đず doubtnut

India's Number 1 Education App

MATHS

BOOKS - CHHAYA PUBLICATION MATHS

(BENGALI ENGLISH)

BINARY OPERATION

Example

1. Let $P(A)$ be the power set of a non-empty set A. Prove that union (U) and intersection (\cap) of two subsets X and Y of A are binary operations on $P(A)$.
2. Let $*$ be an operation defined on $A,=\{2,4,6,8\}$ by $a * b=k$ where k is the least non-negative remainder when the product ab is divided by 10 and $a, b \in A$. show that $*$ is a binary operation on A.

D Watch Video Solution

3. Let S be a set of two elements. How many different binary operaions can be defined on S ?
4. The operation $*$ is defined by $a * b=a^{b}$ on the set $Z=\{0,1,2,3, \ldots\}$. Show that $*$ is not a binary operation.

D Watch Video Solution

5. Let $S=\sqrt{3} x+2 y: x, y \in Z\}$. Prove that the operation $*$ on S defined by
$\left(\sqrt{3} x_{1}+2 y\right) *\left(\sqrt{3} x_{2}+2 y_{2}\right)=\sqrt{3}\left(x_{1}+x_{2}\right)+2\left(y_{1}+y_{2}\right)$ for all $x_{1}, x_{2}, y_{1}, y_{2} \in Z$ is closed under $*$.

- Watch Video Solution

6. Let $A=\{0,1,2,3,4,5\}$. If $a_{1} b \in A$, then an operation \circ on A is defined by $a \circ b=k$ where k is the least non-negative remainder when the sum $(a+b)$ is divided by 6 . Show that \circ is a binary operation on A.

- Watch Video Solution

7. Let \mathbb{R} be the set of real numbers and $x, y \in R$. We define operaitons \wedge and \vee on \mathbb{R} as
$x \wedge y=$ maximum of x and y,
$x \vee y=$ minimum of x and y.

Show the operation \wedge and \vee defined above are binary operations on \mathbb{R}.
8. On the set C of all complex numbers an operation ' o ' is defined by z_{1} o $z_{2}=\sqrt{z_{1} z_{2}}$ for all $z_{1}, z_{2} \in C$. Is o a binary operation on C ?

- Watch Video Solution

9. Determine whether * on N defined by $a \cdot b=a^{b}$ for all
$a, b \in N$ define a binary operation on the given set or not:
10. On Q, the set of all rational numbers a binary operation * is defined by $a \cdot b=\frac{a+b}{2}$. Show that * is not associative on Q.

- Watch Video Solution

11. Let \mathbb{R} be the set of real numbers. Show that the operation * defined on $\mathbb{R}-\{0]$ by $a * b=|a b|, a, b \in \mathbb{R}-\{0\}$ is a binary operation on $\mathbb{R}-\{0\}$.

- Watch Video Solution

12. Let $M_{2}=\left[\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right], x, y \in \mathbb{R}-\{0\}$ be the set of 2×2 matrices, prove that the operation $*$ defined on M_{2} by $A * B=A B, A, B \in M_{2}$ is a binary operation.

- Watch Video Solution

13. Let $S=(0,1,2,3,4$,$) and * be an operation on S$ defined by $a \cdot b=r$, wherer is the least non-negative remainder when $a+b$ is divided by 5 . Prove that * is a binary operation on S .

- Watch Video Solution

14. Is \circ defined on \mathbb{Q} the set of rational numbers, by $a \circ b=\frac{a-1}{b-1}(a, b \in \mathbb{Q})$, a binary operation?

- Watch Video Solution

15. Prove that an operation $*$ on \mathbb{R}, the set of real numbers, defined by $x * y=2 x y+\sqrt{5}$, for all $x, y \in \mathbb{R}$, is a binary operation on \mathbb{R}.

- Watch Video Solution

16. Let \circ be a binary operation on \mathbb{Q}, the set of rational numbers, defined by $a \circ b=\frac{1}{8} a b$ for all $a, b \in \mathbb{Q}$. Prove that \circ is commutive as well as associative.

D Watch Video Solution

17. let $*$ be a binary operation on \mathbb{Z}^{+}, the set of positive integers, defined by $a * b=a^{b}$ for all $a, b \in \mathbb{Z}^{+}$. Prove that $*$ is neither commutative nor associative on \mathbb{Z}^{+}.

D Watch Video Solution

18. Show that the binary operation $*$ defined on \mathbb{R} by $a * b=a b+2$ is commutative but not associative.
19. let $*$ be a binary operation on \mathbb{R}, the set of real numbers, defined by $a \circ b=\sqrt{a^{2}+b^{2}}$ for all $a, b \in \mathbb{R}$. Prove that the binary operation \circ is commutative as well as associative.

D Watch Video Solution

20. Discuss the commutativity and associativity of binary operation * defined on \mathbb{Z} by the rule $a * b=|a| b$ for all $a, b \in \mathbb{Z}$.

D Watch Video Solution

21. Show that the operation $*$ defined on $\mathbb{R}-\{0\}$ by $a * b=|a b|$ is a binary operation. Show also that $*$ is commutative and associative.

- Watch Video Solution

22. Prove that the binary operation $*$ on \mathbb{R} defined by
$a * b=a+b+a b$ for all $a, b \in \mathbb{R}$
is commutative and associative.

- Watch Video Solution

23. Prove that the binary operation \circ defined on \mathbb{Q} by $a \circ b=a-b+a b$ for all a, b in \mathbb{Q} is neither commutative
nor associative.

D Watch Video Solution

24. Let S be a set of containing more than two elements
and a binary operaton \circ on S be defined by
$a \circ b=a$ for all $a, b \in S$.

Prove that \circ is associative but not commutative on.

D Watch Video Solution

25. let $*$ be a binary on \mathbb{Q}, defined by
$a * b=(a-b)^{2}$ for all $a, b \in \mathbb{Q}$. Show that the binary operation * on \mathbb{Q} is commutative but not associative.
26. Let $*$ and \circ be two binary operations on \mathbb{R} defined as,
$a * b=|a-b|$ and $a \circ b=a$ for all $a, b \in \mathbb{R}$.

Examine the commutativity and associativity of $*$ and \circ on \mathbb{R}. Show also that $*$ is distributative over \circ but \circ is not distributive over $*$.

- Watch Video Solution

27. Let $S=\mathbb{N} \times \mathbb{N}$ and $*$ is a binary operation on S defined by
$(a, b) *(c, d)=(a+c, b+d)$ for all $a, b, c, d \in \mathbb{N}$.

Prove that $*$ is a commutative and associative binary operation on S .

D Watch Video Solution

28. Let $A=\mathbb{N} \times \mathbb{N}$ and \circ be a binary operation on A defined by
$(a, b) \circ(c, d)=(a c, b d)$ for all $a, b, c, d \in \mathbb{N}$.

Discuss the commutativity and associativity of oon A.

D Watch Video Solution

29. Show that the operation $*$ on \mathbb{Z}, the set of integers, defined by.
$a * b=a+b-2$ for all $a, b \in \mathbb{Z}$
(i) is a binary operation:
(ii) satisfies commutaitve and associative laws:
(iii) Find the identity elemetn in \mathbb{Z},
(iv) Also find the inverse of an element $a \in \mathbb{Z}$.

- Watch Video Solution

30. Prove that the operaton $*$ on $\mathbb{Q}-\{1\}$ given by
$a \cdot b=a+b-a b$ for all $a, b \in \mathbb{Q}-\{1\}$
(i) is closed:
(ii) satisfies the commutative and associative laws,
(iii) Find the identity element,
(iv) Find the inverse of any element $a \in \mathbb{Q}-\{1\}$.
31. An operation \circ on $\mathbb{Q}-\{-1\}$ is defined by $a \circ b=a+b+a b$ for $a, b \in \mathbb{Q}-\{-1\}$. Find the identity element $e \in \mathbb{Q}-\{-1\}$.

D Watch Video Solution

32. On the set \mathbb{Q}^{+}of all positive rational numbers if the binary operation $*$ is defined by $a * b=\frac{1}{4} a b$ for all $a, b \in \mathbb{Q}^{+}$, find the identity element in \mathbb{Q}^{+}. Also prove that any element in \mathbb{Q}^{+}is invertible.
33. Let $P(A)$ be the power set of a non-empty set A and a binary operation \circ on $\mathrm{P}(\mathrm{A})$ is defined by $X \circ Y=X \cup Y$ for all $Y \in P(A)$. Prove that, the binary operation \circ is commutative as well as associative on $\mathrm{P}(\mathrm{A})$. Find the identity element w.r.t. binary operation \circ on $\mathrm{P}(\mathrm{A})$. Also prove that $\Phi \in P(A)$ is the only invertible element in $P(A)$.

- Watch Video Solution

34. Let $*$ be a binary operation on $A=\mathbb{N} \times \mathbb{N}$, defined by, $(a, b) *(c, d)=(a d+b c, b d)$ for all $(a, b)(c, d) \in A$. Prove that $A=\mathbb{N} \times \mathbb{N}$ has no identity element.
35. A binary \circ on \mathbb{N} is defined by $a \circ b=L . C . M .(a, b)$ for all $a, b \in \mathbb{N}$.
(i) Examine the commutativity and associativity of \circ on \mathbb{N},
(ii) Find the identity element in \mathbb{N},
(iii) Also find the invertible elements of \mathbb{N}.

- Watch Video Solution

36. If $a, b \in \mathbb{Z}$, find the values of
(i) $3+4$
(ii) $7+{ }_{5} 4$
(iii) $5+{ }_{7} 1$
(iv) $4 \times_{5} 1$
(v) $6 \times{ }_{8} 4$
(vi) $7 \times{ }_{5} 4$

- Watch Video Solution

37. Let $A=\left\{1, \omega, \omega^{2}\right\}$ be the set of cube roots of unity.

Prepare the composition table for multiplication (\times) on
A. Show that multiplication on A is a binary operation and it is commutative on A. Find the identity element for multiplication and show that every element of A is invertible.
38. Let $A=\{1,-1, I,-i\}$ be the set of fourth roots of unity. Prepare the composition table for multiplication (x) on A. Show that multiplication on A. Find the identity element for multiplication and show that every element of A is invertible.

- Watch Video Solution

39. Complete the following multiplication table so as to define a commutative binary operation $*$ on
$S=\{a, b, c, d\}$

$*$	a	b	c	d
a	b	d	b	a
b		a		
c		a	d	
d		c	c	b

- Watch Video Solution

40. A binary operation $*$ is defined on the set $S=\{0,1,2,3,4\} \quad$ as follows: $a * b=a+b(\bmod 5)$ Prove that $0 \in S$ is the identity element of the binary operation $*$ and each element $a \in S$ is invertible with $5-a \in S$ being the inverse of the element a.
41. An operation $*$ is defined on the set $S=\{1,2,3,5,6\} \quad$ as \quad follows: $\quad a * b=a b(\bmod 7)$ Construct the composition table for operation $*$ on S and discuss its important properties.

- Watch Video Solution

42. The binary operation $*$ on the set $A=\{1,2,3,4,5\}$ is defined by $a * b=$ maximum of a and b . Construct the composition table of the binary operation $*$ on A.

Exercise 3 Mcqs

1. Let A be a set of 3 elements. The number of differentity binary operations can be defined A is...
A. 3^{9}
B. 3^{3}
C. 3^{2}
D. 3^{6}

Answer: A

- Watch Video Solution

2. If $a * b=a^{2}$ then the value of $(4 * 5) * 3$ is...

> A. $\left(4^{2}+5^{2}\right)+3^{2}$
> B. $(4+5)^{2}+3^{2}$
> C. $\left(4^{2}+5^{2}\right)^{2}+3^{2}$
> D. $4^{2}+5^{2}+3^{2}$

Answer: C

- Watch Video Solution

3. If the binary operation on \mathbb{Z} is defined by $a * b=a^{2}-b^{2}+a b+4$, then the value of $(2 * 3) * 4$ is
A. 233
B. 33
C. 55
D. -55

Answer: B

D Watch Video Solution

4. \mathbb{Q}^{+}denote the set of all positive raional numbers. If the binary operation \circ on \mathbb{Q}^{+}is defined as $a \circ b=\frac{a b}{2}$, then the inverse of 3 is--

$$
\text { A. } \frac{4}{3}
$$

B. 2
C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer: A

D Watch Video Solution

5. Subtraction of integer is--
A. commutative but not associative
B. comutative and associative
C. associtive but nor commutative
D. neither commutative nor associative

D Watch Video Solution

6. Which of the following statement is true?
A. $*$ defined by $a * b=\frac{a+b}{2}$ is a binary operation on \mathbb{Z}
B. $*$ defined by $a * b=\frac{a+b}{2}$ is a binary operation on \mathbb{Q}
C. all binary commutative operations are associative
D. Subtraction is a binary operation on \mathbb{N}

- Watch Video Solution

7. The binary operation $*$ defined on \mathbb{N} by $a * b=a+b+a b$ for all $a, b \in \mathbb{N}$ is--
A. commutaitive only
B. associative only
C. commutative and associative both
D. none of these

Answer: C

- Watch Video Solution

8. If the binary operation \circ is defined on the set \mathbb{Q}^{+}of all positive rational numbers by $a \circ b=\frac{a b}{4}$. Then $3 \circ\left(\frac{1}{5} \circ \frac{1}{2}\right)$ is equal to--
A. $\frac{3}{160}$
B. $\frac{5}{160}$
C. $\frac{3}{10}$
D. $\frac{3}{40}$

Answer: A

- Watch Video Solution

9. If M_{2} be the set of all 2×2 matrices of the form $\left(\begin{array}{ll}a & a \\ a & a\end{array}\right)$, where $a \in R-\{0\}$, then the identity element with respect to the multiplication of matrices as binary operation, is-
A. $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$,
B. $\left(\begin{array}{rr}-\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2}\end{array}\right)$
C. $\left(\begin{array}{ll}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$
D. $\left(\begin{array}{ll}-1 & -1 \\ -1 & -1\end{array}\right)$

Answer: C

Exercise 3 Very Short Answer Type Questions

1. Define a binary opeartion $*$ on a non-empty set A .

- Watch Video Solution

2. Define a commutative binary operation no a non-empty set A.

- Watch Video Solution

3. Define an associative binary operation on a non-empty set S.
4. Let $*$ and \circ be two binary operations on a non-empty setA. Then write the condition for which the binary operation * is distibutive over binary operation \circ

- Watch Video Solution

5. Let $P(A)$ be the power set of a non-empty set A. Prove that union (\cup) and intersection (\cap) of two subsets X and Y of A are binary operations on $P(A)$.

Watch Video Solution

6. Let $*$ be an operation defined on \mathbb{N}, the set of natural numbers, by $a * b=L . C . M .(a, b)$ for all $a, b \in \mathbb{N}$. Prove that $*$ is a binary operation on \mathbb{N}.

- Watch Video Solution

7. Let \circ be an operation defined on \mathbb{R}. The set of real numbers, by $a \circ b=\min (a, b)$ for all $a, b \in \mathbb{R}$. Show that \circ is a binary operation on \mathbb{R}.

- Watch Video Solution

8. The operation \circ is defined by $a \circ b=b^{a}$ on the set
$Z=\{0,1,2,3, \ldots\}$. Prove that \circ is not a binary
opeartion on Z.

- Watch Video Solution

9. Let $A=\{3 x+\sqrt{5} y: x, y \in \mathbb{Z}\}$. Show that an operation $*$ on A defined by, $\left(3 x_{1}+\sqrt{5} y_{1}\right) *\left(3 x_{2}+\sqrt{5} y_{2}\right)=3\left(x_{1}+x_{2}\right)+\sqrt{5}\left(y_{1}+y_{2}\right)$ for all $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{Z}$ is binary operation on A .

D Watch Video Solution

10. Prove that the operation 'addition' on the set of irrational numbers is not a binary operation.
11. Prove that the operation \circ on \mathbb{Q}, the set of rational numbers, defined by $a \circ b=a b+1$ is binary operational on \mathbb{Q}.

- Watch Video Solution

12. Let $*$ be an opeartion defined on $S=\{1,2,3,4\}$ by $a * b=m$ where m is the least non-negative remainder when the product ab is divided by 5. Prove that $*$ is a binary operation on S .

D Watch Video Solution

13. An operation * is defined on the set of real numbers
\mathbb{R} by $a * b=a b+5$ for all $a, b \in \mathbb{R}$. Is $*$ a binary operation on \mathbb{R} ?.

- Watch Video Solution

14. Let $S=\{0,1,2,3,4\}$, if $a, b \in S$, then an operation * on S is defined by, $a * b=r$ where r is the nonnegative remaider when $(a+b)$ is divided by 5 . Prove that * is a binary operation on S .

Watch Video Solution

15. Let M_{2} be the set of all 2×2 singular matrices of the form $\left(\begin{array}{ll}a & a \\ a & a\end{array}\right)$ where $a \in \mathbb{R}$. On M_{2} an operation \circ is defined as $A \circ B=A B$ for all $A, B \in M_{2}$. Show that \circ is a binary operation on M_{2}.

- Watch Video Solution

16. An operation $*$ on the set of all complex numbers \mathbb{C} is
defined by $z_{1} * z_{2}=\sqrt{z_{1} z_{2}}$ for all $z_{1}, z_{2} \in \mathbb{C}$. Is $*$ a binary operation on \mathbb{C} ?

Watch Video Solution

17. Show that an operation $*$ on \mathbb{R}, the set of real numbers, defined by $a * b=3 a b+\sqrt{2}$, for all $a, b \in \mathbb{R}$. Is a binary operaion on \mathbb{R}.

- Watch Video Solution

18. Examine whether the operation \circ on \mathbb{Z}^{+}defined by $a \circ b=|a-b|$ for all $a, b \in \mathbb{Z}^{+}$, is a binary operation on
\mathbb{Z}^{+}or not.

- Watch Video Solution

19. Prove that the operation \wedge on \mathbb{R} defined by $x \wedge y=$ \min. of x and y for all $x, y \in \mathbb{R}$ is a binary operation on \mathbb{R}.

- Watch Video Solution

20. Prove that the operation $*$ on \mathbb{Z} defined by $a * b=a|b|$ for all $a, b \in \mathbb{Z}$ is a binary operation

- Watch Video Solution

21. Prove that the operation \circ on \mathbb{Q} defined by $x \circ y=\frac{x-2}{y-2}$ for all $x, y \in \mathbb{Q}$ does not represent a binary operation on \mathbb{Q}.

- Watch Video Solution

22. An operation $*$ is defined on \mathbb{N} as $a * b=\operatorname{HCF}(a, b)$ for all $a, b \in \mathbb{N}$. Show that $*$ is a binary operation on \mathbb{N}.

Find the values of $25 * 15,32 * 56,9 * 11$ and $34 * 38$.

- Watch Video Solution

Exercise 3 Short Answer Type Questions

1. Discuss commutativity and associativity $*$ on \mathbb{R} defined by $a * b=\min .(a, b)$ for all $a, b \in \mathbb{R}$.
2. Check for commutative and associative $(\mathbb{Q}, *)$ where $x * y=x-y$ for all $x, y \in \mathbb{Q}$.

- Watch Video Solution

3. Check for commutativity and associativity \circ on \mathbb{Z} defined by $a \circ b=a|b|$ for all $a, b \in \mathbb{Z}$.

- Watch Video Solution

4. Check for commutative and associative (\mathbb{Z}, \circ) where $a \circ b=a+b+a b$ for all $a, b \in \mathbb{Z}$.
5. Discuss the commutativity and associativity $*$ on \mathbb{R} defined by $a * b=|a+b|$ for all a,binRR.

- Watch Video Solution

6. Check for commutative and associative $\left(\mathbb{Z}^{+}, *\right)$ where $a * b=2^{a b}$ for all $a, b \in \mathbb{Z}$.

- Watch Video Solution

7. Check for commutative and associative $*$ on $\mathbb{R}-\{1\}$ defined by $a * b=\frac{1}{b-1}$ for all $a, b \in \mathbb{R}-\{1\}$.
8. Check for commutative and associative \circ on \mathbb{R} defined by $x \circ y=\max (\mathrm{x}, \mathrm{y})$ for all $x, y \in \mathbb{R}$.

- Watch Video Solution

9. Discuss the commutativity and associativity (\mathbb{Q}, \circ)
where $x \circ y=\frac{1}{6} x y$ for all $x, y \in \mathbb{Q}$.

- Watch Video Solution

10. Discuss the commutativity and associativity * on \mathbb{R} defined by $x * y=\min$. (x, y) for all $x, y \in \mathbb{R}$.
11. Discuss the commutativity and associativity * on \mathbb{Q} defined by $a * b=a b+4$ for all $a, b \in \mathbb{Q}$.

- Watch Video Solution

12. Discuss commutativity and associativity $*$ on \mathbb{Z} defined by $a * b=a+b+3$ for all $x, y \in \mathbb{Z}$.

- Watch Video Solution

13. Check for commutative and associative ($\mathbb{N}, *$) where $a * b=\operatorname{gcd}(a, b)$ for all $a, b \in \mathbb{N}$.
14. Check for commutativity and associativity $*$ on \mathbb{Z} defined by $a * b=|a| b$ for all $a, b \in \mathbb{Z}$.

- Watch Video Solution

15. Discuss the commutativity and Associativity $*$ on \mathbb{Q} defined by $x * y=\frac{1}{2}(x+y)$ for all $x, y \in \mathbb{Q}$.

- Watch Video Solution

16. Discuss the commutativity and associativity $*$ on \mathbb{R} defined by $a * b=|a b|$ for all $a, b \in \mathbb{R}$.

| 17. $*$ on | $\mathbb{Z} \times \mathbb{Z}$ | defined |
| :--- | :--- | :--- | by

- Watch Video Solution

18. Check commutativity and associativity \circ on $M_{2}(\mathbb{R})$ defined by $A \circ B=\frac{1}{2}(A B-B A)$ for all $A, B \in M_{2}(\mathbb{R})$ where $M_{2}(\mathbb{R})$ is a 2×2 real matrix.

- Watch Video Solution

19. An operation $*$ on \mathbb{Z}, the set of integers, is defined as, $a * b=a-b+a b$ for all $a, b \in \mathbb{Z}$. Prove that $*$ is a
binary operation on \mathbb{Z} which is neither commutative nor associative.

- Watch Video Solution

20. (I) Let $*$ be a binary operation defined by $a * b=2 a+b-3$. Find $3 * 4$.
(ii) let $*$ be a binary operation on $\mathbb{R}-\{-1\}$, defined by $a * b=\frac{1}{b+1}$ for all $a, b \in \mathbb{R}-\{-1\}$ Show that $*$ is neither commutative nor associative.
(iii) Let $*$ be a binary operation on the set \mathbb{Q} of all raional numbers, defined as $a * b=\left(2 a-b^{2}\right)$ for all $a, b \in \mathbb{Q}$. Find $3 * 5$ and $5 * 3$. Is $3 * 5=5 * 3$?
21. A binary operaiton \circ is defined on the set $\mathbb{R}-\{-1\}$ as $x \circ y=x+y+x y$ for all $x, y \in \mathbb{R}-\{-1\}$. Discuss the commutativity and associativity of \circ on $\mathbb{R}-\{-1\}$. If $(3 * 2 x) * 5=71$, find x .

- Watch Video Solution

22. If $*$ be the binary operation on the set \mathbb{Z} of all integers, defined by $a * b=a+3 b^{2}$, find $2 * 4$.

- Watch Video Solution

23. A binary operation \circ is defined on \mathbb{Z}, the set of integers, by $a \circ b=|a-b|$ for all $a, b \in \mathbb{Z}$. Find the
value of $3 a \circ 2 b$ when $a=-3$ and $b=-2$

D Watch Video Solution

24. Let $*$ a binary operation on \mathbb{N} given by $a * b=H . C . F(a, b)$ for all $a, b \in \mathbb{N}$, write the value of $22 * 4$

D Watch Video Solution

25. If $+_{6}$ (addition modulo 6) is a binary operation on
$A=\{0,1,2,3,4,5\}$, find the value of $3+{ }_{6} 3^{-1}+{ }_{6} 2^{-1}$.
[note that the identity element is 0 and the inverse of the element 2 is 4 as $2+{ }_{6} 4=0$, the identity element.]
26. A binary operation $*$ is defined on the set \mathbb{R}_{0} for all non- zero real numbers as $a * b=\frac{a b}{3}$ for all $a, b \in \mathbb{R}_{0}$, find the identity element in \mathbb{R}_{0}.

- Watch Video Solution

27. A binary operation $*$ is defined on the set \mathbb{Z} of all integers by $a \circ b=a+b-3$ for all $a, b \in \mathbb{Z}$. Determine the inverse of $5 \in \mathbb{Z}$.
28. A binary operation $*$ is defined on the set of real numbers \mathbb{R} by $a * b=2 a+b-5$ for all $a, b \in \mathbb{R}$. If $3 *(x-2)=20$ find x.

- Watch Video Solution

29. For the binary operation multiplication modulo $5 \cdot\left(\times_{5}\right)$ defined on the set $A=\{1,2,3,4\}$, find the value of $\left\{2 \times_{5} 3^{-1}\right.$. [Note that the inverse of 3 is 2]

- Watch Video Solution

30. A binary operation $*$ on \mathbb{Q} the set of all rational numbers is defined as $a * b=\frac{1}{2} a b$ for all $a, b \in \mathbb{Q}$. Prove
that $*$ is commutative as well as associative on \mathbb{Q}.

- Watch Video Solution

31. Prove that the identity element of the binary opeartion * on \mathbb{R} defined by $a * b=\min .(a, b)$ for all $a, b \in \mathbb{R}$, does not exist.

- Watch Video Solution

32. Find the identity element of the binary operation * on \mathbb{Z} defined by $a * b=a+b+1$ for all $a, b \in \mathbb{Z}$.
33. The binary operation * define on N by $a * b=a+b+a b$ for all $a, b \in N$ is

- Watch Video Solution

34. Prove that 0 is the identity element of the binary operation $*$ on \mathbb{Z}^{+}defined by $x * y=x+y$ for all $x, y \in \mathbb{Z}^{+}$.

D Watch Video Solution

35. A binary operation $*$ on \mathbb{Q}_{0}, the set of all non-zero rational numbers, is defined as $a * b=\frac{1}{3} a b$ for all $a, b \in \mathbb{Q}_{0}$ Prove that every element of \mathbb{Q}_{0}, is invertible and find the inverse of the element $\frac{3}{5} \in \mathbb{Q}_{0}$.

D Watch Video Solution

36. A binary operation \circ on $\mathbb{Q}-\{1\}$ is defined by $a * b=a+b-a b$ for all $a, b \in \mathbb{Q}-\{1\}$. Prove that every element of $\mathbb{Q}-\{1\}$ is invertible.

D Watch Video Solution

37. A binary operation $*$ on \mathbb{Q}, the set of rational numbers, is defined by $a * b=\frac{a-b}{3}$ fo rall $a, b \in \mathbb{Q}$. Show that the binary opearation $*$ is neither commutative nor associative on \mathbb{Q}.
38. Determine which of the following binary operations are associative and which are commutative:
(i) $*$ on \mathbb{R} defined by $a * b=1$ for all $a, b \in \mathbb{R}$.
(ii) $*$ on \mathbb{R} defined by $a * b=\frac{a+b}{2}$ for all $a, b \in \mathbb{R}$.

- Watch Video Solution

39. Let S be any set containing more than two elements. A binary operation \circ is defined on S by $a \circ b=b$ for all $a, b \in S$. Discuss the commutativity and associativity of \circ on S .
40. State whether the following statements are true or false with reasons.
(i) For any binary operation $*$ on $\mathbb{N}, a * a=a \forall a \in \mathbb{N}$.
(ii) If $*$, a binary operation $*$ on \mathbb{N} is commutative then, $a *(b * c)=(c * b) * a$.

- Watch Video Solution

Exercise 3 Long Answer Type Questions

1. A binary operation \circ is defined on $\mathbb{R}-\{-1\}$ by $a \circ b=a+b+a b$ for all $a, b \in \mathbb{R}-\{-1\}$.
(i) Discuss the commutativity and associativity of \circ on $\mathbb{R}-\{-1\}$.

Find the identity element, if exists.
(iii) Prove that every element of $\mathbb{R}-\{-1\}$ is invertible.

D Watch Video Solution

2. The binary operation multiplication modulo $10\left(\times_{10}\right)$ is defined on the set $A=\{0,1,3,7,9$,$\} , find the inverse of$ the element 7.

D Watch Video Solution

3. Construct the composition table for the binary operation multiplication modulo $5\left(x_{5}\right)$ on the set
$A=\{0,1,2,3,4\}$.
4. A binary operation $*$ on \mathbb{N} is defined by $a * b=L . C . M .(a, b)$ for all $a, b \in \mathbb{N}$.
(i) Find $15 * 18$
(ii) Show that $*$ is commutative as well as associative on \mathbb{N}.
(iii) Find the the identity element in \mathbb{N}.
(iv) Also find the invertible element in \mathbb{N}.

D Watch Video Solution

5. Let $P(A) b$ the power set of non-empty set A. A binary operation $*$ is defined on $\mathrm{P}(\mathrm{A})$ as $X * Y=X \cap Y$ for all
$X, Y \in P(A)$. Detemine the identity element $\ln \mathrm{P}(\mathrm{A})$. Prove that A is the only invertible element in $P(A)$.

- Watch Video Solution

6. A binary operation $*$ is defined in \mathbb{Q}_{0}, the set of all nonzero rational numbers, by $a * b=\frac{a b}{3}$ for all $a, b \in \mathbb{Q}_{0}$.

Find the identity element in \mathbb{Q}_{0}. Also find the inverse of an element $x \in \mathbb{Q}_{0}$.

- Watch Video Solution

7. Let $P(C)$ be the power set of non-empty set C . A binary operation * is defined on $\mathrm{P}(\mathrm{C})$ as
$A * B=(A-B) \cup(B-A)$ for all $A, B \in P(C)$. Prove
that Φ is the identity element for $*$ on $P(C)$ and A is invertible for all $A \in \mathbb{Q}_{0}$.

D Watch Video Solution

8. Let $A=N \cup\{0\} \times \mathbb{N} \cup\{0\}$, a binary operation $*$ is defined on A by. $(a, b) *(c, d)=(a+c, b+d)$ for all $(a, b),(c, d) \in A$. Prove that $*$ is commutative as well as associative on A. Show also that $(0,0)$ is the identity element $\operatorname{In} \mathrm{A}$.

- Watch Video Solution

9. Let $A=\{0,1,2,3,4,5\}$ be a given set, a binary operation \circ is defined on A by $a \circ b=a b(\bmod 6)$ for all
$a, b \in A$. Find the identity element for \circ in A . Show that 1 and 5 are the only invetible elements in A.

D Watch Video Solution

10. Let $A=\mathbb{N} \times \mathbb{N}$, a binary operation $*$ is defined on A
by

$$
(a, b) *(c, d)=(a d+b c, b d) \quad \text { for }
$$

$(a, b),(c, d) \in A$. Show that $*$ possesses no identity element in A .

D Watch Video Solution

11. Find the values of
(i) $4+{ }_{6} 2$ (ii) $7+{ }_{5} 7$ (iii) $5+{ }_{8} 2$
(iv) $3 \times_{7} 2$ (v) $12 \times_{10} 5\left(\right.$ vi) $6 \times{ }_{5} 4$

D Watch Video Solution

12. Let $M_{2}(x) d=\left\{\left(\begin{array}{ll}x & x \\ x & x\end{array}\right), x \in \mathbb{R}\right\}$ be the set of 2×2 singular matrices. Considering multiplication of matrices as a binary operation, find the identity element in $M_{2}(x)$.

Also find the inverse of an element of M_{2}.

D Watch Video Solution

13. Prepare the composition table for addition modulo $6\left(+_{6}\right)$ on $A=\{0,1,2,3,4,5\}$.
14. Prepare the composition table for multiplication modulo $6\left(\times_{6}\right)$ on $A=\{0,1,2,3,4,5\}$.

- Watch Video Solution

15. A binary operaiton \wedge on the set $A=\{1,2,3,4,5\}$ is defined by $a \wedge b=\min (a, b)$ for all $a, b \in A$. prepare composition table for the operation \wedge on A .

- Watch Video Solution

16. Let $S=\left\{1, \omega, \omega^{2}\right\}$ be the set of cube roots of unity.

Prepare the composition table for multiplication (\times) on S , show that multiplication on S is a binary operation and
it is commutative on S. Also, show that every element on S is invertible.

- Watch Video Solution

17. Prepare the composition table for multiplication (\times) on the set of fourth roots of unity and discuss its important properties.

D Watch Video Solution

18. Complete the following nultiplication table so as to define a commutative binary operation $*$ on
$A=\{1,2,3,4\}$.

$*$	1	2	3	4
1	2	4	2	1
2		1		
3		1	4	
4		3	3	2

- Watch Video Solution

19. A binary operation \circ is defined on the set
$A=\{0,1,2,3,4,5\}$ as follows: $a \circ b=a+b(\bmod 6)$
for all $a, b \in A$. Prove that $o \in A$ is the identity element In A is invertible with operation \circ and each element A is invertible with $6-a \in A$ being the inverse of the element a.
20. An operation $*$ is defined on the set $A=\{1,2,3,4\}$ as follows: $a * b, a b(\bmod 5)$ for all $a, b \in A$.Prepare the compositon table for $*$ on A and from the table show that -
(i) multiplication $\bmod (5)$ is a binary operation,
(ii) $*$ is commutative on A ,
(iii) is the identity element for multiplication $\bmod (5)$ on A, and.
(iv) every element of A is invertible.

- Watch Video Solution

21. Let $A=\{1,-1\}$ be the set of square roots of unity. Considering multiplication (\times) as a binary operation on A, construct the composition table for multiplication on A . Determine the identity element for multiplication in A and the inverses of the elements.

- Watch Video Solution

22. Let $*$ be the binary defined on the set $S=\{1,2,3,4,5,6\}$ by $a * b=r$ where r is the least nonnegative remainder when $a b$ is divided by 7. Prepare the composition table $*$ on S . Observing the composition table show that 1 is the identity element for $*$ and every element of S is invertible.

Mcqs

1. Consider the binary operations
$*: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ and $\circ: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \quad$ defined as
$a * b=|a-b|$ and $a \circ b=a$ for all $a, b \in \mathbb{R}$ then-
A. * is commutative but not associative on \mathbb{R}
B. \circ is associative on \mathbb{R}.
C. \circ is not distribution over $*$
D. \circ is commutative on \mathbb{R}

Answer: A,B,C

2. If the binary oprations $*$ on \mathbb{R} is defined by $a * b=a+b+a b$ for all $a, b \in \mathbb{R}$ where on R.H.S. we have usual addition, subtraction and multiplication of real numbers. The relation * is---
A. not commutative
B. associative
C. commutative
D. not associative

Answer: B,C
3. Let $*$ be a binary operation on \mathbb{N}, the set of natural numbers defined by $a * b=a^{b}$ for all $a, b \in \mathbb{N}$ is $*$ associative or commutative on \mathbb{N} ?
A. not commutative
B. associative
C. commutative
D. not associative

Answer: A,D

D Watch Video Solution

4. Let $*$ be a binary operation on set $\mathbb{Q}-\{1\}$ defined by $a * b=a+b-a b \in \mathbb{Q}-\{1\}$. e is the identity element with respect to $*$ on \mathbb{Q}. Every element of $\mathbb{Q}-\{1\}$ is invertible, then value of e and inverse of an element a are--
A. 0
B. 1
C. $\frac{a}{a-1}$
D. $\frac{a}{a+1}$

Answer: A,C

5. Consider the set $A=\{1,-1, i,-i\}$ of four roots of unity. Constructing the composition table for multiplication on S . which of the properties are true?
A. a binary operation on S
B. commutative on S
C. 1 is the identity element
D. i is the identity element

Answer: A,B,C

- Watch Video Solution

1. Let $S=\{a, b, c\}$, the total number of binary operations on S be K^{9}. Find the value of K.

D Watch Video Solution

2. Let $*$ be a binary on \mathbb{N} defined by $a * b=L . C . M .(a, b)$ (for all $a, b \in \mathbb{N}) .2 * 4=\lambda$ then λ will be--

D Watch Video Solution

3. If the binary operation $*$ on the set \mathbb{Z} is defined by $a * b=a+b-5$, then the identity element with respect to $*$ is K. Find the value of K.
4. Let $*$ be a binary operation on \mathbb{Q}_{0} (Set of all non-zero rational numbers) defined by $a * b=\frac{a b}{4}, a, b \in \mathbb{Q}_{0}$. The identity element in \mathbb{Q}_{0} is e, then the value of e is--

D Watch Video Solution

5. The total number of binary operations on the set $S=\{1,2\}$ having 1 as the identity element is n. Find n.

- Watch Video Solution

Matrix Match Type

1. Match the following Column I and Column II

1.	Column I		Column II
(A)	The brinary operation $*$ on \mathbb{Q} defined by $a * b=\frac{a b}{2}$ for all $a, b \in \mathbb{Q}$ is	(p)	neither commutative nor associative
(B)	Let A be any set containing more than one element. The binary operation $*$ on A defined by $a * b=b$ for all $a, b \in A$ is	(q)	commutative but not associative
(C)	The binary operation $*$ on \mathbb{Q} defined by $a * b=a b^{2}$ for all $a, b \in \mathbb{Q}$ is	(r)	commutative associative both
and			
(D)	The binary operation $*$ on \mathbb{Q} defined by $a * b=a b+1$ for all $a, b \in \mathbb{Q}$ is	(s)	not commutative but associative

D Watch Video Solution

2.

2.	Column I		Column II
(A)	Let $*$ be a binary operation on \mathbb{N} given by, $a * b=$ L.C.M. (a, b) for all $a, b \in \mathbb{N}$, then the identity element in \mathbb{N} is	(p)	$\frac{25}{a}$
(B)	On \mathbb{Q}, the set of all rational numbers, a binary operation $*$ is defined by $a * b=\frac{a b}{5}$ for all $a, b \in \mathbb{Q}$, then the inverse element in \mathbb{Q} is	(q)	$\frac{\mathbf{1 6}}{\mathbf{a}}$

	I, et * be a binary operation on \mathbb{Q}_{0} (Set jof non-zero rational numbers) defined by $a * b=\frac{3 a b}{5}$ for all $a, b \in \mathbb{Q}_{0}$ then the identity element in \mathbb{Q}_{0} is	(r)	1
(b)	Let * be a binary operation on \mathbb{Q}_{0} (Set of all non-zero rational numbers) defined by $a * b=\frac{a b}{4}$ for all $a, b \in \mathbf{Q}_{\mathbf{0}}$ then the inverse element in \mathbb{Q}_{0} is	(s)	

- Watch Video Solution

1. Let $A=\mathbb{R}_{0} \times \mathbb{R}$ where \mathbb{R}_{0} denote the set of all nonzero real numbers. A binary operation $*$ is defined on A as follows: $\quad(a, b) *(c, d)=(a c, b c+d) \quad$ for \quad all $(a, b),(c, d) \in \mathbb{R}_{0} \times \mathbb{R}$.

Binary operation * is--
A. commutative but not associative A
B. commutative and associative on A
C. associative but not commutative on A
D. none of these

Answer: B

- Watch Video Solution

2. Let $A=\mathbb{R}_{0} \times \mathbb{R}$ where \mathbb{R}_{0} denote the set of all nonzero real numbers. A binary operation $*$ is defined on A as follows: $\quad(a, b) *(c, d)=(a c, b c+d) \quad$ for \quad all $(a, b),(c, d) \in \mathbb{R}_{0} \times \mathbb{R}$.

Binary operation * is--Identity element in A is--
A. $(0,1)$
B. $(0,0)$
C. $(1,0)$
D. $(1,1)$

Answer: C

- Watch Video Solution

3. Let $A=\mathbb{R}_{0} \times \mathbb{R}$ where \mathbb{R}_{0} denote the set of all nonzero real numbers. A binary operation $*$ is defined on A as follows: $\quad(a, b) *(c, d)=(a c, b c+d) \quad$ for \quad all $(a, b),(c, d) \in \mathbb{R}_{0} \times \mathbb{R}$.

The inveritible elements in A is---
A. $\left(-\frac{1}{b},-\frac{b}{a}\right)$
B. $\left(-\frac{1}{b}, \frac{b}{a}\right)$
C. $\left(\frac{1}{b}, \frac{b}{a}\right)$
D. $\left(\frac{1}{a},-\frac{b}{a}\right)$

Answer: D

- Watch Video Solution

4. Let the set $S=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ of four functions from \mathbb{C} (the set of all complex numbers) to itself, defined by $f_{1}(z)=z, f_{2}(z)=-z, f_{3}(z)=\frac{1}{z}$ and $f_{4}(z)=-\frac{1}{z}$ for all $z \in \mathbb{C}$ Construct the composition table for the composition of functions (\circ) defined on the set S .

Value of $f_{4} \circ f_{1}(z)$ is --
A. f_{1}
B. f_{2}
C. f_{3}
D. f_{4}

Answer: D

5. Let the set $S=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ of four functions from \mathbb{C} (the set of all complex numbers) to itself, defined by $f_{1}(z)=z, f_{2}(z)=-z, f_{3}(z)=\frac{1}{z}$ and $f_{4}(z)=-\frac{1}{z}$ for all $z \in \mathbb{C}$ Construct the composition table for the composition of functions (\circ) defined on the set S.
value of $f_{2} \circ f_{1}(z)$ is--
A. f_{1}
B. f_{2}
C. f_{3}
D. f_{4}

Answer: D

6. Let the set $S=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ of four functions from \mathbb{C} (the set of all complex numbers) to itself, defined by $f_{1}(z)=z, f_{2}(z)=-z, f_{3}(z)=\frac{1}{z}$ and $f_{4}(z)=-\frac{1}{z}$ for all $z \in \mathbb{C}$ Construct the composition table for the composition of functions (\circ) defined on the set S.

Value of $f_{2} \circ f_{4}(z)$ is--
A. f_{1}
B. f_{2}
C. f_{3}
D. f_{4}

Answer: C

Assertion Reason Type

1. Let S be a non-empty set and $P(S)$ be the power set of the Set S.

Statement -I: Φ is the identity element for union as a binary operation on $\mathrm{P}(\mathrm{S})$

Statement -II: S is the identity element for intersection on $P(S)$.
A. Statement -I is True Statement -II is True, Statement
-II is a correct explanation for Statement -I
B. Statement $-I$ is True. Statement $-I I$ is True, Statement
-II is not a correct explanition for Statement -I
C. Statement $-I$ is True, Statement -II is False.
D. Statement $-I$ is False. Statement $-I I$ is True.

Answer: B

D Watch Video Solution

2. On $\mathbb{R}-\{1\}$, a binary operation $*$ is defined by
$a * b=a+b-a b$

Statement - I: Every element of $\mathbb{R}-\{1\}$ is inveritble

Statement -II: o is the identity element for * on $\mathbb{R}-\{1\}$.
A. Statement -I is True Statement -II is True, Statement

II is a correct explanation for Statement
B. Statement $-I$ is True. Statement $-I I$ is True, Statement
-II is not a correct explanition for Statement -I
C. Statement $-I$ is True, Statement $-I I$ is False.
D. Statement -I is False. Statement -II is True.

Answer: B

- Watch Video Solution

