

MATHS

BOOKS - CHHAYA PUBLICATION MATHS (BENGALI ENGLISH)

BINARY OPERATION

1. Let P(A) be the power set of a non-empty set A. Prove that union (\cup) and intersection (\cap) of two subsets X and Y of A are binary operations on P(A).

2. Let * be an operation defined on A, $= \{2, 4, 6, 8\}$ by a * b = k where k is the least non-negative remainder when the product ab is divided by 10 and $a, b \in A$. show that * is a binary operation on A.

3. Let S be a set of two elements. How many different

binary operaions can be defined on S?

4. The operation * is defined by $a * b = a^b$ on the set $Z = \{0, 1, 2, 3, \ldots\}$. Show that * is not a binary operation.

Watch Video Solution

5. Let $S = \sqrt{3}x + 2y$: $x, y \in Z$ }. Prove that the operation * on S defined by $(\sqrt{3}x_1 + 2y) * (\sqrt{3}x_2 + 2y_2) = \sqrt{3}(x_1 + x_2) + 2(y_1 + y_2)$ for all $x_1, x_2, y_1, y_2 \in Z$ is closed under * .

6. Let $A = \{0, 1, 2, 3, 4, 5\}$. If $a_1b \in A$, then an operation \circ on A is defined by $a \circ b = k$ where k is the least non-negative remainder when the sum (a + b) is divided by 6. Show that \circ is a binary operation on A.

7. Let $\mathbb R$ be the set of real numbers and $x, y \in R$. We define operaitons \wedge and \vee on $\mathbb R$ as

- $x \wedge y = \max$ maximum of x and y,
- $x \lor y =$ minimum of x and y.

Show the operation $~\wedge~$ and $~\vee~$ defined above are binary

operations on \mathbb{R} .

8. On the set C of all complex numbers an operation 'o' is defined by z_1 o $z_2 = \sqrt{z_1 z_2}$ for all $z_1, z_2 \in C$. Is o a binary operation on C ?

Watch Video Solution

9. Determine whether * on N defined by $a \cdot b = a^b$ for all $a, b \in N$ define a binary operation on the given set or not:

10. On Q , the set of all rational numbers a binary operation * is defined by $a\cdot b=rac{a+b}{2}$. Show that * is not associative on Q.

Watch Video Solution

11. Let \mathbb{R} be the set of real numbers. Show that the operation * defined on $\mathbb{R} - \{0\}$ by $a * b = |ab|, a, b \in \mathbb{R} - \{0\}$ is a binary operation on $\mathbb{R} - \{0\}$.

12. Let $M_2=egin{bmatrix} x & 0 \ 0 & y \end{bmatrix}, x,y\in \mathbb{R}-\{0\}$ be the set of 2 imes 2

matrices, prove that the operation * defined on M_2 by

 $A * B = AB, A, B \in M_2$ is a binary operation.

Watch Video Solution

13. Let S = (0, 1, 2, 3, 4,) and * be an operation on S defined by $a \cdot b = r$, where *r* is the least non-negative remainder when a + b is divided by 5. Prove that * is a binary operation on S.

14. Is
$$\circ$$
 defined on \mathbb{Q} the set of rational numbers, by
 $a \circ b = \frac{a-1}{b-1} (a, b \in \mathbb{Q})$, a binary operation?

15. Prove that an operation * on \mathbb{R} , the set of real numbers, defined by $x * y = 2xy + \sqrt{5}$, for all $x, y \in \mathbb{R}$, is a binary operation on \mathbb{R} .

Watch Video Solution

16. Let \circ be a binary operation on \mathbb{Q} , the set of rational numbers, defined by $a \circ b = \frac{1}{8}ab$ for all $a, b \in \mathbb{Q}$. Prove that \circ is commutive as well as associative.

17. let * be a binary operation on \mathbb{Z}^+ , the set of positive integers, defined by $a * b = a^b$ for all $a, b \in \mathbb{Z}^+$. Prove that * is neither commutative nor associative on \mathbb{Z}^+ .

18. Show that the binary operation * defined on \mathbb{R} by

a * b = ab + 2 is commutative but not associative.

19. let * be a binary operation on \mathbb{R} , the set of real numbers, defined by $a \circ b = \sqrt{a^2 + b^2}$ for all $a, b \in \mathbb{R}$. Prove that the binary operation \circ is commutative as well as associative.

20. Discuss the commutativity and associativity of binary operation * defined on \mathbb{Z} by the rule

a * b = |a|b for all $a, b \in \mathbb{Z}$.

21. Show that the operation * defined on $\mathbb{R} - \{0\}$ by a * b = |ab| is a binary operation. Show also that * is commutative and associative.

Watch Video Solution

22. Prove that the binary operation * on \mathbb{R} defined by

a*b=a+b+ab for all $a,b\in\mathbb{R}$

is commutative and associative.

23. Prove that the binary operation \circ defined on \mathbb{Q} by $a \circ b = a - b + ab$ for all a,b in \mathbb{Q} is neither commutative

nor associative.

24. Let S be a set of containing more than two elements and a binary operaton \circ on S be defined by $a \circ b = a$ for all $a, b \in S$.

Prove that \circ is associative but not commutative on .

25. let * be a binary on \mathbb{Q} , defined by

 $a st b = \left(a - b
ight)^2$ for all $a, b \in \mathbb{Q}.$ Show that the binary

operation * on \mathbb{Q} is commutative but not associative.

26. Let * and \circ be two binary operations on \mathbb{R} defined as,

 $a * b = |a - b| ext{ and } a \circ b = a ext{ for all } a, b \in \mathbb{R}.$

Examine the commutativity and associativity of * and \circ on \mathbb{R} . Show also that * is distributative over \circ but \circ is not distributive over *.

27. Let $S = \mathbb{N} imes \mathbb{N}$ and * is a binary operation on S defined by

(a,b)*(c,d)=(a+c,b+d) for all $a,b,c,d\in\mathbb{N}.$

Prove that * is a commutative and associative binary

operation on S.

28. Let $A = \mathbb{N} \times \mathbb{N}$ and \circ be a binary operation on A defined by

 $(a,b)\circ(c,d)=(ac,bd)$ for all $a,b,c,d\in\mathbb{N}.$

Discuss the commutativity and associativity of \circ on A.

Watch Video Solution

29. Show that the operation * on \mathbb{Z} , the set of integers, defined by.

a*b=a+b-2 for all $a,b\in\mathbb{Z}$

(i) is a binary operation:

(ii) satisfies commutaitve and associative laws:

(iii) Find the identity elemetn in \mathbb{Z} ,

(iv) Also find the inverse of an element $a\in\mathbb{Z}.$

Watch Video Solution

30. Prove that the operaton * on $\mathbb{Q}-\{1\}$ given by

$$a \cdot b = a + b - ab$$
 for all $a, b \in \mathbb{Q} - \{1\}$

(i) is closed:

(ii) satisfies the commutative and associative laws,

(iii) Find the identity element,

(iv) Find the inverse of any element $a \in \mathbb{Q} - \{1\}$.

31. An operation \circ on $\mathbb{Q} - \{-1\}$ is defined by $a \circ b = a + b + ab$ for $a, b \in \mathbb{Q} - \{-1\}$. Find the identity element $e \in \mathbb{Q} - \{-1\}$.

Watch Video Solution

32. On the set \mathbb{Q}^+ of all positive rational numbers if the binary operation * is defined by $a * b = \frac{1}{4}ab$ for all $a, b \in \mathbb{Q}^+$, find the identity element in \mathbb{Q}^+ . Also prove that any element in \mathbb{Q}^+ is invertible.

33. Let P(A) be the power set of a non-empty set A and a binary operation \circ on P(A) is defined by $X \circ Y = X \cup Y$ for all $Y \in P(A)$. Prove that, the binary operation \circ is commutative as well as associative on P(A). Find the identity element w.r.t. binary operation \circ on P(A). Also prove that $\Phi \in P(A)$ is the only invertible element in P(A).

34. Let * be a binary operation on $A = \mathbb{N} \times \mathbb{N}$, defined by, (a, b) * (c, d) = (ad + bc, bd) for all $(a, b)(c, d) \in A$. Prove that $A = \mathbb{N} \times \mathbb{N}$ has no identity element.

- **35.** A binary \circ on \mathbb{N} is defined by $a \circ b = L. \ C. \ M. \ (a, b)$ for all $a, b \in \mathbb{N}.$
- (i) Examine the commutativity and associativity of \circ on \mathbb{N} ,
- (ii) Find the identity element in \mathbb{N} ,
- (iii) Also find the invertible elements of \mathbb{N} .

36. If $a, b \in \mathbb{Z}$, find the values of

- (i) $3 +_4 1$
- (ii) $7 +_5 4$
- (iii) $5+_7 1$
- (iv) $4 imes_5 1$

(v) $6 imes_8 4$

(vi) $7 imes_5 4$

Watch Video Solution

37. Let $A = \{1, \omega, \omega^2\}$ be the set of cube roots of unity. Prepare the composition table for multiplication (\times) on A. Show that multiplication on A is a binary operation and it is commutative on A. Find the identity element for multiplication and show that every element of A is invertible.

38. Let $A = \{1, -1, I, -i\}$ be the set of fourth roots of unity. Prepare the composition table for multiplication (\times) on A . Show that multiplication on A. Find the identity element for multiplication and show that every element of A is invertible.

39. Complete the following multiplication table so as to

define a commutative binary operation * on

 $S = \{a, b, c, d\}$

6	С	b	а	*
6	b	d	b	a
		а		b
	d	а		с
1	С	С		d

Watch Video Solution

Match Video Colution

40. A binary operation * is defined on the set $S = \{0, 1, 2, 3, 4\}$ as follows: $a * b = a + b \pmod{5}$ Prove that $0 \in S$ is the identity element of the binary operation * and each element $a \in S$ is invertible with $5 - a \in S$ being the inverse of the element a. **41.** An operation * is defined on the set $S = \{1, 2, 3, 5, 6\}$ as follows: $a * b = ab \pmod{7}$ Construct the composition table for operation * on S and discuss its important properties.

Watch Video Solution

42. The binary operation * on the set $A = \{1, 2, 3, 4, 5\}$

is defined by a * b = maximum of a and b. Construct the

composition table of the binary operation * on A.

1. Let A be a set of 3 elements. The number of differentity binary operations can be defined A is...

A. 3⁹ B. 3³ C. 3²

D. 3^{6}

Answer: A

2. If $a * b = a^2$ then the value of (4 * 5) * 3 is...

A.
$$\left(4^2+5^2\right)+3^2$$

B. $(4+5)^2+3^2$
C. $\left(4^2+5^2\right)^2+3^2$
D. $4^2+5^2+3^2$

Answer: C

3. If the binary operation on $\mathbb Z$ is defined by $a*b=a^2-b^2+ab+4,$ then the value of (2*3)*4 is

A. 233

B. 33

C. 55

D. -55

Answer: B

Watch Video Solution

4. \mathbb{Q}^+ denote the set of all positive raional numbers. If the binary operation \circ on \mathbb{Q}^+ is defined as $a \circ b = \frac{ab}{2}$, then the inverse of 3 is---

A.
$$\frac{4}{3}$$

B. 2

C.
$$\frac{1}{3}$$

D. $\frac{2}{3}$

Answer: A

- 5. Subtraction of integer is--
 - A. commutative but not associative
 - B. comutative and associative
 - C. associtive but nor commutative
 - D. neither commutative nor associative

Answer: D

6. Which of the following statement is true?

A. * defined by $a * b = rac{a+b}{2}$ is a binary operation on $\mathbb Z$

B. * defined by $a * b = rac{a+b}{2}$ is a binary operation on $\mathbb Q$

C. all binary commutative operations are associative

D. Subtraction is a binary operation on $\mathbb N$

Answer: B

a * b = a + b + ab for all $a, b \in \mathbb{N}$ is--

A. commutaitive only

B. associative only

C. commutative and associative both

D. none of these

Answer: C

8. If the binary operation \circ is defined on the set \mathbb{Q}^+ of positive rational numbers by $a \circ b = rac{ab}{A}$. Then all $3 \circ \left(rac{1}{5} \circ rac{1}{2}
ight)$ is equal to--A. $\frac{3}{160}$ B. $\frac{5}{160}$ C. $\frac{3}{10}$ D. $\frac{3}{40}$

Answer: A

9. If M_2 be the set of all 2×2 matrices of the form $\begin{pmatrix} a & a \\ a & a \end{pmatrix}$, where $a \in R - \{0\}$, then the identity element with respect to the multiplication of matrices as binary operation, is--

Answer: C

1. Define a binary opeartion * on a non-empty set A.

Watch Video Solution

2. Define a commutative binary operation no a non-empty

set A.

Watch Video Solution

3. Define an associative binary operation on a non-empty

set S.

4. Let * and \circ be two binary operations on a non-empty setA. Then write the condition for which the binary operation * is distibutive over binary operation \circ

Watch Video Solution

5. Let P(A) be the power set of a non-empty set A. Prove that union (\cup) and intersection (\cap) of two subsets X and Y of A are binary operations on P(A).

6. Let * be an operation defined on \mathbb{N} , the set of natural numbers, by a * b = L. C. M. (a, b) for all $a, b \in \mathbb{N}$. Prove that * is a binary operation on \mathbb{N} .

Watch Video Solution

7. Let \circ be an operation defined on \mathbb{R} . The set of real numbers, by $a \circ b = \min(a, b)$ for all $a, b \in \mathbb{R}$. Show that \circ is a binary operation on \mathbb{R} .

Watch Video Solution

8. The operation \circ is defined by $a \circ b = b^a$ on the set $Z = \{0, 1, 2, 3, \ldots\}$. Prove that \circ is not a binary

9. Let
$$A = \left\{ 3x + \sqrt{5}y \colon x, y \in \mathbb{Z} \right\}$$
. Show that an operation $*$ on A defined by,

 $ig(3x_1+\sqrt{5}y_1ig)*ig(3x_2+\sqrt{5}y_2ig)=3(x_1+x_2)+\sqrt{5}(y_1+y_2)$

for all $x_1, x_2, y_1, y_2 \in \mathbb{Z}$ is binary operation on A.

Watch Video Solution

10. Prove that the operation 'addition' on the set of irrational numbers is not a binary operation.

11. Prove that the operation \circ on \mathbb{Q} , the set of rational numbers, defined by $a \circ b = ab + 1$ is binary operational on \mathbb{Q} .

Watch Video Solution

12. Let * be an opeartion defined on $S = \{1, 2, 3, 4\}$ by a * b = m where m is the least non-negative remainder when the product ab is divided by 5. Prove that * is a binary operation on S.

13. An operation * is defined on the set of real numbers \mathbb{R} by a * b = ab + 5 for all $a, b \in \mathbb{R}$. Is * a binary operation on \mathbb{R} ?.

Watch Video Solution

14. Let $S = \{0, 1, 2, 3, 4\}$, if $a, b \in S$, then an operation * on S is defined by, a * b = r where r is the nonnegative remaider when (a+b) is divided by 5. Prove that * is a binary operation on S.

15. Let M_2 be the set of all 2×2 singular matrices of the form $\begin{pmatrix} a & a \\ a & a \end{pmatrix}$ where $a \in \mathbb{R}$. On M_2 an operation \circ is defined as $A \circ B = AB$ for all $A, B \in M_2$. Show that \circ

is a binary operation on M_2 .

16. An operation * on the set of all complex numbers $\mathbb C$ is defined by $z_1*z_2=\sqrt{z_1z_2}$ for all $z_1,z_2\in\mathbb C$. Is * a

binary operation on \mathbb{C} ?

17. Show that an operation * on \mathbb{R} , the set of real numbers, defined by $a*b=3ab+\sqrt{2},\,$ for all $a,b\in\mathbb{R}.$ Is a binary operaion on $\mathbb{R}.$

Watch Video Solution

18. Examine whether the operation \circ on \mathbb{Z}^+ defined by $a \circ b = |a - b|$ for all $a, b \in \mathbb{Z}^+$, is a binary operation on \mathbb{Z}^+ or not.

19. Prove that the operation \land on $\mathbb R$ defined by $x \land y =$ min. of x and y for all $x, y \in \mathbb R$ is a binary operation on $\mathbb R$.

 $x\circ y=rac{x-2}{y-2}$ for all $x,y\in\mathbb{Q}$ does not represent a

binary operation on \mathbb{Q} .

Watch Video Solution

22. An operation * is defined on \mathbb{N} as a * b = HCF(a, b)for all $a, b \in \mathbb{N}$. Show that * is a binary operation on \mathbb{N} . Find the values of 25 * 15, 32 * 56, 9 * 11 and 34 * 38.

Exercise 3 Short Answer Type Questions

1. Discuss commutativity and associativity * on $\mathbb R$ defined

by $a * b = \min(a, b)$ for all $a, b \in \mathbb{R}$.

defined by $a \circ b = a|b|$ for all $a, b \in \mathbb{Z}$.

4. Check for commutative and associative (\mathbb{Z}, \circ) where $a \circ b = a + b + ab$ for all $a, b \in \mathbb{Z}$.

5. Discuss the commutativity and associativity * on $\mathbb R$

defined by a * b = |a + b| for all a,binRR`.

8. Check for commutative and associative \circ on $\mathbb R$ defined

by $x\circ y$ = max (x, y) for all $x,y\in\mathbb{R}.$

11. Discuss the commutativity and associativity * on $\mathbb Q$ defined by a * b = ab + 4 for all $a, b \in \mathbb Q.$

 $a*b=\gcd(a,b)$ for all $a,b\in\mathbb{N}.$

14. Check for commutativity and associativity * on $\mathbb Z$

defined by a * b = |a|b for all $a, b \in \mathbb{Z}$.

16. Discuss the commutativity and associativity * on $\mathbb R$

defined by a * b = |ab| for all $a, b \in \mathbb{R}$.

17. * on $\mathbb{Z} \times \mathbb{Z}$ defined by (a,b)*(c,d) = (a-c,b-d) for all $(a,b), (c,d) \in \mathbb{Z} \times \mathbb{Z}.$

Watch Video Solution

18. Check commutativity and associativity \circ on $M_2(\mathbb{R})$ defined by $A \circ B = \frac{1}{2}(AB - BA)$ for all $A, B \in M_2(\mathbb{R})$ where $M_2(\mathbb{R})$ is a 2×2 real matrix.

Watch Video Solution

19. An operation * on \mathbb{Z} , the set of integers, is defined as,

a * b = a - b + ab for all $a, b \in \mathbb{Z}$. Prove that * is a

binary operation on $\mathbb Z$ which is neither commutative nor

associative.

20. (I) Let * be a binary operation defined by a * b = 2a + b - 3. Find 3 * 4.

(ii) let * be a binary operation on $\mathbb{R} - \{-1\}$, defined by $a * b = \frac{1}{b+1}$ for all $a, b \in \mathbb{R} - \{-1\}$ Show that * is neither commutative nor associative. (iii) Let * be a binary operation on the set \mathbb{Q} of all raional numbers, defined as $a * b = (2a - b^2)$ for all $a, b \in \mathbb{Q}$.

Find 3 * 5 and 5 * 3. Is 3 * 5 = 5 * 3?

Watch Video Solution

21. A binary operaiton \circ is defined on the set $\mathbb{R} - \{-1\}$ as $x \circ y = x + y + xy$ for all $x, y \in \mathbb{R} - \{-1\}$. Discuss the commutativity and associativity of \circ on $\mathbb{R} - \{-1\}$. If (3 * 2x) * 5 = 71, find x.

22. If * be the binary operation on the set \mathbb{Z} of all integers, defined by $a * b = a + 3b^2$, find 2 * 4.

Watch Video Solution

23. A binary operation \circ is defined on \mathbb{Z} , the set of integers, by $a \circ b = |a - b|$ for all $a, b \in \mathbb{Z}$. Find the

22 * 4

Watch Video Solution

25. If $+_6$ (addition modulo 6) is a binary operation on $A = \{0, 1, 2, 3, 4, 5\}$, find the value of $3 +_6 3^{-1} +_6 2^{-1}$. [note that the identity element is 0 and the inverse of the element 2 is 4 as $2 +_6 4 = 0$, the identity element.] **26.** A binary operation * is defined on the set \mathbb{R}_0 for all non-zero real numbers as $a * b = \frac{ab}{3}$ for all $a, b \in \mathbb{R}_0$, find the identity element in \mathbb{R}_0 .

Watch Video Solution

27. A binary operation * is defined on the set \mathbb{Z} of all integers by $a \circ b = a + b - 3$ for all $a, b \in \mathbb{Z}$. Determine the inverse of $5 \in \mathbb{Z}$.

Watch Video Solution

28. A binary operation * is defined on the set of real numbers $\mathbb R$ by a*b=2a+b-5 for all $a,b\in\mathbb R$. If 3*(x-2)=20 find x.

Watch Video Solution

29. For the binary operation multiplication modulo $5 \cdot (\times_5)$ defined on the set $A = \{1, 2, 3, 4\}$, find the value of $\{2 \times_5 3^{-1}$. [Note that the inverse of 3 is 2]

Watch Video Solution

30. A binary operation * on \mathbb{Q} the set of all rational numbers is defined as $a * b = \frac{1}{2}ab$ for all $a, b \in \mathbb{Q}$. Prove

that * is commutative as well as associative on \mathbb{Q} .

31. Prove that the identity element of the binary opeartion

* on $\mathbb R$ defined by a * b= min. (a,b) for all $a, b \in \mathbb R$, does

not exist.

Watch Video Solution

32. Find the identity element of the binary operation *

on $\mathbb Z$ defined by $a \ast b = a + b + 1$ for all $a, b \in \mathbb Z$.

) Watch Video Solution

33. The binary operation * define on N by a*b = a+b+ab for

all $a,b\in N$ is

34. Prove that 0 is the identity element of the binary operation * on \mathbb{Z}^+ defined by x*y=x+y for all $x,y\in\mathbb{Z}^+.$

Watch Video Solution

35. A binary operation * on \mathbb{Q}_0 , the set of all non-zero rational numbers, is defined as $a * b = \frac{1}{3}ab$ for all $a, b \in \mathbb{Q}_0$ Prove that every element of \mathbb{Q}_0 , is invertible and find the inverse of the element $\frac{3}{5} \in \mathbb{Q}_0$.

36. A binary operation \circ on $\mathbb{Q} - \{1\}$ is defined by a * b = a + b - ab for all $a, b \in \mathbb{Q} - \{1\}$. Prove that every element of $\mathbb{Q} - \{1\}$ is invertible.

37. A binary operation * on \mathbb{Q} , the set of rational numbers, is defined by $a * b = \frac{a-b}{3}$ fo rall $a, b \in \mathbb{Q}$. Show that the binary opearation * is neither commutative nor associative on \mathbb{Q} .

38. Determine which of the following binary operations are associative and which are commutative:

(i) * on $\mathbb R$ defined by a*b=1 for all $a,b\in\mathbb R.$

(ii) * on $\mathbb R$ defined by $a*b=rac{a+b}{2}$ for all $a,b\in\mathbb R.$

Watch Video Solution

39. Let S be any set containing more than two elements. A binary operation \circ is defined on S by $a \circ b = b$ for all $a, b \in S$. Discuss the commutativity and associativity of \circ on S.

40. State whether the following statements are true or false with reasons.

(i) For any binary operation * on \mathbb{N} , $a*a = a \, \forall a \in \mathbb{N}$.

(ii) If *, a binary operation * on \mathbb{N} is commutative then,

 $a \ast (b \ast c) = (c \ast b) \ast a.$

Exercise 3 Long Answer Type Questions

1. A binary operation \circ is defined on $\mathbb{R} - \{-1\}$ by $a \circ b = a + b + ab$ for all $a, b \in \mathbb{R} - \{-1\}$. (i) Discuss the commutativity and associativity of \circ on $\mathbb{R} - \{-1\}$. Find the identity element, if exists.

(iii) Prove that every element of $\mathbb{R}-\{-1\}$ is invertible.

O Watch Video Solution	

2. The binary operation multiplication modulo $10(\times_{10})$ is defined on the set $A = \{0, 1, 3, 7, 9, \}$, find the inverse of the element 7.

3. Construct the composition table for the binary operation multiplication modulo $5(\times_5)$ on the set $A = \{0, 1, 2, 3, 4\}.$

4. A binary operation * on \mathbb{N} is defined by $a*b=L.\ C.\ M.\ (a,b)$ for all $a,b\in\mathbb{N}.$ (i) Find 15*18

(ii) Show that * is commutative as well as associative on \mathbb{N} .

(iii) Find the the identity element in \mathbb{N} .

(iv) Also find the invertible element in \mathbb{N} .

Watch Video Solution

5. Let P(A) b the power set of non-empty set A. A binary operation * is defined on P(A) as $X * Y = X \cap Y$ for all

 $X,Y\in P(A).$ Detemine the identity element In P(A).

Prove that A is the only invertible element in P(A).

Watch Video Solution

6. A binary operation * is defined in \mathbb{Q}_0 , the set of all nonzero rational numbers, by $a * b = \frac{ab}{3}$ for all $a, b \in \mathbb{Q}_0$. Find the identity element in \mathbb{Q}_0 . Also find the inverse of an element $x \in \mathbb{Q}_0$.

Watch Video Solution

7. Let P(C) be the power set of non-empty set C. A binary operation * is defined on P(C) as $A*B=(A-B)\cup(B-A)$ for all $A,B\in P(C)$. Prove that Φ is the identity element for * on P(C) and A is invertible for all $A\in \mathbb{Q}_0.$

Watch Video Solution

8. Let $A = N \cup \{0\} \times \mathbb{N} \cup \{0\}$, a binary operation * is defined on A by. (a, b) * (c, d) = (a + c, b + d) for all $(a, b), (c, d) \in A$. Prove that * is commutative as well as associative on A. Show also that (0,0) is the identity element In A.

9. Let $A = \{0, 1, 2, 3, 4, 5\}$ be a given set, a binary operation \circ is defined on A by $a \circ b = ab \pmod{6}$ for all

 $a,b\in A.$ Find the identity element for $\,\circ\,$ in A . Show that

1 and 5 are the only invetible elements in A.

 $(a,b), (c,d) \in A.$ Show that * possesses no identity element in A.

Watch Video Solution

11. Find the values of

(i) $4+_62$ (ii) $7+_57$ (iii) $5+_82$

(iv) $3 imes_7 2$ (v) $12 imes_{10} 5$ (vi) $6 imes_5 4$

12. Let $M_2(x)d = \left\{ \begin{pmatrix} x & x \\ x & x \end{pmatrix}, x \in \mathbb{R} \right\}$ be the set of 2×2 singular matrices. Considering multiplication of matrices as a binary operation, find the identity element in $M_2(x)$.

Also find the inverse of an element of M_2 .

Watch Video Solution

13. Prepare the composition table for addition modulo

 $6(\ +_{6}\)$ on $A=\{0,1,2,3,4,5\}.$

14. Prepare the composition table for multiplication modulo 6 ($imes_6$) on $A=\{0,1,2,3,4,5\}.$

16. Let $S = \{1, \omega, \omega^2\}$ be the set of cube roots of unity. Prepare the composition table for multiplication (\times) on S, show that multiplication on S is a binary operation and it is commutative on S. Also, show that every element on S

is invertible.

Vatch Video Solution

17. Prepare the composition table for multiplication (\times) on the set of fourth roots of unity and discuss its important properties.

18. Complete the following nultiplication table so as to

define a commutative binary operation * on

 $A = \{1, 2, 3, 4\}.$

*	1	2	3	4
1	2	4	2	1
2		1	estates a	
3		1	4	
4		3	3	2

Watch Video Solution

19. A binary operation \circ is defined on the set $A = \{0, 1, 2, 3, 4, 5\}$ as follows: $a \circ b = a + b \pmod{6}$ for all $a, b \in A$. Prove that $o \in A$ is the identity element In A is invertible with operation \circ and each element A is invertible with $6 - a \in A$ being the inverse of the element a.

20. An operation * is defined on the set $A = \{1, 2, 3, 4\}$ as follows: a * b, $ab \pmod{5}$ for all $a, b \in A$.Prepare the compositon table for * on A and from the table show that -

(i) multiplication $\mod{(5)}$ is a binary operation,

(ii) * is commutative on A,

(iii) is the identity element for multiplication $\mod{(5)}$ on A, and.

(iv) every element of A is invertible.

21. Let $A = \{1, -1\}$ be the set of square roots of unity. Considering multiplication (\times) as a binary operation on A, construct the composition table for multiplication on A. Determine the identity element for multiplication in A and the inverses of the elements.

22. Let * be the binary defined on the set $S = \{1, 2, 3, 4, 5, 6\}$ by a * b = r where r is the least nonnegative remainder when ab is divided by 7. Prepare the composition table * on S. Observing the composition table show that 1 is the identity element for * and every element of S is invertible.

Mcqs

1. Consider the binary operations $*: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $\circ: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined as a * b = |a - b| and $a \circ b = a$ for all $a, b \in \mathbb{R}$ then-

A. * is commutative but not associative on $\mathbb R$

- B. \circ is associative on \mathbb{R} .
- C. \circ is not distribution over *
- D. \circ is commutative on $\mathbb R$

Answer: A,B,C

2. If the binary oprations * on \mathbb{R} is defined by a * b = a + b + ab for all $a, b \in \mathbb{R}$ where on R.H.S. we have usual addition, subtraction and multiplication of real numbers. The relation * is---

A. not commutative

B. associative

C. commutative

D. not associative

Answer: B,C

3. Let * be a binary operation on \mathbb{N} , the set of natural numbers defined by $a * b = a^b$ for all $a, b \in \mathbb{N}$ is * associative or commutative on \mathbb{N} ?

A. not commutative

B. associative

C. commutative

D. not associative

Answer: A,D

4. Let * be a binary operation on set $\mathbb{Q} - \{1\}$ defined by $a * b = a + b - ab \in \mathbb{Q} - \{1\}$. e is the identity element with respect to * on \mathbb{Q} . Every element of $\mathbb{Q} - \{1\}$ is invertible, then value of e and inverse of an element a are--

A. 0

B. 1

C.
$$\frac{a}{a-1}$$

D. $\frac{a}{a+1}$

Answer: A,C

5. Consider the set $A = \{1, -1, i, -i\}$ of four roots of unity. Constructing the composition table for multiplication on S. which of the properties are true?

A. a binary operation on S

B. commutative on S

C. 1 is the identity element

D. i is the identity element

Answer: A,B,C

Integar Answer Type

1. Let $S = \{a, b, c\}$, the total number of binary operations

on S be K^9 . Find the value of K.

3. If the binary operation * on the set \mathbb{Z} is defined by a * b = a + b - 5, then the identity element with respect to * is K. Find the value of K.

4. Let * be a binary operation on \mathbb{Q}_0 (Set of all non-zero rational numbers) defined by $a * b = \frac{ab}{4}$, $a, b \in \mathbb{Q}_0$. The identity element in \mathbb{Q}_0 is e, then the value of e is--

Watch Video Solution

- 5. The total number of binary operations on the set
- $S = \{1, 2\}$ having 1 as the identity element is n . Find n.

Matrix Match Type

1. Match the following Column I and Column II

1.	Column I		Column II
۸	The brinary operation $*$ on \mathbb{Q} defined by $a * b = \frac{ab}{2}$ for all $a, b \in \mathbb{Q}$ is	(p)	neither commutative nor associative
₿	Let <i>A</i> be any set containing more than one element. The binary operation $*$ on <i>A</i> defined by $a * b = b$ for all <i>a</i> , $b \in A$ is	(q)	commutative but not associative
C	The binary operation $*$ on \mathbb{Q} defined by $a * b = ab^2$ for all $a, b \in \mathbb{Q}$ is		commutative and associative both
	The binary operation $*$ on $\mathbb Q$ defined by $a*b = ab+1$ for all $a, \ b \in \mathbb Q$ is		not commutative but associative

Match

2.

the

coloumn

2.	Column I		Column II
٨	Let * be a binary operation on \mathbb{N} given by, $a * b = \text{L.C.M.}(a, b)$ for all $a, b \in \mathbb{N}$, then the identity element in \mathbb{N} is	(p)	$\frac{25}{a}$
₿	On \mathbb{Q} , the set of all rational numbers, a binary operation $*$ is defined by $a * b = \frac{ab}{5}$ for all $a, b \in \mathbb{Q}$, then the inverse element in \mathbb{Q} is	(q)	<u>16</u> a

°C)	Let * be a binary operation on \mathbb{Q}_0 (Set of non-zero rational numbers) defined by $a * b = \frac{3ab}{5}$ for all $a, b \in \mathbb{Q}_0$ then the identity element in \mathbb{Q}_0 is	(r)	1 1
D	Let * be a binary operation on \mathbb{Q}_0 (Set of all non-zero rational numbers) de- fined by $a * b = \frac{ab}{4}$ for all $a, b \in \mathbb{Q}_0$ then the inverse element in \mathbb{Q}_0 is	(s)	<u>5</u> 3

Watch Video Solution

Comprehension Type

1. Let $A = \mathbb{R}_0 \times \mathbb{R}$ where \mathbb{R}_0 denote the set of all nonzero real numbers. A binary operation * is defined on A as follows: (a, b) * (c, d) = (ac, bc + d) for all $(a, b), (c, d) \in \mathbb{R}_0 \times \mathbb{R}$.

Binary operation * is--

A. commutative but not associative A

B. commutative and associative on A

C. associative but not commutative on A

D. none of these

Answer: B

2. Let $A = \mathbb{R}_0 \times \mathbb{R}$ where \mathbb{R}_0 denote the set of all nonzero real numbers. A binary operation * is defined on A as follows: (a, b) * (c, d) = (ac, bc + d) for all $(a, b), (c, d) \in \mathbb{R}_0 \times \mathbb{R}$.

Binary operation * is--Identity element in A is--

A. (0,1)

B. (0,0)

C. (1,0)

D. (1,1)

Answer: C

3. Let $A = \mathbb{R}_0 \times \mathbb{R}$ where \mathbb{R}_0 denote the set of all nonzero real numbers. A binary operation * is defined on A as follows: (a, b) * (c, d) = (ac, bc + d) for all $(a, b), (c, d) \in \mathbb{R}_0 \times \mathbb{R}$.

The inveritible elements in A is---

A.
$$\left(-\frac{1}{b}, -\frac{b}{a}\right)$$

B. $\left(-\frac{1}{b}, \frac{b}{a}\right)$
C. $\left(\frac{1}{b}, \frac{b}{a}\right)$
D. $\left(\frac{1}{a}, -\frac{b}{a}\right)$

Answer: D

4. Let the set $S = \{f_1, f_2, f_3, f_4\}$ of four functions from \mathbb{C} (the set of all complex numbers) to itself, defined by $f_1(z) = z, f_2(z) = -z, f_3(z) = \frac{1}{z}$ and $f_4(z) = -\frac{1}{z}$ for all $z \in \mathbb{C}$ Construct the composition table for the composition of functions (\circ) defined on the set S. Value of $f_4 \circ f_1(z)$ is --

A. f_1

 $\mathsf{B.}\,f_2$

C. *f*₃

D. f_4

Answer: D

5. Let the set $S = \{f_1, f_2, f_3, f_4\}$ of four functions from \mathbb{C} (the set of all complex numbers) to itself, defined by $f_1(z) = z, f_2(z) = -z, f_3(z) = \frac{1}{z}$ and $f_4(z) = -\frac{1}{z}$ for all $z \in \mathbb{C}$ Construct the composition table for the composition of functions (\circ) defined on the set S. value of $f_2 \circ f_1(z)$ is--

A. f_1

 $\mathsf{B.}\,f_2$

C. *f*₃

D. f_4

Answer: D

6. Let the set $S = \{f_1, f_2, f_3, f_4\}$ of four functions from \mathbb{C} (the set of all complex numbers) to itself, defined by $f_1(z) = z, f_2(z) = -z, f_3(z) = \frac{1}{z}$ and $f_4(z) = -\frac{1}{z}$ for all $z \in \mathbb{C}$ Construct the composition table for the composition of functions (\circ) defined on the set S. Value of $f_2 \circ f_4(z)$ is---

A. f_1

B. f_2

C. f_3

D. f_4

Answer: C

1. Let S be a non-empty set and P(S) be the power set of the Set S.

Statement -I: Φ is the identity element for union as a binary operation on P(S)

Statement -II: S is the identity element for intersection on P(S).

A. Statement -I is True Statement -II is True , Statement

-II is a correct explanation for Statement -I

B. Statement -I is True. Statement -II is True, Statement

-II is not a correct explanition for Statement -I

C. Statement -I is True, Statement -II is False.

D. Statement -I is False. Statement -II is True.

Answer: B

Watch Video Solution

2. On $\mathbb{R} - \{1\}$, a binary operation * is defined by a * b = a + b - ab

Statement - I: Every element of $\mathbb{R}-\{1\}$ is inveritble

Statement -II: o is the identity element for * on $\mathbb{R} - \{1\}$.

A. Statement -I is True Statement -II is True, Statement

-II is a correct explanation for Statement -I

B. Statement -I is True. Statement -II is True, Statement

-II is not a correct explanition for Statement -I

C. Statement -I is True, Statement -II is False.

D. Statement -I is False. Statement -II is True.

Answer: B