three
dimensions is less closely-packed than
the cubic arrangement

- Watch Video Solution

35. Which of the following statements is not true-
A. the valence band of Na metal is partially
filled
B. in case of Mg metal, the conduction
band overlaps with the valence band
C. the electrical conductivity of a
semiconductor increases with rise in
temperature
D. the electrical conductivity of a metal
increases with rise in temperature

Answer: D

D Watch Video Solution

36. The magnetic substance that can be converted into a permanent magnetic substance is-
A. paramagnetic substance
B. ferromagnetic substance
C. anti-ferromagnetic substance
D. diamagnetic substance

Answer: B

- Watch Video Solution

37. The magnetic moments of the domains in a ferromagnetic substance-
A. are not influenced by applied magnetic
field
B. are aligned in parallel and anti-parallel
directions in equal numbers in presence
of applied magnetic field
C. are aligned in parallel and anti-parallel
directions in unequal numbers in
presence of applied magnetic field

D. are aligned parallel to the direction of

 applied magnetic field
Answer: D

D Watch Video Solution

38. If radii of particles in simple cubic, bodycentred cubic and face-centred cubic unit cell are r_{1}, r_{2}, and r_{3} respectively, and each of
this unit cell has an edge length of 0.16 nm , then the ratio of r_{1}, r_{2}, and r_{3} is-
A. $1: 1.414: 1.224$
B. $1.414: 1.224: 1$
C. $1.414: 1.732: 1$
D. $1.732: 1.414: 1$

Answer: B
(Watch Video Solution
39. The coordination number of a particle in a bcc unit cell is-
A. 4
B. 6
C. 8
D. 12

Answer: C

D Watch Video Solution
40. Sodium chloride with density 2.165 $g \cdot \mathrm{~cm}^{-3}$ has unit cell with an edge length of 564 pm . The number of formula units per unit cell is-
A. 2
B. 3
C. 4
D. 6

Answer: C

41. The number of particles is a unit cell of

 hexagonal close-packed structure is-A. 4
B. 6
C. 12
D. 14

Answer: B

- Watch Video Solution

42. The percent of empty space in a unit cell of hexagonal close-packed structure is-
A. 0.74
B. 0.486
C. 0.32
D. 0.26

Answer: D
(Watch Video Solution
43. NaCl has face-centred unit cell. In its crystal, the number of Cl^{-}ions present in contact with a Na^{+}ion is-
A. 4
B. 6
C. 8
D. 10

Answer: B
44. The number of nearest neighbours and that of next nearest neighbours of an atom of
a metal with face-centred cubic crystal structure, respectively, are-
A. 6,8
B. 8,12
C. 12, 6
D. 8,6

Answer: C

45. NaCl crystal possesses a crystal structure having face-centred cubic unit cell. If the radii of Na^{+}and Cl^{-}ions are 95 and 181 pm , respectively, then the edge length of its unit cell is-
A. 371 pm
B. 552 pm
C. 276 pm
D. 457 pm

Answer: B

D Watch Video Solution

46. NaCl has a crystal structure containing face-centred cubic unit cells. The number of unit cell in $1.0 g$ of NaCl is-
A. 2.56×10^{21}
B. 1.85×10^{22}
C. 2.37×10^{23}
D. 3.49×10^{20}

Answer: A

D Watch Video Solution

47. An ionic crystal $X Y$ crystallises in bodycentred cube with unit cell edge length of 300 pm. The nearest distance between two oppositely charged ions is-
A. 221.7 pm
B. 198.3 pm
C. 259.8 pm

D. 210.5 pm

Answer: C

D Watch Video Solution

48. Which of the following ranges of $\frac{r_{+}}{r_{-}}$does
imply a tetrahedral structure of an ionic crystal-
A. $0.414-0.732$
B. $0.225-0.414$
C. $0.732-1.000$
D. $0.155-0.225$

Answer: B

D Watch Video Solution

49. The number of nearest neighbour and the next neighbour of $N a^{+}$ion in a crystal of

NaCl are respectively-
A. $6 \mathrm{Na}^{+}, 12 \mathrm{Cl}^{-}$

$$
\text { B. } 6 \mathrm{Cl}^{-}, 12 \mathrm{Na}^{+}
$$

C. $12 \mathrm{Cl}^{-}, 12 N a^{+}$
D. $6 \mathrm{Cl}^{-}, 6 \mathrm{Na}{ }^{+}$

Answer: B

D Watch Video Solution

50. The lattice points of a crystal of hydrogen iodide are occupied by-
A. HI molecules
B. H atoms and I atoms
C. H^{+}cations and I^{-}anions
D. H_{2} molecules and I_{2} molecules

Answer: A

D Watch Video Solution
51. In an antifluorite structure, cations occupy-
A. octahedral voids
B. centre of cube
C. tetrahedral voids

D. corner of cube

Answer: C

D Watch Video Solution

52. An organic compound crystallises in an orthorhombic cell in the ratio of $2: 1$. The dimensions of cell are 12.05, 15.05 and $2.69 \AA$ and density is $1.419 \mathrm{~g} / \mathrm{cm}^{3}$. Molar mass of the compound is-
A. $207 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
B. $209 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
C. $308 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
D. $317 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

Answer: B

D Watch Video Solution

53. The radius ratio in CsCl is 0.93 . The expected lattice structure is-
A. tetrahedral
B. square planar
C. octahedral
D. body-centred cubic

Answer: D

D Watch Video Solution

54. The radius ratio $\left(r_{+} / r_{-}\right)$of an ionic solid $\left(A^{+} B^{-}\right)$is 0.69. What is the coordination
A. 6
B. 8
C. 2
D. 10

Answer: A

- Watch Video Solution

55. Which of the following solids belong to the class of network solids-
A. BN
B. ice
C. graphite
D. $S e_{8}$

Answer: A::C::D

D Watch Video Solution

56. A crystalline solid is made up of elements

A, B \& C. It has a cubical crystal structure. Unit
cell of the solid has atoms of A at its corners,
an atom of B at its body centre, and atoms of

C at its edge centres. In the unit cell-
A. number of A atoms $=$ number of B atoms
B. number of B atoms = number of C atoms
C. ratio of number of atoms of A, B and $C=$

$$
1: 1: 1
$$

D. ratio of number of atoms of A, B and $C=$

$$
1: 1: 3
$$

Answer: A::D

57. In a metallic crystal with hexagonal closepacked arrangement of N atoms, the numbers of tetrahedral and octahedral voids are T and 0 , respectively, then-

$$
\text { A. } \mathrm{T}=\mathrm{N}
$$

B. $\mathrm{O}=\mathrm{N}$
C. $\mathrm{T}=2 \mathrm{~N}$
D. $\mathrm{O}=2 \mathrm{~N}$

A. cubic

B. trigonal
C. orthorhombic
D. tetragonal

Answer: A::B
59. Crystal systems with $\alpha=\beta=\gamma=90^{\circ}$ -
A. cubic
B. tetragonal
C. triclinic
D. orthorhombic

Answer: A::B::D

- Watch Video Solution

60. Which of the following statements are true for a simple cubic unit cell-
A. the coordination number of constituent particles is 6
B. the distance between the two nearest neighbours = edge length of the unit cell
C. 50% of the total volume of the unit cell is occupied by the constituent particles

D. this type of unit cell is usually observed

 in almost all metallic crystals.
Answer: A::B

- Watch Video Solution

61. Which of the following statements are not true regarding Schottky and Frenkel defects-
A.these defects are called non-

stoichiometric defects

B. the density of a crystal decreases if

Schottky defects arise in the crystal
C. the density of a crystal decreases if

Frenkel defects arise in the crystal
D. both types of defects in a crystal result
in cation and anion vacancies
simultaneously

Answer: A::C::D

D Watch Video Solution

62. Which of the following comments are not true for hcp and ccp structures? In both cases-
A. unit cells have the same number of particles
B. unit cells have the same packing efficiency
C. particles have the same coordination
number
D. layers formed by particles have the same
packing sequence

Answer: A::D

- Watch Video Solution

Exercise

1. How can a crystalline solid be converted into an amorphous solid?

- Watch Video Solution

2. How many classes are crystals divided into?

How many Bravais lattice are there?

D Watch Video Solution
3. Between crystalline and amorphous solids
which one does not have a fixed melting point
and which is anisotropic?

D Watch Video Solution
4. What type of solid is called a supercooled
liquid with high viscosity and why?

D Watch Video Solution
5. Give an example of a non-polar and a polar molecular solid?
(D) Watch Video Solution
6. Given an example of a network solid.

- Watch Video Solution

7. What is metallic bond?

- Watch Video Solution

8. Which of the compounds will develop

Frenkel defect, CsCl or AgCl ?

- Watch Video Solution

9. What are the causes of electrical

conductivity of a semiconductor?

D Watch Video Solution

10. What happens when a ferromagnetic substance is heated at very high temperature?

- Watch Video Solution

11. What is point defect? Give an example.

- Watch Video Solution

12. What is F-centre? Why is a solid with Fcentres paramagnetic?

D Watch Video Solution

13. Of the following crystalline solids which one is molecular solid, and which one is network solid? (i) P_{4} (ii) Se
14. What is the coordination of an atom of a metal with bcc structure?

- Watch Video Solution

15. Which crystal system does have all four types of unit cell, i.e., simple, body-centred, face-centred and end-centered?
16. Radius of particle in a fcc unit cell is 0.3535
times the edge length of the unit cell. What is
the distance between two nearest neighbours in this unit cell?

D Watch Video Solution

17. What type of unit cell do ccp and hcp structures possess?

- Watch Video Solution

18. A simple cubic unit cell with edge length 'a' contains particle with radius ' r '. What is the relation between 'a' and 'r'.

D Watch Video Solution

19. What are the percentages of empty space
in body-centred and face-centred cubic unit cells?

20. What is an impurity defect?

D Watch Video Solution

21. What are the coordination numbers of each particles in square and hexagonal close packing of particles in two dimensions?

- Watch Video Solution

22. What is space lattice?
23. What is lattice point?

- Watch Video Solution

24. What do you understand by unit cell of a crystal?

- Watch Video Solution

25. What is impurity or extrinsic semiconductor? Give an example.

D Watch Video Solution
26. What is the coordination number of a
particle in an hcp or a ccp structure of particles?

D Watch Video Solution
27. What is a ferromagnetic substance? Give an example.

- Watch Video Solution

28. What is a ferrimagnetic substance? Give an example.

- Watch Video Solution

29. The constiuent particle in solid H_{2}
and the attractive forces holding the particles
in solid H_{2} are

D Watch Video Solution
30. Silicon is a ____ solid.

- Watch Video Solution

31. Packing efficiency of body-centred cubic unit cell is ___ and that of face-centred cubic unit cell is \qquad

D Watch Video Solution

32. If equal number of cations and anions are missing from an ionic crystal of the type $M X$, then the defect that arises in the crystal is called _____ defect.
33. Number of Bravais lattices in cubic crystal
system is

D Watch Video Solution

34. substance can be converted into a permanent magnetic substance.
35. If pure Si is doped with a trace amount of As,___ semiconductor is formed.

D Watch Video Solution

> 36. A unit cell having $a=b \neq c$ and $\alpha=\beta=\gamma=90^{\circ}$ belongs to
system.

D Watch Video Solution
37. The unit cell in a three-dimensional closepacked structure with sequance $A B A B$... is _-_-_-_-_-_

- Watch Video Solution

38. In the crystal lattice of non-stoichiometric

NaCl , the anion vacancies are occupied by
\qquad

- Watch Video Solution

39. Number of particles in the unit cells of ccp and hcp structures are _____ and respectively.
(Watch Video Solution
40. Amount of empty space in ccp structure is \%.

D Watch Video Solution
41. Crystals are classified into crystal
system.

D Watch Video Solution
42. Number of Bravais lattices are \qquad

D Watch Video Solution

43. A hcp structure contains N atoms. Number
of tetrahedral and octahedral holes in this

- Watch Video Solution

44. Number of octahedral holes per particle in
a fcc lattice (is/are)

D Watch Video Solution

45. A crystal with F-centres is associated with defect.

D Watch Video Solution
46. Defect that is found to occur in the crystal of $F e_{0.88} O_{1.00}$ is called

D Watch Video Solution

47. Why are crystalline substances
anisotropic?

- Watch Video Solution

48. Classify the solid that has the given characteristics: (i) very hard, brittle (ii) very high melting point and heat of fusion (iii) nonconductor of electricity and heat in solid state.

D Watch Video Solution

49. Mention the differences between a molecular solid and a network solid with regard to their constituent particles and the forces holding the particles in the solids.
50. Identify the crystal system whose unit cell
parameters are
$a \neq b \neq c$ and $\alpha=\beta=\gamma=90^{\circ}$. How many

Bravais lattices are possible for this crystal
system? What are they?

D Watch Video Solution

51. How much portion of a corner particle of cubic unit cell does lie within the unit cell?

Give reason.

- Watch Video Solution

52. How much portion of an edge-centred particle of a cubic unit cell does lie within the unit cell? Give reason.

- Watch Video Solution

53. An ionic solid $M_{x} A_{y}$ has a cubic unit cell
with M^{y+} ions at its corners and A^{x-} ions at
its centres. Determine the values of x and y.

D Watch Video Solution

54. Mention two differences between Schottky and Frenkel defects.

- Watch Video Solution

55. Arrange simple, body-centred and facecentred cubic unit cells in order of their
increasing packing efficiencies, and give reasons.

D Watch Video Solution
56. What are non-stoichiometric defects? Give two example of such defects.

- Watch Video Solution

57. Why aren't Frenkel defects observed in pure halides of alkali metals?

- Watch Video Solution

58. Why does KCl become violet in colour when
it is heated in presence of potassium vapour?

- Watch Video Solution

59. What do you understand by a tetrahedral void in a close-packed structure of a crystal?

What is the relation between the number of tetrahedral voids and the number of packed
particles in a close-packed structure of

particles?

D Watch Video Solution

60. What do you understand by an octahedral void in a close-packed crystal structure? What
is the relation between the number of octahedral voids and the number of packed particles in a close-packed structure of particles?
61. Metallic Zn has a hexagonal close-packed array of Zn atoms. How many voids are present in 0.5 mol of Zn ?

D Watch Video Solution

62. What type of semiconductor (n-or p-type)
is formed when pure Ge is doped with a trace amount of As, and why?
63. What type of semiconductor (n- or p-type)
is formed when pure Si is doped with a trace
amount of B, and why?

D Watch Video Solution

64. Why does the electrical conductivity of semiconductors increase with rise in temperature?
65. Why is the electrical conductivity of metals found to decrease with rise in temperature?

- Watch Video Solution

66. Why does the electrical conductivity of germanium crystal increase when it is doped with gallium?

- Watch Video Solution

67. Write the differences between crystalline and amorphous solids.

D Watch Video Solution

68. On the basis of the nature of constituent particles, how are crystalline solids classified?

Give an example of each type.

D Watch Video Solution

69. Between square and hexagonal close packing in two dimensions, which one represents the most effective packing, and why?

- Watch Video Solution

70. Define: (i) Cubic close-packed structure (ii) Hexagonal close-packed structure (iii) Nonstoichiometric defect.
71. Show that 26% of the total volume of a face-centred cubic unit cell remains unoccupied.

- Watch Video Solution

72. Show that the number of octahedral voids
in a ccp or an hcp structure is equal to the number of packed particles.
73. Explain how the electrical neutrality of an
ionic crystal is maintained when metal excess defects occur in the crystal.

- Watch Video Solution

74. Table salt (NaCl), which is essentially white in colour, is found yellow in colour at times. Why this happens?
75. ZnO is white in colour, but when it is heated its colour turns yellow. Why does this change occur?

- Watch Video Solution

76. Why is ferrous oxide hard to be prepared with ideal stoichiometric composition?

D Watch Video Solution

77. Calculate the number of particles in unit cells of ccp and hcp structures with identical particles.

- Watch Video Solution

78. Show with a diagram that a unit cell in a
ccp structure has a total of four octahedral holes.
79. The actual formula derived from the analysis of a sample of ferrous oxide is $F e_{0.93} O_{1.00}$. What fraction of iron in this sample does exist in the form of $F e^{2+}$ ions?

- Watch Video Solution

80. Show that if the radius of tetrahedral holes
in a ccp or a hcp structure be r and that of packed particles be R, $r=0.225 \times R$.
81. Show that if the radius of octahedral holes
be r in a ccp or hcp structure be r and that of packed particles be R , then $r=0.414 \times R$.

- Watch Video Solution

82. Calculate the packing fraction in a
hexagonal close-packed structure with similar particles.
83. With the help of band theory explain (i)
inability of an insulator to conduct electricity
and (ii) the electrical conductivity of a semiconductor.

D Watch Video Solution

84. What is an impurity defect? What kind of impurity defect is generated in a NaCl crystal when it is doped with a small amount of SrCl_{2} ? Calculate the number of cation vacancy per $S r^{2+}$ ions is this crystal?

- Watch Video Solution

85. What is stoichiometric defect? What kind of defects are Schottky and Frenkel defects?

Which one of these two defects is associated with decrease in density of the crystal, and which one is associated with no change in density? Give reasons.

- Watch Video Solution

1. A metal has face-centred cubic unit cell. The radius of an atom of the metal is $1.28 \AA$. What is the edge length of the unit cell?

D Watch Video Solution

2. Potassium metal has body-centred cubic crystal. The edge length of the unit cell of the crystal is 0.542 nm . Determine the radius of K atom and the volume occupied by the atoms in the unit cell.
3. The total volume occupied by the particles in a cubic unit cell is $5 \times 10^{-23} \mathrm{~cm}^{3}$. The edge length of the unit cell is 0.407 nm . How many particles are present in the unit cell?

- Watch Video Solution

4. Sodium (atomic mass $=23$) forms facecentred cubic crystal. What is the density of
sodium crystal if the radius of sodium atom is

1.91Å?

- Watch Video Solution

5. A metal (atomic mass $=63.5$) forms cubic crystal. Its density is $8.92 \times 10^{3} \mathrm{~kg} \cdot \mathrm{~m}^{-3}$.

Edge length of the unit cell is 0.362 nm . How many atoms are present in the unit cell?

D Watch Video Solution

6. A metal has cubic close-packed crystal structure. Its density is $2.7 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. The radius of the metal atom is $1.43 \AA$. Determine the atomic weight of the metal.

- Watch Video Solution

7. Ag (atomic weight $=108$) forms cubic closepacked crystal structure. What is the length of the unit cell of Ag crystal if the density of Ag is $10.6 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$?
8. An element crystallises in cubic structure. Its density is $2.41 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. The edge length of the unit cell of the crystal is $1.8 \AA$. How many number of unit cells are present in 250 g of element?

- Watch Video Solution

9. The unit cell of NaCl crystal has
$4 \mathrm{Na}^{+}$and $4 \mathrm{Cl}^{-}$ions. The edge length of the
unit cell is $5.64 \AA$. What is the density of NaCl crystal?

D Watch Video Solution

10. A metal (atomic weight $=75$) has cubic crystal structure. Its density is $2 g \cdot \mathrm{~cm}^{-3}$. The edge length of the unit cell of the crystal is $5 \AA$.

What is the radius of the metal atom?

- Watch Video Solution

11. Chromium metal (atomic weight $=52$) has
body-centred cubic structure. The unit cell of the crystal of chromium is 287pm. Calculate the radius of chromium atom and the density of chromium metal.

- Watch Video Solution

12. The density of copper metal is $8.95 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. If the radius of copper atom is
127.8 pm , is the copper unit cell a simple cube,
a body-centred or a face-centred cubic structure?
[Given: Atomic mass of copper: $\left.63.54 \mathrm{~g} \cdot \mathrm{~mol}^{-1}, N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}\right]$

D Watch Video Solution

13. The density of lead is $11.35 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ and the metal crystallises with fcc unit cell.

Estimate the radius of lead atom. [Given:

Atomic mass of lead $=207$
$\left.g \cdot \mathrm{~mol}^{-1}, N_{A}=6.022 \times 10^{23}\right]$
14. Iron has a body-centred cubic unit cell with
a cell dimension of 286.65 pm . The density of iron is $7.874 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. Use the information to calculate Avogadro's number. (At. Mass of $\mathrm{Fe}=$ 55.845 u).

- Watch Video Solution

15. An element crystallises is a fcc lattice with cell edge of 250 pm. Calculate the density of

300 g of this element containing 2×10^{24} atoms.

D Watch Video Solution

Practice Set 1

1. The unit cell with crystallographic dimensions,
$a \neq b \neq c, \alpha=\gamma=90^{\circ}, \beta \neq 90^{\circ}$ is-
A. monoclinic
B. tetragonal
C. triclinic
D. orthorhombic

Answer:

D Watch Video Solution

2. In zinc blende structure, the coordination number of cation is-
A. 4
B. 6
C. 8
D. 12

Answer:

- Watch Video Solution

3. Number of tetrahedral voids in a facecentred cubic unit cell is-
A. 4
B. 6
C. 8
D. 12

Answer:

- Watch Video Solution

4. To prepare n-type semiconductor from
silicon the valency of doping substance will be-
A. 2
B. 1
C. 3
D. 5

Answer:

D Watch Video Solution

5. Sodium metal crystallises in a body-centreed cubic lattice with a unit cell edge of $4.29 \AA$. The radius of sodium atom is approximately-
A. $5.72 \AA$
B. $0.93 \AA$
C. $1.86 \AA$
D. $3.22 \AA$

Answer:

D Watch Video Solution

6. The number of two dimensional lattice is-
A. 4
B. 5
C. 7
D. 14

Answer:

- Watch Video Solution

7. The crystal of dry ice is held by-

A. London forces
B. covalent bonds

C. coulombic forces

D. dipole-dipole interactions

Answer:

D Watch Video Solution

8. (a) A crystalline compound formed by element A and B has face-centred cubic unit cell. The corners and the face centres are occupied by A and B atoms respectively. If one of the corner atoms is found missing then
what would be the formula of the compound?
(b) Give an example of a compound which exhibits both Schottky and Frenkel defects.

D Watch Video Solution

9. (a) Analysis shows that a metal oxide has
the empirical formula $M_{0.96} O_{1.00}$. Calculate the percentage of M^{2+} and M^{3+} ions in this crystal? (b) What type of defect is found in this crystal?
10. (a) An element crystallises in a cubic crystal structure with unit cell's edge length of $3.15 \AA$.

The atomic mass and the density of the element are 96 amu and $10.2 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. Predict the crystal lattice possessed by the element.
(b) What type of stoichiometric defects is shown by AgCl ?

D Watch Video Solution

11. An element crystallises in simple cubic structure. Its density is $8 \mathrm{~g} / \mathrm{cm}^{3}$ and its 200 g contains 24×10^{24} atoms. Calculate the edge length of the unit cell. (b) What is meant by 'doping' in a semiconductor?

- Watch Video Solution

12. (a) Why does the colour of NaCl turn yellow when it is heated in an atmosphere of sodium vapour? (b) What is curie temperature?
13. (a) Why does the old glass object appear slightly milky instead of being transparent?

What do you meant by unit cell of crystal lattice?

- Watch Video Solution

