© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

MATHS

BOOKS - CHHAYA PUBLICATION MATHS (BENGALI

ENGLISH)

MAPPING OR FUNCTION

Example

1. Let A
$\{0,1,2,3\} B=,\{-3,-2,-1,0,1\}$ and $F: A \rightarrow B$ the mapping defined by $f(x)=x-3$, for all $x \in A$. Show that f is one -one.
2. Let \mathbb{R} be the set of real number and $f: \mathbb{R} \rightarrow \mathbb{R}$, be given by $f(x)=2 x^{2}-1$. Is this mapping one -one ?

D Watch Video Solution

3. Show that the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)=2 x^{2}-3$ for all $x \in \mathbb{Z}$, is not one-one, here \mathbb{Z} is the set of integers.

- Watch Video Solution

4. Let $A=\{-2,2,-3,3\}, B=\{1,4,9,16\}$ and $f: A \rightarrow B$ be given by $f(x)=x^{2}$, show that f is a many -one mapping.

- Watch Video Solution

5. If \mathbb{Z} be the set of integers, prove that the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)=|x|$, for all $x \in Z$ is a many -one function.

- Watch Video Solution

6. Let $A=\{2,3,4,5,6\}, B=\{5,8,11,14,17\}$ and $f: A \rightarrow B$ be given by $y=f(x)=3 x-1$ where $x \in A$ and $y \in B$. Show that,f is an onto mapping.

(D) Watch Video Solution

7. Let \mathbb{N} be the set of natural numbers and D be the set of odd natural numbers. Then show that the mapping $f: \mathbb{N} \rightarrow D$, defined by $f(x)=2 x-1$, for all $x \in \mathbb{N}$ is a surjection.
8. Discuss the surjectivity of the following mapping: $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)=2 x-1$, for all $x \in \mathbb{Z}$, where \mathbb{Z} is the set of integers.

D Watch Video Solution

9. Let $A=\{1,2,3\}, B=\{4,5,6\}$ and $f: A \rightarrow B$ be the mapping defined by, $f=\{(1,4\},(2,5),(3,6)\}$. Show that, f is a bijective mapping

- Watch Video Solution

10. Let \mathbb{Q} be the set of rational numbers and $f: \mathbb{Q} \rightarrow \mathbb{Q}$ be defined by,
$f(x)=a x+b$
where $a, b, x \in \mathbb{Q}$ and $a \neq 0$. Prove that , f is a bijection

- Watch Video Solution

11. Discuss the bijectivity of the following mapping : $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x^{3}+b, x \in \mathbb{R}$ and $a \neq 0^{\prime} \mathbb{R}$ being the set of real numbers

(D) Watch Video Solution

12. function f and g are defined as follows: $f: \mathbb{R}-\{1\} \rightarrow \mathbb{R}$, where $f(x)=\frac{x^{2}-1}{x-1}$ and $g: \mathbb{R} \rightarrow \mathbb{R} g(x)=x+1, \mathbb{R}$ being the set of real numbers .Is $f=g$? Give reasons for your answer.
13. Let $A=\left\{-1,-2,0,1 \frac{5}{2}, 3\right\}$,
$B=\{-6,-5,0,1,4,9\}$ and $f: A \rightarrow B$ be defined by $f(x)=2 x^{2}-3 x-5$. Find $f(A)$. Is $f(A)=B$?

D Watch Video Solution

14. Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by, $f(x)=\sin x$, for all $x \in \mathbb{R}$ is neither one -one nor onto.

D Watch Video Solution

15. Let A be the set of triangles in a plane and \mathbb{R}^{+}be the set of positive real numbers. Then show that, the function $f: A \rightarrow \mathbb{R}^{+}$defined by , $f(x)=$ area of triangle x , is many -one and onto.
16. Let \mathbb{R} be the set of real numbers and $A=R-\{3\}, B=R-\{1\}$. Show that, $f: A \rightarrow B$ defined by , $f(x)=\frac{x-1}{x-3}$ is a one-one onto function.

D Watch Video Solution

17. Let \mathbb{C} and \mathbb{R} be the sets of complex numbers and real numbers respectively. Show that, the mapping $f: \mathbb{C} \rightarrow \mathbb{R}$ defined by, $f(z)=|z|$, for all $z \in \mathbb{C}$ is niether injective nor surjective.

- Watch Video Solution

18. Let \mathbb{R} be the set real numbers and
$A=\{x \in \mathbb{R}:-1 \leq x \leq 1\}=B$
Examine whether the function f from A into B defined by $f(x)=x|x|$ is surjective, injective or bijective.

D Watch Video Solution

19. Show that , the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{3}+x$ is bijective, here \mathbb{R} is the set of real numbers.

- Watch Video Solution

20. Let \mathbb{N} be the set of natural numbers: show that the mapping
$f \mathbb{N} \rightarrow \mathbb{N}$ given by,
$f(x)=\left\{\begin{array}{l}\frac{(x)+1}{2} \text { when } \mathrm{x} \text { is odd } \\ \frac{x}{2} \quad \text { when } \mathrm{x} \text { is even }\end{array}\right.$
is many -one onto.

- Watch Video Solution

21. If \mathbb{N} be the set natural numbers, then prove that, the mapping $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by,$f(n)=n-(-1)^{n}$ is a bijection.

D Watch Video Solution

22. Let A be a finite set. If $f: A \rightarrow A$ is a one-one function, show that , f is a bijection.

- Watch Video Solution

23. Let $A=\{a, b, c\}$. Write all one-one functions from A to A .

- Watch Video Solution

24. Let S and T be two non- empty sets. Show that, $f: S \times T \rightarrow T \times S$ defined by $\quad, \quad f(a, b)=(b, a)$ for all $(a, b) \in S \times T$ is a bijection.

- Watch Video Solution

25. Let NN be the set of natural number and $f: \mathbb{N}-\{1\} \rightarrow \mathbb{N}$ be defined by:
$f(n)=$ the highest prime factror of n.

Show that f is a many -one into mapping
26. Let the mapping $f: A \rightarrow B$ and $g: B \rightarrow C$ be defined by $f(x)=\frac{5}{x}-1$ and $g(x)=2+x$ Find the product mapping (g of $)$.

- Watch Video Solution

27. Let $A=\{x, y, z, t\}$ and the function $f: A \rightarrow A, g: A \rightarrow A$ be defined by,
$f(x)=z, f(y)=t, f(z)=y, f(t)=x$
$g(x)=y, g(y)=t, g(z)=x, g(t)=z$
Find $(g \circ f)(t),(f \circ g)(x),(f \circ g)(y)$ and $(g \circ f)(z)$.

- Watch Video Solution

28. Let \mathbb{R} be the set of real numbers. If the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by,$\quad f(x)=3 x+2$ and $g(x)=x^{2}+1$, then find ($g \circ f$) and ($\mathrm{f} \circ \mathrm{g}$).

- Watch Video Solution

29. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by, $f(x)=x^{2}-4 x+3$ and $g(x)=3 x-2$. Find formulas which define the composite functions
(i) f of (ii) g og (iii) fog and (iv) gof

- Watch Video Solution

30. Let the functions f and g on the set of real numbers \mathbb{R} be defined by, $f(x)=\cos x$ and $g(x)=x^{3}$. Prove that, ($\mathrm{f} \circ \mathrm{g}$) \neq
($\mathrm{g} \circ \mathrm{f}$).

D Watch Video Solution

31. Let the function f and g be defined by,
$f=\{(a, b),(c, e),(d, a)\}$ and
$g=\{(b, c),(e, a),(a, c)\}$
Show that , $(g \circ f)$ and ($f \circ g$) are both defined. Also find ($g \circ f$) and ($\mathrm{f} \circ \mathrm{g}$) as sets of ordered pairs.

- Watch Video Solution

32. The function f maps the set $A=\{a, b, c, d\}$ into itself, such that $\quad f(a)=b, f(b)=d, f(c)=a, f(d)=c . \quad$ Find \quad the composition (fof)
33. Let \mathbb{R} be the set of real numbers and $f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=5|x|-x^{2}$ and $g(x)=2 x-3$ Compute
(i) $(\mathrm{g} \circ \mathrm{f})(-2)(\mathrm{ii})(\mathrm{f} \circ \mathrm{g})(-1)$
(iii) ($\mathrm{g} \circ \mathrm{f}$)(5) (iv) (fog)(5)

- Watch Video Solution

34. Let \mathbb{R} be the set of real numbers and $f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}$ be two functions such that, $(g \circ f)(x)=4 x^{2}+4 x+1$ and $(f \circ g)(x)=2 x^{2}+1$. Find $f(x)$ and $g(x)$.

- Watch Video Solution

35. Let \mathbb{R} be the set real numbers and $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=a x+2$, for all $x \in \mathbb{R}$. If $(f o f)=I_{\mathbb{R}}$, find the value of a

- Watch Video Solution

36. Let Q be the set of rational numbers and $f: \mathbb{Q} \rightarrow \mathbb{Q}$ be defined by , $f(x)=3 x-2$, find $g: \mathbb{Q} \rightarrow \mathbb{Q}$, such that $(g \circ f)=I_{\mathbb{Q}}$.

- Watch Video Solution

37. Let \mathbb{R} be the set of real numbers and $f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}, h: \mathbb{R} \rightarrow \mathbb{R}$ be defined by , $f(x)=\sin x, g(x)=3 x-1, h(x)=x^{2}-4$.Find the formula
which defines the product function $\mathrm{h} \circ(\mathrm{g} \circ \mathrm{f})$ and hence compute $[\mathrm{h} \circ \mathrm{o} \mathrm{g} \circ \mathrm{f})]\left(\frac{\pi}{2}\right)$

- Watch Video Solution

38. Let \mathbb{R} be the set of real numbers and $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $\quad f(x)=2 x+1$. Find $\mathrm{g}: \quad \mathbb{R} \rightarrow \mathbb{R}$, such that $(g \circ f)(x)=10 x+10$

- Watch Video Solution

39. Let \mathbb{R} and \mathbb{Q} be the sets of real numbers and rational numbers respectively. If $a \in \mathbb{Q}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by, $f(x)=\left\{\begin{array}{l}x \text { when } x \in \mathbb{Q} \\ a-x \text { when } x \notin \mathbb{Q}\end{array}\right.$ then show that,$(f o f)(x)=x$, for all $x \in \mathbb{R}$
40. Let \mathbb{Z} be that set of integers and $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $f(x)=2 x$, for all $x \in \mathbb{Z}$ and $\mathrm{g}: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by, (for all $x \in \mathbb{Z})$
$g(x)=\left\{\begin{array}{l}\frac{x}{2} \text { when } \mathrm{x} \text { is even } \\ 0 \text { when } \mathrm{x} \text { is odd }\end{array}\right.$
Show that, $(g \circ f)=I_{\mathbb{Z}}$, but $(f o g) \neq I_{\mathbb{Z}}$.

(D) Watch Video Solution

41. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by
$f(x)=\left\{\begin{array}{l}\frac{|x|}{x} \text { when } x \neq 0 \\ 0 \text { when } x=0\end{array}\right.$
and the function $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $g(x)=[x]$ where $[\mathrm{x}]$
is the greatest integer function. Prove that the functions ($\mathrm{f} \circ \mathrm{og}$) and ($\mathrm{g} \circ \mathrm{f}$) are same in $[-1,0$).
42. Let $A=\{a, b, c, d, e\}$ and $f: A \rightarrow A$ be defined by
$f(a)=d, f(b)=a, f(c)=d, f(d)=b$ and $f(e)=d$ find
$f^{-1}(b)$ (ii) $f^{-1}(e)$ (iii) $f^{-1}(d)$ and (iv) $f^{-1}\{a, b\}$.

- Watch Video Solution

43. Let \mathbb{Z} be the set of integers and $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by,
$f(x)=x^{2}$. Find $f^{-1}(16)$ and $f^{-1}(-4)$

- Watch Video Solution

44. Let \mathbb{C} be the set of all complex numbers and $f: \mathbb{C} \rightarrow \mathbb{C}$ be defined by, $f(x)=x^{2}+2$. Find $f^{-1}(-1)$ and $f^{-1}(6)$
45. Let \mathbb{R} be the set of real numbers and $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by, $f(x)=2 x^{2}-5 x+6$. Find $f^{-1}(5)$ and $f^{-1}(2)$

(D) Watch Video Solution

46. Let \mathbb{R} be the set of real numbers and $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{2}+2$. Find
(i) $f^{-1}\{11,16\}$ (ii) $f^{-1}\{11 \leq x \leq 27\}$
(iii) $f^{-1}\{0 \leq x \leq 6\}$ (iv) $f^{-1}\{-2 \leq x \leq 2\}$
(v) $f^{-1}\{-\infty<x \leq 4\}$

D Watch Video Solution

47. Let $A=\{3,6,9,12\}$ and $B=\{1,2,3,4\}$. If $f: A \rightarrow B$ be defined by $f(x)=\frac{x}{3}$, find f and f^{-1} as sets of ordered pairs.

(D) Watch Video Solution

48. Let \mathbb{Q} be the set of rational numbers, If $f: \mathbb{Q} \rightarrow \mathbb{Q}$ is defined by $f(x)=a x+b$, where $\mathrm{a}, \mathrm{b}, x \in \mathbb{Q}$ and $a \neq 0$, then show that f is invertible and hence find f^{-1}

- Watch Video Solution

49. Let \mathbb{R} be the set of real numbers and $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by , $f(x)=x^{3}+1$, find $f^{-1}(x)$

D Watch Video Solution

50. Let $A=\{x:-1 \leq x \leq 1\}$ and $f: A \rightarrow A$ be defined by $f(x)=\sin \frac{\pi x}{2}$. Show that f is a one- one onto mapping and
hence find a formula that defines f^{-1}

- Watch Video Solution

51. Let \mathbb{R}^{+}be the set of positive real numbers and $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$ be defined by $f(x)=e^{x}$. Show that, f is bijective and hence find $f^{-1}(x)$

(D) Watch Video Solution

Exercise 2 A

1. let \mathbb{N} be the set of natural numbers and $f: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup[0]$ be definedby :
$f(n)=\left\{\begin{array}{l}n+1 \text { when } \mathrm{n} \text { is even } \\ n-1 \text { when } \mathrm{n} \text { is odd }\end{array}\right.$
Show that, f is a bijective mapping. Also that $f^{-1}=f$

(D) Watch Video Solution

2. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$ (\mathbb{R} being the set of real numbers), then f is
A. many - one and onto mapping
B. one-one and onto mapping
C. one-one and into mapping
D. many-one and into mapping

Answer: D

- Watch Video Solution

3. Let the function $g: \mathbb{Q}-\{3\} \rightarrow \mathbb{Q}$ be defined by $g(x)=\frac{2 x+3}{x-3}(\mathbb{Q}$ being the set of rational numbers $)$, then f is
A. surjective but not injective mapping
B. injective but not surjective
C. neither injective nor surjective
D. bijective mapping

Answer: B

D Watch Video Solution

4. State which of the following statement is true?
A. If $y^{2}=x$ then y amy be regarded as a function of x .
B. The function $f(x)=\frac{x^{2}}{x}$ and $\phi(x)=x$ are identical
C. A constant function is an onto function if its codomain contains only element.
D. Let \mathbb{C} be the set of all complex number and the function

$$
f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{C} \rightarrow \mathbb{C} \quad \text { be } \quad \text { defined by }
$$

$f(x)=x^{2}$ and $g(x)=x^{2}$. State with reasons whether
$f=g$ or not.

Answer: C

D View Text Solution

5. State which of the following statement is false?
A. If
$A=\{0,1,2,3\}, B=\{-3,-2,-1,0,1\}$ and $f: A \rightarrow B$
is the mapping defined by $f(x)=x-3$ for all $x \in A$,
then f is a one-one mapping
B. A constant mapping will be One-one when its domain constans only one element.
C. Functions f and g are defined as follows: $f: \mathbb{R}-\{2\} \rightarrow \mathbb{R}$, where $\quad f(x)=\frac{x^{2}-4}{x-2}$ and $g: \mathbb{R} \rightarrow \mathbb{R}, \quad$ where
$g(x)=x+2$, then $f=g$
D. $f(x)=\sqrt{x^{2}+4 x-1}$ then $f(-2)$ is not exist.

Answer: C

- Watch Video Solution

6. The domain for which the functions $f(x)=3 x^{2}-2 x$ and $g(x)=3(3 x-2)$ are equal will be \qquad
A. $\left\{1, \frac{2}{3}\right\}$
B. $\{1,3\}$
C. $\left\{\frac{2}{3}, 3\right\}$
D. $\left\{-\frac{2}{3}, 3\right\}$

Answer: C

D Watch Video Solution

7. Let the mapping $f:[0 . \infty) \rightarrow[0,2]$ be defined by, $f(x)=\frac{2 x}{x+1}$ then mapping f will be
A. injective but not surjective
B. neither injective nor surjective
C. onto but not one-one
D. one-one and into

Answer: A

D Watch Video Solution

8. Let the mapping $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by
$f(x)=\left\{\begin{array}{l}x+1, \text { when } x \in \mathbb{N}, \text { an odd } \\ x-1, \text { when } x \in \mathbb{N}, \text { an even }\end{array}\right.$
The mapping f will be \qquad
A. many-one and into
B. one-one and onto
C. many -one and onto
D. bijective mapping

- View Text Solution

9. For any one-empaty set A, the identity mapping on A will be \qquad
A. bijective
B. surjective but not injective
C. injective but not surjective
D. neither injective nor surjective

Answer: A

- Watch Video Solution

10. Let $A=\{-1,0,1,2\} B=,\{1,1,2,3,-3\}$ and $f: A \rightarrow B$ be the mapping defined by,$f(x)=2 x-1$, for all $x \in A$. Then f will be \qquad
A. one-one and into
B. one-one and onto
C. many- one and into
D. many-one and onto

Answer: A

- Watch Video Solution

11. The mapping $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by, $f(x)=3 x-2$, for all $x \in \mathbb{Z}$, then f will be
A. onto but not one-one
B. one-one but not onto
C. many-one and into
D. many-one and onto

Answer: B

D Watch Video Solution

12. The largest domain on which the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is \qquad
A. $-\infty<x<0$ or $0<x<\infty$
B. $-\infty<x<0$ or $0 \leq x<\infty$
C. $-\infty<x \leq 0$ or $0 \leq x<\infty$
D. $-\infty<x<0$ or $0<x<\infty$

Answer: c

- Watch Video Solution

Exercise 2 A Very Short Answer Type Questions

1. Let $A=\{a, b\}$, write all one-one mappings from A to itself.

- Watch Video Solution

2. Let $A=\{1,2,3\}$, write all one-one function from $A \rightarrow A$.
3. Let $A=\{0,1\}, B=\{2,6\}$ and $f: A \rightarrow B$ be given by, $f(x)=6-4 x$ and $g: A \rightarrow B$ be given by, $g(x)=x^{2}-5 x+6$ State whether $f=g$ or not.

- Watch Video Solution

4. Prove that the mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by, $f(x)=x^{2}+1$ for all $x \in \mathbb{R}$ is neither one-one nor onto.

D Watch Video Solution

5. Prove that the mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by, $f(x)=x^{2}+1$ for all $x \in \mathbb{R}$ is neither one-one nor onto.
6.

$A=\{-1,1,2,-3\}, B=\{2,8,18,32\}$ and $f: A \rightarrow B$ be defined by, $f(x)=2 x^{2}$, prove that, f is a many- one mapping of A into B `

D Watch Video Solution

7. Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by, $f(x)=\sin x$, for all $x \in \mathbb{R}$ is neither one -one nor onto.

- Watch Video Solution

8. Show that the modulus function $f: \mathbb{R} \rightarrow \mathbb{R}$, given by $f(x)=|x|$ is neither one-one nor onto Where
$|x|=\left\{\begin{array}{l}x \text { when } x \geq 0 \\ -x \text { when } x<0\end{array}\right.$
9. Show that, the mapping $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(x)=3 x$ is one-one but not onto

D Watch Video Solution

10. Prove that, the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{3}+3 x$ is bijective.

D Watch Video Solution
11. Let A be a finite set If $f: A \rightarrow A$ is an onto mapping, show that it is one-one aslo .
12. Let A be the set of quadrilaterals in a plane and \mathbb{R}^{+}be the set of positive real numbers. Prove that, the function $f: A \rightarrow \mathbb{R}^{+}$defined by $f(x)=$ area of quadrilateral x , is * manyone and onto.

D Watch Video Solution

13. Let $A=\{-1,1,-2,2\}, B=\{3,4,5,6\}$ and $f: A \rightarrow B$ be the mapping defined by
$f=\{(1,6),(-1,4),(2,3),(-2,5)\}$.
Prove that, f is a bijective mapping

- Watch Video Solution

14. Let D be the set of odd natural numbers. Then show that the mapping $f: \mathbb{N} \rightarrow D$, defined by, $f(x)=2 x-3$ is onto but the mapping $g: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by , $g(x)=2 x-3$ is not onto.

- Watch Video Solution

15. Show that, the mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=m x+n$, where $m, n, x \in \mathbb{R}$ and $m \neq 0$, is a bijection.

- Watch Video Solution

16. Let $A=\mathbb{R}-\{2\}$ and $B=\mathbb{R}-\{1\}$. Show that, the function $f: A \rightarrow B$ defined by $f(x)=\frac{x-3}{x-2}$ is bijective .

(D) Watch Video Solution

17. Let \mathbb{C} be the set of complex numbers and $f: \mathbb{C} \rightarrow \mathbb{R}$ be defined by $f(z)=|z|$, for all $z \in \mathbb{C}$. Show that f is neither oneone nor onto.

- Watch Video Solution

18. Show that the signum function $f: \mathbb{R} \rightarrow \mathbb{R}$, given by
$f(x)=\left\{\begin{array}{l}1 \text { if } x>0 \\ 0 \text { if } x=0 \\ -1 \text { if } x<0\end{array}\right.$
is neither one-one nor onto.

- Watch Video Solution

19. Let $A=\{x \in \mathbb{R}:-1 \leq x \leq 1\}=B$. Show that, the mapping $f: A \rightarrow B$ defined by $f(x)=x|x|$ is bijective.
20. Let $A=\{x \in \mathbb{R}:-1 \leq x \leq 1\}=B$. Prove that , the mapping from A to B defined by $f(x)=\sin \pi x$ is surjective.

D Watch Video Solution

21. Prove that , the mapping $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by,
$f(x)= \begin{cases}x+1 & \text { when } \\ x-1 & \text { when } \\ x \in \mathbb{N} \text { is odd } \\ \text { is even }\end{cases}$
is one-one and onto.

- Watch Video Solution

22. Prove that the greatest integer function $f: \mathbb{R} \rightarrow \mathbb{R}$, given by
$f(x)=[x]$, is neither one-one nor onto, where [x$]$ denotes the greatest integer less than or equal to x .

(D) Watch Video Solution

Exercise 2 B

1. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by , $f(x)=3 x-2$ and $g(x)=3 x-2(\mathbb{R}$ being the set of real numbers), then $(f o g)(x)=$
A. $7 x-8$
B. $9 x-7$
C. $9 x-8$
D. $8 x-9$

Answer: c

- Watch Video Solution

2. Two functions f and g are defined on the set of real numbers \mathbb{R} by, $f(x)=\cos x$ and $g(x)=x^{2}$, then, $(f o g)(x)=$
A. $\cos ^{2} x$
B. $\cos x^{2}$
C. $\sin ^{2} x$
D. $\sin x^{2}$

Answer: b

(D) Watch Video Solution

3. If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are given by $f(x)=3 x+2$ and $g(x)=2 x-3(\mathbb{R}$ being the set of real numbers), state which of the following is the value of $(g \circ f)(x)$?
A. $6 x-7$
B. $6 x+1$
C. $3 x+5$
D. $6 x+4$

Answer: b

D Watch Video Solution

4. Let \mathbb{R} be the set of real numbers and the mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=5-x^{2}$ and $g(x)=3 x-4, \quad$ state which of the following is the value of $(f o g)(-1)$?
A. 8
B. -44
C. 54
D. 16

Answer: b

- Watch Video Solution

5. If $g(x)=x^{2}+x-2$ and $(g \circ f)(x)=2\left(2 x^{2}-5 x+2\right)$, then $f(x)=$
A. $2 x-3$
B. $2 x+3$
C. $2 x^{2}-3 x+1$
D. $2 x^{2}-3 x-1$
6. If $f(x)=\sin ^{2} x$ and $g(f(x))=|\sin x|$, then $g(x)=$
A. $\sqrt{x-1}$
B. \sqrt{x}
C. $\sqrt{x+1}$
D. $-\sqrt{x}$

Answer: b

(D) Watch Video Solution

Exercise 2 B Very Short Answer Type Questions

1. What do you mean by composition of mapping ?

- Watch Video Solution

2. Let $A=\{1,2,3,4\}$ and the mapping $f: A \rightarrow A, g: A \rightarrow A$ be defined by
$f(1)=3, f(2)=4, f(3)=2, f(4)=1$
and $g(1)=2, g(2)=4, g(3)=1, g(4)=3$
Find $(i)(g \circ f)(4),(i i)(f o g)(1),(i i i)(g \circ f)(3),(i v)(f o g)(2)$

D Watch Video Solution

3. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$ and $g(x)=x+3$, evaluate $(f \circ g)(2),(i i)(g \circ f)(3)$

D Watch Video Solution

4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be two mapping defined by $f(x)=2 x+1$ and $g(x)=x^{2}-2$, find ($\mathrm{g} \circ \mathrm{f}$) and ($\mathrm{f} \circ \mathrm{g}$).

- Watch Video Solution

5. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R}$ be defined by $f(x)=\sin x$ and $g(x)=x^{2}$. Show that, $(g \circ f) \neq(f \circ g)$.

D Watch Video Solution

6. Let the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
\begin{aligned}
& f(x)=x+1 \quad \text { and } \quad g(x)=x-1 \quad \text { Prove } \quad \text { that } \\
& (g \circ f)=(f \circ g)=I_{\mathbb{R}}
\end{aligned}
$$

D Watch Video Solution
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=a x+b$, for all $x \in \mathbb{R} . \operatorname{If}(f o f)=I_{\mathbb{R}}$

Find the value of a and b.

D Watch Video Solution

8. Let $f: \mathbb{Q} \rightarrow \mathbb{Q}$ be the function defined by,
$f(x)=2 x+5$, for all $x \in \mathbb{Q}$
Find the function $g: \mathbb{Q} \rightarrow \mathbb{Q}$ such that $(g \circ f)=I_{\mathbb{Q}}$.

- Watch Video Solution

9. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by , $f(x)=4 x-3$.Find the function $g: \mathbb{R} \rightarrow \mathbb{R}$, such that $(g o f)(x)=8 x-1$

- Watch Video Solution

10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x+1$. Find the function $g: \mathbb{R} \rightarrow \mathbb{R}$, such that $(g \circ f)(x)=x^{2}+3 x+3$

D Watch Video Solution

Exercise 2 B Short Answer Type Questions

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be two mapping defined by $f(x)=x^{2}+3 x+1$ and $g(x)=2 x-3$. Find formulas which define the composite mappings
(i) (f $\circ \mathrm{f})$, (ii) (g $\circ \mathrm{g}$), (iii) ($\mathrm{g} \circ \mathrm{f}$), (iv) ($\mathrm{f} \circ \mathrm{g}$)

D Watch Video Solution

2. Let the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=3 x-2$ and $g(x)=3|x|-x^{2}$. Find

- Watch Video Solution

3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be two functions such that $(g \circ f)(x)=\sin ^{2} x$ and $(f \circ g)(x)=\sin \left(x^{2}\right)$. Find $f(x)$ and $g(x)$.

- Watch Video Solution

4. let the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=3 x+5$ and $g(x)=x^{2}-3 x+2$. Find
$(i)(g \circ f)\left(x^{2}-1\right),(i i)(f \circ g)(x+2)$
5. Let the functions f and g be defined by,
$f=\{(1,2),(2,3),(3,4),(4,1)\}$
and $g=\{(2,-1),(4,2),(1,-2),(3,4)\}$
Show that, $(g \circ f)$ is defined but ($f \circ g$) is not defined. Also find (gof) as set of ordered pairs.

D Watch Video Solution

6. Let the functions f and g be defined by,
$f=\{(1,2),(3,-2),(-1,1)\}$
and $g=\{(2,3),(-2,1),(1,3)\}$

Prove that, ($\mathrm{g} \circ \mathrm{f}$) and ($\mathrm{f} \circ \mathrm{g}$) are both defined. Also find ($\mathrm{g} \circ \mathrm{f}$) and ($\mathrm{f} \circ \mathrm{g}$) as sets of ordered pairs.
7. Let the functions $f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}$ and $h: \mathbb{R} \rightarrow \mathbb{R}$ by given by,
$f(x)=\cos x, g(x)=2 x+1$ and $h(x)=x^{3}-x-6$
Find the value of the product function $h \circ(g \circ f)$ and hence compute $[h o(g o)]\left(\frac{\pi}{3}\right)$.

D Watch Video Solution

8. If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by, $f(x)=\left\{\begin{array}{l}x \text { when } x \in \mathbb{Q} \\ 1-x \text { when } x \in \mathbb{Q}\end{array}\right.$ then prove that,$(f o f)=I_{\mathbb{R}}$.

- Watch Video Solution

9. If $f: \mathbb{R}-\left\{\frac{7}{5}\right\} \rightarrow \mathbb{R}-\left\{\frac{3}{5}\right\}$ be defined as $f(x)=\frac{3 x+4}{5 x-7}$ and $g: \mathbb{R}-\left\{\frac{3}{5}\right\} \rightarrow \mathbb{R}-\left\{\frac{7}{5}\right\}$ be defined as $g(x)=\frac{7 x+4}{5 x-3}$.Then find fog.

(D) Watch Video Solution

Exercise 2 C

1. Let RR be the set of real numbers and the mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=2 x^{2}$, then $f^{-1}(32)=$
A. $\{4,-4\}$
B. $\{1,-1\}$
C. $\{2,-2\}$
D. $\{3,-3\}$

(D) Watch Video Solution

2. The mapping $f: A \rightarrow B$ is invertible if is
A. injective but not surjective
B. surjective but not injective
C. bijective
D. none of these

Answer: c

3. Let $A=\{a, b, c, d\}$ and $f: A \rightarrow A$ be defined by, $f(a)=d, f(b)=a, f(c)=b$ and $f(d)=c$. State which of the following is equal to $f^{-1}(b)$?
A. $\{a\}$
B. $\{b\}$
C. $\{c\}$
D. $\{d\}$

Answer: c

D Watch Video Solution

4. Let $Z Z$ be the set of integers and the mapping $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by, $f(x)=x^{2}$. State which of the following is equal to

$$
f^{-1}(4) ?
$$

A. 2
B. -2
C. $-2 i$
D. 2 i

Answer: d

D Watch Video Solution

5. Let the function $f: A \rightarrow B$ have an inverse function $f^{-1}: B \rightarrow A$, then the nature of the function f is
A. one-one and onto
B. one-one and into
C. many-one and onto
D. many-one and into

Answer: a

D Watch Video Solution

Exercise 2 C Vary Short Answer Quations

1. If $f: \mathbb{R}-\left\{\frac{7}{5}\right\} \rightarrow \mathbb{R}-\left\{\frac{3}{5}\right\}$ be defined as $f(x)=\frac{3 x+4}{5 x-7}$ then find $f(-1)$.

- Watch Video Solution

2. Let $A=\{-2,-1,0,1,2\}$ and $f: A \rightarrow A$ be defined by

$$
f(-2)=1, f(-1)=-2, f(0)=1, f(1)=-1, f(2)=1
$$

Find
(i) $f^{-1}(-1),(i i) f^{-1}(2)(i i) f^{-1}$
$(1),(i v) f^{-1}\{-2,-1\}$

- Watch Video Solution

3. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by, $f(x)=x^{2}$, . Find
(i) $f^{-1}(25),(i i) f^{-1}(5),(i i i) f^{-1}(-5)$

- Watch Video Solution

4. Let $A=\{a, b, c\}$ and $B=\{p, q, r$,$\} , defined three one-one$ and onto mappings from A to B and also find their inverse mappings

(D) Watch Video Solution

5. Let \mathbb{C} be the set of all complex numbers and $f: \mathbb{C} \rightarrow \mathbb{C}$ be given by, $f(x)=3 x^{2}+16$. Find
(i) $f^{-1}(1),(i i) f^{-1}(-11),(i i i) f^{-1}(28)$

- Watch Video Solution

6. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by , $f(x)=3 x^{2}-14 x+10$. Find
$(i) f^{-1}(4),(i i) f^{-1}(-8)$

- Watch Video Solution

7. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}-2$. Find
(i) $f^{-1}\{-1,7\},(i i) f^{-1}\{2 \leq x \leq 34\}$

$$
f^{-1}\{-5 \leq x \leq 14\} \quad \text { (iv) } \quad f^{-1}\{-6 \leq x \leq-2\}
$$

$$
f^{-1}\{-\infty<x \leq 2\}
$$

D Watch Video Solution

8. Let the function $f: \mathbb{Q}$ be defined by $f(x)=4 x-5$ for all
$x \in \mathbb{Q}$. Show that f is invertible and hence find f^{-1}

- Watch Video Solution

Exercise 2 C Short Answer Quations

1. Let $A=\{x \in \mathbb{R}:-1 \leq x \leq 1\}$ and functions f and g from A to A be defined by, $f(x)=x^{2}$ and $g(x)=x^{5}$. Show that g^{-1} exists but f^{-1} does not exist
2. Let $A=\mathbb{R}-\{3\}$ and $B=\mathbb{R}-\{1\}$. Prove that the function $f: A \rightarrow B$ defined by, $f(x)=\frac{x-2}{x-3}$ is one-one and onto. Find a formula that defines f^{-1}

- Watch Video Solution

3. let $A=\left\{x:-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\right\}$ and $B=\{x:-1 \leq x \leq 1\}$. Show that the function $f: A \rightarrow B$ defined by, $f(x)=\sin x$ for all $x \in A$, is bijective. Hence, find a formula that defines f^{-1}

- Watch Video Solution

4. let $A=\mathbb{R}-\left\{-\frac{1}{2}\right\}$ and $B=\mathbb{R}-\left\{\frac{1}{2}\right\}$. Prove that function $f: A \rightarrow B$ define by , $f(x)=\frac{x+2}{2 x+1}$ is invertible and
hence find $f^{-1}(x)$

- Watch Video Solution

5. Let the functions $f: \mathbb{Q} \rightarrow \mathbb{Q}$ and $g: \mathbb{Q} \rightarrow \mathbb{Q}$ be defined by, $f(x)=3 x$ and $g(x)=x+3$. Assuming that f and g are both invertible , verify that, $(g o f)^{-1}=\left(f^{-1}{ }^{\circ} g^{-1}\right)$.

- Watch Video Solution

6. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by, $f(x)=x^{3}-6$, for all $x \in \mathbb{R}$. Show that, f is bijective. Also find a formula that defines $f^{-1}(x)$.
7. Let $A=\{0,1,2,3\}, B=\{1,4,7,10\}$,
$C=\{5,11,17,23\}$ and $f: A \rightarrow B, G: B \rightarrow C$ be defined by $f(x)=3 x+1$ and $g(x)=2 x+3$, verify that, $(g \circ f)^{-1}=\left(f^{-1}\right) o g^{-1}$

D Watch Video Solution

8. Consider $f: \mathbb{R}_{+} \rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5$.

Show that f is invertible with $f^{-1}(y)=\frac{\sqrt{y+6}-1}{3}$

- Watch Video Solution

Sample Questions

1. Let $f(x)=2 x-\sin x$ and $g(x)=3 \sqrt{x}$ then _
A. range of g of is R
B. gof is one- one
C. both f and g are one-one
D. both f and g are onto

Answer: a,b,c,d

- Watch Video Solution

2. Let $f(x) \begin{cases}0 & \text { for } x=0 \\ x^{2} \sin \frac{\pi}{x} & \text { for }-1<x<1,(x \neq 0) \\ x|x| & \text { for } x \geq 1 \text { or } \leq-1\end{cases}$
A. $f(x)$ is an odd function
B. $f(x)$ is an even function
C. $f(x)$ is an either odd nor even
D. $f^{\prime}(x)$ is an even function

Answer: a,d

- Watch Video Solution

3. If $e^{x}+e^{f(x)}=e$, then for $f(x)$
A. domain $=(-\infty, 1)$
B. range $(-\infty, 1)$
C. domain=($-\infty, 0]$
D. range $=(-\infty, 1]$

Answer: a,b,c,d
4. If the function f satisfies the reation
$f(x+y)+f(x-y)=2 f(x) f(y) A a x, y \in \mathbb{R}$ and $f(0) \neq 0$ then \qquad
A. $f(x)$ is an function
B. $f(x)$ is an odd function
C. If $f(2)=a$ then $f(-2)=a$
D. If $f(4)=b$ then $f(-4)=-b$

Answer: a,c

- Watch Video Solution

5. If $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a polynomial function satisfying the functional equation $f\{f(x)\}=6 x-f(x)$, then $f(17)$ is equal to
A. 17
B. -15
C. 34
D. -34

Answer: b,c

- Watch Video Solution

Sample Questions Integer Anawer Type B

1.

If

$$
\begin{equation*}
f(x)=\left(a^{x}\right)+\frac{a^{-x}}{2} \tag{and}
\end{equation*}
$$

$f(x+y)+f(x-y)=K f(x) f(y)$, then the value of K.
2. Let $f(x)=x|x|$ and $g(x)=\sqrt{|x|}$ then the number of elements in the set $\{x \in \mathbb{R}\} f(x)=g(x)$ is equal to K. Find the value of K

- Watch Video Solution

3. Let $g(x)=1+x-[x]$ [where $[\mathrm{x}]$ denote the grates integer not exceeding x$]$ and $\quad f(x)=\operatorname{sgn} . x \quad$ [Where $f(x)=$ sgn. $X=1 \quad$ if $\quad x>0, f(x)=0 \quad$ if $x=0$ and $f(x)=-1$ if $x<0]$ then for all $x, f o g(x)$ is equal to λ. Find the value of λ

D Watch Video Solution

4. Let f and g be two functions defined by $f(x)=\frac{x}{x+1}, g(x)=\frac{x}{1-x}$. If $(f \circ g)^{-1}(x)$ is equal to kx,
then find the value of k.

D Watch Video Solution

5. The value of $n \in \mathbb{Z}$ for which the function $f(x)=\frac{\sin n \pi}{\sin \left(\frac{x}{n}\right)}$ has 4π as its period is K, find the value of K.

- Watch Video Solution

Sample Questions Matrix Match Type C

1. If $f: \mathbb{R}-\left\{\frac{7}{5}\right\} \rightarrow \mathbb{R}-\left\{\frac{3}{5}\right\}$ be defined as $f(x)=\frac{3 x+4}{5 x-7}$ then find $f(0)$.

- Watch Video Solution

2. If $f: \mathbb{R}-\left\{\frac{7}{5}\right\} \rightarrow \mathbb{R}-\left\{\frac{3}{5}\right\}$ be defined as $f(x)=\frac{3 x+4}{5 x-7}$ then find $f(1)$.

D Watch Video Solution

Sample Questions Comprehension Type C

1. Let $f(x)=\frac{1}{1+x^{2}}$ and $g(x)$ is the inverse of $f(x)$, then find $g(x)$

- Watch Video Solution

2. $\mathrm{D}(f+g)=$
A. $\mathbb{R}-[-2,0)$
B. $\mathbb{R}-[-1,0)$
C. $\left[-2, \frac{1}{2}\right]$
D. none of these

Answer: b

D View Text Solution

3. $R(f)=$
A. $\left[-\frac{1}{2}, \frac{1}{2}\right]-\{0\}$
B. $\left[-2, \frac{1}{2}\right]$
C. $[-2,0]$
D. $[-1,0]$

Answer: a

4. $r(f) \cap R(g)=$
A. $\left[-2, \frac{1}{2}\right]$
B. $\left[-\frac{1}{2}, \frac{1}{2}\right]-\{0\}$
C. $[-1,0]$
D. none of these

Answer: b

- View Text Solution

5. Value of $F(3)=$
A. 1
B. -3
C. 5
D. 13

Answer: c

D View Text Solution

6. Value of $F(4)=$
A. 1
B. -3
C. 5
D. 13

Answer: b

Sample Questions Assertion Reason Type C

1. Value of $f(5)=$
A. 1
B. -3
C. 5
D. 13

Answer: d

- View Text Solution

2. Let $f(x)=\sin +\cos x, g(x)=\frac{\sin x}{1-\cos x}$

Statement-l: f is neither an odd function nor an even function

Statement -II: g is an odd function.
A. Statement -I is True, Statement -II is True, Statement II is a correct explanation for statement -|
B. Statement-I is True, Statement-II is True, Statement-II is not a correct explanation for Statement-।
C. Statement -I is True, Statement -II is False
D. Statement-I is False , Statement-II is True

Answer: b

- Watch Video Solution

3. Let $A=(2,3,7,9\}, f: A \rightarrow B$ is a function defined as
$f(x)=x^{2}$. Then find the range of $f(x)$.

