©゙doubtnut

MATHS

BOOKS - CHHAYA PUBLICATION MATHS (BENGALI ENGLISH)

INCREASING AND DECREASING

FUNCTION

Example

1. Show that the function $f(x)=\frac{3 x+5}{x+2}$ is strictly monotonic increasing in $[0, \infty)$.

D Watch Video Solution

2. Prove that $\phi(x)=\cos x$ is a strictly monotonic decreasing function in $0 \leq x \leq \pi$.
(D) Watch Video Solution
3. Find the intervals in which the function $f(x)=\frac{x}{x^{2}+1}$ is increasing

- Watch Video Solution

2. Find the intervals in which the function
$f(x)=\frac{x}{x^{2}+1}$ is decreasing
(Watch Video Solution
3. Show that the function $\left(x^{3}-3 x^{2}+4 x\right)$ increases with x .

- Watch Video Solution

4. Find the intervals in which the function
$f(x)=\frac{4 x^{2}+1}{x}$ is increasing

- Watch Video Solution

5. Find the intervals in which the function $f(x)=\frac{4 x^{2}+1}{x}$ is decreasing

- Watch Video Solution

6. Find the range of values of x for which the
function

$$
f(x)=2 x^{3}-9 x^{2}-24 x+5
$$

increases with x

- Watch Video Solution

7. Find the range of values of x for which the function $f(x)=2 x^{3}-9 x^{2}-24 x+5$ decreases with x .

- Watch Video Solution

8. If $f(x)=10-9 x+6 x^{2}-x^{3}$, examine whether $f(x)$ increases or decreases for values of x, for which

$$
x>3
$$

9. If $f(x)=10-9 x+6 x^{2}-x^{3}$, examine whether $f(x)$ increases or decreases for values of x, for which
$x<1$

- Watch Video Solution

10. If $f(x)=10-9 x+6 x^{2}-x^{3}$, examine whether $f(x)$ increases or decreases for values of x, for which
$1<x<3$.
11. Find the intervals in which the function f given by $f(x)=x^{3}+\frac{1}{x^{3}}(x \neq 0)$
increasing

- Watch Video Solution

12. Find the intervals in which the function f given by $f(x)=x^{3}+\frac{1}{x^{3}}(x \neq 0)$ decreasing

Watch Video Solution

13. Show that, for $0<\theta<\frac{\pi}{2}, \frac{\sin \theta}{\theta}$ steadily decreases as θ continually increases.

D Watch Video Solution

14. Find the intervals in which the function f given by $f(x)=\sin x+\cos x(0 \leq x \leq 2 \pi)$ is increasing
15. Find the intervals in which the function f given by $f(x)=\sin x+\cos x(0 \leq x \leq 2 \pi)$ is decreasing

D Watch Video Solution

16. Find the intervals in which the function
$f(x)=x^{x}(x>0)$ is increasing

D Watch Video Solution
17. Find the intervals in which the function $f(x)=x^{x}(x>0)$ is decreasing.

- Watch Video Solution

18. Show that $f(x)=\tan ^{-1}(\cos x+\sin x)$ is
a stictly increasing function in the interval $\left(0, \frac{\pi}{4}\right)$.

- Watch Video Solution

19. Prove that the function $f(x)=x^{3}-x^{2}$ is neither increasing nor decreasing in
$-\frac{2}{3}<x<\frac{2}{3}$.

- Watch Video Solution

20. Find the intervals in which the function
$f(x)=(x+1)^{3}(x-3)^{3}$ is increasing

- Watch Video Solution

21. Find the intervals in which the function $f(x)=(x+1)^{3}(x-3)^{3}$ is decreasing.

- Watch Video Solution

22. Sparate the interval $\left[0, \frac{\pi}{2}\right]$ into subintervals in which $f(x)=\sin ^{4} x+\cos ^{4} x$ is increasing

- Watch Video Solution

23. Sparate the interval $\left[0, \frac{\pi}{2}\right]$ into subintervals in which $f(x)=\sin ^{4} x+\cos ^{4} x$ is decreasing

D Watch Video Solution

24. Find the intervals in which the function
$f(x)=\log (1+x)-\frac{x}{1+x}$ is increasing

D Watch Video Solution
25. Find the intervals in which the function
$f(x)=\log (1+x)-\frac{x}{1+x}$ is decreasing

- Watch Video Solution

$$
\begin{aligned}
& \text { 26. If } x>0, \quad \text { show that, } \\
& x>\log (1+x)>x-\frac{x^{2}}{2}
\end{aligned}
$$

27. Let $y=3 x \cdot \frac{x+a}{x+b}+5 \quad[\mathrm{a}$ and b are positive constants and $a>b$] be the total cost for x unit of output of a commodity. Show that the marginal cost falls continuosly as the output increases.

D Watch Video Solution

28. Use the function $f(x)=x^{\frac{1}{x}}, x>0$, to determine the bigger of the two numbers e^{π} and π^{e}.
29. let $h(x)=f(x)-[f(x)]^{2}+[f(x)]^{3}$ for every real number x . Prove that $h(x)$ is increasing or decreasing according as $f(x)$ is increasing or decreasing.

D Watch Video Solution

30. The function $f(x)=\tan ^{-1}(\sin x+\cos x)$
is an increasing function in

Exercise 15 Mcq

1. If $0<\pi<\frac{\pi}{2}$ then,
(i) $\sin x$ is an increasing function,
(ii) $\cos x$ is an increasing function
(iii) $\tan x$ is an increasing function, then -
A. (i) and (ii) are true
B. (ii) and (iii) are true
C. (i) and (iii) are true

D. only (i) is true

Answer: c

- Watch Video Solution

2. If the function $f(x)$ is differentiable at
$x=a$, then it is increasing at $x=a$ when -
A. $f^{\prime}(a)>0$
B. $f^{\prime}(a)<0$
C. $f^{\prime}(a) \geq 0$
D. $f^{\prime}(a) \leq 0$

Answer: a

D Watch Video Solution

3. (i) The function $f(x)=x^{3}$ is decreasing in
$(-\infty, \infty)$
(ii) The function $f(x)=x^{4}$ is increasing in
$(-\infty, 0)$, then-
A. only (i) is true
B. only (ii) is true
C. both (i) and (ii) are true
D. both (i) and (ii) are false

Answer: d

- Watch Video Solution

4. A function $f(x)$ is defined in $a<x<b$ and $a<x_{1}<x_{2}<b$, then $f(x)$ is strictly monotonic decreasing in $a \leq x \leq b$ when-
A. $f\left(x_{2}\right)>f\left(x_{1}\right)$ when $x_{2}>x_{1}$
B. $f\left(x_{2}\right)<f\left(x_{1}\right)$ when $x_{2}>x_{1}$
C. $f\left(x_{2}\right)>f\left(x_{1}\right)$ when $x_{2}<x_{1}$
D. $f\left(x_{2}\right)<f\left(x_{1}\right)$ when $x_{2}<x_{1}$

Answer: b

- Watch Video Solution

Exercise 15 Very Short Answer Type Questions

1. State when the function $f(x)$ is said to be increasing in a finite interval $a \leq x \leq b$.

D Watch Video Solution

2. State when the function $f(x)$ is said to be decreasing in a finite interval $a \leq x \leq b$.

- Watch Video Solution

3. Show that each of the following functions is strictly increasing
$f(x)=\frac{2 x-3}{4 x+5}(x>0)$

- Watch Video Solution

4. Show that each of the following functions is
strictly increasing
$\phi(x)=\sin x\left(0 \leq x \leq \frac{\pi}{2}\right)$

5. Show that each of the following functions is

strictly increasing
$f(x)=\log _{e} x(x>0)$

- Watch Video Solution

6. Show that each of the following functions is
strictly increasing
$\phi(x)=e^{x}$

- Watch Video Solution

7. Prove that each of the following functions is strictly decreasing
$f(x)=\frac{x+2}{x+1}(x>0)$

D Watch Video Solution

8. Prove that each of the following functions is strictly decreasing
$\phi(x)=\sin x\left(\frac{\pi}{2} \leq x \leq \pi\right)$

D Watch Video Solution
9. Prove that each of the following functions is
strictly decreasing
$f(x)=\frac{1}{x+1}+\frac{1}{x+2}+\frac{1}{x+3} \quad(x>0)$

D Watch Video Solution

10. Show that, the function $4 x^{2}-6 x-11$ is
increasing at $x=4$ and the function $\frac{x^{2}}{x^{2}+16}$ is decreasing at $x=-2$.

D Watch Video Solution

11. Prove that the function
 $f(x)=x^{3}-3 x^{2}+3 x-100$ is increasing on

R.

D Watch Video Solution

12. If $x>\frac{1}{2}$, show that the function
$f(x)=x\left(4 x^{2}-3\right)$ is steadily increasing.

D Watch Video Solution

13. Show that, the function $f(x)=\cos 2 x$ is
increasing at $x=\frac{3 \pi}{4}$.

- Watch Video Solution

Exercise 15 Short Answer Type Questions

1. Find the intervals in which the function
$f(x)=\frac{3}{x}+\frac{x}{3}$ is increasing

D Watch Video Solution

2. Find the intervals in which the function $f(x)=\frac{3}{x}+\frac{x}{3}$ is decreasing

- Watch Video Solution

$$
\begin{aligned}
& \text { 3. Prove that the function } \\
& f(x)=x+\frac{1}{x}(x \neq 0) \text { is decreasing for all } \mathrm{x} \\
& \text { in }(-1,0) \cup(0,1) \text {. }
\end{aligned}
$$

4. Find the intervals in which the following functions are (a) increasing (b) decreasing :
$f(x)=2 x^{3}-15 x^{2}+36 x+1$

D Watch Video Solution

5. Find the intervals in which the following functions are (a) increasing (b) decreasing :
$f(x)=x^{3}-12 x^{2}+36 x+17$
6. Find the intervals in which the following
functions are (a) increasing (b) decreasing :
$f(x)=x^{3}-6 x^{2}+9 x+15$

- Watch Video Solution

7. 24. Find the intervals in which the following
function is (a) increasing and (b) decreasing
$f(x)=2 x^{3}+9 x^{2}+12 x-1$

- Watch Video Solution

8. 24. Find the intervals in which the following function is (a) increasing and (b) decreasing $f(x)=2 x^{3}+9 x^{2}+12 x-1$

D Watch Video Solution

9. Find the intervals in which the following functions are (a) increasing (b) decreasing :
$f(x)=4-9 x+6 x^{2}-x^{3}$

D Watch Video Solution
10. Find the intervals in which the function
$f(x)=\sin x-\cos x$ where $0<x<2 \pi$ is increasing.

D Watch Video Solution

11. Find the intervals in which the function
$f(x)=\sin x-\cos x$ where $0<x<2 \pi$ is decreasing.

12. Prove that the function

$f(x)=x^{3}-6 x^{2}+12 x-18$ is increasing for all $x \in \mathbb{R}$.

- Watch Video Solution

13. Prove that the function $f(x)=x^{2}-x+1$
is neither increasing nor decreasing on
$(-1,1)$.

- Watch Video Solution

14. Find the intervals in which
$f(x)=2 x^{3}-24 x+7 \quad$ is increasing or decreasing.

D Watch Video Solution

15. If $f(x)=(x-1) e^{x}+1$, show that $f(x)$ is positive for all positive values of x .
16. Prove that, the function
$5+24 x+3 x^{2}-x^{3}$ increases in the interval
$-2<x<4$.

D Watch Video Solution

17. If $f(\theta)=\theta \sin \theta+\cos \theta$, show that, $f(\theta)$
steadily increases as θ continually increases in
$0<\theta<\frac{\pi}{2}$.
18. Find the intervals in which
$f(x)=(x+2) e^{-x}$ is increasing

D Watch Video Solution

19. Find the intervals in which
$f(x)=(x+2) e^{-x}$ is decreasing

D Watch Video Solution

20. Find the intervals in which
$f(x)=(x-1)^{3}(x-2)^{2}$ is increasing or decreasing.

- Watch Video Solution

21. Find the intervals in which
$f(x)=(x-1)^{3}(x-2)^{2}$ is increasing or decreasing.
22. Prove that the function
$f(x)=x^{3}-6 x^{2}+12 x-18$ is increasing on
R.

D Watch Video Solution

Exercise 15 Long Answer Type Questions

1. Let $y=3 x \cdot \frac{x+7}{x+5}+4$ be the total cost for x units of output of a product. Show that the marginal cost falls continuously as the output increases. [Note that the marginal cost of a
product is the rate of change in cost for unit change in the output.]

D Watch Video Solution
2. If $x>0$, show that,
$x>\log \left(x^{2}+1\right)$

D Watch Video Solution

3. If $x>0$, show that,
$\log (1+x)<x$
4. If $x>0$, show that, $x>\sin x$

- Watch Video Solution

5. If $x>0$, show that,

$$
x^{2}>(1+x)[\log (1+x)]^{2}
$$

D Watch Video Solution

6. If $x>0$, show that,
$1+x \log \left(x+\sqrt{x^{2}+1}\right)>\sqrt{1+x^{2}}$

- Watch Video Solution

7. If $0<x<\frac{\pi}{2}$, show that,
$\sin x<x<\tan x$
(D) Watch Video Solution
8. If $0<x<\frac{\pi}{2}$, show that,
$\sin x>x-\frac{x^{3}}{3!}$

- Watch Video Solution

9. If $0<x<\frac{\pi}{2}$, show that,
$\cos x>1-\frac{x^{2}}{2!}$

- Watch Video Solution

10. If $x>0$, prove that,
$x>\log (1+x)>\frac{x}{1+x}$

D Watch Video Solution

11. If $x>0$, prove that,
$x-\frac{x^{2}}{2}<\log (1+x)<x-\frac{x^{2}}{2(1+x)}$
(Watch Video Solution
12. If $x>0$, prove that,
$\log \left(x+\sqrt{x^{2}+1}\right)<x$

D Watch Video Solution

13. If $x>0$, prove that,
$\log \left(x+\sqrt{1+x^{2}}\right)>\tan ^{-1} x$
(Watch Video Solution
14.

If
$f(x)=2 x-\tan ^{-1} x-\log \left(x+\sqrt{x^{2}+1}\right)$,
then show that $f(x)$ steadily increases as x increases from zero to positive infinity and hence deduce that,
$2 x>\tan ^{-1} x+\log \left(x+\sqrt{x^{2}+1}\right)$

D Watch Video Solution

15. Find the values of parameter a for which
the function.
$y=a x^{3}+3 x^{2}+(2 a+1) x+1000$
is strictly decreasing for all real values of x .

D Watch Video Solution

16. Show that, for all real values of θ the
function $\frac{2 \sin \theta+\cos \theta}{3 \sin \theta+4 \cos \theta}$ is increasing.

D Watch Video Solution

Mcq

1. Find the intervals of decrease and increase
for the function $f(x)=\cos \frac{\pi}{x}$ -
(k being a non-negative interger)

$$
\begin{aligned}
& \text { A. }\left(\frac{1}{2 k+1}, \frac{1}{2 k}\right) \\
& \text { B. }\left(\frac{1}{2 k+2}, \frac{1}{2 k}\right) \\
& \text { C. }\left(\frac{1}{2 k+2}, \frac{1}{2 k+1}\right) \\
& \text { D. }\left(\frac{1}{2 k}, \frac{1}{2 k+1}\right)
\end{aligned}
$$

Answer: A::C

D Watch Video Solution

2. Let $g(x)=f(x)+f(1-x)$ and
$f^{\prime \prime}(x)>0 \forall x \in(0,1)$. Find the intervals of
increase and decrease of $g(x)$ -

$$
\begin{aligned}
& \text { A. }\left(-\frac{1}{2}, 1\right) \\
& \text { B. }\left(\frac{1}{2}, 1\right) \\
& \text { C. }\left(1, \frac{1}{2}\right) \\
& \text { D. }\left(0, \frac{1}{2}\right)
\end{aligned}
$$

Answer: B::D

D Watch Video Solution

3. Find the points of inflection for $f(x)=3 x^{4}-4 x^{3}$.
A. 0
B. 1
C. $\frac{2}{3}$
D. -2

Answer: A::C
(D) Watch Video Solution
4.
$f(x)=2 x+\cos ^{-1} x+\log \left(\sqrt{1+x^{2}}-x\right)$,
then $f(x)$ is-
A. increases in $[0, \infty)$
B. decreases in $[0, \infty]$
C. neither increases nor decreases in
$[0, \infty)$
D. increases in $(-\infty, \infty)$

Answer: A::D

5. Let $f(x)=\sin x+a x+b$, then which of the following is/are true-
A. $f(x)=0$ has only one root which is positive if $a>1, b<0$
B. $f(x)=0$ has only one real root which is
negative if $a>1, b>0$
C. $f(x)=0$ has only one real root which is
negative if $a<-1, b<0$
D. none of these

Answer: A::B::C

- Watch Video Solution

Integer Answer Type

$$
\text { 1. If } f(x)=a x^{3}-9 x^{2}+9 x+3 \quad \text { is }
$$

monotonically increasing in each interval, then
$a \geq k$, find k .
2. If the function $f(x)=\frac{a \sin x+2 \cos x}{\sin x+\cos x}$ is strictly increasing for all values of x, then $a>k$, find k .

D Watch Video Solution

3. The function $f(x)=\tan ^{-1}(\sin x+\cos x)$
is an increasing function in $\left(-\frac{\pi}{2}, \frac{\pi}{k}\right)$, then find k.

- Watch Video Solution

4. If $f^{\prime}(x)=|x|-\{x\}$ where $\{x\}$ denotes
the fractional part of x , then $f(x)$ is decreasing in $\left(-\frac{1}{2}, k\right)$, find k .

D Watch Video Solution

5. Let $f(x)$ be a function such that $f^{\prime}(x)=\log _{\frac{1}{3}}\left[\log _{3}(\sin x+a)\right]$. If $\quad f(x)$ is decreasing for all real values of x then $a>k$, find k.

Comprehension Type

1. Let $f(x)=\frac{x}{1+|x|}$

Domain of $f(x)$ is-
A. $\mathbb{R}-\{-1\}$
B. $\mathbb{R}-\{0\}$
C. \mathbb{R}
D. none of these

- Watch Video Solution

2. Let $f(x)=\frac{x}{1+|x|}$

Interval of increase of $f(x)$ is -
A. $(-\infty, 0)$
B. $(0, \infty)$
C. $(-1,1)$
D. \mathbb{R}

Answer: d
3. Let $f(x)=\frac{x}{1+|x|}$

Range of $f(x)$ is -
A. $(-1,1)$
B. $[-1,1]$
C. $[-1,0) \cup(0,1]$
D. \mathbb{R}

Answer: a
4. Let $f(x)=(1-x)^{2} \sin ^{2} x+x^{2}$ for all
$x \in \mathbb{R}$,
and
$g(x)=\int_{1}^{x}\left(\frac{2(t-1)}{t+1}-\log t\right) f(t) d t$ for all $x \in(1, \infty)$.

Consider the statements :
P : there exists some $x \in \mathbb{R}$ such that
$f(x)+2 x=2\left(1+x^{2}\right)$
Q : There exists some $x \in \mathbb{R}$ such that
$2 f(x)+1=2 x(1+x)$ then-
A. both P and Q are true

B. P is true and Q is false

C. P is false and Q is true
D. both P and Q are false

Answer: c

D Watch Video Solution

5. Let $f(x)=(1-x)^{2} \sin ^{2} x+x^{2}$ for all

$$
\begin{aligned}
& x \in \mathbb{R}, \\
& g(x)=\int_{1}^{x}\left(\frac{2(t-1)}{t+1}-\log t\right) f(t) d t \text { for all }
\end{aligned}
$$

$x \in(1, \infty)$.

Which of the following is true?
A. g is increasing on $(1, \infty)$
B. g is decreasing on $(1, \infty)$
C. g is increasing on (1, 2) and decreasing
on $(2, \infty)$
D. g is decreasing on (1,2) and increasing
on $(2, \infty)$

Answer: b, d
6. Let $f(x)=(1-x)^{2} \sin ^{2} x+x^{2}$ for all

$$
x \in \mathbb{R}, \quad \text { and }
$$

$g(x)=\int_{1}^{x}\left(\frac{2(t-1)}{t+1}-\log t\right) f(t) d t$ for all
$x \in(1, \infty)$.
The number of real roots of the equation
$f(x)=1$ in the interval $[0,1]$ is -
A. 0
B. 1
C. 2
D. 4

Answer: b

- Watch Video Solution

Assertion Reason Type

1. Let $f(x)=2 \sqrt{x}$ and $g(x)=3-\frac{1}{x}, x>1$. Statement-I: $f(x)>g(x)(x>1)$.

Statement - II : $f(x)-g(x)$ increases on $(1, \infty)$.
A. Satement -I is True, Statement -II is True,

Statement -II is a correct explanation for

Statement -I

B. Satement -I is True, Statement -II is True,

Statement -II is not a correct explanation
for Statement -I
C. Stament -I is True, Statement -II is False.
D. Statement -I is False, Statement -II is

True.

- Watch Video Solution

2. Let $f(x)=2 x^{3}+3 x^{2}-12 x+1$.

Statement-I: f decreases on $(-2,1)$.
Statement - II : The solution set of $x^{2}+x-2<0$ is $(-2,1)$.
A. Satement - Is True, Statement $-I I$ is True,

Statement -II is a correct explanation for

Statement - I
B. Satement I-I is True, Statement -II is True,

Statement -II is not a correct explanation
for Statement -I
C. Stament -I is True, Statement -II is False.
D. Statement -I is False, Statement -II is

True.

Answer: a

D Watch Video Solution

