

MATHS

BOOKS - CHHAYA PUBLICATION MATHS (BENGALI ENGLISH)

MAPPING OR FUNCTION

Example

1. Let A = $\{0,1,2,3,\}B=\{-3,-2,-1,0,1\}$ and $F\colon A o B$ the mapping defined by f(x)=x-3, for all $x\in A$. Show that f is one -one.

2. Let $\mathbb R$ be the set of real number and $f\colon \mathbb R o \mathbb R$, be given by $f(x)=2x^2-1.$.Is this mapping one -one ?

Watch Video Solution

3. Show that the function $f\colon \mathbb{Z} o \mathbb{Z}$ defined by $f(x) = 2x^2 - 3$

for all $x \in \mathbb{Z}$, is not one-one , here \mathbb{Z} is the set of integers.

Watch Video Solution

4. Let $A = \{-2, 2, -3, 3\}, B = \{1, 4, 9, 16\}$ and $f: A \to B$

be given by $f(x) = x^2$, show that f is a many -one mapping.

5. If $\mathbb Z$ be the set of integers, prove that the function $f\colon \mathbb Z o \mathbb Z$

defined by f(x) = |x|, for all $x \in Z$ is a many -one function.

> Watch Video Solution

6. Let $A=\{2,3,4,5,6\}, B=\{5,8,11,14,17\}$ and $f\colon A o B$ be given by y=f(x)=3x-1 where $x\in A$ and $y\in B$. Show that ,f is an onto mapping.

Watch Video Solution

7. Let $\mathbb N$ be the set of natural numbers and D be the set of odd natural numbers. Then show that the mapping $f\colon \mathbb N o D$, defined by f(x)=2x-1, for all $x\in \mathbb N$ is a surjection.

8. Discuss the surjectivity of the following mapping: $f:\mathbb{Z} o\mathbb{Z}$ defined by f(x)=2x-1, for all $x\in\mathbb{Z}$, where \mathbb{Z} is the set of integers.

Watch Video Solution

9. Let $A = \{1, 2, 3\}, B = \{4, 5, 6\}$ and $f: A \to B$ be the mapping defined by, $f = \{(1, 4\}, (2, 5), (3, 6)\}$. Show that, f is

a bijective mapping

Watch Video Solution

10. Let ${\mathbb Q}$ be the set of rational numbers and $f \colon {\mathbb Q} o {\mathbb Q}$ be defined by ,

$$f(x) = ax + b$$

where $a,b,x\in\mathbb{Q}\,\,\mathrm{and}\,\,a
eq 0$. Prove that ,f is a bijection

Watch Video Solution

11. Discuss the bijectivity of the following mapping $:f:\mathbb{R} o\mathbb{R}$ defined by $f(x)=ax^3+b,x\in\mathbb{R}$ and $a
eq0'\mathbb{R}$ being the set of real numbers

Watch Video Solution

12. function f and g are defined as follows: $f: \mathbb{R} - \{1\} \to \mathbb{R}$, where $f(x) = \frac{x^2 - 1}{x - 1}$ and $g: \mathbb{R} \to \mathbb{R}g(x) = x + 1$, \mathbb{R} being

the set of real numbers .ls f=g? Give reasons for your answer.

13. Let
$$A = \left\{ -1, -2, 0, 1 \frac{5}{2}, 3
ight\},$$

 $B = \{ -6, -5, 0, 1, 4, 9 \} ext{ and } f: A o B ext{ be defined by }$
 $f(x) = 2x^2 - 3x - 5.$ Find $f(A).$ Is $f(A) = B$?

Watch Video Solution

14. Prove that the function $f\colon \mathbb{R} o \mathbb{R}$ defined by, $f(x) = \sin x$,

for all $x \in \mathbb{R}$ is neither one -one nor onto.

15. Let A be the set of triangles in a plane and \mathbb{R}^+ be the set of positive real numbers. Then show that, the function $f: A \to \mathbb{R}^+$ defined by f(x) = area of triangle x, is many -one and onto.

16. Let $\mathbb R$ be the set of real numbers and $A=R-\{3\}, B=R-\{1\}$. Show that , $f\colon A o B$ defined by , $f(x)=rac{x-1}{x-3}$ is a one-one onto function.

Watch Video Solution

17. Let \mathbb{C} and \mathbb{R} be the sets of complex numbers and real numbers respectively . Show that, the mapping $f:\mathbb{C}\to\mathbb{R}$ defined by, f(z)=|z|, for all $z\in\mathbb{C}$ is niether injective nor surjective.

18. Let $\mathbb R$ be the set real numbers and

 $A=\{x\in\mathbb{R}\colon -1\leq x\leq 1\}=B$

Examine whether the function f from A into B defined by f(x) = x |x| is surjective, injective or bijective.

20. Let $\mathbb N$ be the set of natural numbers: show that the mapping $f\mathbb N o\mathbb N$ given by,

$$f(x) = \left\{ egin{array}{c} rac{(x)+1}{2} ext{when } ext{x is odd} \ rac{x}{2} & ext{when } ext{x is even} \end{array}
ight.$$

is many -one onto.

Watch Video Solution

21. If \mathbb{N} be the set natural numbers, then prove that, the mapping $f:\mathbb{N} o\mathbb{N}$ defined by $f(n)=n-(-1)^n$ is a bijection.

Watch Video Solution

22. Let A be a finite set . If $f \colon A o A$ is a one-one function, show

that, f is a bijection.

23. Let $A = \{a, b, c\}$. Write all one-one functions from A to A.

Watch Video Solution

24. Let S and T be two non- empty sets. Show that, $f\colon S imes T o T imes S$ defined by , f(a,b)=(b,a) for all $(a,b)\in S imes T$ is a bijection.

Watch Video Solution

25. Let NN be the set of natural number and $f \colon \mathbb{N} - \{1\} \to \mathbb{N}$ be defined by:

f(n)= the highest prime factror of n .

Show that f is a many -one into mapping

26. Let the mapping f:A o B and g:B o C be defined by $f(x)=rac{5}{x}-1$ and g(x)=2+x Find the product mapping (g o f).

Watch Video Solution

27. Let $A = \{x, y, z, t\}$ and the function $f \colon A o A, g \colon A o A$

be defined by,

$$egin{aligned} f(x) &= z, f(y) = t, f(z) = y, f(t) = x & ext{and} \ g(x) &= y, g(y) = t, g(z) = x, g(t) = z \end{aligned}$$
 Find $(gof)(t), (fog)(x), (fog)(y) ext{ and } (gof)(z). \end{aligned}$

28. Let $\mathbb R$ be the set of real numbers . If the functions $f\colon \mathbb R o\mathbb R$ and $g\colon \mathbb R o\mathbb R$ be defined by , f(x)=3x+2 and $g(x)=x^2+1$, then find (g o f) and (f o g) .

Watch Video Solution

29. Let the function $f\colon \mathbb{R} o \mathbb{R}$ and $g\colon \mathbb{R} o \mathbb{R}$ be defined by,

 $f(x)=x^2-4x+3 \,\, {
m and} \,\, g(x)=3x-2.$ Find formulas which

define the composite functions

(i) f o f (ii) g o g (iii) f o g and (iv) g o f

30. Let the functions f and g on the set of real numbers $\mathbb R$ be defined by, $f(x)=\cos x$ and $g(x)=x^3.$ Prove that, (f o g) eq

31. Let the function f and g be defined by,

 $f=\{(a,b),(c,e),(d,a)\}$ and

 $g = \{(b,c), (e,a), (a,c)\}$

Show that ,(g o f) and (f o g) are both defined. Also find (g o f)

and (f o g) as sets of ordered pairs.

Watch Video Solution

32. The function f maps the set $A = \{a, b, c, d\}$ into itself, such

that f(a) = b, f(b) = d, f(c) = a, f(d) = c. Find the

composition (fof)

33. Let \mathbb{R} be the set of real numbers and $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 5|x| - x^2$ and g(x) = 2x - 3 Compute (i) (g o f) (-2) (ii) (f o g) (-1)

(iii) (g o f)(5) (iv) (f o g)(5)

Watch Video Solution

34. Let \mathbb{R} be the set of real numbers and $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$ be two functions such that, $(gof)(x) = 4x^2 + 4x + 1$ and $(fog)(x) = 2x^2 + 1$. Find f(x) and g(x).

35. Let $\mathbb R$ be the set real numbers and $f\colon \mathbb R o \mathbb R$ be given by f(x)=ax+2, for all $x\in \mathbb R$. If $(fof)=I_{\mathbb R}$, find the value of a

Watch Video Solution

36. Let Q be the set of rational numbers and $f: \mathbb{Q} \to \mathbb{Q}$ be defined by , f(x) = 3x - 2, find $g: \mathbb{Q} \to \mathbb{Q}$, such that $(gof) = I_{\mathbb{Q}}$.

> Watch Video Solution

37. Let $\mathbb R$ be the set of real numbers and $f\colon \mathbb R o \mathbb R, g\colon \mathbb R o \mathbb R, h\colon \mathbb R o \mathbb R$ be defined by , $f(x)=\sin x, g(x)=3x-1, h(x)=x^2-4.$ Find the formula

which defines the product function h o (g o f) and hence compute [h o(g o f)] $\left(\frac{\pi}{2}\right)$

Watch Video Solution

38. Let $\mathbb R$ be the set of real numbers and $f\colon \mathbb R o \mathbb R$ be defined by , f(x)=2x+1. Find g: $\mathbb R o \mathbb R$, such that (gof)(x)=10x+10

Watch Video Solution

39. Let \mathbb{R} and \mathbb{Q} be the sets of real numbers and rational numbers respectively. If $a \in \mathbb{Q}$ and f: $\mathbb{R} \to \mathbb{R}$ is defined by ,

$$f(x) = \left\{egin{array}{cc} x \;\; ext{when} x \in \mathbb{Q} \ a-x \;\; ext{when} \;\; x
otin \mathbb{Q} \end{array}
ight.$$

then show that ,(fof)(x)=x, for all $x\in\mathbb{R}$

40. Let \mathbb{Z} be that set of integers and $f:\mathbb{Z}\to\mathbb{Z}$ be defined by $f(x)=2x,\,$ for all $x\in\mathbb{Z}$ and g: $\mathbb{Z}\to\mathbb{Z}$ be defined by, (for all $x\in\mathbb{Z})$

 $g(x) = \left\{egin{array}{ccc} rac{x}{2} & ext{when } \mathbf{x} ext{ is even} \ 0 & ext{when } \mathbf{x} ext{ is odd} \end{array}
ight.$

Show that, $(gof) = I_{\mathbb{Z}}$, but $(fog)
eq I_{\mathbb{Z}}$.

Watch Video Solution

41. Let $f \colon \mathbb{R} o \mathbb{R}$ be defined by

$$f(x) = \left\{ egin{array}{cc} rac{ert x ert}{x} & ext{when} & x
eq 0 \ 0 & ext{when} & x = 0 \end{array}
ight.$$

and the function $g\colon \mathbb{R} o \mathbb{R}$ be defined by g(x) = [x] where [x]

is the greatest integer function. Prove that the functions (f o g)

and (g o f) are same in [-1,0).

42. Let $A = \{a, b, c, d, e\}$ and $f: A \to A$ be defined by f(a) = d, f(b) = a, f(c) = d, f(d) = b and f(e) = d find (i) $f^{-1}(b)$ (ii) $f^{-1}(e)$ (iii) $f^{-1}(d)$ and (iv) $f^{-1}\{a, b\}$.

Watch Video Solution

43. Let \mathbb{Z} be the set of integers and $f\colon \mathbb{Z} o \mathbb{Z}$ be defined by , $f(x) = x^2$. Find $f^{-1}(16)$ and $f^{-1}(-4)$

Watch Video Solution

44. Let \mathbb{C} be the set of all complex numbers and $f \colon \mathbb{C} o \mathbb{C}$ be

defined by , $f(x) = x^2 + 2$. Find $f^{-1}(-1)$ and $f^{-1}(6)$

45. Let $\mathbb R$ be the set of real numbers and $f\colon \mathbb R o \mathbb R$ be defined by , $f(x)=2x^2-5x+6$.Find $f^{-1}(5)$ and $f^{-1}(2)$

46. Let \mathbb{R} be the set of real numbers and $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2 + 2$. Find (i) $f^{-1}\{11, 16\}$ (ii) $f^{-1}\{11 \le x \le 27\}$ (*iii*) $f^{-1}\{0 \le x \le 6\}$ (iv) $f^{-1}\{-2 \le x \le 2\}$ (v) $f^{-1}\{-\infty < x \le 4\}$

Watch Video Solution

47. Let $A = \{3, 6, 9, 12\}$ and $B = \{1, 2, 3, 4\}$. If $f: A \to B$ be defined by $f(x) = \frac{x}{3}$, find f and f^{-1} as sets of ordered pairs.

that f is invertible and hence find f^{-1}

49. Let $\mathbb R$ be the set of real numbers and $f\colon \mathbb R o \mathbb R$ be defined by , $f(x)=x^3+1$, find $f^{-1}(x)$

Watch Video Solution

50. Let $A=\{x\colon -1\leq x\leq 1\}$ and $f\colon A o A$ be defined by $f(x)=\sinrac{\pi x}{2}$. Show that f is a one- one onto mapping and

51. Let \mathbb{R}^+ be the set of positive real numbers and $f\colon \mathbb{R} o \mathbb{R}^+$ be defined by $f(x)=e^x$. Show that, f is bijective and hence find $f^{-1}(x)$

Watch Video Solution

Exercise 2 A

1. Let \mathbb{N} be the set of natural numbers and $f: \mathbb{N} \cup \{0\} \to \mathbb{N} \cup [0]$ be defined by: $f(n) = \begin{cases} n+1 & \text{when n is even} \\ n-1 & \text{when n is odd} \end{cases}$ Show that ,f is a bijective mapping . Also that $f^{-1} = f$

D. many-one and into mapping

Answer: D

3. Let the function $g:\mathbb{Q}-\{3\} o\mathbb{Q}$ be defined by $g(x)=rac{2x+3}{x-3}(\mathbb{Q})$ being the set of rational numbers), then f is

A. surjective but not injective mapping

B. injective but not surjective

C. neither injective nor surjective

D. bijective mapping

Answer: B

Watch Video Solution

4. State which of the following statement is true?

A. If $y^2=x$ then y amy be regarded as a function of x .

B. The function $f(x) = rac{x^2}{x}$ and $\phi(x) = x$ are identical

C. A constant function is an onto function if its codomain contains only element.

D. Let $\mathbb C$ be the set of all complex number and the function

 $f\colon \mathbb{R} o \mathbb{R},\,g\colon \mathbb{C} o \mathbb{C}$ be defined by , $f(x)=x^2 \, ext{ and } g(x)=x^2$. State with reasons whether $f=g\, {
m or} \, {
m not}.$

Answer: C

View Text Solution

5. State which of the following statement is false ?

A. If

$$A = \{0, 1, 2, 3\}, B = \{-3, \ -2, \ -1, 0, 1\} ext{ and } f {:} A o B$$

is the mapping defined by f(x)=x-3 for all $x\in A$,

then f is a one-one mapping

- B. A constant mapping will be One-one when its domain constans only one element.
- C. Functions f and g are defined as follows: $f \colon \mathbb{R} \{2\} o \mathbb{R},$

where
$$f(x)=rac{x^2-4}{x-2} ext{ and } g\!:\!\mathbb{R} o\mathbb{R},$$
 where $g(x)=x+2,$ then $f=g$

D. $f(x) = \sqrt{x^2 + 4x - 1}$ then f(-2) is not exist.

Answer: C

6. The domain for which the functions $f(x) = 3x^2 - 2x$ and

g(x)=3(3x-2) are equal will be ____

A.
$$\left\{1, \frac{2}{3}\right\}$$

B. $\{1, 3\}$
C. $\left\{\frac{2}{3}, 3\right\}$
D. $\left\{-\frac{2}{3}, 3\right\}$

Answer: C

A. injective but not surjective

B. neither injective nor surjective

C. onto but not one-one

D. one-one and into

Answer: A

8. Let the mapping
$$f\colon \mathbb{N} o \mathbb{N}$$
 defined by $f(x) = egin{cases} x+1, ext{when} x \in \mathbb{N}, ext{an odd} \ x-1, ext{when} x \in \mathbb{N}, ext{an even} \end{cases}$

The mapping f will be ___

A. many-one and into

B. one-one and onto

C. many -one and onto

D. bijective mapping

Answer: B

View Text Solution

9. For any one-empaty set A, the identity mapping on A will be____

A. bijective

B. surjective but not injective

C. injective but not surjective

D. neither injective nor surjective

Answer: A

10. Let A = $\{-1, 0, 1, 2, \}B = \{1, 1, 2, 3, -3\}$ and f: A o B be the mapping defined by ,f(x) = 2x - 1, for all $x \in A$.Then f will be ___

A. one-one and into

B. one-one and onto

C. many- one and into

D. many-one and onto

Answer: A

Watch Video Solution

11. The mapping $f\colon \mathbb{Z} o \mathbb{Z}$ defined by , f(x)=3x-2, for all

 $x\in\mathbb{Z}$, then f will be ___

A. onto but not one-one

B. one-one but not onto

C. many-one and into

D. many-one and onto

Answer: B

Watch Video Solution

12. The largest domain on which the function $f \colon \mathbb{R} o \mathbb{R}$ defined

by $f(x) = x^2$ is ____

 $\mathsf{A}_{\boldsymbol{\cdot}} - \infty \, < \, x \, < \, 0 \ \, \mathrm{or} \ \, 0 \, < \, x \, < \, \infty$

 $\texttt{B.} - \infty < x < 0 \ \text{or} \ 0 \leq x < \infty$

 $\mathsf{C}.-\infty < x \leq 0 \, ext{ or } \, 0 \leq x < \infty$

$$\mathsf{D}. -\infty < x < 0 ext{ or } 0 < x < \infty$$

Answer: c

Watch Video Solution

Exercise 2 A Very Short Answer Type Questions

1. Let $A = \{a, b\}$, write all one-one mappings from A to itself.

Watch Video Solution

2. Let $A = \{1, 2, 3\}$, write all one-one function from A o A.

Watch Video Solution

4. Prove that the mapping $f \colon \mathbb{R} o \mathbb{R}$ defined by , $f(x) = x^2 + 1$

for all $x \in \mathbb{R}$ is neither one-one nor onto.

5. Prove that the mapping $f\colon \mathbb{R} o \mathbb{R}$ defined by , $f(x) = x^2 + 1$

for all $x \in \mathbb{R}$ is neither one-one nor onto.

$$A=\{-1,1,2,\ -3\},B=\{2,8,18,32\} ext{ and } f\!:\!A o B$$
 be defined by, $f(x)=2x^2$, prove that, f is a many- one mapping of

A into B`

Watch Video Solution

7. Prove that the function $f\colon \mathbb{R} o \mathbb{R}$ defined by, $f(x) = \sin x$,

for all $x \in \mathbb{R}$ is neither one -one nor onto.

8. Show that the modulus function $f: \mathbb{R} \to \mathbb{R}$, given by f(x) = |x| is neither one-one nor onto Where $|x| = \begin{cases} x & ext{when } x \geq 0 \\ -x & ext{when } x < 0 \end{cases}$

9. Show that, the mapping $f\colon \mathbb{N} o \mathbb{N}$ defined by f(x) = 3x is

one-one but not onto

Watch Video Solution

10. Prove that, the function $f\colon \mathbb{R} o \mathbb{R}$ defined by $f(x) = x^3 + 3x$ is bijective .

Watch Video Solution

11. Let A be a finite set If $f \colon A o A$ is an onto mapping , show

that it is one-one aslo .

12. Let A be the set of quadrilaterals in a plane and \mathbb{R}^+ be the set of positive real numbers. Prove that, the function $f: A \to \mathbb{R}^+$ defined by f(x)= area of quadrilateral x, is * manyone and onto.

Watch Video Solution

13. Let $A = \{-1, 1, -2, 2\}, B = \{3, 4, 5, 6\}$ and $f: A \to B$

be the mapping defined by

$$f = \{(1,6), (-1,4), (2,3), (-2,5)\}.$$

Prove that, f is a bijective mapping

14. Let D be the set of odd natural numbers . Then show that the mapping $f\colon\mathbb{N} o D$, defined by, f(x)=2x-3 is onto but the mapping $g\colon\mathbb{Z} o\mathbb{Z}$ defined by ,g(x)=2x-3 is not onto.

	Match	Video	Cal	lution
U	vvalcri	video	20	ution

15. Show that, the mapping $f\colon \mathbb{R} o \mathbb{R}$ defined by f(x)=mx+n, where $m,n,x\in \mathbb{R}$ and m
eq 0, is a bijection.

Watch Video Solution

16. Let $A = \mathbb{R} - \{2\}$ and $B = \mathbb{R} - \{1\}$. Show that, the function $f: A \to B$ defined by $f(x) = \frac{x-3}{x-2}$ is bijective.
17. Let $\mathbb C$ be the set of complex numbers and $f:\mathbb C o\mathbb R$ be defined by f(z)=|z|, for all $z\in\mathbb C$. Show that f is neither one-one nor onto.

0	Watch	Video	Solution

18. Show that the signum function $f\colon \mathbb{R} o \mathbb{R}$, given by

$$f(x) = egin{cases} 1 & ext{if} \;\; x > 0 \ 0 \;\; ext{if} \;\; x = 0 \ -1 \;\; ext{if} \;\; x < 0 \end{cases}$$

is neither one-one nor onto.

Watch Video Solution

19. Let $A = \{x \in \mathbb{R} \colon -1 \leq x \leq 1\} = B$. Show that, the

mapping $f\colon A o B$ defined by f(x)=x|x| is bijective.

20. Let $A=\{x\in\mathbb{R}\colon -1\leq x\leq 1\}=B.$ Prove that , the mapping from A to B defined by $f(x)=\sin\pi x$ is surjective.

Watch Video Solution

21. Prove that , the mapping $f \colon \mathbb{N} o \mathbb{N}$ defined by,

 $f(x) = egin{cases} x+1 ext{ when } x \in \mathbb{N} ext{ is odd} \ x-1 ext{ when } x \in \mathbb{N} ext{ is even} \end{cases}$

is one-one and onto.

Watch Video Solution

22. Prove that the greatest integer function $f: \mathbb{R} \to \mathbb{R}$, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.

1. Let the function $f\colon \mathbb{R} o \mathbb{R}$ be defined by , f(x)=3x-2 and $g(x)=3x-2(\mathbb{R}$ being the set of real numbers), then (fog)(x)=

- A. 7x 8
- B. 9x 7
- C.9x 8
- D. 8x-9

Answer: c

2. Two functions f and g are defined on the set of real numbers \mathbb{R} by , $f(x) = \cos x ext{ and } g(x) = x^2$, then, (fog)(x) =

A. $\cos^2 x$ B. $\cos x^2$ C. $\sin^2 x$

D. $\sin x^2$

Answer: b

Watch Video Solution

3. If the function $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are given by f(x) = 3x + 2 and $g(x) = 2x - 3(\mathbb{R}$ being the set of real numbers), state which of the following is the value of (gof)(x)?

A. 6x-7

B.6x + 1

C. 3x+5

D. 6x + 4

Answer: b

Watch Video Solution

4. Let \mathbb{R} be the set of real numbers and the mapping $f \colon \mathbb{R} o \mathbb{R}$

and $g\colon \mathbb{R} o \mathbb{R}$ be defined by $f(x)=5-x^2$ and g(x)=3x-4, state which of the following is the value of (fog)(-1)?

A. 8

 $\mathsf{B.}-44$

C. 54

D. 16

Answer: b

Watch Video Solution

5. If
$$g(x) = x^2 + x - 2$$
 and $(gof)(x) = 2(2x^2 - 5x + 2)$,
then $f(x) =$
A. $2x - 3$
B. $2x + 3$
C. $2x^2 - 3x + 1$
D. $2x^2 - 3x - 1$

Answer: a

6. If $f(x) = \sin^2 x$ and $g(f(x)) = |\sin x|$, then g(x) =

A. $\sqrt{x-1}$ B. \sqrt{x} C. $\sqrt{x+1}$

D. $-\sqrt{x}$

Answer: b

Watch Video Solution

Exercise 2 B Very Short Answer Type Questions

1. What do you mean by composition of mapping ?

2. Let $A=\{1,2,3,4\}$ and the mapping $f\!:\!A o A,g\!:\!A o A$ be defined by

 $f(1)=3,\,f(2)=4,\,f(3)=2,\,f(4)=1$ and $g(1)=2,\,g(2)=4,\,g(3)=1,\,g(4)=3$

 $\mathsf{Find}\;(i)(gof)(4),(ii)(fog)(1),(iii)(gof)(3),(iv)(fog)(2)$

Watch Video Solution

3. Let the function $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$ and g(x) = x + 3, evaluate (f o g) (2), (ii) (g o f) (3)

4. Let $f\colon \mathbb{R} o \mathbb{R}$ and $g\colon \mathbb{R} o \mathbb{R}$ be two mapping defined by f(x)=2x+1 and $g(x)=x^2-2$, find (g o f) and (f o g).

Watch Video Solution

5. Let the function $f:\mathbb{R} o\mathbb{R}$ and $g:\mathbb{R}$ be defined by $f(x)=\sin x$ and $g(x)=x^2$. Show that, (gof)
eq(fog).

Watch Video Solution

6. Let the functions $f\colon \mathbb{R} o \mathbb{R}$ and $g\colon \mathbb{R} o \mathbb{R}$ be defined by f(x)=x+1 and g(x)=x-1 Prove that , $(gof)=(fog)=I_{\mathbb{R}}$

7. Let $f \colon \mathbb{R} o \mathbb{R}$ be a function defined by f(x) = ax + b, for all

 $x\in \mathbb{R}.$ If $(\mathit{fof})=I_{\mathbb{R}}$

Find the value of a and b.

8. Let $f \colon \mathbb{Q} o \mathbb{Q}$ be the function defined by ,

f(x)=2x+5, for all $x\in\mathbb{Q}$

Find the function $g\colon \mathbb{Q} o \mathbb{Q}$ such that $(gof) = I_{\mathbb{Q}}.$

Watch Video Solution

9. Let the function $f\colon \mathbb{R} o \mathbb{R}$ be defined by ,f(x) = 4x - 3.Find

the function $g \colon \mathbb{R} o \mathbb{R}$, such that (gof)(x) = 8x-1

10. Let $f\colon \mathbb{R} o \mathbb{R}$ be the function defined by f(x)=x+1. Find the function $g\colon \mathbb{R} o \mathbb{R}$, such that $(gof)(x)=x^2+3x+3$

Exercise 2 B Short Answer Type Questions

1. Let $f\colon \mathbb{R} o \mathbb{R}$ and $g\colon \mathbb{R} o \mathbb{R}$ be two mapping defined by $f(x)=x^2+3x+1$ and g(x)=2x-3. Find formulas which

define the composite mappings

(i) (f o f), (ii)(g o g), (iii) (g o f) , (iv) (f o g)

2. Let the functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = 3x - 2 \, ext{ and } g(x) = 3|x| - x^2$$
. Find

(i) (g o f) (-1) , (ii) (f o g) (-2) , (iii) (g o f) (3), (iv) (f o g) (4)

3. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be two functions such that $(gof)(x) = \sin^2 x$ and $(fog)(x) = \sin(x^2)$. Find f(x) and g(x).

Watch Video Solution

4. let the functions $f:\mathbb{R} o\mathbb{R}$ and $g:\mathbb{R} o\mathbb{R}$ be defined by f(x)=3x+5 and $g(x)=x^2-3x+2$. Find $(i)(gof)(x^2-1),(ii)(fog)(x+2)$

5. Let the functions f and g be defined by,

$$f = \{(1,2), (2,3), (3,4), (4,1)\}$$

and $g = \{(2, -1), (4, 2), (1, -2), (3, 4)\}$

Show that, (g o f) is defined but (f o g) is not defined . Also find (

g o f) as set of ordered pairs.

Watch Video Solution

6. Let the functions f and g be defined by,

 $f=\{(1,2),\,(3,\ -2),\,(\ -1,1)\}$

and $g = \{(2,3), (\,-2,1), (1,3)\}$

Prove that , (g o f) and (f o g) are both defined . Also find (g o f)

and (f o g) as sets of ordered pairs.

7. Let the functions $f\colon \mathbb{R} o \mathbb{R}, g\colon \mathbb{R} o \mathbb{R}$ and $h\colon \mathbb{R} o \mathbb{R}$ by given by,

$$f(x) = \cos x, \, g(x) = 2x + 1 \, ext{ and } \, h(x) = x^3 - x - 6$$

Find the value of the product function h o (g o f) and hence

compute $[ho(go)]\left(\frac{\pi}{3}\right)$.

Watch Video Solution

8. If the function $f\colon \mathbb{R} o \mathbb{R}$ be defined by, $f(x) = egin{cases} x ext{ when } x \in \mathbb{Q} \ 1-x ext{ when } x \in \mathbb{Q} \end{cases}$

then prove that , $(fof)=I_{\mathbb{R}}$.

9. If
$$f: \mathbb{R} - \left\{\frac{7}{5}\right\} \to \mathbb{R} - \left\{\frac{3}{5}\right\}$$
 be defined as $f(x) = \frac{3x+4}{5x-7}$
and $g: \mathbb{R} - \left\{\frac{3}{5}\right\} \to \mathbb{R} - \left\{\frac{7}{5}\right\}$ be defined as $g(x) = \frac{7x+4}{5x-3}$

. Then find fog .

Watch Video Solution

Exercise 2 C

1. Let RR be the set of real numbers and the mapping $f\colon \mathbb{R} o \mathbb{R}$ be defined by $f(x)=2x^2$, then $f^{-1}(32)=$

A. $\{4, -4\}$ B. $\{1, -1\}$ C. $\{2, -2\}$ D. $\{3, -3\}$

Answer: a

2. The mapping $f \colon A o B$ is invertible if is ____

A. injective but not surjective

Watch Video Solution

B. surjective but not injective

C. bijective

D. none of these

Answer: c

3. Let $A = \{a, b, c, d\}$ and $f: A \to A$ be defined by, f(a) = d, f(b) = a, f(c) = b and f(d) = c. State which of the following is equal to $f^{-1}(b)$?

A. $\{a\}$

 $\mathsf{B}.\left\{b\right\}$

 $\mathsf{C}.\left\{c\right\}$

 $\mathsf{D}.\left\{ d\right\}$

Answer: c

Watch Video Solution

4. Let ZZ be the set of integers and the mapping $f:\mathbb{Z}\to\mathbb{Z}$ be defined by, $f(x)=x^2$. State which of the following is equal to $f^{-1}(4)$?

A. 2

B. -2

C. -2i

D. 2i

Answer: d

Watch Video Solution

5. Let the function $f\!:\!A o B$ have an inverse function

 $f^{\,-1}\colon B o A$, then the nature of the function f is ___

A. one-one and onto

B. one-one and into

C. many-one and onto

D. many-one and into

Answer: a

Watch Video Solution

Exercise 2 C Vary Short Answer Quations

1. If
$$f: \mathbb{R} - \left\{\frac{7}{5}\right\} o \mathbb{R} - \left\{\frac{3}{5}\right\}$$
 be defined as $f(x) = \frac{3x+4}{5x-7}$ then find $f(-1)$.

Watch Video Solution

2. Let $A = \{-2, -1, 0, 1, 2\}$ and $f: A \to A$ be defined by f(-2) = 1, f(-1) = -2, f(0) = 1, f(1) = -1, f(2) = 1.

Find

(i)
$$f^{-1}(-1), (ii)f^{-1}(2)(ii)f^{-1}(1), (iv)f^{-1}\{-2, -1\}$$

3. Let the function $f\colon \mathbb{R} o \mathbb{R}$ be defined by, $f(x)=x^2,\;$. Find (i) $f^{-1}(25),\,(ii)f^{-1}(5),\,(iii)f^{-1}(-5)$

Watch Video Solution

4. Let $A = \{a, b, c\}$ and $B = \{p, q, r, \}$, defined three one-one and onto mappings from A to B and also find their inverse mappings

5. Let $\mathbb C$ be the set of all complex numbers and $f\colon \mathbb C \to \mathbb C$ be

given by, $f(x)=3x^2+16$. Find

(i)
$$f^{-1}(1), (ii)f^{-1}(-11), (iii)f^{-1}(28)$$

Watch Video Solution

6. Let the function
$$f\colon \mathbb{R} o \mathbb{R}$$
 be given by , $f(x)=3x^2-14x+10.$ Find $(i)f^{-1}(4), (ii)f^{-1}(-8)$

7. Let the function $f\colon \mathbb{R} o \mathbb{R}$ be defined by $f(x)=x^2-2.$ Find (i) $f^{-1}\{-1,7\},(ii)f^{-1}\{2\leq x\leq 34\}$, (iii)

8. Let the function $f \colon \mathbb{Q}$ be defined by f(x) = 4x - 5 for all

 $x\in\mathbb{Q}.$ Show that f is invertible and hence find f^{-1}

Watch Video Solution

Exercise 2 C Short Answer Quations

1. Let $A=\{x\in\mathbb{R}\colon -1\leq x\leq 1\}$ and functions f and g from A to A be defined by , $f(x)=x^2$ and $g(x)=x^5$. Show that g^{-1} exists but f^{-1} does not exist

2. Let $A=\mathbb{R}-\{3\}$ and $B=\mathbb{R}-\{1\}$. Prove that the function $f\colon A o B$ defined by , $f(x)=rac{x-2}{x-3}$ is one-one and onto. Find a formula that defines f^{-1}

Watch Video Solution

3. let
$$A = \left\{x: -\frac{\pi}{2} \le x \le \frac{\pi}{2}\right\}$$
 and $B = \{x: -1 \le x \le 1\}$
. Show that the function $f: A \to B$ defined by, $f(x) = \sin x$ for

all $x \in A$, is bijective . Hence, find a formula that defines f^{-1}

4. let
$$A = \mathbb{R} - \left\{ -\frac{1}{2} \right\}$$
 and $B = \mathbb{R} - \left\{ \frac{1}{2} \right\}$. Prove that function $f: A \to B$ define by $f(x) = \frac{x+2}{2x+1}$ is invertible and

hence find $f^{-1}(x)$

Watch Video Solution

5. Let the functions $f: \mathbb{Q} \to \mathbb{Q}$ and $g: \mathbb{Q} \to \mathbb{Q}$ be defined by, f(x) = 3x and g(x) = x + 3. Assuming that f and g are both invertible, verify that, $(gof)^{-1} = (f^{-1}og^{-1})$.

Watch Video Solution

6. Let the function $f\colon \mathbb{R} o \mathbb{R}$ be defined by, $f(x)=x^3-6$, for all $x\in \mathbb{R}$. Show that, f is bijective. Also find a formula that defines $f^{-1}(x)$.

7. Let
$$A = \{0, 1, 2, 3\}, B = \{1, 4, 7, 10\},$$

 $C = \{5, 11, 17, 23\}$ and $f: A o B, G: B o C$ be defined by $f(x) = 3x + 1$ and $g(x) = 2x + 3$, verify that, $(gof)^{-1} = (f^{-1})og^{-1}$

Watch Video Solution

8. Consider $f\colon \mathbb{R}_+ o [-5,\infty)$ given by $f(x)=9x^2+6x-5.$ Show that f is invertible with $f^{-1}(y)=rac{\sqrt{y+6}-1}{3}$

Watch Video Solution

Sample Questions

1. Let
$$f(x) = 2x - \sin x$$
 and $g(x) = 3\sqrt{x}$ then ___

A. range of g o f is R

B.g o f is one- one

C. both f and g are one-one

D. both f and g are onto

Answer: a,b,c,d

Watch Video Solution

$${f 2}. ext{ Let } f(x) egin{cases} 0 & ext{for } x = 0 \ x^2 {\sin} rac{\pi}{x} & ext{for } -1 < x < 1, (x
eq 0) & ext{then} \ x |x| & ext{for } x \geq 1 ext{ or } \leq -1 \end{cases}$$

A. f(x) is an odd function

B. f(x) is an even function

C. f(x) is an either odd nor even

D. f'(x) is an even function

Answer: a,d

3. If
$$e^x + e^{f(x)} = e$$
,then for $f(x)$ ___

- A. domain =($-\infty, 1$)
- B. range $(-\infty, 1)$
- C. domain= $(-\infty, 0]$
- D. range = $(-\infty, 1]$

Answer: a,b,c,d

4. If the function f satisfies the reation $f(x+y) + f(x-y) = 2f(x)f(y)Aax, y \in \mathbb{R} ext{ and } f(0)
eq 0$ then ____

A. f(x) is an function

B. f(x) is an odd function

C. If f(2) = a then f(-2) = a

D. If f(4) = b then f(-4) = -b

Answer: a,c

Watch Video Solution

5. If $f: \mathbb{R}^+ \to \mathbb{R}^+$ is a polynomial function satisfying the functional equation $f\{f(x)\} = 6x - f(x)$, then f(17) is equal

A. 17

B. -15

C. 34

D. -34

Answer: b,c

Watch Video Solution

Sample Questions Integer Anawer Type B

1. If
$$f(x)=(a^x)+rac{a^{-x}}{2}$$
 and

f(x+y)+f(x-y)=Kf(x)f(y) , then the value of K.

2. Let f(x)=x|x| and $g(x)=\sqrt{|x|}$ then the number of elements in the set $\{x\in \mathbb{R}\}f(x)=g(x)$ is equal to K. Find the value of K

Watch Video Solution

3. Let g(x) = 1 + x - [x] [where [x] denote the gratest integer

not exceeding x] and f(x) = sgn. x [Where f(x) = sgn. X = 1 if x > 0, f(x) = 0 if

 $x=0 \, ext{ and } \, f(x)=\, -1 ext{ if} x < 0]$ then for all $x, \, fog(x)$ is equal

to λ .Find the value of λ

4. Let f and g be two functions defined by
$$f(x)=rac{x}{x+1}, g(x)=rac{x}{1-x}$$
 . If $(fog)^{-1}(x)$ is equal to kx,

Sample Questions Matrix Match Type C

1. If
$$f: \mathbb{R} - \left\{\frac{7}{5}\right\} \to \mathbb{R} - \left\{\frac{3}{5}\right\}$$
 be defined as $f(x) = \frac{3x+4}{5x-7}$ then find $f(0)$.

2. If
$$f\colon \mathbb{R}-\left\{rac{7}{5}
ight\} o \mathbb{R}-\left\{rac{3}{5}
ight\}$$
 be defined as $f(x)=rac{3x+4}{5x-7}$

then find f(1).

Watch Video Solution

Sample Questions Comprehension Type C

1. Let
$$f(x) = rac{1}{1+x^2}$$
 and $g(x)$ is the inverse of $f(x)$,then find $g(x)$

Watch Video Solution

2. $\mathsf{D}(f+g) =$

A.
$$\mathbb{R}-[\,-2,0)$$

 $\mathsf{B}.\,\mathbb{R}-[\,-1,\,0)$

$$\mathsf{C}.\left[\,-\,2,\,\frac{1}{2}\,\right]$$

D. none of these

Answer: b

View Text Solution

3.
$$R(f) =$$

A.
$$\left[-\frac{1}{2}, \frac{1}{2}\right] - \{0\}$$

B. $\left[-2, \frac{1}{2}\right]$
C. $\left[-2, 0\right]$
D. $\left[-1, 0\right]$

Answer: a

4. $r(f) \cap R(g) =$

A.
$$\left[-2, \frac{1}{2}
ight]$$

B. $\left[-\frac{1}{2}, \frac{1}{2}
ight] - \{0\}$
C. $\left[-1, 0
ight]$

D. none of these

Answer: b

View Text Solution

5. Value of F(3) =

A. 1

B. -3

C. 5

D. 13

Answer: c

View Text Solution

6. Value of F(4) =

A. 1

B. -3

C. 5

D. 13

Answer: b

Sample Questions Assertion Reason Type C

1. Value of f(5) =

A. 1 B. -3

C. 5

D. 13

Answer: d

View Text Solution

2. Let
$$f(x) = \sin + \cos x, g(x) = rac{\sin x}{1 - \cos x}$$

Statement-I: f is neither an odd function nor an even function
Statement -II: g is an odd function.

A. Statement -I is True, Statement -II is True, Statement II is a

correct explanation for statement -I

B. Statement-I is True, Statement-II is True, Statement-II is not

a correct explanation for Statement-I

C. Statement -I is True, Statement -II is False

D. Statement-I is False, Statement-II is True

Answer: b

> Watch Video Solution

3. Let A = (2, 3, 7, 9), $f \colon A o B$ is a function defined as $f(x) = x^2$. Then find the range of f(x).

Watch Video Solution