©゙’doubtnut

MATHS

BOOKS - CHHAYA PUBLICATION MATHS (BENGALI

 ENGLISH)
DEFINITE INTEGRAL AS AN AREA

Example

1. Find the area bounded by the curve $y^{2}=4 x$ the x-axis and the ordinate at $\mathrm{x}=4$

- Watch Video Solution

2. Find by integration the area of the triangle bounded by line $4 y-5 x=0$,the x axis and the ordinate $\mathrm{x}=4$ Verify your result by using the definition of area of a triangle as half the product of the base and the altitude.

- Watch Video Solution

3. Find by integration the area of the trapezoid bounded gy $y=2 x+1, y=0, x=2$ and $x=4$ Verify your result by finding the area of a trapezoid as the product of half the sum of the two parallel sides and the distance between them.

- Watch Video Solution

4. Find the area bounded by the parabola $y=x^{2}$,the y-axis and the abscissa at $\mathrm{y}=4$.
5. Using integration find the area of the region bounded by the parabola $y^{2}=16 x$ and the line $\mathrm{x}=4$

- Watch Video Solution

6. Find the area in the second quadrant bounded by the curve $y=x^{3}+8$ and the coordinate axes.

- Watch Video Solution

7. Find the area bounded by the parabola $y=x(4-x)$ and the x axis
8. Find the area bounded by the parabola $y^{2}=4 a x$ and its double ordinate $\mathrm{x}=\mathrm{b}$

- Watch Video Solution

9. Using integration find the area of the triangle whose vertices are
$\mathrm{A}(1,0), \mathrm{B}(2,2)$ and $\mathrm{C}(3,1)$

- Watch Video Solution

10. Find the area in the first quadrant bounded by the circle $x^{2}+y^{2}=16$,the x -axis and the ordinates $\mathrm{x}=1$ and $\mathrm{x}=3$

- Watch Video Solution

11. Find the area of the region bounded by the ellipse
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

- Watch Video Solution

12. By finding the area of a regular polygon of n sides inscribed in a circle of radius r,show that the area of the circle is πr^{2}

- Watch Video Solution

13. Find the area included between $y^{2}=9 x$ and $y=x$

- Watch Video Solution

14. Find the area bounded by the parabola
$y^{2}=4 a x$ and $x^{2}=4 a y$
15. Find the area cut off from the parabola $4 y=3 x^{2}$ by the straight line $3 x-2 y+12=0$

- Watch Video Solution

16. On a diagram mark the area bounded by the parabola $y^{2}=4 x$ and the circle $\mathrm{x}-4=4 \cos \theta, y=4 \sin \theta$ above the x -axis and obtain the area by integration

D View Text Solution

17. Find the area of the region $\left\{(x, y): x^{2}<y<x\right\}$
18. Find the area of the smaller region bounded by the ellips $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the straight line $\frac{x}{a}+\frac{y}{b}=1$

- Watch Video Solution

19. Find the area of the region $\left\{(x, y): x^{2}<y<|x|\right\}$

- Watch Video Solution

20. Find the area of the region enclosed between the two circles $x^{2}+y^{2}=1$ and $(x-1)^{2}+y^{2}=1$

- Watch Video Solution

21. Find the area of the region bounded by the curve $y=\cos x, x$ axis and the ordinates $\mathrm{x}=\mathrm{O}$ and $x=2 \pi$

Watch Video Solution

22. Draw a rough sketch of the curves $y=\sin x$ and $y=\cos x$ as x varies from 0 to $\frac{\pi}{2}$ and find the area of the region enclosed between them and x-axis

- Watch Video Solution

23. Find the area in the first quadrant which is common to the circle $x^{2}+y^{2}=4$ and the ellips $x^{2}+4 y^{2}=9$

D Watch Video Solution

24. From the point $\mathrm{P}(1.1)$ on the curve $y=x^{4}$ perpendicular Pm and PN are drawn upon the coordiante axes $O X$ and $O Y$
respectively.Show that the ratio of the smaller to the larger of the two areas in which the square OMPN is divided by the curve is $1: 4$

- Watch Video Solution

25. Using integration find the area of the triangle whose vertices are $\mathrm{A}(-4,3), \mathrm{B}(3,4)$ and $\mathrm{C}(8,6)^{`}$

D Watch Video Solution

26. By the method of integration find the area of the triangle formed by the straight lines $x+3 y-8=0,5 x-y-8=0$ and $x-y+4=0$
27. The curve y $a x^{\frac{1}{2}}+\mathrm{bx}$ passes through the point $(1,2)$ and the area enclosed by the curve the x-axis and the line $x=4$ is 8 square units. Determine a and b

- Watch Video Solution

Exercise 17 M C Q

1. The area bounded by to the line $2 x-3 y=0, \mathrm{x}$-axis and the ordinates $x=3, x=5$ (in square units)-is
A. 16
B. 8
C. 4
D. $\frac{16}{3}$

- Watch Video Solution

2. The area bounded by the curve $2 y^{2}-3 x=0$ (in square units) y axis and the two horizontals $\mathrm{y}=1$ and $\mathrm{y}=4$ is-
A. 7
B. 14
C. $\frac{64}{9}$
D. $\frac{110}{9}$

Answer: B

3. The area bounded by the curve $\mathrm{y}=\cos x, \mathrm{x}$-axis and the two ordinates $x=-\frac{\pi}{2}, x=\frac{\pi}{2}$ (in square units) is-
A. 2
B. -2
C. 1
D. -1

Answer: A

D Watch Video Solution

4. The area (in square unit) bounded by the curve $y=\sin x, x$-axis and the two ordinates $\mathrm{x}=\pi, x=2 \pi$ is-
A. 1
B. -1
C. -2
D. 2

Answer: C

D Watch Video Solution

Very Short Answer Type Questions

1. State the geometrival interpretation of $\int_{a}^{b} f(x) d x$

- Watch Video Solution

2. State the geometrival interpretation of $\int_{c}^{d} \phi(y) d y$
3. Using intregation find the area of the region bounded by the line $2 y+x=8$ and the lines $\mathrm{x}=2$ and $\mathrm{x}=4$

- Watch Video Solution

4. Draw a sketch graph showing the area of the region bounded by the parabola $y=x^{2}$,the x -axis and $x=2$ Calculated its area.

- Watch Video Solution

5. Draw sketch graph of $y^{2}=x$ the y-axis and the straight line $\mathrm{y}=3$ and shade the region bounded by them. Find the area of the shaded region
6. Find the area bounded by the x-axis and one arc of the sine curve $\mathrm{y}=\sin \mathrm{x}$ between $(0,0)$ and $(\pi, 0)$

- Watch Video Solution

7. Draw the graph of $\mathrm{y}=\cos x$ between $x=\frac{\pi}{2}$ and $x=\frac{3 \pi}{2}$.Find the area between this curve and the x-axis

D Watch Video Solution

8. Using integration,find the area of $\triangle P Q R$ whose vertices are $P(2,1), Q(3,4)$ and $R(5,2)$

- Watch Video Solution

9. Find the area in the fourth quadrant bounded by the curve $y=x^{3}-8$ and the coordinate axes

- Watch Video Solution

10. Determine the area bounded by the rectangular hyperbola $x y=c^{2}$, thex $-a \xi s$ and the two ordinates $\mathrm{x}=c, \mathrm{x}=2 \mathrm{c}$

- View Text Solution

Short Answer Type Questions

1. Find by integration the area of the triangle bounded by the lines
$3 \mathrm{x}-2 y=6, y=0$ and $\mathrm{x}=4$ Verify your result by using the definition or area of a triangle as half the product of the base and altitude
2. Find by integration the area of the trapezoid bounded by $y=4 x=-3, y=0$ and $\mathrm{x}=3$.Verify your result by finding the area of a trapezoid as the product of half the sum of the two parallel sides and the distance between them.

- Watch Video Solution

3. Find the area bounded by the parabola $x^{2}=12 y$ and its latus rectum

- Watch Video Solution

4. Find the area of the
(i) circle $\mathrm{x}=\mathrm{a} \cos \theta, y=a \sin \theta$
(ii) ellips $x=a \cos \theta, y=b \sin \theta$ by the method of integration

- Watch Video Solution

5. Calculated the area enclosed by the ellipse $4 x^{2}+9 y^{2}=36$ and the x-axis

D Watch Video Solution

6. Find the area of the plain region enclosed by the curve $y^{2}=2 y-x$ and the y-axis

- Watch Video Solution

7. Determine the area lying above the x-axis and under the parabola $y=2 x-x^{2}$
8. Find the area bounded by the parabola $y=16(x-1)(4-x)$ and the x -axis

- Watch Video Solution

9. Mark the area bounded by the curve $(y-1)(y-5)=4 x$ and the y-axis and obtain the area by integration

D Watch Video Solution

10. Draw the graph of the curve $y=3 x^{2}+2 x+4$ shade the area enclosed by the curve ,the x-axis and the lines $x=-1$ and $x=3$ Find the area of the shaded region by the method of integration

- Watch Video Solution

11. Using integration find the area of the region bounded by the lines $y=1+|x+1|, x=2, x=3$ and $y=0$

- Watch Video Solution

12. Show that a triangle made by a tangent at any point on the curve xy $=c^{2}$ and the coordinates axes is of constant area.
A. s
B.
C.
D.

Answer:

13. Find the common area between the parabolas $y^{2}-a x=a^{2}$ and $y^{2}+a x=a^{2}$

- Watch Video Solution

Long Answer Type Questions

1. Find the area bounded by the curve $f(x)=4-|x|$ and the x axis

- Watch Video Solution

2. (i) Using definite integral find the area of the triangle bounded by the straight lines $x=0, y=4 x$ and $2 x+y=6$
(ii) Using definite integral find the area of the triangle bounded by the straight lines $x=0, y=x$ and $2 y+x=6$
3. Shade the area bounded by $y^{2}=8 x$ and $\mathrm{y}=\mathrm{x}$ above positive direction of x-axis and use integration to find the area of that part.

- Watch Video Solution

4. Draw the sketch graph of the function $y=x^{2}$ and $y=x^{3}$ and shade the areas $\int_{0}^{1} x^{2} d x$ and $\int_{0}^{1} x^{3} d x$ what will be the value of the area enclosed by these two curves?

- Watch Video Solution

5. Show that,the area bounded by the parabola $y^{2}=4 \mathrm{ax}$ and a double ordinate is two third of the rectangle formed by this ordinate and the abscissa.
6. Using integration ,find the area of the region enclosed between the circles $x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$

- Watch Video Solution

7. Find the area of segment of the parabola $y=x^{2}-5 x+15$ cut off by the straight line $y=3 x+3$

- Watch Video Solution

8. Mark the area bounded by the curve $(y-1)(y-5)=4 x$ and the y-axis and obtain the area by integration
9. shade the area enclosed by the parabolas $y^{2}=\mathrm{x}$ and $x^{2}=y$ and use the method of integration to find the area so enclosed

- Watch Video Solution

10. Using integration find the area of the regions common to the circle $x^{2}+y^{2}=16$ and the parabola $y^{2}=6 x$

- Watch Video Solution

11. Draw rough sketch of the area bounded by the curves $x+2 y=1$ find its area.

- Watch Video Solution

12. Find the common area between the parabolas $y^{2}=4 a x$ and $x^{2}=4 b y$

- Watch Video Solution

13. Determine the area enclosed between the parabola $x^{2}=8 y$ and the straight line $x-2 y+8=0$

D Watch Video Solution

14. Find the area of the region $\left\{(x, y): x^{2}+y^{2}<1<x+y\right\}$

> Find the area of the region $\left\{(x, y): x^{2}+y^{2}<2 a x, y^{2}>a x, x>0, y>0\right\}$
(iii) Using integration find the area of the region $\left.\{x, y): y^{2}<4 x, 4 x^{2}+4 y^{2}<9\right\}$.
15. Find the area included between the parabolas $y^{2}=16 x$ and the line joining its vertes and an end of latus-rectum

- Watch Video Solution

16. Show that,the area bounded between $y=x^{3}$ and $y=4 x$ in the first quadrant is 4 square units.

- Watch Video Solution

17. Find the area in the first quadrant bounded by the circle $x^{2}+y^{2}=16$ and the line $\mathrm{y}=\mathrm{x}$

- Watch Video Solution

18. Find the area of the smaller part into which the circle $x^{2}+y^{2}=a^{2}$ is divided by the straight line $x=\frac{a}{\sqrt{2}}$

D Watch Video Solution

19. The straight line $b x+a y=a b$ divides the ellipse $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$ into two parts.prove that the area of the smallar part is $\frac{a b}{4}(\pi-2)$ square units.

- Watch Video Solution

20. If the area bounded by the parabolay ${ }^{2}=4 a x$ and its double ordinate $x=h$ is two times the area bounded by its latus rectum prove that $h: a,=2^{\frac{3}{2}}: 1$.
21. The area bounded in the first quadrant by the rectangular hyperbola $\quad x y=k^{2}$ the x-axis and the ordinates $x=3, x=c i s 2 k^{2} \log 5$, find c
(ii) If the area enclosed between the curves $\mathrm{y}=k x^{2}$ and $x=k y^{2}(k>0)$ is 1 square units find k

D Watch Video Solution

22. Prove that the curves $y^{2}=4 a x$ and $x^{2}=4 a y$ divide the square bounded by $x=0, y=0, x=4 a$ and $\mathrm{y}=4$ a into three equal parts.

- Watch Video Solution

23. Perpenicular PM and PN are drawn upon the coordinates axes OX and OY respectively from the point $P(3,3)$ situated on the
parabola $y^{2}=3 x$. Show that ,the ratio of the larger to the smallar of the two areas in which the area PNOM is divided by the are OP of the parabola is 2: 1

- Watch Video Solution

24. IF A be the area bounded by the x-axis and one are of the curve $\mathrm{y}=a \cos 3 x$ between (0,0) and $\left(\frac{\pi}{6}, 0\right)$ and B be the area bounded by the x-axis and one are of the curve $y=a \cos ^{\frac{x}{4}}$ between $(0,0)$ and $(2 \pi, 0)$ show that $, \mathrm{A}: \mathrm{B}=1: 12$

- Watch Video Solution

25. Using integration find the area the area bounded by the lines
$y=4 x+5, y=5-x$ and $4 y=x+5$
26. Show that ,the area of the coodinates axes is $\frac{a^{2}}{6}$ square units
(ii) Using the method of integration find the area bounded by the curve $|x|+|y|=1$

D Watch Video Solution

27. The area between $x=y^{2}$ and $\mathrm{x}=4$ is divided into two equal parts by the line $x=a$, find the value of a.

- Watch Video Solution

28. Find the area of the region bounded by the parabola $y=x^{2}$ and $y=|x|$

- Watch Video Solution

29. The area bounded by the curve $y=x^{3}$, x -axis and the ordinates: $x=-1$ and $x=1$ is given by

- Watch Video Solution

30. A function $y=f(x)$ is defined as follow:

$$
y=f(x)= \begin{cases}x^{2} & \text { when } 0<x<1 \\ \sqrt{x} & \text { when } x>1\end{cases}
$$

Find the area above the x-axis included between the curve $y=f(x)$ and the line $\mathrm{x}=4$

- Watch Video Solution

31. Find by integration the area of the triangle formed by the x-axis and the tangent and normal to the parabola $y=6 x-x^{2}$ at $(5,5)$
32. Area of the region bounded by the curve $y=e^{x}$ and lines $x=0$ and $y=e$ is-
A. $\mathrm{e}-1$
B. $\int_{1}^{e}(\log (e+1-y) d y$
C. $e-\int_{0}^{1} e^{x} d x$
D. $\int_{1}^{e} \log y d y$

Answer: B::C::D

- Watch Video Solution

2. The area enclosed between the curves $y=x$ and $x^{2}=y$ is equal to-
A. $\frac{1}{6}$
B. $\int_{0}^{1}\left(x-x^{2}\right) d x$
C. $\frac{1}{2}$
D. $\frac{3}{4}$

Answer: A::B::C

- Watch Video Solution

3. Let S be the area of the region enclosed by $y=e^{-x^{2}}, \mathrm{y}=0 \mathrm{x}=0$ and $\mathrm{x}=1$, Then -
A. $S>\frac{1}{e}$
B. $s \geq 1-\frac{1}{e}$
C. $\operatorname{slq} \frac{1}{4}\left(1+\frac{1}{\sqrt{e}}\right)$
D. $S<\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{e}}\left(1-\frac{1}{\sqrt{2}}\right)$

- Watch Video Solution

4. The parabolas $y^{2}=4 x$ and $x^{2}=4 y$ divide the square region bounded by the lines $\mathrm{x}=4, \mathrm{y}=4$ and the coordinates axes. If S_{1}, S_{2}, S_{3} are the areas of these parts numbered from the top to bottom respectively,then-
A. $S_{1}: S_{2}=1: 1$
B. $S_{2}: S_{3}=1: 2$
C. $S_{1}: S_{3}=1: 1$
D. $S_{1}:\left(S_{1}+S_{2}\right)=1: 2$

Answer: A::C::D

5. Let the curve $y=a x^{\frac{1}{2}}+\mathrm{bx}$ passes through the point $(1,2)$ and lies above the axis for $0<x<9$.If the area enclosed by the curve the x-axis and the line $x=4$ is 8 eq. units Then-
A. $a=1$
B. $b=1$
C. $a=3$
D. $b=-1$

Answer: C::D

(Watch Video Solution

1. The area of the figures bounded by the curves $y=|x-1|$ and $y=3-|x|$ is-

- Watch Video Solution

2. If S is the area bounded byb the curve $\mathrm{y}=\sqrt{1-x^{2}}$ and $y=x^{3}-x$ then the value of $\frac{\pi}{S}$ is equal to-

- Watch Video Solution

3. If the area inside the parabola $5 x^{2}-y=0$ but outside the parabola $2 x^{2}-y+9=0$ is $2 K \sqrt{3} \mathrm{sq}$. Units then the value of K is equal to-

- Watch Video Solution

4. If the area enclosed between the curves $|y|=1-x^{2}$ and $x^{2}+y^{2}=1$ is $\frac{3 \pi-K}{8}$ sq. unit ,then the value of K is equal to-

- Watch Video Solution

5. The area enclosed between the curve $y=\log _{e}(x+e), x \log _{e}\left(\frac{1}{y}\right)$ and x-axis is K sq. units then the value of K is equal to-

- View Text Solution

Matrix Match Type

1. ` (\#\#CHY_SND_MAT_XII_U03_C17_E07_001_Q01.png" width="80\%">
2.

CHY_SND_MAT_XII_U03_C17_E07_002_Q01.pngwidth $=80 \%>$

- View Text Solution

Comprehension Type

1.

Consider the
curves
$C_{1}: x=0, C_{2}: y=0, C_{3} y=x^{2}+1, C_{4}: y=2, C_{5}: x=1$
the area enclosed between the curves C_{1}, C_{2}, C_{3} and c_{5} is (in square units) -
A. $\frac{5}{6}$
B. $\frac{4}{3}$
C. $\frac{2}{3}$
D. $\frac{7}{3}$

Answer: B

- Watch Video Solution

2.

Consider
the
curves
$C_{1}: x=0, C_{2}: y=0, C_{3} y=x^{2}+1, C_{4}: y=2, C_{5}: x=1$
The area bounded by the curves C_{3} and C_{4} (in square units)
A. $\frac{20}{3}$
B. $\frac{2}{3}$
C. $\frac{5}{6}$
D. $\frac{7}{5}$

Answer: A

3.

$C_{1}: x=0, C_{2}: y=0, C_{3} y=x^{2}+1, C_{4}: y=2, C_{5}: x=1$
The area bounded by the curves C_{1}, C_{3} and C_{4} and which lies to the right of C_{1} is (in square units)-
A. $\frac{4}{3}$
B. $\frac{5}{6}$
C. $\frac{7}{5}$
D. $\frac{2}{3}$

Answer: D

D Watch Video Solution

4. The area of the region bounded by the curve and the line $x=-1$ is
A. $(\pi+1)$ square units
B. $(\pi-1)$ square units
C. $\left(\frac{\pi}{2}+1\right)$ square units
D. $\left(\frac{\pi}{2}-1\right)$ square units

Answer: A

- View Text Solution

5. Line $x=0$ divides the region mentioned above in two parts, The ratio of the area left-hand side of the line to that of right-hand side of the line is-
A. $(2+\pi): \pi$
B. $(2-\pi): \pi$
C. $1: 1$
D. $(\pi+2): \pi$

Answer: D

- Watch Video Solution

6. The area of the region of curve and lines $\mathrm{x}=0$ and $x=\frac{1}{2}$ is -
A. $\left(\frac{\sqrt{3}}{4}+\frac{\pi}{6}\right)$ square units
B. $\left(\frac{\sqrt{3}}{2}+\frac{\pi}{6}\right)$ square units
C. $\left(\frac{\sqrt{3}}{4}-\frac{\pi}{6}\right)$ square units
D. $\left(\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)$ square unit

Answer: A

- View Text Solution

Assertion Reason Type

1. Statement-I : Area bounded by $\mathrm{y}=e^{x}, \mathrm{y}=0$ and $\mathrm{x}=0$ is 1 square units

Statement -II: Area bounded by $\mathrm{y}=\log _{e} x, x=0$ and $y=0$ is 1
square units
A. Statement $-I$ is True statement $-I I$ is a correct explanation for statement-I
B. Statement $-I$ is true ,Statement-II is not True explanation for Statement-I
C. Statement -I is True Statement-II is False
D. Statement -I is False,Statement -II is True

Answer: A

- Watch Video Solution

2. $f(x)$ is a polynomial of degree 3 passing through the origin having local extrema at $x= \pm 2$

Statement-I: Ratio of the areas in which $f(x)$ cuts the circle $x^{2}+y^{2}=36$ is $1: 1$

Statement-II Both $y=f(x)$ and the circle are symmetric about the origin
A. Statement $-I$ is True statement -II is a correct explanation for statement-I
B. Statement $-I$ is true ,Statement-II is not True explanation for Statement-I
C. Statement -I is True Statement-II is False
D. Statement -I is False,Statement -II is True

Answer: A

