©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - CHHAYA PUBLICATION MATHS (BENGALI ENGLISH)

MAXIMA AND MINIMA

Illustrative Examples

1. For what value of x will $(x-1)(3-x)$ have its
maximum ?
2. For what value of x will $x(12-2 x)^{2}$ have its minimum ?

(D) Watch Video Solution

3. Using calculus find the values of x for which the
value of $\cos x$ is minimum and maximum, also
find its minimum and maximum value.
(D) Watch Video Solution
4. Show that the function $2 x^{3}+3 x^{2}-36 x+10$
has a maximum value at $x=-3$ and a minimum value at $x=2$, also find the maximum and minimum values of the function.

(D) Watch Video Solution

5. Examine for maxima and minima of the
function

$$
f(x)=x^{4}-8 x^{3}+22 x^{2}-24 x+8
$$

(D) Watch Video Solution
6.
$f(x)=\frac{2}{3} x^{3}-6 x^{2}+20 x-5$ has neither a maximum nor a minimum value.

(D) Watch Video Solution

7. Prove that the function $\frac{\sin (x+\alpha)}{\sin (x+\beta)}$ has no critical point.
(D) Watch Video Solution
8. Given $f(x)=x^{3}-12 x^{2}+45 x+8$ Find the values of x for which $f^{\prime}(x)=0$. Hence, determine the maximum and minimum values of $f(x)$.

(D) Watch Video Solution

9. Show that , the maximum value of $2 x+\frac{1}{2 x}$ is less than its minimum value.

Watch Video Solution

10. Using calculus find the maximum and minimum values of $a \sin x+b \cos x$.

D Watch Video Solution

11. For what values of x the function $y=2 \sin x+\cos 2 x(0<x<2 \pi)$ attains the maximum and minimum values?

Watch Video Solution

12. Show that the function $\sin ^{3} x \cos x$ has a maximum value at $x=\frac{\pi}{3}$.

(D) Watch Video Solution

13. Find the maximum value of $x^{\frac{1}{x}}$.

(D) Watch Video Solution

14. Prove that , the minimum value of $9 e^{x}+25 e^{-x}$ is 30.
15. Using calculus prove that,
if the sum of two positive quantities be given, their product is maximum, when they are equal ,

(D) Watch Video Solution

16. if the product of two positive quantities be given, their sum is least, when they are equal.
17. Given , $x+y=3$, find the maximum and minimum values of $\frac{9}{x}+\frac{36}{y}$.

D Watch Video Solution

18. Show that , the function $f(x)=|x-1|$ is not
differentiable at $\mathrm{x}=1$ but it has a local minimum at $\mathrm{x}=1$.

- View Text Solution

19. Prove that ,the greatest rectangle inscribed in a given circle is a square.

- Watch Video Solution

20. A particle is moving in a straight line and its
distance xcm from a fixed point on the line at any time t seconds is given by,
$x=\frac{1}{12} t^{4}-\frac{2}{3} t^{3}+\frac{3}{2} t^{2}+t+15$.
At what time is the velocity minimum ? Also find
the minimum velocity.

- Watch Video Solution

21. The space s described in time t by a paricle moving in a strainght line is given by, $s=t^{5}-40 t^{3}+30 t^{2}+80 t-250$. Find the minimum value of its acceleration.

(D) Watch Video Solution

22. A cylindrical tin can, closed at both ends of a given volume , has to be constructed. Prove that ,
the amount of tin required will be least, when the height of the can is equal to its diameter .
23. Prove that, a conical tent of given capacity will require the least amount of canvas, when the height is $\sqrt{2}$ times the radius of the base .

(D) Watch Video Solution

24. Find out at which points on the curve $y=f(x)=3 x^{5}-5 x^{3}+5 x-7$, the rate of change of the function $f(x)$ is minimal. What is the value of the rate of change ?
25. A firm produces x tonnes of output at a total cost of Rs. R where
$R=\frac{1}{10} x^{3}-5 x^{2}+10 x+5$.
At what level of output will the marginal cost and the average variable cost attain their respective minima?

D Watch Video Solution

26. A radio manufacturer finds that he can sell x radios per week at Rs. P each , where
$p=2\left(100-\frac{x}{4}\right)$. His cost of production of x radios per week is $\left(120 x+\frac{x^{2}}{2}\right)$. Show that his profit us maximum when the production is 40 radios per week. Find also his maximum profit per week.

Watch Video Solution

27. If the sum of the lengths of hypotenuse and a side of a right - angled trianle is given, show that the area of the triangle is maximum when the angle between them is $\frac{\pi}{3}$
28. Show that the volume of the largest cone that
can be inscribed in a sphere of radius R is $\frac{8}{27}$ of the volume of the sphere .

D View Text Solution

29. Show that the semi - vertical angle of a cone of maximum volume and given slant height is $\tan ^{-1}(\sqrt{2})$.
30. Find the volume of the largest cylinder that
can be inscribed in a sphere of radius rcm .

D Watch Video Solution

31. Show that the volume of the greatest cylinder
which can be inscribed in a cone of height h and
semi - vertical angle α is $\frac{4}{27} \pi h^{3} \tan ^{2} \alpha$. Also show that the height of the cylinder is $\frac{h}{3}$.

View Text Solution

32. A point on the hypotenuse of a right - angled triangle is at distance a and b from sides of the triangle. Show that the minimum length of the hypotenuse is $\left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{\frac{3}{2}}$

(Watch Video Solution

33. A wire of length 36 cm is cut into two pieces.

One of the pieces will be bent into the shape of a square and the other into the shape of an equilateral triangle . Find the length of each
piece so that the sum of the areas of the square and triangle is minimum.

(D) Watch Video Solution

34. A window in the form of a rectangle, is surmounted by a semicircular opening. The total perimeter of the window is 10 m Find the dimensions of the rectangular part of the window to admit maximum light through the whole opening .

View Text Solution

35. A tank with rectangular base and rectangular sides, open at the top is to be constructed so that its depth is 2 m and volume is $8 m^{3}$. If building of tank costs Rs. 70 per square metre for the base and Rs. 45 per square metre for sides, what is the cost of least expensive tank ?

D Watch Video Solution

36. Find the coordinates of a point on the parabola
$y=x^{2}+7 x+2$ which is closest to the straight

line

$$
y=3 x-3
$$

- Watch Video Solution

37. The length of the hypotenuse of a right angled triangle is 3 ft Find the volume of the greatest cone that can be generated by revolving the triangle about a side.
38. Let (h,k) be a fixed point where $h>0, k>0$.

A straight line passing through this point cuts
the positive directions of the coordinate axes at
the points P and Q. Find the minimum area of the triangle OPQ, O being the origin.

(Watch Video Solution

Exercise Mcq

1. If a differentiable function $f(x)$ attains a local
extremum at $\mathrm{x}=\mathrm{a}$, then -

$$
\text { A. } f^{\prime}(a)=0, f^{\prime \prime}(a)<0
$$

B. $f^{\prime}(a)<0$
C. $f^{\prime}(a)=0, f^{\prime \prime}(a) \neq 0$
D. $f^{\prime}(a)=0, f^{\prime \prime}(a)>0$

Answer: C

(Watch Video Solution

2. If a function is not differentiable at $x=c$, then the function-
A. may attain a local maximum

B. may attain a local minimum

C. cannot attain an extremum
D. may attain both a maximum or a minimum

Answer: D

- View Text Solution

3. In a given interval a function-
A. can have two consecutive maxima
B. can have two consecutive minima
C. possesses maximum and minimum values
alternately
D. cannot have more than two extreme values.

Answer: C

D Watch Video Solution

4. The function $f(x)=4 x-x^{2}-3$ has a maximum value at-
A. $x=3$
B. $x=2$
C. $x=-2$
D. none of these

Answer: B

(D) Watch Video Solution

5. The minimum value of the functon $y=x^{2}-6 x+11$ is -
A. 2
B. -2
C. 3

D. -3

Answer: A

D Watch Video Solution

6. Let $f(x)=x^{3}-9 x^{2}+30 x+5$ be a differentiable function of x, then -
A. $f(x)$ is minimum at $x=3$
B. minimum value of $f(x)$ is 8
C. minimum value of $f(x)$ is greater than its

D. $f(x)$ possesses neither a maximum nor a

 minimum .
Answer: D

(D) Watch Video Solution

7. If $0 \leq x \leq 2 \pi$, the function $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ is minimum at -
A. $x=\frac{3 \pi}{2}$
B. $x=\pi$
C. $x=\frac{3 \pi}{4}$

$$
\text { D. } x=2 \pi
$$

Answer: A

- Watch Video Solution

8. The maximum value of the function

$$
f(x)=5-x-x^{2} \text { is }
$$

A. $\frac{17}{4}$
B. $\frac{21}{4}$
C. -1
D. $\frac{19}{4}$

Answer: B

D Watch Video Solution

9. Let $x=c$ be a point in the domain of definition of
a differentiable function, then $f(x)$ will have a local maximum at $\mathrm{x}=\mathrm{c}$ when -
A. $f^{\prime}(c)=0, f^{\prime \prime}(x) \neq 0$
B. $f^{\prime}(c)=0, f^{\prime \prime}(x)>0$
C. $f^{\prime}(c)=0, f^{\prime \prime}(c)<0$
D. $f^{\prime}(c)=0, f^{\prime \prime}(c)=0$

Answer: C

D Watch Video Solution

10. The minimum value of the function

$$
f(x)=x^{2}-x+2 \text { is }
$$

A. $\frac{1}{2}$
B. $-\frac{1}{2}$
C. $-\frac{7}{4}$
D. $\frac{7}{4}$

Answer: D

- Watch Video Solution

11. If $-\pi \leq x \leq \pi$, then $\mathrm{f}(\mathrm{x})=\cos \mathrm{x}$ is maximum at
A. $x=0$
B. $x=\frac{\pi}{2}$
C. $x=\pi$
D. $x=-\pi$

Answer: A

D Watch Video Solution
12. The critical points of the function $f(x)=\frac{2}{3} x^{3}-\frac{3}{2} x^{2}-2 x+5$
A. $\frac{1}{2},-2$
B. $-\frac{1}{2}, 2$
C. $\frac{1}{2}, 2$
D. $-\frac{1}{2},-2$

Answer: B

Exercise Very Short Answer Type Questions

1. State the conditions for maxima and minima of
a function $y=f(x)$ at a point , where $\frac{d^{2} y}{d x^{2}} \neq 0$

D Watch Video Solution

2. Using calculus find the values of x, for which,
$4+2 x-x^{2}$ is a maximum
(D) Watch Video Solution
3. Using calculus find the values of x, for which , $\left(3 x^{2}-5 x+4\right)$ is a minimum

D Watch Video Solution

4. Using calculus find the values of x, for which ,
$x(12-2 x)^{2}$ is a minimum

D Watch Video Solution

5. Using calculus find the values of x, for which,
$\sin x$ is a maximum

- Watch Video Solution

6. Using calculus find :
the maximum value of $(1-x)(2+3 x)$

(Watch Video Solution

7. Using calculus find
the minimum value of $2 x^{2}-4 x+10$
(D) Watch Video Solution
8. Using calculus find
the maximum value of $\cos x$

(D) Watch Video Solution

9. Show that , the following functions have neither a maximum nor a minimum value : $x^{3}-3 x^{2}+9 x-5$
10. Show that, the following functions have neither a maximum nor a minimum value :
$\frac{a x+b}{c x+d}$

(D) Watch Video Solution

11. Show that, the following functions have neither a maximum nor a minimum value :

$$
\frac{\cos (x+a)}{\cos (x+b)}
$$

(D) Watch Video Solution
12. Show that , the following functions have neither a maximum nor a minimum value :
$2 x+\tan ^{-1} x$

(D) Watch Video Solution

13. Show that, the following functions have neither a maximum nor a minimum value :
e^{x}

Watch Video Solution

14. Show that, the following functions have neither a maximum nor a minimum value :
$\log x$
(D) Watch Video Solution
15. Show that , the maximum value of the
function $x+\frac{1}{x}$ is less than its minimum value .

Watch Video Solution

16. Show that, $f(x)=x^{2}+\frac{250}{x}$ has a minimum value at $\mathrm{x}=5$.

D Watch Video Solution

17. What do you mean by an extremum of a single

- valued function State the condition for which
$f(x)$ possesses an extremum at $x=c$. Under what codition the extremum is a
(i) maximum, (ii) minimum ?

D Watch Video Solution
18. Find the maximum value of the product of the two numbers, if their sum is 12 .

D Watch Video Solution

19. If $x>0, y>0$ and $x y=25$, find the minimum value of $x+y$.

D Watch Video Solution

20. If $x+y=15$, show that $x^{2}+y^{2}$ is least,
when $x=y=\frac{15}{2}$.

- Watch Video Solution

Exercise Short Answer Type Questions

1. Divide 24 into two parts such that their product
is maximum.

- Watch Video Solution

2. Show that, the function represented by the equation $y^{2}=(x+1)\left(2 x^{2}-7 x+7\right)$ has two critical points. Find these points.

- Watch Video Solution

3. Find for what values of x the following functions are maximum and minimum Also find the corresponding maximum and minimum values:

$$
y=x^{3}-3 x^{2}+5
$$

- Watch Video Solution

4. Find for what values of x the following
functions are maximum and minimum Also find
the corresponding maximum and minimum values :
$2 x^{3}-21 x^{2}+36 x-20$

- Watch Video Solution

5. Find for what values of x the following
functions are maximum and minimum Also find
the corresponding maximum and minimum values :
$x^{3}-9 x^{2}+24 x-12$
6. Find for what values of x the following
functions are maximum and minimum Also find
the corresponding maximum and minimum
values :
$f(x)=\frac{x^{2}-7 x+6}{x-10}$

(D) Watch Video Solution

7. Find for what values of x the following
functions are maximum and minimum Also find
the corresponding maximum and minimum
values:
$y=10-x^{2}-x^{3}-\frac{1}{4} x^{4}$

(D) Watch Video Solution

8. Find for what values of x the following functions are maximum and minimum Also find the corresponding maximum and minimum values:
$\frac{1}{2} x^{4}-2 x^{3}-6 x^{2}+16 x+1$

- Watch Video Solution

9. Given $f(x)=x^{3}-6 x^{2}+9 x-8$. Find the values of x for which $f^{\prime}(x)=0$. Hence determine the maximum and minimum values of $f(x)$ by the criterion involving signs of $f^{\prime}(x)$.

(D) Watch Video Solution

10. Show that , the maximum value of the function $\frac{1}{3} x^{3}-2 x^{2}+3 x+1$ is $\frac{4}{3}$ more than its minimum value.
11. Find the maximum value of $\sin x+\cos x$ and the value of x for which it is maximum.

D Watch Video Solution

12. Show that, the function $\log \cos ^{2} x+\sec x$ is maximum at $\mathrm{x}=0$ and minimum at $x=\frac{\pi}{3}$.

D Watch Video Solution

13. Prove that, the minimum value of
(i) $4 e^{2 x}+9 e^{-2 x}$ is 12 , (ii) $\frac{x}{\log x}$ is e.

- Watch Video Solution

14. Show : $4^{x}-8 x \log _{e} 2$ is minimum at $\mathrm{x}=1$

(D) Watch Video Solution

15. Show : $x^{2} \log \frac{1}{x}$ is maximum at $x=\frac{1}{\sqrt{e}}$

(D) Watch Video Solution

16. Show : $\sin x(1+\cos x)$ is maximum at $x=\frac{\pi}{3}$
17. Show : $\frac{2 \theta-\sin 2 \theta}{\theta^{2}}(\theta>0)$ is maximum at $\theta=\frac{\pi}{2}$

(D) Watch Video Solution

18. If $\frac{x}{2}+\frac{y}{3}=1$, find the minimum value of $x^{2}+y^{2}$.

D Watch Video Solution

19. If $2 x+3 y=4$, find the maximum or minimum value of $x y$.

D Watch Video Solution

20. Show that, the difference between the maximum and minimum values of the function $x^{3}-27 x+108$ is 108.
21. Find the critical points of each of the following functions:
$\sin 2 x-x\left(-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\right)$

(D) Watch Video Solution

22. Find the critical points of each of the
following functions:
$y=e^{x} \sin x$

- View Text Solution

23. Find the critical points of each of the following functions:
$f(x)=\frac{a^{2}}{x}+\frac{b^{2}}{a-x}$

(Watch Video Solution

24. The perimeter of a rectangle is 100 cm . If the area of the rectangle is maximum, find the lenghts of its sides.
25. Show that, of all rectangles of given permeter , the square has the greatest area.

D Watch Video Solution

26. Prove that, of all rectangles of given area, the square has the least perimeter.

D Watch Video Solution

27. Find the dimensions of the rectangle of maximum perimeter that can be inscribed in a
circle of radius a.

- Watch Video Solution

28. The perimeter of a triangle is 8 cm .If one of the sides is 3 cm , find the lengths of the other sides so that the area of the triangle may be a maximum.

(D) Watch Video Solution

29. A printed page is to contain $96 \mathrm{~cm}^{2}$ of printed
area, a margin of 1.5 cm at the top and bottom
and a margin of 1 cm at the sides. What are the dimensions of the smallest page that would fulfil the requirements ?

D Watch Video Solution

30. The height of a particle projected with velocity u at an angle α with the horizontal is u $\sin \alpha . t-\frac{1}{2} \mathrm{gt}^{2}(\mathrm{~g}=$ constant $)$ at any time t . Find
the greatest height attained and the time of reaching it .
31. What will be the radius of the base of a solid circular cylinder of volume 16π for which the total surface area will be smallest ?

(D) Watch Video Solution

32. The function $f(x)=4 x^{3}+a x^{2}+b x+2$ has an extremum at $(2,-2)$, find the values of a and b.

Show that, the function possesses a minimum value at the extreme point.
33. The cost c of manufacturing a certain article is given by the formula , $c=5+\frac{48}{x}+3 x^{2}$, where x is the number of articles manufactured. Find the minimum value of c.

(D) Watch Video Solution

34. Determine when will the function
$\sin 3 x-3 \sin x$ will be greatest or least in the interval $0<x<2 \pi$.
(D) Watch Video Solution
35. Obtain the maximum and minimum values of
the function $\cos ^{2} x+\cos x+3$ in the interval
$0 \leq x \leq \frac{\pi}{2}$.
(D) Watch Video Solution
36. Find the maximum and minimum values of:
$3 \cos x+4 \sin x$
37. Find the maximum and minimum values of:
$\cos ^{2} x-\cos x\left(0 \leq x \leq \frac{\pi}{2}\right)$

D Watch Video Solution

38. Find the maximum and minimum values of:
$\sin x+\cos ^{2} x\left(\frac{\pi}{2}<x \leq \frac{3 \pi}{2}\right)$

D Watch Video Solution

39. Find the maximum and minimum values of:
$1+2 \sin x+3 \cos ^{2} x\left(0 \leq x \leq \frac{\pi}{2}\right)$

- Watch Video Solution

40. Prove that function
$y=\left(x-a_{1}\right)^{2}+\left(x-a_{2}\right)^{2}+\ldots+\left(x-a_{n}\right)^{2}$ is
minimum when $x=\frac{1}{n}\left(a_{1}+a_{2}+\ldots+a_{n}\right)$.

(D) Watch Video Solution

41. If $A>0, B \gg 0$ and $A+B=\frac{\pi}{3}$, find the maximum value of $\tan A \tan B$.
42. Prove that $f(x)=\cos x-1+\frac{x^{2}}{2!}-\frac{x^{4}}{4!}$ possesses a maximum value at $\mathrm{x}=0$.

(D) Watch Video Solution

Exercise Long Answer Type Questions

1. Show that ,the maximum value of $\left(\frac{1}{x}\right)^{x}$ is $e^{\frac{1}{e}}$
2. If $x+y=2$, that the maximum value of
$z=\frac{4}{x}+\frac{36}{y}$ is less than its minimum value .

(D) Watch Video Solution

3. Find the maximum and minimum values of

$$
\begin{aligned}
& y=6 x^{2}-3 x^{4}-1 \quad \text { in } \quad \text { the } \quad \text { interval } \\
& y=-2 \leq x \leq 3
\end{aligned}
$$

4. Investigate for what values of x, the fuction $\frac{x-1}{x^{2}+x-1}$ is a maximum or minimum .also show that the maximum value of the fuction is less than its minimum value

(D) Watch Video Solution

5. Obtain the maximum and minimum values of the function $y=\frac{x}{(x-1)(x-4)}$
6. If $f(c)$ does not exist, can $f(x)$ have an extremum at $\mathrm{x}=\mathrm{c}$? Justify your answer taking $f(x)=|x|$ and $c=0$.

(D) Watch Video Solution

7. Determine a point on the parabola $x^{2}=8 y$
which is nearest to the point $(2,4)$.
(D) Watch Video Solution
8. Find the abscissa of the point on the parabola $y^{2}=2 p x$, which is nearest to the point $(\mathrm{a}, 0)$.

D Watch Video Solution

9. Find the point on the line $2 x+3 y=6$ which is closest to the origin.

D Watch Video Solution

10. Using calculus find the length of the perpendicular from the point $(2,-1)$ upon the line
$3 x-4 y+5=0$.

(D) Watch Video Solution

11. Divide 5 into two parts such that the product of the square of one and the cube of the other may be the greatest possible.

(Watch Video Solution

12. Given the sum of the perimeters of a square is equal to the diameter of the circle .
13. A particle is moving in a straight line its distance from a fixed point on the line at the end of t second is x metres , where $x=t^{4}-10 t^{3}+24 t^{2}+36 t-10$ When is it moving most slowly?

D Watch Video Solution

14. An open tank of a given capacity has square base with vertical sides. Prove that the expense of lining the the tank with cement will be
minimum if the height of the tank is half the width.

(D) Watch Video Solution

15. A particle moving in a straight line describes a distance xcm from a fixed point on the line at time at time t s where
$x=t^{5}-40 t^{3}+30 t^{2}+180 t+240$. Find when the acceleration is minimum and find the minimum value of acceleration.
16. A particle moves in a straight line such that its
distance x from a fixed point on it at any time t is
given by $x=\frac{1}{4} t^{4}-2 t^{3}+4 t^{2}-7$ Find the time
when its velocity is maximum and the time when its acceleration is minimum .

(Watch Video Solution

17. A cylindrical tin can open at the top, of a given capacity has to be constructed. Show that the amount of the tin required will be least if the height of the can is equal to its radius

- Watch Video Solution

18. Show that the height of a cylinder of given total surface area and open at the top has maximum volumes is equal to the radius of its base.

(D) Watch Video Solution

19. The length of the hypotenuse of a right angled triangle is a Find the lenghts of its other
sides, so that
the sum of the sides maximum ,

(D) Watch Video Solution

20. The length of the hypotenuse of a right angled triangle is a Find the lenghts of its other
sides, so that
the area of the triangle is maximum.
(D) Watch Video Solution
21. A box with square top and bottom is to be made to contain $250 \mathrm{~cm}^{3}$ Material for the top and bottom costs Rs. 2 per cm^{2} and the material for the vertical sides costs Rs. 1 per cm^{2}. What is the cost of the least expensive box that can be made?

D Watch Video Solution

22. A firm produces x units of output per week at
a total cost of Rs. $\left(\frac{1}{3} x^{3}-x^{2}+5 x+3\right)$.Find the output levels at which the marginal cost, the
average variable cost attain their respective minima.

(D) Watch Video Solution

23. A radio manufacturer produces x sets per week at a total cost of Rs. $\left(x^{2}+78 x+2500\right)$. . He is a monopolist and the demand function for his product is $x=\frac{600-p}{8}$, where the price is Rs. P per set. Show that the maximum net revenue (i.e., profit is obtained when 29 sets are produced per week What is the monopoly price?
24. Prove that the triangle of maximum area that
can be incsribed in a given circle is an equilateral triangle.

(D) Watch Video Solution

25. A figure consists of a semi - circle with a rectangle on its diameter. Given the perimeter of the figure, find the dimensions of the rectangle in order that the area may be maximum.
26. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a is $\frac{2 a}{\sqrt{3}}$

D Watch Video Solution

27. An open box with a square base is to be made out of a given quantity of card board of area c^{2} sq. Unit. Show that the maximum volume of the
box is $\frac{c^{3}}{6 \sqrt{3}}$ cubi unit .
28. A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so the two pieces so that the combined area of the circle and the square is minimum.

D Watch Video Solution

29. A closed right circular cylinder has volume $2156 \mathrm{~cm}^{3}$. What will be the radius of its base so
that its total surface area is minimum ?

(D) Watch Video Solution

30. Show that the height of the cone of maximum
volume that can be inscribed in a sphere of radius 12 cm is 16 cm .

D Watch Video Solution

31. Show that the surface area of a closed cuboid
with square base and given volume is minimum when it is a cube.

- Watch Video Solution

32. Manufacturer can sell x items at a price of Rs.
$\left(5-\frac{x}{100}\right)$ each . The cost price is Rs. $\left(\frac{x}{5}+500\right)$. Find the number of items he should sell to earn maximum profit.

(D) Watch Video Solution

33. Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius $5 \sqrt{3} \mathrm{~cm}$ is $500 \pi \mathrm{~cm}^{3}$.

D Watch Video Solution

34. An open box is to be made out of a piece of cardboard measuring ($24 \mathrm{~cm} \times 24 \mathrm{~cm}$) by cutting off equal squares from the

(D) Watch Video Solution

35. If the sum of the lengths of the hypotenuse and another side of a right angled triangle is given, show that the area of the triangle is
maximum, when the angle between these sides is 60°.

(D) Watch Video Solution

36. The three sides of a trapezium are each of length 8 cm . Find the maximum area of the trapezium.

- View Text Solution

37. A straight line passing through the point (a,b)
[where $a>0$ and $b>0$] intersects positive
coordnate axes at the points p and Q respectively
. Show that the minimum value of $(O P+O Q)$ is
$(\sqrt{a}+\sqrt{b})^{2}$.

- Watch Video Solution

38. Find the coordinates of the point on the curve $y=\frac{x}{1+x^{2}}$ where the tangent to the curve has the greatest slope.

(D) Watch Video Solution

1. The function $f(x)=\sin x \cos ^{2} x$ has extremum at -

$$
\begin{aligned}
& \text { A. } x=\frac{\pi}{2} \\
& \text { B. } x=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right) \\
& \text { C. } x=\cos ^{-1}\left(\sqrt{\frac{2}{3}}\right) \\
& \text { D. } x=\cos ^{-1}\left(-\sqrt{\frac{2}{3}}\right)
\end{aligned}
$$

Answer: A: C: :D

(D) Watch Video Solution
2. Let $f(x) \sqrt{\left(1-x^{2}\right)\left(1+2 x^{2}\right)}$ defined on $[-1,1]$ then -
A. the greatest value of $f(x)$ is 1
B. the greatest value of $f(x)$ is $\frac{3}{\sqrt{8}}$
C. the least value of $f(x)$ is 0
D. the least value of $f(x)$ is -1

Answer: B::C

D Watch Video Solution

3. Let $=\cos x \sin 2 x$, then-
A. $\min f(x)>-\frac{7}{9}, x \in[-\pi, \pi]$
B. $\min f(x) \gg-\frac{9}{7}, x \in[-\pi, \pi]$
C. $\min f(x)>-\frac{1}{8} x \in[-\pi, \pi]$
D. $\min f(x)>-\frac{2}{9}, x \in[\pi, \pi]$

Answer: A,B
(D) Watch Video Solution
4. If $f(x)=\tan ^{-1} x-\frac{1}{2} \log x$. Then -
A. The greatest value of $f(x)$ on

$$
\left[\frac{1}{\sqrt{3}}, \sqrt{3}\right] \text { is }
$$

$\frac{\pi}{6}+\frac{1}{4} \log ^{3}$
B. The least value of $f(x)$ on $\left[\frac{1}{\sqrt{3}}, \sqrt{3}\right]$ is

$$
\frac{\pi}{3}-\frac{1}{4} \log 3
$$

C. $f(x)$ decreases on $(0, \infty)$
D. $f(x)$ increases on $(-\infty, 0)$

Answer: A::B::C

D Watch Video Solution

5.

$$
= \begin{cases}x^{3}+x^{2}-10 x, & 1 \leq x<0 \\ 1+\cos x & \frac{\pi}{2} \leq x \leq \pi \quad \text { then }\end{cases}
$$

$f(x)$ has,
A. local maxima at $x=\frac{\pi}{2}$
B. local minima at $x=\frac{\pi}{2}$
C. absolute maxima at $x=0$
D. absolute maxima at $x=\frac{\pi}{2}$

Answer: A::C

Sample Questions For Competitive Examination B

1. The maximum value of $7 e|x \log x|$ for $0<x \leq 1$ is-

- View Text Solution

2. If $\mathrm{f}(\mathrm{x})=\log _{x}\left(\frac{1}{a}\right)-\log _{3} x^{2}(x>1)$ the max $f(x)$ is -
3. If $\mathrm{f}(\mathrm{x})=\log =x^{2} \log x$ on [1,e], thenlog (greatest of $f(x)$ - least of $f(x)$) is equal to -

Watch Video Solution

4. If the greatest value of $y=\frac{x}{\log x}$ on $\left[e, e^{3}\right]$ is u them $\frac{e^{3}}{u}$ is equal to -

D Watch Video Solution

5. The least natural number a for which $x+a x^{-2}>2, \mathrm{AAx}$ in $(0, \infty)$ is -

Watch Video Solution

Sample Questions For Competitive Examination C

1. Match the following column

(D) Watch Video Solution

Sample Questions For Competitive Examination D
1.
$f(x)=(x-1)^{m}(2-x)^{n}, m, n \in \mathbb{N}$ and $m, n>2$

(D) Watch Video Solution

2. $\left\{\begin{array}{l}-x^{2}+4 x+a, x \leq 3 \\ a x+b, 3<x<4 \\ -\frac{b}{4} x+6, x \geq 4\end{array}\right.$

If $x=3$ is the only point of minima in its neighbourhood and $x=4$ is neither a point of maxima nor a point of minima, then which of the following true?
A. $a>0, b<0$
B. $a<0, b<0$
C. $a>0, b \in \mathbb{R}$
D. none of these

Answer: A

D Watch Video Solution

3. $\left\{\begin{array}{l}-x^{2}+4 x+a, x \leq 3 \\ a x+b, 3<x<4 \\ -\frac{b}{4} x+6, x \geq 4\end{array}\right.$

If $x=4$ is the only point of maxima in its
neighbourhood but $x=3$ is neither a point of maxima nor a point of minima then which of the following is true?
A. $a<0, b>0$
B. $a>0, b<0$
C. $a>0, b>0$
D. not possible

Answer: D
(D) Watch Video Solution
4. $\left\{\begin{array}{l}-x^{2}+4 x+a, x \leq 3 \\ a x+b, 3<x<4 \\ -\frac{b}{4} x+6, x \geq 4\end{array}\right.$

If $x=3$ is a point of minima and $x=4$ is a point of mxima then which of the following is true?
A. $a<0, b>0$
B. $a>0, b<0$
C. $a>0, b>0$
D. $a<0, b<0$

Answer: C
5. Amongst the several applications of maxima and minima one of the application find the largest term of a sequence. Let $\left\{a_{n}\right\}$ be a sequence. Consider $f(x)$ obtained on replacing x by $\mathrm{n}, \mathrm{e} . \mathrm{g}$ let $a_{n}=\frac{n}{n+1}$. Consider $\mathrm{f}(\mathrm{x})=\frac{x}{x+1}$ on $[1, \infty), f^{\prime}(x)=\frac{1}{(x+1)^{2}}>0$ For all x . Hence max $f(x)=\lim _{x \rightarrow \infty} f(x)=1$
The largest term of $a_{n}=\frac{n^{2}}{n^{3}+200}$ is -
A. $\frac{29}{453}$
B. $\frac{49}{543}$
C. $\frac{43}{543}$

D. $\frac{41}{451}$

Answer: B

D Watch Video Solution

6. Amongst the several applications of maxima and minima one of the application find the largest term of a sequence. Let $\left\{a_{n}\right\}$ be a sequence. Consider $f(x)$ obtained on replacing x by n ,e.g let $a_{n}=\frac{n}{n+1}$. Consider $\mathrm{f}(\mathrm{x})=\frac{x}{x+1}$
on $[1, \infty), f^{\prime}(x)=\frac{1}{(x+1)^{2}}>0$ For all x . Hence max $f(x)=\lim _{x \rightarrow \infty} f(x)=1$

The largest term of sequence $a_{n}=\frac{n}{\left(n^{2}+10\right)}$ is
A. $\frac{3}{19}$
B. $\frac{2}{13}$
C. 1
D. $\frac{1}{7}$

Answer: A

Watch Video Solution

7. Amongst the several applications of maxima and minima one of the application find the largest term of a sequence. Let $\left\{a_{n}\right\}$ be a sequence. Consider $f(x)$ obtained on replacing x by n ,e.g let $a_{n}=\frac{n}{n+1}$. Consider $\mathrm{f}(\mathrm{x})=\frac{x}{x+1}$ on $[1, \infty), f^{\prime}(x)=\frac{1}{(x+1)^{2}}>0$ For all x . Hence max $f(x)=\lim _{x \rightarrow \infty} f(x)=1$

If $f(x)$ is the function required to find largset term in ques. (i) then -
A. f increases for all x

B. f decreases for all x

C. f has a maximum at $x=\sqrt[3]{400}$
D. f increases on $[0,9]$

Answer: C

(D) Watch Video Solution

Sample Questions For Competitive Examination E

1. Let $a, b \in \mathbb{R}$ be such that the function f given
by $f(x)=\log |x|+b x^{2}+a x, x \neq 0$
Statement - I: f has local maximum at $\mathrm{x}=-1$ and $\mathrm{x}=2$.

Statement - II : f" $(-1)<0$ and also

$$
f^{\prime \prime}(2)<0
$$

A. Statement - I is true, Statement - II is true,

Statement -II is a correct explanation for

Statement - I
B. Statement - I is True, Statement - II is True,

Statement -II is not a correct explanation
for Statement - I
C. Statement - I is True , Statement - II is False.
D. Statement - I is False, Statement - II is False.

Answer: A

D Watch Video Solution

2. Statement I :
If
$f(x)$
$=\sin x$, thenf $f^{\prime}(0)=f^{\prime}(2 \pi)$

Statement - II: If $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$, then $\mathrm{f}(0)=f(2 \pi)$.
A. Statement - I is true, Statement - II is true,

Statement -II is a correct explanation for

Statement - I
B. Statement - I is True, Statement - II is True,

Statement -II is not a correct explanation
for Statement - I
C. Statement - I is True, Satement - II is False.
D. Statement - I is true, Statement - II is true,

Statement -II is a correct explanation for

Statement -I

Answer: B

D Watch Video Solution

