

MATHS

BOOKS - CHHAYA PUBLICATION MATHS (BENGALI ENGLISH)

ADJOINT AND INVERSE OF A MATRIX AND SOLUTION OF LINEAR SIMULTANEOUS EQUATIONS BY MATRIX METHOD

Examples

1. If A =
$$\begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$$
 and B = $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$, find Adj. A A^{-1} and A^{-1}

Β.

4. If A =
$$\begin{bmatrix} 0 & -\tan\frac{\theta}{2} \\ \tan\frac{\theta}{2} & 0 \end{bmatrix}$$
 and I is the 2 × 2 unit matrix, find $(I + A)(I - A)^{-1}$.

Watch Video Solution

5. If A =
$$\begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$$
 then find A^{-1}

Watch Video Solution

6. If the matrix A =
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 satisfies the equation $A^2 = 5A + 2I$. Then, find the value of A^{-1} .

7. If A =
$$\begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ find the

matric X such that AX = 3B + 2C.

Watch Video Solution

8. If A =
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 show that,
(i) adj (adj.A) = A (ii). $(A^{-1})^{-1} = A$.

Watch Video Solution

9. If
$$A^{-1}=egin{pmatrix} 3&1\-1&2 \end{pmatrix}$$
 ,find A.

10. Find a square matrix A of order 2 such that,

$$Aigg(egin{array}{cc}4&-2\\0&5\end{array}igg)+igg(egin{array}{cc}-1&3\\-9&6\end{array}igg)=igg(egin{array}{cc}3&16\\7&8\end{array}igg),$$

Watch Video Solution

11. If A =
$$\begin{bmatrix} 2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & -1 \end{bmatrix}$$
 be a square matrix, find Adj.A and A^{-1}

Watch Video Solution

12. If A =
$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$$

View Text Solution

13. If A =
$$\begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 find A^2 and show that $A^2 = A^{-1}$.

14. If
$$A^{-1} = \begin{bmatrix} 1 & 3 & 2 \\ -3 & -3 & -1 \\ 2 & 1 & 0 \end{bmatrix}$$
, find A.

15. Show that ,
$$A^{-1} = \frac{1}{3} \begin{bmatrix} -1 & 2 & -2 \\ -2 & 1 & -2 \\ 2 & 2 & 1 \end{bmatrix}$$
 is a proper

orthogonal matrix.

> Watch Video Solution

16. Using matrix method show that the system of linear

equations 3x - 4y = 7 and 9x - 12y = 16 is inconsistent.

Watch Video Solution

17. Using matrix method examine whether the following system of equations is consistent or inconsistent or has

infinite number of solutions:

3x + 2y + 3z = 2, 5x + 7y + 5z = 3 and 4x + 5y + 4z = 4

19. Show that the following system of linear equations is

consistent and hence solve the equations:

2x + 3y = 1 and 3x - y = 7

matrix inversion method:

x + 2y + z = 7,x + 3z = 11 and 2x - 3y = 1

21. If A =
$$\begin{bmatrix} 1 & 2 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4 \end{bmatrix}$$
, find A^{-1} and hance solve the

system of linear equations: x + 2y - 3z = -4, 2x + 3y + 2z =

22. Solve the following system of equations by matrix

inversion method:

$$\frac{2}{x} + \frac{3}{y} - \frac{4}{z} = -3, \frac{1}{x} + \frac{2}{y} + \frac{6}{z} = 2, \frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 5$$
Watch Video Solution

23. Let the metrix A be given by $A = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$. Obtain a matrix B such that AB = BA = I where I is the unit matris of order 2. Using this matrix B, solve for x and y from the following equations:

2x + y = 15 and 3x + 4y = 23

24. Given A = $\begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$ and B = $\begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$,

find AB and use this result I solving the following system

of equations :

x - y + z = 4, x - 2y -2z = 9 and 2x + y + 3z = 1

Watch Video Solution

25. Given A =
$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & 1 \\ 2 & 1 & -3 \end{bmatrix}$$
, X = $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and C = $\begin{bmatrix} 3 \\ -1 \\ -9 \end{bmatrix}$

Write down the linear equations given by AX = C and

solve for x, y,z by method.

26. If A = $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & -1 \\ -1 & 1 & -7 \end{bmatrix}$, find A^{-1} , hence solve the

following system of linear equations:

x + y - z = 3 , 2x + 3y +z 10 and 3x - y - 7z = 1

28. Find the invervse of the matrix A = $\begin{bmatrix} 1 & 5 & 0 \\ 0 & 2 & -1 \\ 1 & 0 & 3 \end{bmatrix}$

using elementary (i) row transformations (ii) elementary column transformations.

Vatch Video Solution

29. Using elementary row operations show that inverse

of the matrix

(i)
$$\begin{bmatrix} -3 & 2 \\ 6 & -4 \end{bmatrix}$$
 does not exist, (ii) $\begin{bmatrix} 3 & 2 & 1 \\ 0 & 4 & 5 \\ 3 & 6 & 6 \end{bmatrix}$ does not

exist

30. Using elementary row transformations find the

inverse of the matrix

 $\begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1 \end{bmatrix}$

Watch Video Solution

Multiple Choice Type Questions

1. A square matrix A is called singular if -

A. |A| > 0

 $\mathsf{B.}\left|\mathsf{A}\right| <$

C. |A| = 0

D. |A| = a complex number

Answer: C

2.
$$\frac{Adj. A}{|A|}$$
 =
A. A^{T}
B. A^{-1}
C. $(A^{-1})^{T}$
D. $(A^{T})^{-1}$

Answer: B

3.
$$(AB)^{-1}$$
 =

A.
$$A^{-1}B^{-1}$$

- $\mathsf{B.}\,A^{\,-1}\mathsf{B}$
- $C. B^{-1}A^{-1}$
- D. A B^{-1}

Answer: C

4. If A is an invertible matrix of order 3 and |A| = 5, then the value of |adjA| is equal to-

A. 20

B. 21

C. 24

D. 25

Answer: D

5. Matrices A and B will be inverse of each other only if-

A. AB = BA
$$\neq$$
 1

B.AB = BA = O

C. AB = o, BA = I

D. AB = BA = I

Answer: D

Watch Video Solution

6. Let A be a non-singular square matrix of order 3 imes 3. Then |adj A| is equal to (a) |A| (B) $|A|^2$ (C) $|A|^3$ (D) 3|A|

A. |A|

 $\mathsf{C.}\left|A\right|^{3}$

D. 3|A|

Answer:

Watch Video Solution

7. If a,b,c, are non-zero real numbers, then the inverse of

matrix A =
$$\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$
 is -
A.
$$\begin{bmatrix} a^{-1} & 0 & 0 \\ 0 & b^{-1} & 0 \\ 0 & 0 & c^{-1} \end{bmatrix}$$

B. abc
$$\begin{bmatrix} a^{-1} & 0 & 0 \\ 0 & b^{-1} & 0 \\ 0 & 0 & c^{-1} \end{bmatrix}$$

C.
$$\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$

D.
$$\frac{1}{abc} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Answer: A

8. If A be an orthogonal matrix, then the value of A^{-1}

will be -

A. A

 $\mathsf{B.}\,A^T$

 $\mathsf{C}.\,A^2$

D. A^3

Answer: B

9. If A be a proper orthogonal matrix, then-

- B. |A|=1
- C. |A|=2

D. |A|=3

Answer: B

Very Short Answer Type Questions

1. Prove that the following matrix are singular:

 $\begin{bmatrix} 3 & 2 & 1 \\ 0 & 4 & 5 \\ 3 & 6 & 6 \end{bmatrix}$

Watch Video Solution

2. Prove that the following matrix are singular:

 $\begin{bmatrix} 13 & 16 & 19 \\ 14 & 17 & 20 \\ 15 & 18 & 21 \end{bmatrix}$

3. If A =
$$\begin{bmatrix} -2 & 2 & 1 \\ 0 & 4 & 5 \\ -2 & 6 & 6 \end{bmatrix}$$
 does A^{-1} exist?

Watch Video Solution

4. If B
$$\begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, does B^{-1} exist?

Watch Video Solution

5. Show that , A =
$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
 is a proper orthogonal

matrix. Hence find A^{-1}

6. If A = $\begin{bmatrix} 4 & 1 \\ 7 & 2 \end{bmatrix}$ find a matrix B such that AB = I where I

is the unit matrix of order 2.

inverse of matrices:

$$\begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$$

8. Using elementary row transformations find the inverse of matrices:

9. Using elementary row transformations find the inverse of matrices: $\begin{bmatrix} -2 & -4 \end{bmatrix}$

$$\begin{bmatrix} -2 & -4 \\ 3 & 5 \end{bmatrix}$$

Watch Video Solution

10. Using elementary row transformations find the inverse of matrices:

$$\begin{bmatrix} 2 & -5 \\ -3 & 7 \end{bmatrix}$$

11. Find the inverse of following matrices by using elementary column operations :

$$\begin{bmatrix} -6 & 4 \\ 2 & -2 \end{bmatrix}$$

12. Find the inverse of following matrices by using

elementary column operations :

$$\begin{bmatrix} 5 & -4 \\ -3 & 3 \end{bmatrix}$$

13. Find the inverse of following matrices by using

elementary column operations :

$$\begin{bmatrix} -3 & 5 \\ -4 & 5 \end{bmatrix}$$

Watch Video Solution

14. Find the inverse of following matrices by using elementary column operations :

 $\begin{bmatrix} 7 & 8 \\ 2 & 2 \end{bmatrix}$

15. Find the inverse of following matrices by using

elementary column operations :

 $\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

Watch Video Solution

16. Find the inverse of matrix:

$$\mathsf{A} = \begin{bmatrix} 1 & 2 \\ -3 & -1 \end{bmatrix}$$

Watch Video Solution

17. Find the inverse of matrix:

$$\begin{bmatrix} 0 & 2 \\ 2 & 1 \end{bmatrix}$$

 $\begin{bmatrix} 3 & 1 \end{bmatrix}$

18. Using elementary row transfromations find the

inverse of matrix:

 $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{bmatrix}$

Watch Video Solution

19. Find the inverse of matrices using elementary column transformations:

$$\begin{array}{cccc} 2 & -1 & 4 \\ 4 & 0 & 2 \end{array}$$

$$\begin{bmatrix} 3 & -2 & 7 \end{bmatrix}$$

20. Find the inverse of matrices using elementary column transformations:

 $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & -1 \\ -1 & 1 & -7 \end{bmatrix}$

Watch Video Solution

21. Find the inverse of matrices using elementary

column transformations:

$$\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$

22. If A = $\begin{bmatrix} 5 & -8 \\ -5 & 8 \end{bmatrix}$, show by elementary row

transformations that A^{-1} does not existl.

Watch Video Solution

23. If B =
$$\begin{bmatrix} -2 & 2 & 1 \\ 0 & 4 & 5 \\ -2 & 6 & 6 \end{bmatrix}$$
, show by elementary row

operations that B^{-1} does not exist.

Watch Video Solution

24. If A =
$$\begin{bmatrix} 1 & -2 & 3 \\ 1 & 2 & 1 \\ -1 & 2 & -3 \end{bmatrix}$$
 show by elementary colomn operations that the matrix A does not possess an

inverse.

25. If A =
$$\begin{bmatrix} 2 & 2 \\ 4 & 3 \end{bmatrix}$$
 show that, A $A^{-1} = I_2$ wher I_2 is the

unit matrix of order 2.

Watch Video Solution

$$A^{\,-1} = rac{1}{11} egin{bmatrix} 1 & 4 \ -2 & 3 \end{bmatrix}$$

27. Find the matrix A when $A^{-1} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}.$

Watch Video Solution

28. If A =
$$\begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$$
 show that $(A^T)^{-1} = (A^{-1})^T$ where

 A^T is the transpose of A .

Watch Video Solution

29. If
$$A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$
 and $AB = \begin{bmatrix} -13 & 8 \\ -8 & 5 \end{bmatrix}$, find B.

30. If A =
$$\begin{pmatrix} 4 & 5 \\ 2 & 1 \end{pmatrix}$$
 show that, $6A^{-1} + 5I = A$.

31. If
$$A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$
 prove that, $AA' = I$. Hence, find A^{-1} .

Watch Video Solution

32. If A =
$$\begin{bmatrix} 1 & -\tan\frac{\theta}{2} \\ \tan\frac{\theta}{2} & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & \tan\frac{\theta}{2} \\ -\tan\frac{\theta}{2} & 1 \end{bmatrix} \text{ show}$$
that, $AB^{-1} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$.

Match Video Colution

33. If A =
$$\begin{bmatrix} -3 & -4 \\ 4 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -3 \\ 5 & -8 \end{bmatrix}$, verify that $(AB)^{-1} = B^{-1}A^{-1}$.

34. If A =
$$\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix}$, find the value of $(AB)^{-1}$.

35. If A =
$$\begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$$
, $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ show that, $A^2 - 5A + 7I = O$. Hence find A^{-1} .

36. If A =
$$\begin{bmatrix} 4 & 5 \\ 5 & 6 \end{bmatrix}$$
 show that, $A^2 = 10A + I$ where I is

the unit matrix or order 2. Hence, find the inverse of A.

37. Show that the matrix A=
$$\begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix}$$
 satisfies the equation $x^2 - 6x + 17 = 0$. Hence find A^{-1}
38. Show that, the matrix $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ satisfies the

equation $A^2 - 4A - 5I_3 = 0$ and hence find A^{-1} .

Watch Video Solution

Short Answer Type Question

1. Show that the matrix A =
$$\frac{1}{3}\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$$
 is

orthogonal, Hence, find A^{-1} .

2. Using matrix method show that the equations 6x - 4y

+ 1 = 0 and 9x - 6y = 2 are inconsistent.

4. Show that the system of equations 3x + 2y + 3z = 2, 5x =

+ 7y + 5z = 3 and 4x + 5y + 4z = 4 is inconsistent.

5. In each of the following cases show (using matrix method that the given system of linear equations has infinite number of solutions:

x + 2y + 3z = 1, 3x + 4y + 5z = 2, 5x + 6y + 7z = 3

6. In each of the following cases show that the given system of linear equations has infinite number of solutions:

2x - y + 3z = 5, 3x + 2y - z = 7, 4x + 5y - 5z = 9

7. In cases show that the given system of equations is

inconsistent:

x + 2y + 3z = 1, 2x + 3y + 5z = 1, 3x + 5y + 7z =1

Watch Video Solution

8. In cases show that the given system of equations is

inconsistent:

3x - 5y - 3 = 0, 2y - z + 1 = 0, 3x- y - 2z = 2

9. In cases show that the given system of equations is

inconsistent:

2x - y -z + 4=0, x - 2y + z + 2 =0, x + y - 2z = 5

Watch Video Solution

Long Answer Type Questions

1. Find the adjoint and inverse of each of the following

matrices :

$$egin{pmatrix} 2 & -1 \ -4 & 3 \end{pmatrix}$$

2. Find the adjoint and inverse of each of the following

matrices :

$$\mathsf{A} = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$$

Watch Video Solution

3. Find the adjoint and inverse of each of the following

matrices :

 $\begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$

4. Find the adjoint and inverse of each of the following

matrices :

Watch Video Solution

5. Find the adjoint and inverse of each of the following matrices :

A =
$$egin{bmatrix} a+ib & c+id \ -c+id & a-ib \end{bmatrix}$$
 where $a^2+b^2+c^2+d^2=1$

Watch Video Solution

6. Find the adjoint and inverse of each of the following

matrices :

$$\mathsf{A} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 4 & 6 \\ 1 & 1 & -2 \end{bmatrix}$$

8. Solve by matrix inversion method the equations in each of the following:

 $2x_2 - x_1 = 2, \; 3x_1 - 4x_2 + 5 = 0$

9. Solve by matrix inversion method the equations in

each of the following:

2a - 5b + 1 = 0, 5a - 7b = 3

Watch Video Solution

10. Solve by matrix inversion method the equations in each of the following:

7x + 4y + 1 = 0, 3x + y = 1

11. Show that the equations 5x + 6y = 3 = 0 and 4y + x = 5

are consistent and hence, solve for x and y.

12. The order of the matrix A is 3×5 and that of order B is

2×3 then the order of matrix BA is

A. 2×3

B. 3×2

C. 2×5

D. 5×2

Answer: C

13. If
$$A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$ then the value of α if $A^2 = B$

A. 4

- B. 3
- C. 5
- D. None of these

Answer: D

2x+y=2, 3x+y=6

15. Solve by matrix inversion method the following system of equations.

x+3y=1, 3x-y=2

16. Solve by matrix inversion method the following system of equations.

$$x + y + z = 6$$
, $x + 2z = 7$, $3x + y + z = 12$

8x + 4y + 3z = 18, 2x + y + z = 5, x + 2y + z = 5

18. Solve by matrix inversion method the following system of equations.

x - y + z = 2, 2x - y = 0, 2y - z = 1

$$rac{2}{x} - rac{3}{y} = 10, rac{1}{x} + rac{1}{y} = 10$$

Watch Video Solution

20. Solve by matrix inversion method the following system of equations.

$$x_1+x_2-3=0, x_1-4x_2+2=0$$

x+y-z+3=0, 2x+3y+z=2, 8y+3z=1

Watch Video Solution

22. If
$$A = egin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 then $A^2 + 2A =$

A. A

B. 3A

C. 2A

D. 4A

Answer: Watch Video Solution 23. If A is a 3 imes 3 matrix and B is it's adjoint matrix. if |B|=64, then |A|= A + 2

 $\mathsf{B.}\pm4$

 $C.\pm 8$

D. ± 12

Answer:

24. If A and B are symmetric matrices then

A. A+B is skew-symmetric

B. A+B is symmetric

C. A+B is a diagonal matrix

D. A+B is a zero matrix

Answer: B

25. From the matrix equation AX = B, find X, given

$$A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

 $x=rac{7}{10},y=rac{3}{40},z=rac{1}{20}$

27. Given A =
$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$$
, X = $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

Write down the linear equations given by AX = B.

28. If A =
$$\begin{bmatrix} 1 & 2 \\ -2 & 2 \end{bmatrix}$$
 find A^T .

29. If
$$A = egin{bmatrix} 4 & 2 \ -1 & 1 \end{bmatrix}$$
 then $(A-2I)(A-3I)$ is equal to__

A. A

 $\mathsf{B}.\,I$

C. *O*

D. 5I

Answer: C

Watch Video Solution

31. Let A =
$$\begin{bmatrix} 2 & 8 \\ 1 & 1 \end{bmatrix}$$
, find A^{-1} .

Natch Video Solution

32. If
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, then $A^4 =$
A. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
B. $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
C. $\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$
D. $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Answer: A

33. Prove that the equations kx + y + z = 1, x + ky + z = k

and x + y + kz = k^2 will have unique solution when k
eq 1

and $k \neq -2$. Solve the equations in this case.

34. If for a matrix A, $A^5 = I$, then $A^{-1} =$

A. A^2

 $\mathsf{B.}\,A^3$

 $\mathsf{C}.\,A$

D. none of these

Answer: D

Multiple Correct Answer Type

1. If A is a matrix of size n imes n such that A^2+A+2I =

O then

A. A is non-singular

C.
$$|A| = O$$

D. $A^{-1} = \frac{-1}{2}(A + I)$

Answer: A::B::C::D

 $\mathsf{B} A \neq O$

2. If A and B are two matrices such that AB = B and

BA = A, then $A^2 + B^2 =$

A. 2AB

B. 2BA

C. A+B

D. AB

Answer: C

3. If A and B are two invertible matrices of the same order, then adj (AB) is equal to -

A. adj (A) adj (B)

- B. $|B||A|B^{-1}A^{-1}$
- C. $|B||A|A^{-1}B^{-1}$

D. $|\mathsf{A}||\mathsf{B}|(AB)^{-1}$

Answer: A::B::D

A. 2,2,3,4

B. 2,3,1,2

C. 3,3,0,1

D. none of these

Answer: A

5. If A is a 2 imes 2 square matrix with |A|=3 then find |3A|

O Watch Video Solution

Integer Answer Type

1. Suppose A is a 4×4 matrix such that $|\mathsf{A}|$ = 4 and $|\mathsf{adjA}|$

= Bk, then the value of k will be -

2. The system of equation $x+y+2z=1,\,x+2y+3z=2,\,x+4y+lpha z=4.$ Has unique then A. lpha
eq 3

C. lpha
eq 2

 $\mathrm{B.}\,\alpha\neq5$

D. lpha
eq 1

Answer: B

3. Let
$$A = \begin{bmatrix} 2 & q \\ 0 & 1 \end{bmatrix}$$
 and $A^8 = \begin{bmatrix} x & yq \\ 0 & 1 \end{bmatrix}$, find x - y.

4. If matrix A satisfies the equation $A^2 + 5A + 6I = 0$ then A^3 is

A. 15A + 12I

B.19A + 30I

 $\mathsf{C.}\,17A+15I$

 $\mathsf{D.}\,17A+21I$

Answer: B

The system of equation 5. x + y + z = 6, x + 4y + 6z = 20, x + 4y + mz = n.Has no solution then A. m = 6, n = 20 $\mathsf{B}.\,m=6,\,n\neq20$ C. m
eq 6, n = 20D. m
eq 6, n
eq 20**Answer: B** Watch Video Solution

Matrix Match Type

	Column I		Column II
۸	If $ A = 2$ then $ 2A^{-1} = ($ where A is of	(n)	1
	order 3)	(P)	

₿	If $ A = \frac{1}{8}$, then $ adj(adj(2A)) =$ (where A is of order 3)	(q)	4
٢	If $(A + B)^2 = A^2 + B^2$, and $ A = 2$ then B = (where A and B are of odd order $)$	(r)	24
Ø	$\begin{vmatrix} A_{2 \times 2} \end{vmatrix} = 2$, $\begin{vmatrix} B_{3 \times 3} \end{vmatrix} = 3$ and $\begin{vmatrix} C_{4 \times 4} \end{vmatrix} = 4$, then $ ABC $ is equal to	(s)	0

Watch Video Solution

2. For a matrix
$$M = egin{bmatrix} rac{3}{5} & rac{4}{5} \ x & rac{3}{5} \end{bmatrix}$$
, If $M^{-1} = M^T$ then

x =

1.

$$A. -\frac{3}{5}$$
$$B. -\frac{4}{5}$$

C.
$$\frac{4}{5}$$

D. $\frac{3}{5}$

Answer: B

Comperhension Type

1. Two $n \times n$ square matrices A and B are said to be similar if there exists a non - singular matrix C such that C^{-1} AC = B .

If A and B are two singular matrices, then-

A. det(A) = det(B)

 $B. \det(A) + \det(B) = 0$

C. det(AB) = 0

D. none of these

Answer: A

2. Two $n \times n$ square matrices A and B are said to be similar if there exists a non - singular matrix C such that $C^{-1} \text{ AC} = B$. If A and B are similar matrices such that det(AB) = 0

then-

A. det(A)=0 and det(B) = 0'

B.
$$det(A) = 0$$
 or $det(B) = 0$

C. A = 0 and B = 0

D. A = 0 or B = 0 [0 =null matrix]

Answer: A

Watch Video Solution

3. Two $n \times n$ square matrices A and B are said to be similar if there exists a non - singular matrix C such that C^{-1} AC = B .

If A and B are similar matrices such that det(A) = 1, then -

A. det(B) = 1

 $B. \det(A) + \det(B) = 0$

C. det(B) = -1

D. none of these

Answer: A

4. A square matrix A is used to be an idempotent matrix if $A^2 = A$.

If A is a non-singular idempotent matrix, then-

A. A =
$$I_n$$

B. A=0

C. A + A' =0

D. none of these

Answer: A

5. A square matrix A is used to be an idempotent matrix

if $A^2 = A$.

If A is an idempotent matrix and B = I -A, then-

A. AB = O

B. BA \neq 0
C. $B^2 = I$

 $\mathsf{D}.\,AB=I_n$

Answer: A

6. A square matrix A is used to be an idempotent matrix if $A^2 = A$.

If A, B and A + B are idempotent matrices, then-

A. AB = BA = O

B. AB = BA = I_n

C. AB = $BA \neq 0$

D. AB = BA
$$eq I_n$$

Answer: A

Assertion Reason Type

1. If A =
$$\begin{bmatrix} 3+2i & i \\ -i & 3-2i \end{bmatrix}$$
 then find A^{-1}

2. If A is a 3 imes 3 square matrix with |A|=5 if $B=4A^2$

then find $\left|B\right|$

