©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CHHAYA PUBLICATION MATHS (BENGALI ENGLISH)

ALGEBRA

Wbhs Archive 2012

1. If A is a non-singular matrix of order 3 and x is a real number such that $\operatorname{det}(x A)=|x| \operatorname{det}(A)$ then the value of x is-
A. 0 or 1
B. 0 or -1
C. 1 or - 1
D. 0 or ± 1

Answer: A

- Watch Video Solution

2. If $A=\left(\begin{array}{cc}22 & 17 \\ 17 & 8\end{array}\right)$, then find $B=A+A^{T}$ and show that $B^{T}=B$.

(Watch Video Solution

3. If $A=\left(\begin{array}{ll}5 & 8 \\ 8 & 13\end{array}\right)$, show that the matrix equation $x^{2}-18 x+1=0$ is satisfied by both the matrices A and A^{-1} (I is the identity matrix of order two).

- Watch Video Solution

4. Without expanding prove that
$\left|\begin{array}{lll}1 & a & a^{2}-b c \\ 1 & b & b^{2}-c a \\ 1 & c & c^{2}-a b\end{array}\right|=0$
5. The necessary and sufficient condition that any matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ of order 2×2 has an inverse is-
A. $a b-c d=0$
B. $a d-b c \neq 0$
C. ac-bd $\neq 0$
D. $a d+b c \neq 0$

Answer: B

- Watch Video Solution

2. Solve by Cramer's rule :
$x+y=2$
$y+z=4$
$z+x=6$
3. If $A=\left(\begin{array}{ll}0 & x \\ y & 0\end{array}\right)$ and $A^{3}+A=0$, then find the relation between x and $\mathrm{y}(\mathrm{x}, \mathrm{y} \neq 0)$.

- Watch Video Solution

4. If $m \in N$ and $m \geq 2$ prove that:
$\left|111{ }^{m} C_{1}{ }^{m+1} C_{1}{ }^{m+2} C_{1}{ }^{m} C_{2}{ }^{m+1} C_{2}{ }^{m+2} C_{2}\right|=1$.

- Watch Video Solution

5. If A be a 2×2 matrix such that $A^{2}=A$, then show that $(I-A)^{2}=I-A$ where I is the unit matrix of order 2×2.

- Watch Video Solution

1. Prove that $\left|\begin{array}{lll}a x & b y & c z \\ x^{2} & y^{2} & z^{2} \\ 1 & 1 & 1\end{array}\right|=\left|\begin{array}{lll}a & c & c \\ x & y & z \\ y z & x z & x y\end{array}\right|$

- Watch Video Solution

2. If for a matrix $\mathrm{A}, \mathrm{A}=A^{-1}$, then show that
$A\left(A^{3}+I\right)=A+I$ (I is the unit matrix).

- Watch Video Solution

3. Show that the matrix $A=\left(\begin{array}{ll}2 & -3 \\ 3 & 4\end{array}\right)$ satisfies the equation $A^{2}-6 A+17 I=O$ and hence find A^{-1} where I is the identity matrix and O is the null matrix of order 2×2.

- Watch Video Solution

4. Show that the determinant $\left|\begin{array}{lll}1 & a & a^{2} \\ a^{2} & 1 & a \\ a & a^{2} & 1\end{array}\right|$ is a perfect square.

- Watch Video Solution

5. If $A=\frac{1}{3}\left(\begin{array}{lll}-1 & 2 & -2 \\ -2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)$, show that $\mathrm{AA}^{T}=I_{3}$.

- Watch Video Solution

Wbhs Archive 2015

1. If A is a 2×2 invertible matrix, then value of $\operatorname{det} A^{-1}$ is -
A. $-\operatorname{det} A$
B. $\frac{-1}{\operatorname{det} A}$
C. $\operatorname{det} A$
D. $\frac{1}{\operatorname{det} A}$

Answer: D

- Watch Video Solution

2. If $A=\left[\begin{array}{ll}3 & 1 \\ 7 & 5\end{array}\right]$, find x and y such that $A^{2}+x I=y A$.

- Watch Video Solution

3. Evaluate the following: $\left|\begin{array}{ccc}9 & 9 & 12 \\ 1 & 3 & -4 \\ 1 & 9 & 12\end{array}\right|$

- Watch Video Solution

4. If $A=\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)$, then show that $A^{2}-4 A-5 I=0$,where $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $O=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.

- Watch Video Solution

5. Solve the following questions by Cramer's method $x+y=1, y+z=z, x+z=3$

- Watch Video Solution

6. Show that $\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|=2(a+b+c)^{3}$

- Watch Video Solution

7. One root of the equation $\left|\begin{array}{ccc}x+a & b & c \\ b & x+c & a \\ c & a & x+b\end{array}\right|=0$ is -

- Watch Video Solution

1. If A is square matrix such that $A^{2}=A$, then show that $(I+A)^{3}=7 A+I$.
A. A
B. 1
C. I-A
D. 3A

Answer: B

- Watch Video Solution

2. that
$\left|\begin{array}{ccc}\alpha & \beta & \gamma \\ \alpha^{2} & \beta^{2} & \gamma^{2} \\ \beta+\gamma & \gamma+\alpha & \beta+\alpha\end{array}\right|$
$(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)(\alpha+\beta+\gamma)$
3. If $A=\left(\begin{array}{ll}2 & -1 \\ -1 & 2\end{array}\right)$ and $A^{2}-4 A+3 I=0$ where । is the unit matrix of order 2, then find A^{-1}.

- Watch Video Solution

4. Express the matrix $A=\left[\begin{array}{lll}-3 & 4 & 1 \\ 2 & 3 & 0 \\ 1 & 4 & 5\end{array}\right]$ as the sum of symmetric matrix and a skew-symmetric matrix.

Watch Video Solution

5. Solve the following equations by matrix method :
(i) $x+2 y+z=7$
$x+2 y+z=7$
$x+3 z=11$
$x-y+z=4$
(ii) $x+y-2 z=3$
$4 x-2 y-3 z=11$
$2 x-y+z=0$
(iii) $9 x+8 y-7 z=14$
$3 x-2 y-z=10$
$6 x-5 y+4 z=4$
(iv) $3 x-3 y-4 y=11$
$2 x+3 y+2 z=3$
$-x-2 y+3 z=-10$.
(v) $x+y+z=6$
$x-y+z=2$
$2 x+y-z=1$

- Watch Video Solution

6. If $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are not in G.P. and $\left|\begin{array}{ccc}1 & \frac{q}{p} & \alpha+\frac{q}{p} \\ 1 & \frac{r}{p} & \alpha+\frac{r}{q} \\ p \alpha+q & q \alpha+r & 0\end{array}\right|=0$ Show that $p \alpha^{2}+2 q \alpha+r=0$
7. Show that $\left|\begin{array}{lll}a^{2}+1 & a b & a c \\ a b & b^{2}+1 & b c \\ c a & b c & c^{2}+1\end{array}\right|=1+a^{2}+b^{2}+c^{2}$

- Watch Video Solution

Wbjee Archive 2012

1. If $P=\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 3 & 1\end{array}\right], Q=P P^{T}$, then the value of the determinant of Q is equal to -
A. 2
B. -2
C. 1
D. 0

Answer: A

2. If P, Q, R are angles of $\Delta P Q R$ then $\left|\begin{array}{ccc}-1 & \cos R & \cos Q \\ \cos R & -1 & \cos P \\ \cos Q & \cos P & -1\end{array}\right|$ is equal
to $(\mathrm{A})-1$ (B) $0(\mathrm{C}) \frac{1}{2}(\mathrm{D}) 1$
A. -1
B. 0
C. $\frac{1}{2}$
D. 1

Answer:

- Watch Video Solution

3. The number of real values of α for which the system of equations:

$$
\begin{aligned}
& x+3 y+5 z=a x \\
& 5 x+y+3 z=a y \\
& 3 x+5 y+z=a z
\end{aligned}
$$

has infinite number of solutions is-
A. 1
B. 2
C. 4
D. 6

Answer: A

- Watch Video Solution

4.

The
system
of
linear
equations
$x-y-2 z=6 .-x+y+z=\mu, \lambda x+y+z=3$ has
A. infinite number of solutions for $\lambda \neq-1$ for all μ
B. infinte number of solutions for $\lambda \neq-1$ and $\mu=3$
C. no solution for $\lambda \neq-1$
D. unique solution for $\lambda=-1$ and $\mu=3$

Answer: B

Wbjee Archive 2013

1. Let, $P=\left(\begin{array}{ll}\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\ \sin \frac{\pi}{4} & \cos \frac{\pi}{4}\end{array}\right)$ and $x=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$. Then $P^{3} X$ is equal to-
A. $\binom{0}{1}$
B. $\binom{-\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$
C. $\binom{-1}{0}$
D. $\binom{-\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}$

Answer: C

2. Let, $I=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $P=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2\end{array}\right)$. Then the matrix $P^{3}+2 P^{2}$ is equal to -
A. P
B. I-P
C. $21+\mathrm{P}$
D. 2I-P

Answer: C

- Watch Video Solution

3. Show that
$\left|\begin{array}{lll}1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2}\end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3}$
A. 0
B. $\left(1+a^{2}+b^{2}\right)$
C. $\left(1+a^{2}+b^{2}\right)^{2}$
D. $\left(1+a^{2}+b^{2}\right)^{3}$

Answer: D

- Watch Video Solution

4. If $P=\left[\begin{array}{lll}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$, then P^{5} equals-
A. P
B. 2P
C. $-P$
D. $-2 P$

Answer: A

5. Consider the system of equations :

$$
\begin{aligned}
& x+y+z=0 \\
& \alpha x+\beta y+\gamma z=0 \\
& \alpha^{2} x+\beta^{2} y+\gamma^{2} z=0
\end{aligned}
$$

Then the system of equation has-
A. a unique solution for all values of α, β, γ
B. infinite number of solutions if any two of α, β, γ are equal
C. a unique solution if α, β, γ are distinct
D. more than one, but infinite number of solutions depending on values of α, β, γ.

Answer: B::C

- Watch Video Solution

Wbjee Archive 2014

1. Let $n \geq 2$ be an integer, $A=\left(\begin{array}{lll}\cos \left(\frac{2 \pi}{n}\right) & \sin \left(\frac{2 \pi}{n}\right) & 0 \\ \sin \left(\frac{2 \pi}{n}\right) & \cos \left(\frac{2 \pi}{n}\right) & 0 \\ 0 & 0 & 1\end{array}\right)$
and I is the idnetity matrix of order 3 . Then
A. $A^{n}=I$ and $A^{n-1} \neq I$
B. $A^{m} \neq I$ for any positive integer m
C. A is not invertible
D. $A^{m}=0$ for a positive integer m

Answer: A

- Watch Video Solution

2. Let I denote the 3×3 identity matrix and P be a matrix obtained by rearranging the columns of I. Then-
A. there are six distinct choices for P and $\operatorname{det}(P)=1$
B. there are six distinct choices for P and $\operatorname{det}(P)= \pm 1$
C. there are some than one choices for P and some of them are not invertible.
D. there are more than one choices for P and $P^{-1}=I$ in each choice.

Answer: B

D Watch Video Solution

Wbjee Archive 2015

1. The value of λ for which the system of equations
$2 x-y-z=12, x-2 y+z=-4, x+y+z=4$ has no solution is
A. 3
B. 1
C. 0 (zero)
D. -3

- Watch Video Solution

2. If $f(x)=\left|\begin{array}{ccc}1 & x & x+1 \\ 2 x & x(x-1) & (x+1) x \\ 3 x(x-1) & x(x-1)(x-2) & (x+1) x(x-1)\end{array}\right|$, then $f(100)$ is equal to - (i) 0 (ii) 1 (iii) 100 (iv) -100
A. 0 (zero)
B. 1
C. 100
D. 10

Answer: A

- Watch Video Solution

3. If A and B are two matrices such that $\mathrm{AB}=\mathrm{B}$ and $\mathrm{BA}=\mathrm{A}$ then $A^{2}+B^{2}$ equals-
A. 2 AB
B. 2 BA
C. $A+B$
D. $A B$

Answer: C

- Watch Video Solution

4. If $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right), U_{1}, U_{2}$, and U_{3} are column matrices
satisfying $A U_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), A U_{2}=\left(\begin{array}{l}2 \\ 3 \\ 0\end{array}\right)$ and $A U_{3}=\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$ and
U is 3×3 matrix when columns are U_{1}, U_{2}, U_{3} then
answer the following questions
The value of $\left(\begin{array}{lll}3 & 0\end{array}\right) U\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right)$ is
A. 6
B. 0 (zero)
C. 1
D. $\frac{2}{3}$

Answer: B

- Watch Video Solution

5. If ω is an imaginary cube root of untiy then the value of the determinant
$\left|\begin{array}{lll}1+\omega & \omega^{2} & -\omega \\ 1+\omega^{2} & \omega & -\omega^{2} \\ \omega+\omega^{2} & \omega & -\omega^{2}\end{array}\right|=$

$$
\text { A. }-2 \omega
$$

B. $-3 \omega^{2}$
C. -1
D. 0 (zero)

Answer: B

- Watch Video Solution

Wbjee Archive 2016

1. for $x, x, z>0$ Prove that $\left|\begin{array}{lll}1 & \log _{x} y & \log _{x} z \\ \log _{y} x & 1 & \log _{y} z \\ \log _{z} x & \log _{z} y & 1\end{array}\right|=0$
A. $\log x \cdot \log y \cdot \log z$
B. $\log x+\log y+\log y$
C. 0
D. $1-\{(\log x) \cdot(\log y) \cdot(\log z)\}$

- Watch Video Solution

2. Let A is a 3×3 matrix and B is its adjoint matrix. If $|B|=64$, then $|A|=$
A. ± 2
B. ± 4
C. ± 8
D. ± 12

Answer: C

D Watch Video Solution

3. Let $Q=\left(\begin{array}{cc}\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\ \sin \frac{\pi}{4} & \cos \frac{\pi}{4}\end{array}\right)$ and $X=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$ then $Q^{3} X$ is equal to
A. $\binom{0}{1}$
B. $\binom{-\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$
C. $\binom{-1}{0}$
D. $\binom{-\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}$

Answer: C

- Watch Video Solution

4. If the matrix $A=\left[\begin{array}{ccc}2 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 02\end{array}\right]$ then $A^{n}=\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & a & 0 \\ b & 0 & a\end{array}\right], n \in N$ where
A. $a=2 n, b=2^{n}$
B. $a=2^{n}, b=2 n$
C. $a=2^{n}, b=n 2^{n-1}$
D. $a=2^{n}, b=n 2^{n}$

Watch Video Solution

Jee Main Aieee Archive 2012

1. If $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right) u_{1}$ and u_{2} are the column matrices such
that $A u_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $A u_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ then $u_{1}+u_{2}$ is equal to
A. $\left(\begin{array}{l}-1 \\ -1 \\ 0\end{array}\right)$
B. $\left(\begin{array}{l}1 \\ -1 \\ -1\end{array}\right)$
C. $\left(\begin{array}{l}-1 \\ 1 \\ 0\end{array}\right)$
D. $\left(\begin{array}{l}-1 \\ 1 \\ -1\end{array}\right)$

Answer: B

2. Let P and Q be 3×3 matrices with $P \neq Q$. If $P^{3}=Q^{3}$ and $P^{2} Q=Q^{2} P$, then determinant of $\left(P^{2}+Q^{2}\right)$ is equal to (1) $2(2) 1$ (3) $0(4) 1$
A. 0
B. -1
C. -2
D. 1

Answer: A

- Watch Video Solution

Jee Main Aieee Archive 2013

1. The number of values of k for which the system of equations:
$k x+(3 k+2) y=4 k$
$(3 k-1) x+(9 k+1) y=4(k+1)$ has no solution, are
A. infinite
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

2. If $P=\left[\begin{array}{lll}1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right]$ is the adjoint of a 3×3 matrix A and $|A|=4$, then α is equal to
A. 4
B. 11
C. 5
D. 0

Answer: B

D Watch Video Solution

Jee Main Aieee Archive 2014

1. If A is an 3×3 non-singular matrix such that $A A^{T}=A^{T} A$ and $B=A^{-1} A^{T}$, then $B B^{T}$ equals
A. $1+$ B
B. I
C. B^{-1}
D. $\left(B^{-1}\right)^{T}$

Answer: B

Watch Video Solution
2. If $\alpha, \beta \neq 0$, and $f(n)=\alpha^{n}+\beta^{n} \quad$ and $|31+f(1) 1+f(2) 1+f(1) 1+f(2) 1+f(3) 1+f(2) 1+f(3) 1+f(4)|=$, then K is equal to (1) $\alpha \beta$ (2) $\frac{1}{\alpha \beta}$ (3) 1 (4) -1
A. $\alpha \beta$
B. $\frac{1}{\alpha \beta}$
C. 1
D. -1

Answer: C

- Watch Video Solution

Jee Main Aieee Archive 2015

1. If $A=[12221-2 a 2 b]$ is a matrix satisfying the equation $\forall^{T}=9 I$, where I is 3×3 identity matrix, then the ordered pair (a, b) is equal to :
(1) $(2,-1)$
(2) $(-2,1)$
$(3)(2,1)(4)(-2,-1)$
A. $(2,1)$
B. $(-2,-1)$
C. $(2,-1)$
D. $(-2,1)$

Answer: B

- Watch Video Solution

2. The set of the all values of λ for which the system of linear equations
$2 x_{1}-2 x_{2}+x_{3}=\lambda x_{1}$
$2 x_{1}-3 x_{2}+2 x_{3}=\lambda x_{2}$
$-x_{1}+2 x_{2}=\lambda x_{3}$ has a non-trivial solution,
A. contains two elements
B. contains more than two elements
C. is an empty set
D. is a singleton

- Watch Video Solution

Jee Main Aieee Archive 2016

1. If $A=[5 a-b 32]$ and A adj $A=\forall^{T}$, then $5 a+b$ is equal to: (1) -1
(2) $5(3) 4(4) 13$
A. -1
B. 5
C. 4
D. 13

Answer: B

Watch Video Solution
2. The system of linear equations
$x+\lambda y-z=0$
$\lambda x-y-z=0$
$x+y-\lambda z=0$
has a non-trivial solution for
A. infinitely many values of λ
B. exactly one value of λ
C. exactly two values of λ
D. exactly three values of λ

Answer: D

- Watch Video Solution

3. If $P=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right], A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $Q=P A P^{T}$, the Itbr.
$P\left(Q^{2005}\right) P^{T}$ equal to
A. $\left[\begin{array}{ll}0 & 2015 \\ 0 & 0\end{array}\right]$
B. $\left[\begin{array}{ll}2015 & 1 \\ 0 & 2015\end{array}\right]$
C. $\left[\begin{array}{ll}2015 & 0 \\ 1 & 2015\end{array}\right]$
D. $\left[\begin{array}{ll}1 & 2015 \\ 0 & 1\end{array}\right]$

Answer: D

- Watch Video Solution

4. The number of distinct real roots of
$|s \in x \cos x \cos x \cos x s \in x \cos x \cos x \cos x s \in x|=0$ in the interval $-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$ is 0 b. 2 c. 1 d. 3
A. 4
B. 3
C. 2
D. 1

Answer: C

- Watch Video Solution

Jee Advanced Archive 2013

1. For 3×3 matrices MandN, which of the following statement (s) is (are) NOT correct ? $N^{T} M N$ is symmetricor skew-symmetric, according as m is symmetric or skew-symmetric. $M N-N M$ is skew-symmetric for all symmetric matrices $\operatorname{MandN} . M N$ is symmetric for all symmetric matrices $\operatorname{Mand} N(a d j M)(a d j N)=a d j(M N)$ for all invertible matrices MandN.
A. $N^{T} M N$ is symmetric or skew symmetric, according as M is symmetric or skew symmetric.
B. MN-NM is skew symmetric for all symmetric matrices M and N.
C. $M N$ is symmetric for all symmetric matrices M and N .
D. $(\operatorname{Adj} M)(\operatorname{Adj} N)=\operatorname{Adj}(M N)$ for all invertible matrices M and N.

Answer: C::D

D Watch Video Solution

2. Let ω be a complex cube root of unity with $\omega \neq 1$ and $P=\left[p_{i j}\right]$ be a $n \times n$ matrix withe $p_{i j}=\omega^{i+j}$. Then $p^{2} \neq O$, whe $\cap=$ a. 57 b .55 c .58 d . 56
A. 57
B. 55
C. 58
D. 56

Answer: B::C::D

1. Let M be a 2×2 symmetric matrix with integer entries. Then M is invertible if (a)The first column of M is the transpose of the second row of M (b)The second row of Mis the transpose of the first olumn of M (c) M is a diagonal matrix with non-zero entries in the main diagonal (d)The product of entries in the main diagonal of Mis not the square of an integer
A. the first column of M is the transpose of the second row of M.
B. the second row of M is the transpose of the first column of M.
$C . M$ is a diagonal matrix with non-zero entries in the main diagonal.
D. the product of entries in the main diagonal of M is not the square of an integer.

Answer: C::D

- Watch Video Solution

2. Let m and N be two 3×3 matrices such that $\mathrm{MN}=\mathrm{NM}$. Further if $M \neq N^{2}$ and $M^{2}=N^{4}$ then which of the following are correct.
A. determinant of $\left(M^{2}+M N^{2}\right)$ is 0 .
B. there is a 3×3 non-zero matrix U such that $\left(M^{2}+M N^{2}\right) U$ is the zero matrix.
C. determinant of $\left(M^{2}+M N^{2}\right) \geq 1$
D. for a 3×3 matrix U , if $\left(M^{2}+M N^{2}\right) U$ equals the zero matrix then
U is the zero matrix.

Answer: A::B

- Watch Video Solution

1. Let $X a n d Y$ be two arbitrary, 3×3, non-zero, skew-symmetric matrices and Z be an arbitrary 3×3, non-zero, symmetric matrix. Then which of the following matrices is (are) skew symmetric? a. $Y^{3} Z^{4} Z^{4} Y^{3}$ b.
$x^{44}+Y^{44}$
c. $X^{4} Z^{3}-Z^{3} X^{4}$
d. $X^{23}+Y^{23}$
A. $Y^{3} Z^{4}-Z^{4} Y^{3}$
B. $X^{44}+Y^{44}$
C. $X^{4} Z^{3}-Z^{3} X^{4}$
D. $X^{23}+Y^{23}$

Answer: C::D

- Watch Video Solution

2. Which of the following values of α satisfying the equation $\mid(1+\alpha)^{2}(1+2 \alpha)^{2}(1+3 \alpha)^{2}(2+\alpha)^{2}(2+2 \alpha)^{2}(2+3 \alpha)^{2}(3+\alpha)^{2}(3+2 \alpha)$ -4 b. 9 c. -9 d. 4
A. -4
B. 9
C. -9
D. 4

Answer: B::C

- Watch Video Solution

Jee Advanced Archive 2016

1. Let $p=\left[\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0\end{array}\right]$, where $\alpha \in \mathbb{R}$. Suppose $Q=\left[q_{i j}\right]$ is a matrix such that $P Q=k l$, where $k \in \mathbb{R}, k \neq 0$ and l is the identity matrix of order 3. If $q_{23}=-\frac{k}{8}$ and $\operatorname{det}(Q)=\frac{k^{2}}{2}$, then
A. $\alpha=0, \mathrm{k}=8$
B. $4 \alpha-k+8=0$
C. $\operatorname{det}(\operatorname{Padj}(Q))=2^{9}$
D. $\operatorname{det}(\operatorname{Qadj}(P))=2^{13}$

Answer: B::C

- Watch Video Solution

2.

let
$z=\frac{-1+\sqrt{3 i}}{2}$, where $i=\sqrt{-1}$ and $\left.r, s \varepsilon P 1,2,3\right\} . \operatorname{Let} P=\left[\begin{array}{cc}(-z)^{r} & z \\ z^{2 s} & z\end{array}\right.$
and I be the idenfity matrix or order 2 . Then the total number of ordered pairs (r, s) or which $P^{2}=-I$ is

- Watch Video Solution

3. The total number of distinct $x \in R$ for which
$\left|\begin{array}{ccc}x & x^{2} & 1+x^{3} \\ 2 x & 4 x^{2} & 1+8 x^{3} \\ 3 x & 9 x^{2} & 1+27 x^{3}\end{array}\right|=10$ is (A) 0 (B) 1 (C) 2 (D) 3
4. Let $P=\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right]$ and I be the identity matrix of order 3 . If $Q=[q i j]$ is a matrix, such that $P^{50}-Q=I$, then $\frac{q_{31}+q_{32}}{q_{21}}$ equals
A. 52
B. 103
C. 201
D. 205

Answer: B

- Watch Video Solution

5. Let $a, \lambda, \mu \in R, \quad$ Consider the system of linear equations $a x+2 y=\lambda 3 x-2 y=\mu$ Which of the flollowing statement (s) is (are) correct?
A. If $a=-3$, then the system has infinitely many solutions for all values of λ and μ.
B. If $a \neq-3$, then the system has a unique solution for all values of λ and μ.
C. If $\lambda+\mu=0$, then the system has infintiely many solutions for $a=-3$.
D. If $\lambda+\mu \neq 0$, then the system has no solution for $a=-3$.

Answer: B::C::D

- Watch Video Solution

Example

1. If $A=\left[\begin{array}{lll}0 & 2 & 3 \\ 2 & 1 & 4\end{array}\right]$ and $B=\left[\begin{array}{lll}7 & 6 & 3 \\ 1 & 4 & 5\end{array}\right]$, find 2A +3 B .
2. Construct a 2×3 matricx whose elements are given by $a_{i j}=\frac{(i-2 j)^{2}}{2}$

- Watch Video Solution

3. Determine the matrices A and B, where
$A+2 B=\left[\begin{array}{ccc}1 & 2 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 1\end{array}\right]$ and $2 A-B=\left[\begin{array}{ccc}2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2\end{array}\right]$

- Watch Video Solution

4. Find, where possible, $A+B, A-B, A B$ and $B A$ stating with reasons, where the operations are not pssible, when
$A=\left[\begin{array}{ccc}4 & 2 & -1 \\ 3 & -7 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 3 \\ -3 & 0 \\ -1 & 5\end{array}\right]$

(Watch Video Solution

5. Verify that the matrix equation $A^{2}-4 A+3 I=0$ is satisfied by the matrix
$A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right], \quad$ where $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and
$0=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. Hence obtain A^{-1}.

- Watch Video Solution

6. If $A=\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then find k so that $A^{2}=8 A+k I$

(Watch Video Solution

7. If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Show that, $A^{2}-(a+d) A=(b c-a d) I$.

- Watch Video Solution

8. Verify that $(A B)^{T}=B^{T} A^{T}$, where
$A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & -2 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 2 \\ 2 & 0 \\ -1 & 1\end{array}\right]$.

(Watch Video Solution

9. If A and B are two matrices such that $A B=0$, can we deduce that either A or B is a zero matrix? Illustrate by an example.

- Watch Video Solution

10. If $P=\left[\begin{array}{ccc}-1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5\end{array}\right]$, show that, $P^{2}=P$ hence find matrix Q such that $3 P^{2}-2 P+Q=I$, where I is the unit matrix of order 3 .
11. find the values of x, y, z and t when the following matrices are equal :
$\left[\begin{array}{cc}x+y & y-z \\ 5-t & 7+x\end{array}\right]$ and $\left[\begin{array}{cc}t-x & z-t \\ z-y & x+z+t\end{array}\right]$

- Watch Video Solution

12. If $A=\left(\begin{array}{ll}2 & 3 \\ 6 & 5\end{array}\right)$ and $B=\left(\begin{array}{ll}3 & 7 \\ 4 & 0\end{array}\right)$, express $(A+B)^{2}$ as a matrix and show that, $(A+B)^{2}=A^{2}+A B+B A+B^{2}$.

- Watch Video Solution

13. $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are matrices each of order 2×2 with $\mathrm{AB}=\mathrm{AC}$.

Does it imply that $\mathrm{B}=\mathrm{C}$? Give an example In support of your conclusion.

- Watch Video Solution

14. If $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}6 \\ 2 \\ 7\end{array}\right]$ write down the linear equations represented by $A X=B$.

- Watch Video Solution

15. Represent the following linear equations in matrix form:

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z+d_{1}=0, \quad a_{2} x+b_{2} y+c_{2} z+d_{2}=0 \quad \text { and } \\
& a_{3} x+b_{3} y_{+} c_{3} z+d_{3}=0
\end{aligned}
$$

- Watch Video Solution

16. Let $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$ and $f(x)=x^{2}-5 x+6$, find $\mathrm{f}(\mathrm{A})$.

- Watch Video Solution

17. If $A=\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right)$, prove by mathematical induction that, $A^{n}=\left(\begin{array}{cc}\cos n \alpha & \sin n \alpha \\ -\sin n \alpha & \cos n \alpha\end{array}\right)$ where $n(\geq 2)$ is a positive integer.

- Watch Video Solution

18. If $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$, Prove by mathematical induction that,
$A^{n}=\left[\begin{array}{ccc}1 & n & \frac{n(n+1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1\end{array}\right]$ for every positive integer n.

- Watch Video Solution

19. Express the matrix $A=\left[\begin{array}{ccc}-3 & 4 & 1 \\ 2 & 3 & 0 \\ 1 & 4 & 5\end{array}\right]$ as the sum of a symmetric and a skew. Symmetric matrix.

- Watch Video Solution

20. If $A=\frac{1}{3}\left[\begin{array}{ccc}-1 & 2 & -2 \\ -2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$ show that $\mathrm{AA}^{T}=I$.

- Watch Video Solution

21. If $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]$ show that $B^{T} A B$ is a diagonal matrix, where B^{T} is the transpose of B.

- Watch Video Solution

22. If $f(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$ show that $f(\alpha) f(\beta)=f(\alpha+\beta)$.

- Watch Video Solution

23. If $A=\left[\begin{array}{cc}i & i \\ -i & i\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$ then show that $A^{8}=128 B$.
24. Find the values of a, b and c if the matrix $A=\left[\begin{array}{ccc}0 & 2 b & c \\ a & b & -c \\ a & -b & c\end{array}\right]$ satisfies $A^{\prime} A=I$.

- Watch Video Solution

25. Find the matrices A and B when $A+B=2 B^{t}$ and $3 A+2 B=I_{3}$ where B^{t} denotes the transpose of B and I_{3} is the identity matrix of order 3.

- Watch Video Solution

Multiple Choice Type Questions

1. State which of the statement is true?
A. The product $K A$ of a matrix A and a scalar K is the matrix whose each element is K times the corresponding element of A.
B. If A and B are two matrices of orders $m \times n$ and $r \times s$ respectively
($r \neq m, s \neq n$) then the matrix ($\mathrm{A}+\mathrm{B}$) can be obtained.
C. The product matrix $A B$ can be obtained if the number of rows in A equal to the number of columns in B.
D. For two matrices A and B, if both $A B$ and $B A$ are defined, then A and B are matrices of the same order.

Answer: A

D Watch Video Solution

2. State which of the statement is false?
A. If A and B are matrices of order $m \times n$ and $n \times p$ respectively, then $A B$ is a matrix of order $m \times p$.
B. Multiplication of matrices, in general, does not satisfy the commutative law.
C. For two matrices A and B, the product $A B$ may not be equal to the product $B A$ when both $A B$ and $B A$ are defined and they are of the same order.
D. Multiplication of matrices does not satisfy the associative law.

Answer: D

- Watch Video Solution

3. State which of the statement is false?
A. For three matrices A, B and C, the relation $C A=C B$ always implies $A=$ B.
B. A square matrix A can be expressed as the sum of a symmetric and a skew-symmetric matrix.
C. Matrices $A \neq 0, B \neq 0$ can imply $\mathrm{AB}=0$ where 0 is the null matrix.
D.A square matrix of order 3 is said to be orthogonal if $\mathrm{AA}^{T}=A^{T} A=I$ where I is the unit matrix of order 3.

Answer: A

- Watch Video Solution

4. If A and B are two matrices such that $A B=A$ and $B A=B$ then B is equal to
A. 1
B. -1
C. 2
D. -2

Answer: A

5. If a square matrix A is equal to its transpose A^{T}, then A is called a
A. symmetric matrix
B. indentity matrix
C. skew-symmetric matrix
D. none of these

Answer: A

Watch Video Solution

6. If A^{T} is the transpose of a square matrix A then A is called a skewsymmetrix matrix if it is
A. $A^{T}=-A$
B. $\mathrm{AA}^{T}=A$
C. $A^{T} A=A$
D. A^{-1}

Answer: A

- Watch Video Solution

7. $(A B)^{T}=$
A. $B^{T} A^{T}$
B. $A^{T} B^{T}$
C. $A^{T} B$
D. $B^{T} A$

Answer: A
8. If A is a square matrix and I is the unit matrix of the same order as A, then A.I =
A. A
B. A^{T}
C. $-A$
D. A. A^{T}

Answer: A

- Watch Video Solution

9. If $A=\left[a_{i j}\right]$ is a 2×2 matrix such that $a_{i j}=i+2 j$ then A will be
A. $\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]$
B. $\left[\begin{array}{ll}2 & 4 \\ 3 & 5\end{array}\right]$
C. $\left[\begin{array}{ll}3 & 5 \\ 4 & 6\end{array}\right]$
D. none of these

- Watch Video Solution

10. If $A=\left[a_{i j}\right]$ is a care 2×2 matrix whose elements are $a_{i j}=\frac{1}{2}(i+2 j)^{2}$, then A will be \qquad
A. $\left[\begin{array}{cc}\frac{9}{2} & \frac{25}{2} \\ 8 & 18\end{array}\right]$
B. $\left[\begin{array}{cc}\frac{9}{2} & \frac{15}{2} \\ 8 & 18\end{array}\right]$
C. $\left[\begin{array}{ll}\frac{9}{2} & \frac{25}{2} \\ 8 & 9\end{array}\right]$
D. $\left[\begin{array}{cc}\frac{9}{2} & \frac{15}{2} \\ 4 & 18\end{array}\right]$

Answer: A

- Watch Video Solution

11. If $A=\left[a_{i j}\right]$ is a 3×2 matrix whose elements are given by $a_{i j}=3 i-2 j$, then A will be
A. $\left[\begin{array}{ll}1 & 1 \\ 4 & 2 \\ 7 & 5\end{array}\right]$
B. $\left[\begin{array}{cc}1 & -1 \\ 4 & 2 \\ 7 & 5\end{array}\right]$
C. $\left[\begin{array}{cc}-1 & -1 \\ 4 & 2 \\ 7 & 5\end{array}\right]$
D. $\left[\begin{array}{cc}1 & -1 \\ 4 & -2 \\ 7 & 5\end{array}\right]$

Answer: B

Watch Video Solution
12. If $A=\left[a_{i j}\right]$ is a 2×3 matrix whose elements are given by $a_{i j}=\frac{1}{2}|3 i-4 j|$, then A will be
A. $\left[\begin{array}{lll}\frac{1}{2} & \frac{5}{2} & \frac{9}{2} \\ 1 & 1 & 3\end{array}\right]$
B. $\left[\begin{array}{ccc}1 & 5 & 9 \\ \frac{1}{2} & \frac{1}{2} & \frac{3}{2}\end{array}\right]$
C. $\left[\begin{array}{lll}\frac{1}{2} & \frac{5}{2} & 9 \\ 1 & 1 & 3\end{array}\right]$
D. $\left[\begin{array}{lll}\frac{1}{2} & \frac{5}{2} & \frac{9}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{3}{2}\end{array}\right]$

Answer: A

- Watch Video Solution

13. If A and B are two symmetric matrices of order $n \times n$ the state which of the statements is not true?
A. $A+B$ a symmetric
B. A+B a skew-symmetric
C. $A+B$ a square matrix
D. $A+B$ a zero matrix

Answer: B

- Watch Video Solution

14. If $A=\left[\begin{array}{ll}0 & 7 \\ 0 & 0\end{array}\right]$ and $f(x)=1+x+x^{2}+\ldots .+x^{20}$ then $\mathrm{f}(\mathrm{A})=$
A. 0
B. $\left[\begin{array}{ll}1 & 7 \\ 0 & 0\end{array}\right]$
C. $\left[\begin{array}{ll}1 & 7 \\ 0 & 1\end{array}\right]$
D. $\left[\begin{array}{ll}0 & 7 \\ 1 & 1\end{array}\right]$

Answer: C

- Watch Video Solution

15. If A be a square matrix then A^{2} will be
A. symmetric matrix
B. skew-symmetric matrix
C. diagonal matrix
D. none of these

D Watch Video Solution

16. If $\left[\begin{array}{cc}2 x-y & 5 \\ 3 & y\end{array}\right]=\left[\begin{array}{cc}6 & 5 \\ 3 & -2\end{array}\right]$, then the value of x is
A. 0
B. 1
C. 2
D. 3

Answer: C

- Watch Video Solution

17. If $\left[\begin{array}{cc}1 & 4 \\ 2 & 0\end{array}\right]=\left[\begin{array}{cc}x & y^{2} \\ z & 0\end{array}\right], y<0$ then $x-y+z$ is equal to
A. 5
B. 2
C. 1
D. -3

Answer: A

- Watch Video Solution

18. If $A-2 B=\left[\begin{array}{ll}1 & 5 \\ 3 & 7\end{array}\right]$ and $2 A-3 B=\left[\begin{array}{cc}-2 & 5 \\ 0 & 7\end{array}\right]$ then matrix B is equal to
A. $\left[\begin{array}{ll}-4 & -5 \\ -6 & -7\end{array}\right]$
B. $\left[\begin{array}{cc}0 & 6 \\ -3 & 7\end{array}\right]$
C. $\left[\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right]$
D. $\left[\begin{array}{cc}6 & -1 \\ 0 & 1\end{array}\right]$

Answer: A

19. If $A=\left[\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right]$ then $(A-2 I)(A-3 I)$ is equal to_
A. A
B. I
C. 0
D. $5 I$

Answer: C

- Watch Video Solution

20. If $A=\left[\begin{array}{cc}x & y \\ z & -x\end{array}\right]$, such that $A^{2}=I$, then
A. $1+x^{2}+y z=0$
B. $1-x^{2}+y z=0$
C. $1-x^{2}-y z=0$
D. $1+x^{2}-y z=0$

Answer: C

- Watch Video Solution

21. If the matrix A is both symmetric and skew-symmetricx then \qquad
A. A is a diagonal matrix
B. A is a zero matrix
C. A is a square matrix
D. none of these

Answer: B

- Watch Video Solution

22. If A is a square matrix such that $A^{2}=A$, then $(I+A)^{3}-7 A$ is equal to \qquad
A. A
B. I-A
C. I
D. 3 A

Answer: C

- Watch Video Solution

Very Short Answer Type Questions

1. If $A=\left[\begin{array}{cc}2 & -3 \\ 0 & 1 \\ -1 & 4\end{array}\right], B=\left[\begin{array}{cc}-1 & 5 \\ 2 & -3 \\ 0 & 1\end{array}\right], C=\left[\begin{array}{cc}4 & -2 \\ 0 & -1 \\ 3 & 5\end{array}\right]$,

Find the matrices

Watch Video Solution

2. If $A=\left[\begin{array}{cc}2 & -3 \\ 0 & 1 \\ -1 & 4\end{array}\right], B=\left[\begin{array}{cc}-1 & 5 \\ 2 & -3 \\ 0 & 1\end{array}\right], C=\left[\begin{array}{cc}4 & -2 \\ 0 & -1 \\ 3 & 5\end{array}\right]$,

Find the matrices
2B-3C

Watch Video Solution
3. If $A=\left[\begin{array}{cc}2 & -3 \\ 0 & 1 \\ -1 & 4\end{array}\right], B=\left[\begin{array}{cc}-1 & 5 \\ 2 & -3 \\ 0 & 1\end{array}\right], C=\left[\begin{array}{cc}4 & -2 \\ 0 & -1 \\ 3 & 5\end{array}\right]$,

Find the matrices
4C - A

- Watch Video Solution

4. If $A=\left[\begin{array}{cc}2 & -3 \\ 0 & 1 \\ -1 & 4\end{array}\right], B=\left[\begin{array}{cc}-1 & 5 \\ 2 & -3 \\ 0 & 1\end{array}\right], C=\left[\begin{array}{cc}4 & -2 \\ 0 & -1 \\ 3 & 5\end{array}\right]$,

Find the matrices
$A+4 B-3 C$

- Watch Video Solution

5. If $A=\left(\begin{array}{ll}2 & 4 \\ 5 & 6\end{array}\right)$ and $B=\left(\begin{array}{cc}3 & 6 \\ 5 & 9\end{array}\right)$, find the square matrix X of order 2×2 such that, $3 A+4 B=2 x$.

- Watch Video Solution

6. Find a matrix X such that $2 A+B+X=0$ where $A=\left[\begin{array}{cc}-1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{cc}3 & -2 \\ 1 & 5\end{array}\right]$

- Watch Video Solution

7. Find the matrices A and B for which:
$A+B=\left[\begin{array}{ccc}1 & 5 & 10 \\ 5 & 9 & 8\end{array}\right]$ and $A-B=\left[\begin{array}{ccc}-1 & -1 & -4 \\ 1 & 1 & 6\end{array}\right]$
8. Find the matrices A and B for which:
$A-2 B=\left(\begin{array}{cc}-7 & 7 \\ 4 & -8\end{array}\right)$ and $A-3 B=\left(\begin{array}{cc}-11 & 9 \\ 4 & -13\end{array}\right)$

- Watch Video Solution

9. Find the matrices A and B for which:
$2 A+B=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & -2 & -3 \\ 4 & 2 & 3\end{array}\right]$ and $A+2 B=\left[\begin{array}{lll}0 & 2 & 3 \\ 4 & 1 & 7 \\ 1 & 1 & 5\end{array}\right]$

- Watch Video Solution

10. If $A=\left(\begin{array}{cc}3 & 5 \\ 2 & a\end{array}\right), B=\left(\begin{array}{cc}4 & b \\ 2 & 9\end{array}\right)$ and $C=\left(\begin{array}{cc}26 & a \\ 14 & 45\end{array}\right)$ find a and b when $2 A+5 B=C$.

- Watch Video Solution

11. If a matrix has 18 elements, what are the possible orders it can have? What if it has 5 elements?

Watch Video Solution

12. Find the values of x and y, if
$2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$

- Watch Video Solution

13. Find the values of x, y and z if $\left[\begin{array}{c}x+y+z \\ z+x \\ y+z\end{array}\right]=\left[\begin{array}{l}9 \\ 5 \\ 7\end{array}\right]$

- Watch Video Solution

14. If $A=\left[\begin{array}{ccc}2 & 0 & -5 \\ -3 & 4 & 7\end{array}\right]$ and $B=\left[\begin{array}{ccc}3 & 1 & -1 \\ 4 & 5 & 0\end{array}\right]$ then prove that $(A+B)^{\prime}=A^{\prime}+B^{\prime}$
$(A-B)^{\prime}=A^{\prime}-B$

- Watch Video Solution

15. If $A=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, write AA^{T}

- Watch Video Solution

16. If $A=[1,2,3]$, write AA^{T}

- Watch Video Solution

17. If two matrices A and B of orders $2 \times m$ and $3 \times n$ respectively are conformable for the products AB of order $p \times 4$, find the values of m, n and p.
18. If A and B be two matrices such that $A+B$ and $A B$ are both defined, show that A and B are both square matrices of the same order.

- Watch Video Solution

19. If A is a 3×3 square matrix with $|A|=2$ then find $|5 A|$

- Watch Video Solution

20. If $A=\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right)$ and $B=\left(\begin{array}{ll}3 & 5 \\ 7\end{array}\right)$, find $A B$.

- Watch Video Solution

21. If $A=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$ find $A B$ and $B A$.
22. Evaluate: $[x y z] \times\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right] \times\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$.

- Watch Video Solution

23. If $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 5 \\ -3 & 2 & 4\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}14 \\ 15 \\ 13\end{array}\right]$ then write down the linear equations in x, y, z represented by the matrix equation $A X$ = B.

- Watch Video Solution

24. Represent the following equations in matrix form:

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1}=0 \\
& a_{2} x+b_{2} y+c_{2}=0
\end{aligned}
$$

25. Represent the following equations in matrix form:
$a_{1} x+b_{1} y+c_{1} z=k_{1}$
$a_{2} x+b_{2} y+c_{2} z=k_{2}$
$a_{3} x+b_{3} y+c_{3} z=k_{3}$

Watch Video Solution

26. If $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$, prove that $A-A^{T}$ is a skew-symmetric matrix.

- Watch Video Solution

Short Answer Type Questions

1. Solve for x and y , if $2\left[\begin{array}{cc}x & 5 \\ 7 & y-3\end{array}\right]+\left[\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}7 & 14 \\ 15 & 14\end{array}\right]$

- Watch Video Solution

2. Solve for x, y and z , if $\quad\left(\begin{array}{cc}x+y & 2 \\ 1 & 0\end{array}\right)=\left(\begin{array}{cc}2 & x-z \\ 2 x-y & 0\end{array}\right)$

- Watch Video Solution

3. Find the value of x, y, z and t for which the following two matrices may be equal:
$\left[\begin{array}{cc}x-z & -z-x \\ 7-t & 6+z\end{array}\right]$ and $\left[\begin{array}{cc}3-t & 5-t \\ t+5 & x-y\end{array}\right]$

- Watch Video Solution

4. Solve for $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d when

$$
\left(\begin{array}{ll}
b+c & c+a \\
7-d & 6-c
\end{array}\right)=\left(\begin{array}{ll}
9-d & 8-d \\
a+b & a+b
\end{array}\right)
$$

- Watch Video Solution

5. Find the value of x, y, z and t for which
$3\left[\begin{array}{ll}x & y \\ z & t\end{array}\right]=\left[\begin{array}{cc}x & 6 \\ -1 & 2 t\end{array}\right]+\left[\begin{array}{cc}4 & x+y \\ z+t & 3\end{array}\right]$

(D) Watch Video Solution

6. Test whether the following matrices A and B are conformable for $A+B$, $A B$ and $B A$ and find their values when they are conformable:
$A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$A=\left[\begin{array}{ll}2 & 3 \\ 5 & 6 \\ 7 & 8\end{array}\right]$ and $B=\left[\begin{array}{lll}3 & 8 & 5 \\ 2 & 1 & 1 \\ 1 & 3 & 3\end{array}\right]$

- Watch Video Solution

7. When are two matrices A and B said to be conformable for the product $A B$?

If $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 3 \\ 1 & 2 & 4\end{array}\right)$ and $B=\left(\begin{array}{ccc}6 & -2 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right)$ show that, $A B=B A$.

Is it, in general, true for matrix multiplication? Give an example to justify your answer.
8. If $A=\left(\begin{array}{ccc}4 & 2 & -1 \\ 3 & -7 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}2 & 3 \\ -3 & 0 \\ -1 & 5\end{array}\right)$, find $A B$ and $B A$.

- Watch Video Solution

9. If $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 1 & -1 & 1 \\ 2 & 3 & -1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 4 & 0 \\ -1 & 2 & 2 \\ 0 & 0 & 2\end{array}\right]$, find the matrix $A B$ $2 B$.

- Watch Video Solution

10. If $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & 1 & 3 \\ -1 & 0 & 1 \\ 3 & -1 & 4\end{array}\right]$, show that, $A B \neq B A$.

- Watch Video Solution

11. If $P=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ then show that, $p^{2}=p$.

- Watch Video Solution

12. If $A=\left[\begin{array}{ccc}2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5\end{array}\right]$ show that
$A B=B A=0$, where 0 is the zero matrix of order 3×3.

- Watch Video Solution

13. If $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & -1 & 1 \\ 2 & 2 & -2 \\ -3 & -3 & 3\end{array}\right]$, prove that $A B \neq 0$ but $\mathrm{BA}=0$.
14. Prove that the product of the matrices $\left[\begin{array}{cc}\cos ^{2} \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin ^{2} \alpha\end{array}\right]$ and $\left[\begin{array}{cc}\cos ^{2} \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin ^{2} \beta\end{array}\right]$ is the null matrix when α and β differ by an odd multiple of $\frac{\pi}{2}$.

- Watch Video Solution

15. If $A=\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)$, show that, $A^{2}-4 A-5 I=0 \quad$ where $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $0=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.

- Watch Video Solution

16. If $A=\left(\begin{array}{cc}1 & 2 \\ -3 & 0\end{array}\right)$, show that, $A^{2}+3 A+5 I=\left(\begin{array}{cc}3 & 8 \\ -12 & -1\end{array}\right)$.

- Watch Video Solution

17. If $A=\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ then show find the value of k so that $A^{2}=8 A+k I$.

(D) Watch Video Solution

18. If $A=\left(\begin{array}{cc}1 & 2 \\ -1 & -2\end{array}\right)$ and $B=\left(\begin{array}{ll}-1 & 3 \\ -3 & 1\end{array}\right)$. then show that, $(A+B)^{2} \neq A^{2}+2 A B+B^{2}$.

- Watch Video Solution

19. If $\left(\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right) \times\binom{ x}{y}=\binom{1}{-1}$, find x and y .

- Watch Video Solution

20. If $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$, find k such that $A^{2}=k A-2 I_{2}$

- Watch Video Solution

21. If $A=\left(\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right)$ and $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, prove that,
$(A-2 I)(A-3 I)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.

(D) Watch Video Solution

22. If $A=\left(\begin{array}{cc}1 & i \\ -i & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}i & -1 \\ -1 & -i\end{array}\right)$, find $A B \quad$ and $B A(i=\sqrt{-1})$.

- Watch Video Solution

23. If $X=\left[\begin{array}{ccc}1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4\end{array}\right]$, show that, $X^{2}=0$ where 0 is the null matrix of order 3×3.

- Watch Video Solution

24. If $A=\left(\begin{array}{cccc}1 & -3 & 4 & 2 \\ 0 & 5 & -2 & 3\end{array}\right)$ and $B=\left(\begin{array}{cccc}-5 & 0 & 6 & 4 \\ 7 & 8 & -2 & 5\end{array}\right)$, find a matrix X of order 2×4 such that $3 A-2 X=B$.

- Watch Video Solution

25. If $A=\left(\begin{array}{ll}3 & 2 \\ 3 & 3\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & -\frac{2}{3} \\ -1 & 1\end{array}\right)$ show that $A B=I_{2}$ where I_{2} is the unit matrix of order 2.

Watch Video Solution

26. If $A=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right], B=\left[\begin{array}{cc}a & 1 \\ b & -1\end{array}\right]$, and $(A+B)^{2}=A^{2}+B^{2}$, find a and b.

- Watch Video Solution

27. If $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 2 \\ 3 & 3\end{array}\right]$, find AA^{T}.

(Watch Video Solution

28. If $A=\left(\begin{array}{cc}x & -2 \\ 2 & 1\end{array}\right), B=\left(\begin{array}{ll}3 & 4 \\ 0 & 1\end{array}\right), C=\left(\begin{array}{cc}-1 & -2 \\ y & 2\end{array}\right)$ and $\mathrm{A}+\mathrm{B}=\mathrm{BC}$. find x and y.
29. If A and B are two matrices such that $A B=0$, can we deduce that either A or B is a zero matrix? Illustrate by an example.

(Watch Video Solution

30. Show that thematrix $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$ satisfies the equations $A^{2}-4 A+I=0$ where I is 2×2 identity matrix and O is 2×2 zero matrix. Using the equations. Find A^{-1}.

- Watch Video Solution

31. If $A=\left[\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & 4 \\ -1 & 7\end{array}\right]$, find $3 A^{2}-2 B+I$

- Watch Video Solution

32. Find the value of x such that
$\left[\begin{array}{lll}1 & x & 1\end{array}\right] \times\left[\begin{array}{ccc}1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2\end{array}\right] \times\left[\begin{array}{l}1 \\ 2 \\ x\end{array}\right]=0$

(Watch Video Solution

Long Answer Type Questions

1. If $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & -1 & 1\end{array}\right]$, find the matrix for the polynomial $A^{2}-4 A+3 I$.

- Watch Video Solution

2. If $A=\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]$, find $A^{2}-5 A-14 I$.

(Watch Video Solution

3.

$A=\left[\begin{array}{ccc}2 & 0 & 9 \\ -1 & 6 & 10 \\ 4 & -1 & 2\end{array}\right], B=\left[\begin{array}{ccc}0 & -1 & -2 \\ 3 & 2 & -1 \\ 4 & -2 & 0\end{array}\right]$ and $C=\left[\begin{array}{ccc}1 & -2 & 0 \\ 0 & 1 & 2 \\ 3 & 0 & -1\end{array}\right]$
then show that,
$A(B C)=(A B) C$

- Watch Video Solution

4.

If
$A=\left[\begin{array}{ccc}2 & 0 & 9 \\ -1 & 6 & 10 \\ 4 & -1 & 2\end{array}\right], B=\left[\begin{array}{ccc}0 & -1 & -2 \\ 3 & 2 & -1 \\ 4 & -2 & 0\end{array}\right]$ and $C=\left[\begin{array}{ccc}1 & -2 & 0 \\ 0 & 1 & 2 \\ 3 & 0 & -1\end{array}\right]$
then show that,
$A(B+C)=A B+A C$.

Watch Video Solution
5. Given $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & x & x \\ x & 4 & 5 \\ x & 6 & 7\end{array}\right]$, determine the
value of x, if there be any, for which the property $A B=B A$ may hold.

Watch Video Solution

6. A, B, C are matrices each of order 2×2 with $A B=A C$.

Does it imply that $\mathrm{B}=\mathrm{C}$? Give an example in support of your conclusion.

- Watch Video Solution

7. If $A+I_{3}=\left[\begin{array}{ccc}1 & 3 & 4 \\ -1 & 1 & 3 \\ -2 & -3 & 1\end{array}\right]$, evaluate $\left(A+I_{3}\right)\left(A-I_{3}\right)$, where I_{3}
represents 3×3 unit matrix.

- Watch Video Solution

8. Let $f(x)=2 x^{2}+3 x+5$ and $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right]$. find $\mathrm{f}(\mathrm{A})$.
A. `
B.
C.
D.

Answer: $\left[\begin{array}{ll}25 & 15 \\ 45 & 55\end{array}\right]$
Watch Video Solution
9. If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ and $f(x)=x^{2}-2 x-3$, show that $\mathrm{f}(\mathrm{A})=0$.

- Watch Video Solution

10. If $A=\left[\begin{array}{ccc}1 & x & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2\end{array}\right]$ and $A^{2}+2 I_{3}=3 A$ find x , here I_{3} is the unit matrix of order 3 .

- Watch Video Solution

11. If $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -2 \\ -1 & 1\end{array}\right]$ verify that, $(A B)^{T}=B^{T} A^{T}$ where A^{T} is the transpose of A .

(D) Watch Video Solution

12. If $A=\left[\begin{array}{ccc}-2 & 1 & 3 \\ 0 & 4 & -1\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 1 \\ -3 & 0 \\ 4 & -5\end{array}\right]$, show that,
$(A B)^{\prime}=B^{\prime} A^{\prime}$ where A^{\prime} is the transpose of A.

- Watch Video Solution

13. If $A=\left[\begin{array}{ccc}1 & 2 & 5 \\ -1 & 3 & -4\end{array}\right]$ and $B=\left[\begin{array}{ccc}3 & -2 & 1 \\ 0 & -1 & 4 \\ 5 & 2 & -1\end{array}\right]$, show that, $(A B)^{T}=B^{T} A^{T}$ where A^{T} is the transpose of A .

- Watch Video Solution

14. If $A=\left[\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right]$ and $B=\left[\begin{array}{lll}-2 & -1 & -4\end{array}\right]$ then verify that $(A B)^{T}=B^{T} A^{T}$.
15. If $A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$ then prove that, $\mathrm{AA}^{\prime}=\mathrm{I}$. Hence find A^{-1}

- Watch Video Solution

16. If $A=\left(\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right), I=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$ and $O=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, show that $A^{2}-5 A+7 I=o$. Hence find A^{-1}.

- Watch Video Solution

17. If $A=\left[\begin{array}{ll}4 & 5 \\ 5 & 6\end{array}\right]$, show that $A^{2}=10 A+I$ where I is a unit matrix of order 2 . Hence find inverse matrix of A .

- Watch Video Solution

18. Show that, matrix $A=\left[\begin{array}{cc}2 & -3 \\ 3 & 4\end{array}\right]$ satisfies the equation $A^{2}-6 A+17=0$. Hence find A^{-1}
19. If the matrix $A=\frac{1}{3}\left(\begin{array}{lll}a & 2 & 2 \\ 2 & 1 & b \\ 2 & c & 1\end{array}\right)$ obeys the law $\mathrm{AA}^{\prime}=I$, find a, b, and c (Here A^{\prime} is the transpose of A and I is the unit matrix of order 3).

- Watch Video Solution

20. If $A=\left[\begin{array}{ccc}1 & -2 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & 3 & -1 \\ 0 & -1 & -2\end{array}\right]$, then show that,
$\left(A^{\prime} B\right) A$ is a diagonal matrix.

- Watch Video Solution

21. Express the matrix $A=\left[\begin{array}{ccc}4 & 2 & -1 \\ 3 & 5 & 7 \\ 1 & -2 & 1\end{array}\right]$ as the sum of a symmetric matrix and a skew-symmetric matrix.
22. If $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ show, by mathematical induction, that $A^{n}=\left[\begin{array}{cc}1 & 2 n \\ 0 & 1\end{array}\right]$ for all $n \in N$.

- Watch Video Solution

23. If $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$, then by principle of mathematics induction show that, $A^{n}=\left[\begin{array}{cc}1+2 n & -4 n \\ n & 1-2 n\end{array}\right]$ for all $n \in N$.

- Watch Video Solution

24. If $A=\left[\begin{array}{cc}\cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta\end{array}\right]$, then prove by principle of mathematical induction that $A^{n}=\left[\begin{array}{cc}\cos n \theta & i \sin \theta \\ i \sin \theta & \cos n \theta\end{array}\right]$ for all $n \in N$.

- Watch Video Solution

25. If $A=\left[\begin{array}{ll}a & b \\ 0 & 1\end{array}\right]$, prove by mathematical induction that,
$A^{n}=\left[\begin{array}{cc}a^{n} & \frac{b\left(a^{n}-1\right)}{a-1} \\ 0 & 1\end{array}\right]$ for every positive integer n.

(Watch Video Solution

26. if $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$, prove by mathematical induction that,
$A^{n}=\left[\begin{array}{lll}3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1}\end{array}\right]$ for every positive integer n.

- Watch Video Solution

27. Show tha, $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$ satisfies the equation $A^{2}-4 A-5 I_{3}=0$. Hence find A^{-1}.

- Watch Video Solution

28. If $A=\left[\begin{array}{cc}0 & -\tan \frac{\alpha}{2} \\ \tan . \frac{\alpha}{2} & 0\end{array}\right]$ and I is the identify matrix of order 2 , Show that I+A=(I-A) $\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$.

- Watch Video Solution

29. If $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $E=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ prove that, $(2 I+3 E)^{3}=8 I+36 E$.

- Watch Video Solution

Sample Question For Compettive Examination

1. If A and B are square matrices of the same order such that $A^{2}=A, B^{2}=B, A B=B A=0$, then
A. $(A+B)^{2}=A+B$
B. $A B^{2}=0$
C. $(A-B)^{2}=A-B$
D. none of these

Answer: A,B

- Watch Video Solution

2. A matrix $A=\left[a_{i j}\right]_{m \times n} i s \ldots$.
A. a horizontal matrix if $m>n$
B. a horizontal matrix if $m<n$
C. a vertical matrix if $m>n$
D. a vertical matrix if $m<n$

Answer: B,C

- Watch Video Solution

3. If $a d-b c \neq 0, \mathrm{~A}=\{:[(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d})]:\}$ and $\mathrm{A}^{\wedge}(2)+\mathrm{xA}+\mathrm{yl}(2)=0^{\text { }}$, then \qquad
A. $x=-(a+b)$
B. $x=-(a+d)$
C. $y=a d-b c$
D. $y=b c-a d$

Answer: B,C

- View Text Solution

4. If A and B are square matrices of the same order such that $A B=A$ and $B A=B$, then......
A. $A^{2}=A$
B. $B^{2}=B$
C. $A=I$
D. $B=I$

Answer: A,B

D Watch Video Solution

5. If $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & i \\ i & 0\end{array}\right]$, then
A. $A^{2}=I$
B. $B^{2}=I$
C. $A^{2}=-I$
D. $B^{2}=-I$

Answer: C,D

- Watch Video Solution

6. For what value of y are the following matrices equal?
$A=\left[\begin{array}{cc}2 x+1 & 3 y \\ 0 & y^{2}-5 y\end{array}\right], B=\left[\begin{array}{cc}x+3 & y^{2}+2 \\ 0 & -6\end{array}\right]$
7. If $A=\left[\begin{array}{cc}i & -i \\ -i & i\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$ then the value of $A^{4}=K B$, find the value of K.

- Watch Video Solution

8. If $A=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$ and $A^{2}=\left[\begin{array}{cc}\alpha & \beta \\ \beta & \alpha\end{array}\right]$ such that $\beta=K a b$. Then the value of K will be \qquad

Watch Video Solution
9. If $A=\left[\begin{array}{cc}1 & 0 \\ \frac{1}{2} & 1\end{array}\right]$ then $A^{100}=\left[\begin{array}{cc}1 & 0 \\ 10 \times \lambda & 1\end{array}\right]$, find the value of λ.

- Watch Video Solution

10. If $A=\left[\begin{array}{lll}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], B=\left[\begin{array}{ccc}1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $A B=I_{3}$, then find the value of $x+y+1$.

- Watch Video Solution

11. A and B arer two matrices of order 3×3 which satisfy $A B=A$ and $B A=$
B.

Which of the following are true?
A. $A^{2} B=A^{2}$
B. $B^{2} A=B^{2}$
C. $A B A=A$
D. $B A B=B$

Answer: A,B,C,D

12. A and B arer two matrices of order 3×3 which satisfy $A B=A$ and $B A=B$ then $(A+B)^{7}$ is equal to \qquad
A. $7(\mathrm{~A}+\mathrm{B})$
B. $7 I_{3 \times 3}$
C. $64(A+B)$
D. $128 I_{3 \times 3}$

Answer: D

- Watch Video Solution

13. A and B arer two matrices of order 3×3 which satisfy $\mathrm{AB}=\mathrm{A}$ and $\mathrm{BA}=$ B. then $(A+I)^{5}$ is equal to (where I is identify matrix)
A. $I+60 A$
B. $I+16 A$
C. $I+31 A$
D. none of these

Answer: C

- Watch Video Solution

14. Let A be matrix of order 2×2 such that $A^{2}=0$ (where 0 is null matrix) and I is an identify matrix.
$A^{2}-(a+d) A+(a d-b c) I$ is equal to \qquad
A. I
B. 0
C. $-I$
D. none of these

Answer: B

- Watch Video Solution

15. If $A \neq 0, \quad A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], \quad$ ad- $\quad c \quad=0 \quad$ and
$A^{2}-(a+d) A+(a d-b c) I=0$ then the value of $\mathrm{a}+\mathrm{d}$ will be--
A. 1
B. 0
C. -1
D. none of these

Answer: B

- Watch Video Solution

16. Let a be a matrix of order 2×2 such that $A^{2}=O$.
$(I+A)^{100}=$
A. 100A
B. $100(1+\mathrm{A})$
C. $100 \mathrm{I}+\mathrm{A}$

D. $1+100 \mathrm{~A}$

Answer: D

- Watch Video Solution

17. Let $A=\left[a_{i j}\right]_{m \times n}$ is defined by $a_{i j}=i+j$. Then the sum of all the elements of the matrix is
A. $\frac{m n}{2}(m+n+2)$
B. $\frac{m n}{2}(m+n-2)$
C. $\frac{m n}{2}(m+2 n+2)$
D. $\frac{m n}{2}(2 m+n+2)$

Answer: A

- Watch Video Solution

18. A matrix A is said to be an Idempotent matrix if $A^{2}=A$. Then which of the following is true
A. $I+A$ is Idempotent
B. $I-A$ is Idempotent
C. Both are Idempotent
D. None of these

Answer: B

- Watch Video Solution

