d'doubtnut

India's Number 1 Education App

MATHS

BOOKS - CHHAYA PUBLICATION MATHS
 (BENGALI ENGLISH)

COORDINATE GEOMETRY

Wbhs Archive 2012

1. The length of latus rectum of an ellipse is equal to
the length of its semi-minor axis. The ratio of lengths of its minor axis and major axis is
A. $\frac{1}{2}$
B. 2
C. $\frac{1}{4}$
D. 4

Answer: A

- Watch Video Solution

2. If a circle is concentric with the circle $x^{2}+y^{2}=8$
and its diameter is 4 units, which of the following
will be the equation of the circle ?

$$
\text { A. } x^{2}+y^{2}=1
$$

B. $x^{2}+y^{2}=2$
C. $x^{2}+y^{2}=4$
D. $x^{2}+y^{2}=16$

Answer: C

- Watch Video Solution

3. If the distance foa moving point from the point
$(2,0)$ is equal to the distance of the moving point from y-axis, then the equation of the locus of the moving point is

- Watch Video Solution

4. The equation of the straight line parallel to y-axis and passing through the point $(-3,4)$ is .

- Watch Video Solution

5. The sides of the rectangle $A B C D$ are parallel to the coordinate axes. If the coordinates of the vertices B and D be $(7,3)$ and $(2,6)$ respectively , find the coordinates of the vertices A and C.
6. Find the area of the triangle formed by the straight line $x \sin \alpha+y \cos \alpha=p$ with the axes of coordinates .

- Watch Video Solution

7. Find the radius of the circle passing through (6,0),
$(0,8)$ and origin .

- Watch Video Solution

8. The vertices of a triangle ABC are $(2,-5),(1,-2)$ and
$(4,7)$ respectively . Find the coordinates of the point
where the internal bisector of $\angle A B C$ cuts $A C$.

- Watch Video Solution

9. Find the equation of the straight line which passes through the intersection of the straght lines

$$
2 x+3 y=5 \text { and } 3 x+5 y=7 \text { and makes equal positive }
$$

intercepts upon the coordinate axes.

D Watch Video Solution

10. Show that the circle with the portion of the line
$3 x+4 y=12$ intercepted between the axes as
diameter, passes through the origin .

- Watch Video Solution

11. A point P is moving in a cartesian plane in such a way that the area of the rectangle formed by the lines through P parallel to the coordinate axes together with ccordinate axes is constant. Find the equation of the locus of P.

D Watch Video Solution

12. The parabola $y^{2}=-4 a x$ passes through the point ($-1,2$). Find the coordinates of its focus and length of latus rectum.

- Watch Video Solution

13. Let P be a point on the circle $x^{2}+y^{2}=a^{2}$ whose ordinate is $P N$ and Q is a point on $P N$ such that $\mathrm{PN}: \mathrm{QN}=2: 1$. Find the locus of Q and identify it
14. If athe coordinates of one end of a focal chord of the parabola $y^{2}=4 a x$ be $\left(a t^{2}, 2 a t\right)$, show that the coordinates of the other end point are $\left(\frac{a}{t^{2}}, \frac{2 a}{t}\right)$
and the length of the chord is $a\left(t+\frac{1}{t}\right)^{2}$

- Watch Video Solution

15. Find the foii of the conic $\frac{x^{2}}{100}+\frac{y^{2}}{36}=1$. Hence show that, the sum of the distances from any point on the conic to its focii is 20 units .

Wbhs Archive 2013

1. The point $(8,4)$ lies inside the parabola $y^{2}=4 a x$ If

$$
\begin{aligned}
& \text { A. } a<\frac{1}{2} \\
& \text { B. } a \leq \frac{1}{2} \\
& \text { C. } a>\frac{1}{2} \\
& \text { D. } a \geq \frac{1}{2}
\end{aligned}
$$

Answer: C

- Watch Video Solution

2. If t is parameter then the locus of the point $P\left(t, \frac{1}{2 t}\right)$ is
A. circle
B. ellipse
C. hyperbola
D. parabola

Answer: C

- Watch Video Solution

3. The distance between the straight lines $4 x-3 y+$ $10=0$ and $4 x-3 y-10=0$ is
A. 0
B. 20
C. 4
D. 8

Answer: C

- Watch Video Solution

4. One end of a diameter of the circle $x^{2}+y^{2}=2$ is
$(1,-1)$. Then coordinates of its other end is

D Watch Video Solution

5. Find the ratio in which the point $(-11,16)$ divides the line segment joining the points ($-1,2$) and ($4,-5$).

- Watch Video Solution

6. Show that the line $(2+m) x+(3+2 m) y-2(2+$
$3 \mathrm{~m})=0$ passes through a fixed point for all valuse of
the parameter m. Find the coordinates of the point.
7. Find the centre of the circle whose parametric equations are
$x=-\frac{1}{2}(1+5 \cos \theta), y=\frac{1}{2}(-2+5 \sin \theta)$.

- Watch Video Solution

8. The extremities of the base of an isosceles triangle have coordinates $(2 a, 0)$ and ($0, a$). If the equation of one of the equal sides be $x=2 a$, find the equation of the other equal side and the area of the triangle .
9. The locus represented by $x \cos \alpha+y \sin \alpha=4$ cuts the coordinate axes at A and B. Find the locus of the midpoint of AB. (α is a parameter)

- Watch Video Solution

10. A circle through the common points of the circles
$x^{2}+y^{2}-2 x-4 y+1=0$ and
$x^{2}+y^{2}-2 x-6 y+1=0$ has its centre on the
line $4 x-7 y-19=0$. Find the centre and radius of the circle .
11. Find the ratio of the eccentricities of the hyperbolas $2 x^{2}-3 y^{2}=1$ and $3 x^{2}-2 y^{2}=1$

- Watch Video Solution

12. The coordinates of the foci of an ellipse are
$(0, \pm 4)$ and the equations of its directrices are $y= \pm 9$. Find the length of the latus rectum of the ellipse
13. Find the equations of the parabola whose focus is $(5,3)$ and vertex is $(5,7)$. Find also the equation of its directrix .

- Watch Video Solution

14. Prove that the straight line joining the upper end of one latus rectum and lower end of other latus
rectum of an ellipse passes through the centre of the ellipse .
15. The four foci of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and its conjugate are joined to form a parallelogram.

Find the area of the parallelogram .

- Watch Video Solution

Wbhs Archive 2014

1. The equation of the circle having centre at $(3,7)$ and radius 5 units is _
A. $x^{2}+y^{2}-6 x-14 y+33=0$
B. $x^{2}+y^{2}-6 x-14 y=33$

$$
\text { C. } x^{2}+y^{2}+6 x+14 y=33
$$

D. $x^{2}+y^{2}+6 x+14 y+33=0$

Answer: A

- Watch Video Solution

2. The distance between z - axis and $(3,4)$ is
A. 5 unit
B. 6 unit
C. 7 unit
D. none ot these

Answer: A

D Watch Video Solution

3. The equation of the parabola with vertex at the origin and directix is $y=2$ is-

$$
\text { A. } y^{2}=8 x
$$

B. $y^{2}=-8 x$
C. $x^{2}=8 y$
D. $x^{2}=-8 y$

Answer: D
4. The eccentricity of the hyperbola $9 x^{2}-4 y^{2}+36=0$ is

- Watch Video Solution

5. Find the area of the triangle formed by the staight
line $2 x-3 y=6$ with the coordinate axes .
(Watch Video Solution
6. Find the coordinates of the point which divides
the line segment joining ($2,-3,8$) and ($1,-1,0$) internally in the ratio $2: 1$

- Watch Video Solution

7. The equations of two sides of a square are $5 x+12$
$y-10=0$ and $5 x+12 y+29=0$ and the third side passes through $(3,5)$, find equations of all other possible sides of the squate.
8. If the straight line $\frac{x}{a}+\frac{y}{b}=1$ is parallel to the
line $4 x+3 y=6$ and passes through the point of intersection of the lines $2 x-y-1=0$ and $3 x-4 y+6=$ 0 , find the values of a and b.

- Watch Video Solution

9. Find the equations of the circles which pass through the origin and cut off equal chords of length $\sqrt{2}$ units on the straight lines $y=x$ and $y=-x$
10. Prove that the least focal chord of a parabola is its latus rectum .

- Watch Video Solution

11. Find the equation of the hyperboth whose axes are the axes of coordinates and
vertices are ($\pm 4,0$) and foci are ($\pm 6,0$).

- Watch Video Solution

12. Find the equation of an ellipse whose eccentricity
is $\frac{1}{2}$, coordinates of one of its foci is $(2,0)$ and
equation of its corresponding directrix is $x-8=0$.
Also find out the distance of this focus from its nearest vertex.

- Watch Video Solution

13. What is the eccentricity of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ if length of its minor axis is equal to the distance between its foci ?
14. Find the vertex of the parabola $y=-2 x^{2}+12 x-17$.

- Watch Video Solution

15. The eccentricity of an ellipse is $\frac{1}{\sqrt{3}}$, the coordinates of focus is $(-2,1)$ and the point of intersection of the major axis and the directrix is
$(-2,3)$. Find the coordinates of the centre of the ellipse and also equation of the ellipse.

- Watch Video Solution

16. The slope of a chord of the parabola $y^{2}=4 x$ is 2
. Show that the locus of the point which divides the chord internally in the ration $1: 2$ is a parabola whose equation is $\left(y-\frac{8}{9}\right)^{2}=\frac{4}{9}\left(x-\frac{2}{9}\right)$.

D View Text Solution

Wbhs Archive 2015

1. The angle made by the straight line $x \cos \alpha+y \sin \alpha=p$ with the negative direction of x-axis is
A. α
B. $\frac{\pi}{2}+\alpha$
C. $-\alpha$
D. $\frac{\pi}{2}-\alpha$

Answer: D

- Watch Video Solution

2. The distance of the point (a, b, c) from $x y$-plane
is
A. $\sqrt{a^{2}+b^{2}+c^{2}}$
B. a
C. b
D. C

Answer: D

- Watch Video Solution

3. Find the focus of the parabola $y=x^{2}+x+1$.

D Watch Video Solution

4. Determine the equation of the straight line
through the point $(2,3)$ which divides the portion of
the line segment between the axes in the ratio $2: 1$.

- Watch Video Solution

5. A moving straight line always passes through a fixed point (α, β). Prove that the locus of the middle point of the portion of the line intercepted
between the axes is $\frac{\alpha}{x}+\frac{\beta}{y}=2$.

D Watch Video Solution

6. Find equation of all possible circle that touch the
y-axis at the point $(0,3)$ and cut out the chord of
length 8 unit from the x-axis .

- Watch Video Solution

7. A ray of light along the line $x-2 y+5=0$ is reflected
from the line $3 x-2 y+7=0$. Find the equation of the line containing the reflected ray .

- Watch Video Solution

8. Find the coordinates of vertices of a unit cube
where the three concrrent edges are the coordinte axes.
9. The equation of the axis and directrix of a parabola are $y-3=0$ and $x+3=0$ respectively and the length of the latus rectum is 8 units. Find the equation of the parabola and the coordinate of its vertex.

- Watch Video Solution

10. The equation of the directrix of a hyperbola $x-y$
$+3=0$. One of its focus is at $(-1,1)$ and eccentricity is
3 . Find the equation of the hyperbola.

- Watch Video Solution

Wbhs Archive 2016

1. If $(\lambda, 1+\lambda)$ be lying inside the circle $x^{2}+y^{2}=1$, then-

$$
\begin{aligned}
& \text { A. } \lambda=-\frac{1}{2} \\
& \text { B. } \lambda<0 \\
& \text { C. }-1<\lambda<0 \\
& \text { D. } \lambda>0
\end{aligned}
$$

2. The distance between the points $A(5,1,2)$ and B
$(4,6,-1)$ is
A. $\sqrt{35}$ units
B. $\sqrt{53}$ units
C. $\sqrt{5}$ units
D. $\sqrt{3}$ units

Answer: A
3. If the points $A(2, \beta, 3), B(\alpha,-5,1)$ and $\mathrm{C}(-1,11$
, 9) are collinear , then
A. $\alpha=3$
B. $\beta=3$
C. $\alpha=-1$
D. $\beta=-1$

Answer: D

- Watch Video Solution

4. Find the locus of the mid - point of the portion of the line $x \cos \alpha+y \sin \alpha=4$ intercepted between the axes of coordinates .

- Watch Video Solution

5. If the coordinates of a point lies on the ellipse $9 x^{2}+16 y^{2}=144$ be $\left(2, \frac{3 \sqrt{3}}{2}\right)$, find the eccentric angle of that point .

- Watch Video Solution

6. Two sides of a square have the equations $5 x+12 y$
$=10$ and $5 x+12 y+29=0$ and the third side passes through the point $(3,5)$. Find the equations of the other two sides of the square.

- Watch Video Solution

7. Find the equation of the circle passes through the points (4,3) and $(-2,5)$ and whose centre lies on the line $2 x-3 y=4$
8. Show that the area of the triangle formed by the straight lines $y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ and $\mathrm{x}=$ 0 is $\frac{1}{2} \frac{\left(c_{1}-c_{2}\right)^{2}}{\left|m_{1}-m_{2}\right|}$ sq. Units.

- Watch Video Solution

9. Find the vlaue of $\cos B$ for the triangle formed by joining the points $A(6,11,2), B(1,-1,2)$ and $C(1,2$, $6)$.
10. If the extremities of a focal chord of the parabola $y^{2}=4 a x$ be $\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\left(a t_{2}^{2}, 2 a t_{2}\right)$, show that $t_{1} t_{2}=-1$

- Watch Video Solution

11. If S and S^{\prime} are the foci and P be any point on the hyperbola $x^{2}-y^{2}=a^{2} \quad, \quad$ prove that $\overline{S P} \cdot \overline{S^{\prime} P}=C P^{2}$, where C is the centre of the hyperbola.

Wbjee Archive 2012
1.

If
the
equation
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents
a pair of parallel lines, prove that
$\frac{a}{h}=\frac{h}{b}=\frac{g}{f}$
A. 1
B. 2
C. 3
D. 4

Answer: D
2. If the circles $x^{2}+y^{2}+2 x+2 k y+6=0$ and $x^{2}+y^{2}+2 k y+k=0$ intersect orthogonally , then k is equal to

$$
\begin{aligned}
& \text { A. } 2 \text { or }-\frac{3}{2} \\
& \text { B. }-2 \text { or }-\frac{3}{2} \\
& \text { C. } 2 \text { or } \frac{3}{2} \\
& \text { D. }-2 \text { or } \frac{3}{2}
\end{aligned}
$$

Answer: A

3. The line joining $A(b \cos \alpha b \sin \alpha)$ and $B(a \cos \beta, a \sin \beta)$, where $a \neq b$, is produced to the point $M(x, y)$ so that $A M: B M=b: a$. Then $x \cos \frac{\alpha+\beta}{2}+y \sin \frac{\alpha+\beta}{2}$ is equal to _
A. 0
B. 1
C. -1
D. $a^{2}+b^{2}$

Answer: A

4. If four distinct points $(2 k, 3 k),(2,0),(0,3)$ and (0

,0) lie on a circle then
A. $k<0$
B. $0<k<1$
C. $k=1$
D. $k>1$

Answer: C
5. Let the foci of the ellipse $\frac{x^{2}}{9}+y^{2}=1$ subtend a right angle at a point P. Then the locus of P is _

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}=1 \\
& \text { B. } x^{2}+y^{2}=2 \\
& \text { C. } x^{2}+y^{2}=4 \\
& \text { D. } x^{2}+y^{2}=8
\end{aligned}
$$

Answer: D
6. Let $P(2,-3), Q(-2,1)$ be the vertices of the triangle PQR . If the centroid of $\triangle P Q R$ lies on the line $2 x+3 y=1$, then the locus of R is _

$$
\begin{aligned}
& \text { A. } 2 x+3 y=9 \\
& \text { B. } 2 x-3 y=7 \\
& \text { C. } 3 x+2 y=5 \\
& \text { D. } 3 x-2 y=5
\end{aligned}
$$

Answer: A

7. Let P be the midpoint of a chord joining the vertex

 of the parabola $y^{2}=8 x$ to another point on it .Then locus of P.
A. $y^{2}=2 x$
B. $y^{2}=4 x$
C. $\frac{x^{2}}{4}+y^{2}=1$
D. $x^{2}+\frac{y^{2}}{4}=1$

Answer: B

- Watch Video Solution

8. The line $\mathrm{x}=2 \mathrm{y}$ intersects the ellipse $\frac{x^{2}}{4}+y^{2}=1$ at the points P and Q. The equation of the circle with pq as diameter is _

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}=\frac{1}{2} \\
& \text { B. } x^{2}+y^{2}=1 \\
& \text { C. } x^{2}+y^{2}=2 \\
& \text { D. } x^{2}+y^{2}=\frac{5}{2}
\end{aligned}
$$

Answer: D

9. The eccentric angle in the first quadrant of a point
on the ellipse $\frac{x^{2}}{10}+\frac{y^{2}}{8}=1$ at a distance 3 units from the centre of the ellipse is _

> A. $\frac{\pi}{6}$
> B. $\frac{\pi}{4}$
> C. $\frac{\pi}{3}$
> D. $\frac{\pi}{2}$

Answer: B
10. The transverse axis of a hyperbola is along the x axis and its length is 2 a . The vertex of the hyperbola bisects the line segment joining the centre and the focus. The equation of the hyperbola is

$$
\begin{aligned}
& \text { A. } 6 x^{2}-y^{2}=3 a^{2} \\
& \text { B. } x^{2}-3 y^{2}=3 a^{2} \\
& \text { C. } x^{2}-6 y^{2}=3 a^{2} \\
& \text { D. } 3 x^{2}-y^{2}=3 a^{2}
\end{aligned}
$$

Answer: D

11. A point moves in such a way that the difference of its distances from two points (8,0) and ($-8,0$) always remains 4 . Then the locus of the point is _
A. a circle
B. a parabola
C. an ellipse
D. a hyperbola

Answer: D

- Watch Video Solution

12. The number of integer values of m. for which the
x - coordinate of the point of intersection of the
lines $3 x+4 y=9$ and $y=m x+1$ is also an interger is
A. 0
B. 2
C. 4
D. 1

Answer: B

- Watch Video Solution

13. If a straight line passes through the point (α, β)
and the portion of the line intercepted between the axes is divided equally at that point, then $\frac{x}{\alpha}+\frac{y}{\beta}$ is
A. 0
B. 1
C. 2
D. 4

Answer: C

14. Let p, q, r be the altiudes of triangles with area s and perimeter 2 t . Then the value of $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}$ is
A. $\frac{s}{t}$
B. $\frac{t}{s}$
C. $\frac{s}{2 t}$
D. $\frac{2 s}{t}$

Answer: B
15. Let C_{1} and C_{2} denote the centres of the circles
$x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=1$ respectively and let P and Q be their points of intersection. Then the areas of triangles $C_{1} P Q$ and $C_{2} P Q$ are in the ratio
A. $3: 1$
B. 5: 1
C. 7:1
D. $9: 1$

Answer: C
16. A straight line through the point of intersection of the lines $x+2 y=4$ and $2 x+y=4$ meets the coordinate axes at A and B.the locus of the midpoint of $A B$ is
A. $3(x+y)=2 x y$
B. $2(x+y)=3 x y$
C. $2(x+y)=x y$
D. $x+y=3 x y$

Answer: B
17. Let P and Q be the points on the prabola $y^{2}=4 x$ so that the line segment $P Q$ subtends right at the
vertex. If $P Q$ intersects the axis of the parabola at R,
then the distance of the vertex from R is
A. 1
B. 2
C. 4
D. 6

Answer: C
18. The incentre of an equilateral triangle is (1,1) and the equation of one side is $3 x+4 y+3=0$. Then the equation of the circumcircle of the triangle is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}=-2 x-2 y-2=0 \\
& \text { B. } x^{2}+y^{2}-2 x-2 y-14=0 \\
& \text { C. } x^{2}+y^{2}-2 x-2 y+2=0 \\
& \text { D. } x^{2}+y^{2}-2 x-2 y+14=0
\end{aligned}
$$

Answer: B

Wbjee Archive 2013

1. A point P lies on the circle $x^{2}+y^{2}=169$. If $\mathrm{Q}=(5$
, 12) and $\mathrm{R}=(-12,5)$, then the angle $\angle Q P R$ is _

> A. $\frac{\pi}{6}$
> B. $\frac{\pi}{4}$
> C. $\frac{\pi}{3}$
> D. $\frac{\pi}{2}$

Answer: B

2. A circle passing through $(0,0),(26),(6,2)$ cuts the

 x axis at the point $P \neq(0,0)$. Then the length of $O P$, where O is origin isA. $\frac{5}{2}$
B. $\frac{5}{\sqrt{2}}$
C. 5
D. 10

Answer: C

3. The locus of the midpoints of the chords of an ellipse $x^{2}+4 y^{2}=4$ that are drawn forms the positive end of the minor axis is
A. a circle with centre $\left(\frac{1}{2}, 0\right)$, and radius 1
B. a parabola with focus $\left(\frac{1}{2}, 0\right)$, and directrix x $=-1$
C. an ellipse with centre $\left(0, \frac{1}{2}\right)$, major axis 1 and minor axis $\frac{1}{2}$
D. a hyperbola with centre $\left(0, \frac{1}{2}\right)$, transverse axis 1 and conjugate axis $\frac{1}{2}$

Answer:

D Watch Video Solution

4. A point moves so that the sum of squares of its distances from the points $(1,2)$ and $(-2,1)$ is always 6 .

Then its locus is
A. the straight line $y-\frac{3}{2}=-3\left(x+\frac{1}{2}\right)$
B. a circle with centre $\left(-\frac{1}{2}, \frac{3}{2}\right)$ and radius
$\frac{1}{\sqrt{2}}$
C. a parabol with focus (1,2) and directrix passing

D. an ellipse with foci $(1,2)$ and $(-2,1)$

Answer: B

- Watch Video Solution

5. For the variable t, the locus of the points of intersection of lines $\mathrm{x}-2 \mathrm{y}=\mathrm{t}$ and $x+2 y=\frac{1}{t}$ is_
A. the straight line $x=y$
B. the circle with centre at the origin and radius 1
C. the ellipse with centre at the origin and one
focus $\left(\frac{2}{\sqrt{2}}, 0\right)$
D. the hyperbola with centre at the origin and

$$
\text { one focus }\left(\frac{\sqrt{5}}{2}, 0\right)
$$

Answer: D

- Watch Video Solution

6. If the distance between the foci of an ellipse is equal to the length of the latus rectum, then its eccentricity is
A. $\frac{1}{4}(\sqrt{5}-1)$
B. $\frac{1}{2}(\sqrt{5}+1)$
C. $\frac{1}{2}(\sqrt{5}-1)$
D. $\frac{1}{4}(\sqrt{5}+1)$

Answer: C

- Watch Video Solution

7. For the variable t, the locus of the point of intersection of the lines $3 t x-2 y+6 t=0$ and $3 x+2 t y$
$-6=0$ is
A. the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
B. the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
C. the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$
D. the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$

Answer: A

- Watch Video Solution

8. If a, b, c are in A.P., then the straight line $a x+2$ by $+\mathrm{c}=0$ will always pass through a fixed point whose coordinates are
A. $(1,-1)$
B. $(-1,1)$
C. $(1,-2)$
D. $(-2,1)$

Answer: A

- Watch Video Solution

9. If one end of a diameter of the circle $3 x^{2}+3 y^{2}-9 x+6 y+5=0$ is $(1,2)$ then the other end is
A. $(2,1)$
B. $(2,4)$
C. $(2,-4)$
D. $(-4,2)$

Answer: C

- Watch Video Solution

10. the equation $2 x^{2}+5 x y-12 y^{2}=0$ represents
a
_
A. circle
B. pair of non-perpendicular intersecting straight
lines
C. pair of perpendicular straight lines
D. hyperbola

Answer: B

- Watch Video Solution

11. The line $y=x$ intersects the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{25}=1$ at the points P and Q . The eccentricity of ellipse with $P Q$ as major axis and minor axis of length $\frac{5}{\sqrt{2}}$ is _
A. $\frac{\sqrt{5}}{3}$
B. $\frac{5}{\sqrt{3}}$
C. $\frac{2 \sqrt{2}}{3}$
D. $\frac{25}{9}$

Answer:

- Watch Video Solution

12. The equation of the circle passing through the point (1, 1) and the points of intersection of $x^{2}+y^{2}-6 x-8=0$ and $x^{2}+y^{2}-6=0$ is

$$
\text { A. } x^{2}+y^{2}+3 x-5=0
$$

$$
\begin{aligned}
& \text { B. } x^{2}+y^{2}-4 x+2=0 \\
& \text { C. } x^{2}+y^{2}+6 x-4=0 \\
& \text { D. } x^{2}+y^{2}-4 y-2=0
\end{aligned}
$$

Answer: A

D Watch Video Solution

13. The number of lines which pass through the point $(2,-3)$ and are at distance 8 from the point (-1 ,
2) is
A. infinite
B. 4
C. 2
D. 0

Answer: D

D Watch Video Solution

14. Let P be a point on the parabola $y^{2}=4 a x$ with focus F. Let Q denote the foot of the perpendicular
from P onto the directrix. Then $\frac{\tan \angle P Q F}{\tan \angle P F Q}$ is_
A. 1
B. $\frac{1}{2}$
C. 2
D. $\frac{1}{4}$

Answer: A

- Watch Video Solution

15. The equations of the circles which touch both the axes and the line $4 x+3 y=12$ and have centres in the first quadrant are

$$
\text { A. } x^{2}+y^{2}-x-y+1=0
$$

$$
\begin{aligned}
& \text { B. } x^{2}+y^{2}-2 x-2 y+1=0 \\
& \text { C. } x^{2}+y^{2}-12 x-12 y+36=0 \\
& \text { D. } x^{2}+y^{2}-6 x-6 y+36=0
\end{aligned}
$$

Answer: A::B::C::D

D Watch Video Solution

16. Lines $x+y=1$ and $3 y=x+3$ intersect the ellipse
$x^{2}+9 y^{2}=9$ at the points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$. The area of the triangle $P Q R$ is _
A. $\frac{36}{5}$
B. $\frac{18}{5}$
C. $\frac{9}{5}$
D. $\frac{1}{5}$

Answer: B

D Watch Video Solution

17. A line passing through the point of intersection of $x+y=4$ and $x-y=2$ makes and angle $\tan ^{-1} \frac{3}{4}$ with the x - axis. It intersects the parabola $y^{2}=4(x-3) \quad$ at points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ respectively .then $\left|x_{1}-x_{2}\right|$ is equal to _
A. $\frac{16}{9}$
B. $\frac{32}{9}$
C. $\frac{40}{9}$
D. $\frac{80}{9}$

Answer: B

- Watch Video Solution

Wbjee Archive 2014

1. Let the equation of an ellipse be $\frac{x^{2}}{144}+\frac{y^{2}}{25}=1$.

Then the radius of the circle with centre $(0, \sqrt{2})$
and passing through the foci of the ellipse is _
A. 9
B. 7
C. 11
D. 5

Answer: C

- Watch Video Solution

2. The values of λ for which the curve $(7 x+5)^{2}+(7 y+3)^{2}=\lambda^{2}(4 x+3 y-24)^{2}$
represents a parabola is
A. $\pm \frac{6}{5}$
B. $\pm \frac{7}{5}$
C. $\pm \frac{1}{5}$
D. $\pm \frac{2}{5}$

Answer: B

- Watch Video Solution

3. The straight lines $x+y=0,5 x+y=4$ and $x+5 y=$

4 form

A. an isosceles triangle

B. an equilateral triangle

C. a scalene triangle
D. a right angled triangle

Answer: A

- Watch Video Solution

4. The equation of hyperbola whose coordinates of
the foci are $(\pm 8,0)$ and the length of latus rectum is 24 units is

$$
\text { A. } 3 x^{2}-y^{2}=48
$$

$$
\begin{aligned}
& \text { B. } 4 x^{2}-y^{2}=48 \\
& \text { C. } x^{2}-3 y^{2}=48 \\
& \text { D. } x^{2}-4 y^{2}=48
\end{aligned}
$$

Answer: A

D Watch Video Solution

5. If the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$, cuts
the
three
circles
$x^{2}+y^{2}-5=0, x^{2}+y^{2}-8 x-6 y+10=0$ and
$x^{2}+y^{2}-4 x+2 y-2=0$ at the extremities of
their diameters, then _

$$
\begin{aligned}
& \text { A. } c=-5 \\
& \text { B. } f g=\frac{147}{25} \\
& \text { C. } g+2 f=c+2 \\
& \text { D. } 4 f=3 g
\end{aligned}
$$

Answer: A::B::C::D

- Watch Video Solution

Wbjee Archive 2015

1. If the vertex of the conic $y^{2}-4 y=4 x-4 a$ always lies between the straight lines $x+y=3$ and 2
$x+2 y-1=0$ then

$$
\begin{aligned}
& \text { A. } 2<a<4 \\
& \text { B. }-\frac{1}{2}<a<2 \\
& \text { C. } 0<a<2 \\
& \text { D. }-\frac{1}{2}<a<\frac{3}{2}
\end{aligned}
$$

Answer: B

- Watch Video Solution

2. Number of points having distance $\sqrt{5}$ from the straight line $x-2 y+1=0$ and a distance $\sqrt{13}$ from the line $2 x+3 y-1=0$ is
A. 1
B. 2
C. 4
D. 5

Answer: C

- Watch Video Solution

3. Number of intersecting points of the conic
$4 x^{2}+9 y^{2}=1$ and $4 x^{2}+y^{2}=4$ is
A. 1
B. 2
C. 3
D. 0 (zero)

Answer: D

- Watch Video Solution

4. Let $16 x^{2}-3 y^{2}-32 x+12 y=44$ represents a hyperbola. Then
A. length of the transverse axis is $2 \sqrt{3}$
B. length of each latus rectum is $\frac{32}{\sqrt{3}}$
C. eccentricity is $\sqrt{\frac{19}{3}}$
D. equation of a directrix is $x=\frac{\sqrt{19}}{3}$

Answer: A::B::C::D

- Watch Video Solution

5. The least positive value of t so that the lines
$x=t+\alpha, y+16=0$ and $y=\alpha x$ are concurrent is
A. 2
B. 4
C. 16
D. 8

Answer: D

- Watch Video Solution

Wbjee Archive 2016
1.

The
points
$(-a,-b),\left(a^{2}, a b\right),(a, b),(0,0), a \neq 0, b \neq 0$
are always
A. collinear
B. vertices of a parallelogram
C. vertices of a rectangle
D. lie on a circle

Answer: A

- Watch Video Solution

2. The line $A B$ cuts of equal intercepts $2 a$ from the axes. From any point P on the line $A B$ perpendicular

PR and PS are drawn on the axes. Locus of midpoint of RS is

$$
\text { A. } x-y=\frac{a}{2}
$$

B. $x+y=a$
C. $x^{2}+y^{2}=4 a^{2}$
D. $x^{2}-y^{2}=2 a^{2}$

Answer: B

D Watch Video Solution

3.

$x+8 y-22=0,5 x+2 y-34=0,2 x-3 y+13=0$
are three sides of a triangle. The area of the triangle
is
A. 36 square unit
B. 19 square unit
C. 42 square unit
D. 72 square unit

Answer: B

- Watch Video Solution

4. The line through the points (a, b) and (-a , -b) passes through the point
A. $(1,1)$
B. $(3 a,-2 b)$
C. $\left(a^{2}, a b\right)$
D. (a, b)

Answer: C

- Watch Video Solution

5. The locus of the point of intersection of the straight lines $\frac{x}{a}+\frac{y}{b}=k$ and $\frac{x}{a}-\frac{y}{b}=\frac{1}{k}$ where k is a non-zero real variable is given by
A. a straight by
B. an ellipse
C. a parabola
D. a hyperbola

Answer: D

- Watch Video Solution

6. The equations of a line parallel to the line $3 x+4 y$
$=0$ and touching the circle $x^{2}+y^{2}=9$ in the 1 st quardrant is
A. $3 x+4 y=15$
B. $3 x+4 y=45$
C. $3 x+4 y=0$
D. $3 x+4 y=27$

Answer: A

- Watch Video Solution

7. A line passing through the point of intersection of $x+y=4$ and $x-y=2$ makes an angle $\tan ^{-1}\left(\frac{3}{4}\right)$ with the x-axis . It intersects the parabola $y^{2}=4(x-3) \quad$ at points $\quad\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ respectively. Then $\left|x_{1}-x_{2}\right|$ is equal to
A. $\frac{16}{9}$
B. $\frac{32}{9}$
C. $\frac{40}{9}$
D. $\frac{80}{9}$

Answer: B

- Watch Video Solution

8. The equation of auxiliary circle of the ellipse $16 x^{2}+25 y^{2}+32 x-100 y=284$ is
A. $x^{2}+y^{2}+2 x-4 y-20=0$
B. $x^{2}+y^{2}+2 x-4 y=0$
C. $(x+1)^{2}+(y-2)^{2}=400$
D. $\left(x_{1}\right)^{2}+(y-2)^{2}=225$

Answer:

- Watch Video Solution

9. If $P Q$ is a double ordinate of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ such that $\triangle O P Q$ is equilateral, o being the centre. Then the eccentricity e satisfies
A. $1<e<\frac{2}{\sqrt{3}}$
B. $e=\frac{2}{\sqrt{2}}$
C. $e=\frac{\sqrt{3}}{2}$
D. $e>\frac{2}{\sqrt{3}}$

Answer: D

- Watch Video Solution

10. If the vertex of the conic $y^{2}-4 y=4 x-4 a$
always lies between the straight lines $x+y=3$ and 2
$x+2 y-1=0$. Then
A. $2<a<4$
B. $-\frac{1}{2}<a<2$
C. $0<a<2$

$$
\text { D. }-\frac{1}{2}<a<\frac{3}{2}
$$

Answer: B

- Watch Video Solution

11. Let S be the set of points whose abscissas and ordinates are natural numbers . Let $P \in S$ such that the sum of the distance of P from $(8,0)$ and $(0,12)$ is minimum among all elements in S . Then the number of such points P in S is
A. 1
B. 3
C. 5
D. 11

Answer: B

- Watch Video Solution

12. The locus of the midpoints of chords of the circle
$x^{2}+y^{2}=1$ which subtends a right angle at the origin is

$$
\text { A. } x^{2}+y^{2}=\frac{1}{4}
$$

> B. $x^{2}+y^{2}=\frac{1}{2}$
> C. $x y=0$
> D. $x^{2}-u^{2}=0$

Answer: B

- Watch Video Solution

13. The locus of the midpoints of all chords of the parabola $y^{2}=4 a x$ through its vertex is another parabola with directrix is

$$
\text { A. } x=-a
$$

B. $x=a$
C. $x=0$
D. $x=-\frac{a}{2}$

Answer: D

- Watch Video Solution

14. The equation $x^{3}-y x^{2}+x-y=0$ represents
A. a hyperbola and two straight lines
B. a straight line
C. a parabola and two straight lines

D. a straight line and a circle

Answer: B

D Watch Video Solution

15. The coordinates of a point on the line $x+y+1=0$ which is at a distance $\sqrt{2}$ units from the line $3 x+4 y$
$-2=0$ are
A. $(2,-3)$
B. $(-3,2)$
C. $(0,-1)$
D. $-1,0)$

Answer: A::B::D

- Watch Video Solution

16. If the parabola $x^{2}=a y$ makes an intercept of
length $\sqrt{40}$ unit on the line $y-2 x=1$, then a is equal to
A. 1
B. -2
C. -1
D. 2

Answer: A::B::D

- Watch Video Solution

Jee Main Aieee Archive 2012

1. If the line $2 x+y=k$ passes through the point which divides the line segment joining the points
$(1,1)$ and $(2,4)$ in the ratio $3: 2$, then k equals
A. 6
B. $\frac{11}{5}$
C. $\frac{29}{5}$
D. 5

Answer: A

- Watch Video Solution

2. The length of the diameter of the circle which touches the x - axis at the point $(1,0)$ and passes through the point $(2,3)$ is
A. $\frac{6}{5}$
B. $\frac{5}{3}$
C. $\frac{10}{3}$
D. $\frac{3}{5}$

Answer: A::B::D

- Watch Video Solution

3. An ellipse is drawn by taking a diameter of the circle $(x-1)^{2}+y^{2}=1$ as its semi-minor axis and a diameter of the the circle $x^{2}+(y-2)^{2}=4$ as its sem-major axis. If the centre of the ellipse is at the origin and its axes are the coordinate axes, then the equation of the ellipse is _

> A. $4 x^{2}+y^{2}=8$
> B. $x^{2}+4 y^{2}=16$
> C. $4 x^{2}+y^{2}=4$
> D. $x^{2}+4 y^{2}=8$

Answer: B

D Watch Video Solution

Jee Main Aieee Archive 2013

1. A ray of light along $x+\sqrt{3} y=\sqrt{3}$ gets reflected upon reaching $g x$ - axis, the equation of reflected
ray is _

$$
\begin{aligned}
& \text { A. } y=x+\sqrt{3} \\
& \text { B. } \sqrt{3} y=x-\sqrt{3} \\
& \text { C. } y=\sqrt{3} x-\sqrt{3} \\
& \text { D. } \sqrt{3} y=x-1
\end{aligned}
$$

Answer: B

- Watch Video Solution

2. The circle passing through ($1,-2$) and touching
the axis of x at $(3,0)$ also passes through the point _
A. $(-5,2)$
B. $(2,-5)$
C. $(5,-2)$
D. $(-2,5)$

Answer: C

- Watch Video Solution

3. The x-coordinate of the incentre of the triangle that has the coordinates of midpoints of its sides as $(0,1),(1,1)$ and $(1,0)$ is _
A. $2+\sqrt{2}$
B. $2-\sqrt{2}$
C. $1+\sqrt{2}$
D. $1-\sqrt{2}$

Answer: B

- Watch Video Solution

4. The equation of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and having centre at $(0,3)$ is
A. $x^{2}+y^{2}-6 y-7=0$
B. $x^{2}+y^{2}-6 y+7=0$
C. $x^{2}+y^{2}-6 y-5=0$
D. $x^{2}+y^{2}-6 y+5=0$

Answer: A

D Watch Video Solution

Jee Main Aieee Archive 2014

1. Let be the circle with centre at $(1,1)$ and radius is 1
unit. It T is the circle centred at ($0, \mathrm{y}$), passing
through origin and touching the circle c externally, then the radius of T is equal to _

$$
\begin{aligned}
& \text { A. } \frac{\sqrt{3}}{\sqrt{2}} \\
& \text { B. } \frac{\sqrt{3}}{2} \\
& \text { C. } \frac{1}{2} \\
& \text { D. } \frac{1}{4}
\end{aligned}
$$

Answer: D

D Watch Video Solution

2. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d be nonzero number. If the point of intersection of the lines $4 a x+2 a y+c=0$ and $5 b$
$x+2$ by $+d=0$ lies in the fouth quadrant and is eqaidistant from the two axes, then _

$$
\begin{aligned}
& \text { A. } 2 b c-3 a d=0 \\
& \text { B. } 2 b c+3 a d=0 \\
& \text { C. } 3 b c-2 a d=0 \\
& \text { D. } 3 b c+2 a d=0
\end{aligned}
$$

Answer: C

- Watch Video Solution

3. Let PS be the median of the triangle with vertices
$P(2,2), Q(6,-1)$ and $R(7,3)$. The equationf o the
line passing through $(1,-1)$ and parallel to Ps is

$$
\begin{aligned}
& \text { А. } 4 x-7 y-11 \\
& \text { B. } 2 x+9 y+7=0 \\
& \text { C. } 4 x+7 y+3=0 \\
& \text { D. } 2 x-9 y-11=0
\end{aligned}
$$

Answer: B

- Watch Video Solution

Jee Main Aieee Archive 2015

1. Let O be the vertex and Q be any point on the parabola $x^{2}=8 y$. If the point P divides the line segments $O Q$ internally in the ratio $1: 3$, then the locus of P is

$$
\begin{aligned}
& \text { A. } y^{2}=2 x \\
& \text { B. } x^{2}=2 y \\
& \text { C. } x^{2}=y \\
& \text { D. } y^{2}=x
\end{aligned}
$$

Answer: B

2. The number of points, having both coordinates are integers, that lie in the interior of the triangle with vertices $(0,0),(0,41)$ and $(41,0)$ is
A. 820
B. 780
C. 901
D. 861

Answer: B
3. Locus of the image of the point $(2,3)$ in the line ($2 \mathrm{x}-3 \mathrm{y}+4)+\mathrm{k}(\mathrm{x}-2 \mathrm{y}+3)=0, k \in \mathbb{R}$ is a_{Z}
A. Circle of radius $\sqrt{2}$
B. circle of radius $\sqrt{3}$
C. straight line parallel to x-axis
D. straight line parallel to y - axis

Answer: A

- Watch Video Solution

1. Two sides of a rhombus are along the lines $x-y+1$
$=0$ and $7 x-y-5=0$. If its diagonals intersect at (-1 ,
$-2)$, then which one of the following is a vertex of this rhombus?
A. $(-3,-9)$
B. $(-3,-8)$
C. $\left(\frac{1}{3},-\frac{8}{3}\right)$
D. $\left(\frac{10}{3},-\frac{7}{3}\right)$

Answer: C

2. The centres of those circles which touch the circle $x^{2}+y^{2}-8 x-8 y-4=0$ externally and also touch the x -axis, lie on
A. a circle
B. an ellipse which in not a circle
C. a hyperbola
D. a parabola

Answer: D

- Watch Video Solution

3. In one of the diameters of the circle, given by the equation $x^{2}+y^{2}-4 x+6 y-12=0$, is a chord of a circle S, whose center is at $(-3,2)$, then the radius of S is
A. $5 \sqrt{2}$
B. $5 \sqrt{3}$
C. 5
D. 10

Answer: B

4. Let, P be the point on the parabola $y^{2}=8 x$ which is at a minimum distance from the centre C of the circle $x^{2}+(y+6)^{2}=1$. Then the equation of the circle, passing through C and having its centre at P is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}-4 x+8 y+12=0 \\
& \text { B. } x^{2}+y^{2}-x+4 y-12=0 \\
& \text { C. } x^{2}+y^{2}-\frac{x}{4}+2 y-24=0 \\
& \text { D. } x^{2}+y^{2}-4 x+9 y+18=0
\end{aligned}
$$

Answer: A
5. The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal to half of the distance between its foci, is
A. $\frac{4}{3}$
B. $\frac{4}{\sqrt{3}}$
C. $\frac{2}{\sqrt{3}}$
D. $\sqrt{3}$

Answer: C

Jee Advanced Archive 2013

1. Circle (s) touching x-axis at a distance 3 from the origin and having an intercept of length $2 \sqrt{7}$ on y axis is (are)
A. $x^{2}+y^{2}-6 x+8 y+9=0$
B. $x^{2}+y^{2}-6 x+7 y+9=0$
C. $x^{2}+y^{2}-6 x-8 y+9=0$
D. $x^{2}+y^{2}-6 x-7 y+9=0$

Jee Advanced Archive 2014

1. A circle s passes through the point $(0,1)$ and is orthogonal to the circles $(x-1)^{2}+y^{2}=16$ and $x^{2}+y^{2}=1$. Then
A. radius of S is 8
B. radius of S is 7
C. center of S is $(-7,1)$
D. center of s is $(-8,1)$

Answer: A::B::C::D

- Watch Video Solution

Jee Advanced Archive 2015

1. Let the curve C be the mirror image of the parabola $y^{2}=4 x$ with respect to the line $\mathrm{x}+\mathrm{y}+4=$ 0 If A and B are the points of intersection of C with the line $y=-5$, then the distance between A and B is
2. Let P and Q be distinct points on the parabola $y^{2}=2 x$ such that a circle with PQ as diameter passes through the vertex O of the parabola. If P lies in the first quadrant and the area of the triangle OPQ is $3 \sqrt{2}$, then which of the following is (are) the coordinates of P ?
A. $(4,2 \sqrt{2})$
B. $(9,3 \sqrt{2})$
C. $\left(\frac{1}{4}, \frac{1}{\sqrt{2}}\right)$
D. $(1, \sqrt{2})$

- Watch Video Solution

Jee Advanced Archive 2016

1. The circle $C_{1}: x^{2}+y^{2}=3$, with centre at O , intersects the parabola $x^{2}=2 y$ at the point P in the first quadrant . Let the tangent to the circle $C-(1)$ at P touches other two circles C_{2} and $C_{3} a t R_{2}$ and R_{3}, respectively. suppose C_{2} and C_{3} have equal radii $2 \sqrt{3}$ and centres Q_{2} and Q_{3}, respectively. if Q_{2} and Q_{3} lie on the y-axis, then

$$
\text { A. } Q_{2} Q_{3}=12
$$

B. $R_{2} R_{3}=4 \sqrt{6}$
C. area of the triangle $O R_{2} R_{3} i s 6 \sqrt{2}$
D. area of the triangle $P Q_{2} Q_{3} i s 4 \sqrt{2}$

Answer: A::B::C

D View Text Solution

2. Let, RS be the diameter of the circle $x^{2}+y^{2}=1$,
where S is the point (1,0). Let P be a variable point
(other then R and S) on the circle and tangents to
the circle at s and P meet at the point Q. The normal
to the circle at Pintersects a line drawn through Q
parallel to RS at point E. The locus of E passes through the point (s)

$$
\begin{aligned}
& \text { А. }\left(\frac{1}{3}, \frac{1}{\sqrt{3}}\right) \\
& \text { B. }\left(\frac{1}{4}, \frac{1}{2}\right) \\
& \text { C. }\left(\frac{1}{3},-\frac{1}{\sqrt{3}}\right) \\
& \text { D. }\left(\frac{1}{4},-\frac{1}{2}\right)
\end{aligned}
$$

Answer: A::C::D
3. Let $a, b \in \mathbb{R}$ and $a^{2}+b^{2} \neq 0$. Suppose
$s=\left\{z \in \mathbb{C}: z=\frac{1}{a+i b t}, t \in \mathbb{R}, t \neq 0\right\}$ where $\mathrm{I}=$
$\sqrt{-1}$. If $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ and $z \in S$ then (x, y) lies on
A. The circle with radius $\frac{1}{2 a}$ and center $\left(\frac{1}{2 a}, 0\right)$
for $a>0, b \neq 0$
B. The circle with radius $-\frac{1}{2 a}$ and center
$\left(-\frac{1}{2 a}, 0\right)$ for $a<0 b \neq 0$
C. the x - axis for $a \neq 0, b=0$
D. the y - axis for $a=0, b \neq 0$

