© 'doubtnut

MATHS

BOOKS - CHHAYA PUBLICATION MATHS (BENGALI ENGㄴISH)

MCQ ZONE

Question Paper 1

1. The principal value of $\cos ^{-1}\left(\cos \frac{11 \pi}{6}\right)$ is -
A. $\frac{11 \pi}{6}$
B. $\frac{\pi}{6}$
C. $\frac{5 \pi}{6}$
D. $-\frac{5 \pi}{6}$

Answer: B

- Watch Video Solution

2. If $g(x)=x^{2}+x-2$ and $\frac{1}{2}(g \circ f)(x)=2 x^{2}-5 x+2$, then $\mathrm{f}(\mathrm{x})$ is equal to -
A. $2 x+3$
B. $2 x^{2}+3 x+1$
C. $2 x^{2}-3 x-1$
D. $2 x-3$

Answer: D

3. In the set of integers Z, which of the following relation R is not an equivalence relation ?
A. $x R y$: if $x=y$
B. $\mathrm{xRY}:$ if $\mathrm{x}=y(\bmod 3)$
C. x Ry: if $x \leq y$
D. $x R y$: if $(x-y)$ is an even integer

Answer: C

D Watch Video Solution

4. If a gt 0 and discriminant of $a x^{2}+2 b x+c=0$ is negative, then the value of -

$$
\left|\begin{array}{ccc}
a & b & a x+b \\
b & c & b x+c \\
a x+b & b x+c & 0
\end{array}\right| \text { is - }
$$

A. positive
B. $\left(a c-b^{2}\right)\left(a x^{2}+b x+c\right)$
C. negative
D. 0

Answer: D

- Watch Video Solution

5. Probability of solving specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that
(i) the problem is solved (ii) exactly one of them solves the problem.
A. $\frac{3}{4}$
B. $\frac{1}{2}$
C. $\frac{2}{3}$
D. $\frac{7}{8}$

Answer: A

D Watch Video Solution

6. The probability that a leap year will have 53 Tuesday or Saturday is -
A. $\frac{2}{7}$
B. $\frac{3}{7}$
C. $\frac{4}{7}$
D. $\frac{1}{7}$

Answer: C

- Watch Video Solution

7. The domain of definition of the function
$f(x)=\sqrt{\log _{e}\left(x^{2}-6 x+6\right)}$ is -
A. $(-\infty, 3-\sqrt{3}] \cup[3+\sqrt{3}, \infty)$
B. $(-\infty, 1) \cup(5, \infty)$
C. $(-\infty, 3-\sqrt{3}) \cup(3+\sqrt{3}, \infty)$
D. $(-\infty, 1] \cup[5, \infty)$

Answer: D

- Watch Video Solution

8. The value of the determinant $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|$ is -
A. $1+a b c+a b+b c+c a$
B. $a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$
C. 4abc
D. $a b c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$

Answer: B

D Watch Video Solution

9. If $A=\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)$ and I is the unit matrix of order 2 , then A^{2} is equal to -
A. $4 A-3 I$
B. $3 A-4 I$
C. A-I
D. $A+I$

Answer: A

- Watch Video Solution

10. If $\operatorname{cosec}^{-1} x=\sec ^{-1} y$, then the value of $\left(\sin ^{-1} \frac{1}{x}+\sin ^{-1} \frac{1}{y}\right)$ is -
A. π
B. $\frac{\pi}{3}$
C. $\frac{2 \pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

11. If $P(A)=\frac{2}{3}, P(B)=\frac{1}{2}$ and $P(A \cup B)=\frac{5}{6}$, then the events A and B are -
A. mutually exclusive
B. independent as well as mutually exclusive
C. independent
D. none of these

Answer: C

12. The roots of the equation $\left|\begin{array}{ccc}x & 3 & 7 \\ 2 & x & -2 \\ 7 & 8 & x\end{array}\right|=0$ are -
A. $-2,-7,5$
B. $-2,-5,7$
C. $2,5,-7$
D. 2, 5, 7

Answer: C

- Watch Video Solution

13. If $f(x)=\left|\begin{array}{ccc}\sin x & \cos x & \tan x \\ x^{3} & x^{2} & x \\ 2 x & 1 & 1\end{array}\right|$ then the value of $\lim x \rightarrow 0 \frac{f(x)}{x^{2}}$ is -
A. -3
B. 3
C. -1
D. 1

Answer: D

- Watch Video Solution

14. If \vec{a} is a non-zero vector of modulus $|\vec{a}|$ and m is a non-zero scalar, then $m \vec{a}$ is a unit vector if -
A. $m= \pm 1$
B. $m=\frac{1}{|\vec{a}|}$
C. $m=|\vec{a}|$
D. $m= \pm 2$

- Watch Video Solution

15. The position vector of a point A is $\vec{a}+2 \vec{b}$ and \vec{a} divides $A B$ internally in the ratio $2: 3$, then the position vector of the point B is -
A. $2 \vec{a}-\vec{b}$
B. $\vec{b}-2 \vec{a}$
C. \vec{b}
D. $\vec{a}-3 \vec{b}$

Answer: D

16. The multiplicative inverse of matrix $\left[\begin{array}{ll}2 & 1 \\ 7 & 4\end{array}\right]$ is -
A. $\left[\begin{array}{cc}4 & -1 \\ -7 & -2\end{array}\right]$
B. $\left[\begin{array}{cc}4 & -1 \\ -7 & 2\end{array}\right]$
C. $\left[\begin{array}{cc}4 & -7 \\ 7 & 2\end{array}\right]$
D. $\left[\begin{array}{cc}-4 & -1 \\ 7 & -2\end{array}\right]$

Answer: B

D Watch Video Solution

17. The probability that at least one of the events A and B occurs is $\frac{3}{5}$. If A and B occur simultaneously with probability $\frac{1}{5}$, then the value of $P\left(A^{\prime}\right)+P\left(B^{\prime}\right)$ is -
A. $\frac{2}{5}$
B. $\frac{4}{5}$
C. $\frac{6}{5}$
D. $\frac{7}{5}$

Answer: C

- Watch Video Solution

18. If \vec{a} and \vec{b} are mutually perpendicular unit vectors, then the value of $(3 \vec{a}-4 \vec{b}) \cdot(2 \vec{a}+5 \vec{b})$ is -
A. -14
B. 14
C. 9
D. -9

- Watch Video Solution

19. For a real number α, let $A(\alpha)$ denote the matrix $\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right)$. Then for real numbers α_{1} and α_{2}, the value of $A\left(\alpha_{1}\right) A\left(\alpha_{2}\right)$ is -
A. $A\left(\alpha_{1} \alpha_{2}\right)$
B. $A\left(\alpha_{1}+\alpha_{2}\right)$
C. $A\left(\alpha_{1}-\alpha_{2}\right)$
D. $A\left(\alpha_{2}-\alpha_{1}\right)$

Answer: B

- Watch Video Solution

$x+2 y+3 z=1,2 x+k y+5 z=1,3 x+4 y+7 z=1$ has no solutions, then -
A. $k=-1$
B. $\mathrm{k}=1$
C. $\mathrm{k}=3$
D. $k=2$

Answer: C

- Watch Video Solution

21. The probability that the same number appears on throwing three dice simultaneously is -
A. $\frac{1}{6}$
B. $\frac{1}{36}$
C. $\frac{5}{36}$
D. none of these

Answer: B

- Watch Video Solution

22. A is a square matrix such that $A^{3}=I$, then A^{-1} is equal to -
A. A^{2}
B. A
C. A^{3}
D. none of these
23. If $D=\left|\begin{array}{ccc}1 & a & a^{2}-b c \\ 1 & b & b^{2}-c a \\ 1 & c & c^{2}-a b\end{array}\right|$, then D is -
A. 0
B. independent of a
C. independent of b
D. independent of c

Answer: A

24. A unit vector perpendicular to both the vectors $2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $3 \hat{j}-4 \hat{j}$ is -
A. $\frac{1}{\sqrt{34}}(3 \hat{i}-4 \hat{j}+3 \hat{k})$
B. $\frac{1}{\sqrt{34}}(3 \hat{i}+4 \hat{j}-3 \hat{k})$
C. $\frac{1}{\sqrt{34}}(3 \hat{i}-4 \hat{j}-3 \hat{k})$
D. $\frac{1}{\sqrt{34}}(-3 \hat{i}+4 \hat{j}+3 \hat{k})$

Answer: D

D View Text Solution

25. Let $\vec{a}=2 \hat{i}+p \hat{j}-3 \hat{k}$ and $\vec{b}=q \hat{i}-4 \hat{j}+2 \hat{k}$ be two vectors, if $\vec{a} \| \vec{b}$, then the values of p and q are -
A. $p=6, q=-\frac{4}{3}$
B. $p=\frac{4}{3}, q=-6$
C. $p=6, q=\frac{4}{3}$
D. $p=4, q=6$

Answer: A

- Watch Video Solution

26. In the equation $x^{2}-p x+q=0$ one root is twice of other then prove that $2 p^{2}=9 q$

- Watch Video Solution

27. If k is a constant, then $\operatorname{Var}(\mathrm{k})$ is equal to -
A. k
B. k^{2}
C. 0
D. $2 k^{2}$

Answer: C

- Watch Video Solution

28. If $\left|\begin{array}{lll}y & x & 0 \\ 0 & y & x \\ x & 0 & y\end{array}\right|=0$ and $x \neq 0$, then which one of the following is correct ?
A. x is one of the cube roots of 1
B. y is one of the cube roots of 1
C. $\frac{y}{x}$ is one of the cube roots of 1
D. $\frac{y}{x}$ is one of the cube roots of (-1)

Answer: D

- Watch Video Solution

29. If σ^{2} be the variance of a binomial distribution with parameters n and p then-
A. $4 \sigma^{2} \leq n$
B. $4 \sigma^{2}=n$
C. $4 \sigma^{2}>n$
D. $4 \sigma^{2} \geq n$

Answer: A

- Watch Video Solution

30. The value of $\cos ^{-1}\left(\cos \frac{5 \pi}{3}\right)+\sin ^{-1}\left(\sin \frac{5 \pi}{3}\right)$ is -
A. $\frac{10 \pi}{3}$
B. $\frac{4 \pi}{3}$
C. 2π
D. 0

Answer: D

- Watch Video Solution

31. A straight line makes angles $\frac{\pi}{4}$ and $\frac{\pi}{3}$ with the positive directions of x-axis and z-axis respectively. Then, the acute angle made by the line with y-axis is -

$$
\text { A. } \frac{\pi}{6}
$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\cos ^{-1} \frac{1}{3}$

Answer: C

- Watch Video Solution

32. The angle between the lines $\frac{x+1}{3}=\frac{y-2}{-2}=\frac{z+4}{1}$ and $\frac{x-3}{1}=\frac{2 y-3}{5}=\frac{z-2}{2}$ is -
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\cos ^{-1} \frac{3}{5}$
D. $\cos ^{-1} \frac{4}{5}$

Answer: B

- Watch Video Solution

33. The ratio in which the line segment joining the points $(1,2,3)$ and $(-3,4,-5)$ is divided by the xy -plane is -
A. $3: 5$
B. $4: 3$
C. $-3: 5$
D. 5:2

Answer: A

- Watch Video Solution

34. The coordinates of the foot of the perpendicular drawn from
the point $A(2,4,-1)$ on the line $\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}$ are -
A. $(1,-3,4)$
B. $(-4,1,-3)$
C. $(4,1,3)$
D. none of these

Answer: B

D Watch Video Solution

35. The equation of the joining the points $(2,-1,4)$ and $(1,1,-2)$ is -
A. $\frac{x-2}{1}=\frac{y+1}{2}=\frac{z-4}{6}$
B. $\frac{x-2}{-1}=\frac{y+1}{2}=\frac{z-4}{-6}$
C. $\frac{x-1}{1}=\frac{y-1}{2}=\frac{z+2}{6}$
D. $\frac{x-1}{-1}=\frac{y+1}{2}=\frac{z+2}{-6}$

Answer: B

- Watch Video Solution

36. The distance of the point (a, b, c) form the y-axis is -
A. b
B. $a+c$
C. $\sqrt{a^{2}+c^{2}}$
D. $b(a+c)$

Answer: C

37. If the z-coordinate of a point C on the line joining the points $A(2,2,1)$ and $B(5,1,-2)$ is (-1), then x-coordinate of C is -
A. 4
B. 1
C. -2
D. -4

Answer: A

- Watch Video Solution

38. A plane meets the coordinate axes at P, Q, R such that the centroid of the triangle $P Q R$ ar (a, b, c). If the equation of the plane is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=m$, then the value of m is -
A. 2
B. 3
C. 1
D. 6

Answer: B

- Watch Video Solution

39. The equation of the plane passing through the points $(0,1,0)$ and $(3,4,1)$ and parallel to the line $\frac{x+3}{2}=\frac{y-3}{7}=\frac{z-2}{5}$ is -
A. $4 x-13 y+15 z=13$
B. $8 x-13 y+15 z=15$
C. $8 x-13 y+15 z+13=0$
D. none of these

Answer: C

- Watch Video Solution

40. The equation of the plane passing through the point $(2,-3,5)$ and parallel to zx -plane is -
A. $z+x=7$
B. $z-5=0$
C. $x-2=0$
D. $y+3=0$

Answer: D

- Watch Video Solution

41. $f(x)$ and $g(x)$ are two differentiable functions on [0,2] such that $f^{\prime}(x)-g^{\prime \prime}(x)=0, f^{\prime}(1)=2, g^{\prime}(1)=4, f(2)=3$ and $g(2)=9$, then $[f(x)-g(x)]$ at $x=\frac{3}{2}$ is equal to -
A. 0
B. 2
C. 10
D. -5

Answer: D

D Watch Video Solution

42. If $x=e^{\tan ^{-1}\left(\frac{y-x^{2}}{x^{2}}\right)}$ then the value of $\frac{d y}{d x}$ is -
A. $2 x[1+\tan (\log x)]+x \sec ^{2}(\log x)$
B. $x[1+\tan (\log x)]+\sec ^{2}(\log x)$
C. $2 x[1+\tan (\log x)]+x^{2} \sec ^{2}(\log x)$
D. $2 x[1+\tan (\log x)]+\sec ^{2}(\log x)$

Answer: A

- Watch Video Solution

43. If $x=a \cos ^{4} \theta, y=a \sin ^{4} \theta$ then the value of $\frac{d y}{d x}$ at $\theta=\frac{3 \pi}{4}$ is -
A. 0
B. 1
C. -1
D. -2

Answer: C

(D) Watch Video Solution

44. $\frac{d}{d x}\left(x^{x}\right)$ is equal to -
A. $x^{x}(1-\log x)$
B. $x^{x} \log x$
C. $x^{x+1}(1+\log x)$
D. $x^{x}(1+\log x)$

Answer: D

- Watch Video Solution

45. The differential coefficient of $e^{x^{3}}$ w.r.t logx is -
A. $e^{x^{3}}$
B. $3 x^{3} e^{x^{3}}$
C. $3 x^{2} e^{x^{3}}$
D. $3 x^{2} e^{x^{3}}+3 x^{2}$

Answer: B

- Watch Video Solution

46. The second derivative of $a \sin ^{3} t$ w.r.t. $a \cos ^{3} t$ at $t=\frac{\pi}{4}$ is -
A. 2
B. $\frac{1}{12 a}$
C. $\frac{4 \sqrt{2}}{3 a}$
D. 0

Watch Video Solution

47. The derivative of the function $f(x)=3|x+2|$ at the point, $x=-3$ is -
A. -3
B. 3
C. 0
D. does not exist

Answer: A

- Watch Video Solution

48. Let $f(x)=e^{x}, x \in[0,1]$, then the number c of Lagrange's mean value theorem is -
A. $\log (e+1)$
B. $\log (e-1)$
C. loge
D. none of these

Answer: B

- Watch Video Solution

49. If the function $f(x)$ stisfies the conditions of Rolle's theorem in
$[1,2]$ and $f^{\prime}(x)$ is continuous in $[1,2]$, then $\int_{1}^{2} f^{\prime}(x) d x$ is equal to -
A. 3
B. 1
C. 2
D. 0

Answer: D

- Watch Video Solution

50. let $y=\sqrt{x+\sqrt{x+\sqrt{x} \ldots \infty}})$ then $d y / d x$ equals
A. $\frac{x}{2 y-1}$
B. $\frac{2}{2 y-1}$
C. $\frac{1}{2 y-1}$
D. $\frac{x}{y-1}$

Answer: C

D Watch Video Solution

51. If $y=\sin x+e^{x}$, then the value of $\frac{d^{2} x}{d y^{2}}$ is -
A. $\frac{\sin x-e^{x}}{\left(\cos x+e^{x}\right)^{3}}$
B. $\frac{1}{e^{x}-\sin x}$
C. $\frac{\sin x-e^{x}}{}$

$$
\left(\cos x+e^{x}\right)^{2}
$$

D. $\frac{\sin x+e^{x}}{\left(\cos x+e^{x}\right)^{3}}$

Answer: A

D Watch Video Solution

52. If $\sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{2}$, then the value of $\frac{d y}{d x}$ is -
A. $\frac{x}{y}$
B. $-\frac{x}{y}$
C. $\frac{y}{x}$
D. $-\frac{y}{x}$

Answer: B

- Watch Video Solution

53. If $\frac{d x}{d y}=u$ and $\frac{d^{2} x}{d y^{2}}=v$, then the value of $\frac{d^{2} y}{d x^{2}}$ is -
A. $-\frac{v}{u^{2}}$
B. $\frac{v}{u^{2}}$
C. $-\frac{v}{u^{3}}$
D. $\frac{v}{u^{3}}$

Answer: C

54. The value of $\lim h \rightarrow 0 \frac{e^{(x+h)^{2}}-e^{x^{2}}}{h}$ is -
A. $x e^{x^{2}}$
B. $2 e^{x^{2}}$
C. $4 x e^{x^{2}}$
D. $2 x e^{x^{2}}$

Answer: D

(D) Watch Video Solution

55. The value of $\int e^{x}\left(1-\cot x+\cot ^{2} x\right) d x$ is -
A. $e^{x} \cot x+c$
B. $e^{x} \operatorname{cosec} x+c$
C. $-e^{x} \cot x+c$
D. $-e^{x} \operatorname{cosec} x+c$

Answer: C

D Watch Video Solution

56. The value of $\int \frac{d x}{\sqrt{e^{2 x}-1}}$ is equal to -
A. $\sin ^{-1}\left(e^{x}\right)+c$
B. $\cos ^{-1}\left(e^{x}\right)+c$
C. $\tan ^{-1}\left(e^{x}\right)+c$
D. $\sec ^{-1}\left(e^{x}\right)+c$

Answer: D

57. The value of $\int \frac{\sin x}{\sin (x-a)} d x$ is equal to -
A. $(x-a) \cos a+\sin a \log |\sin (x-a)|+c$
B. $(x-a) \cos x+\log |\sin (x-a)|+c$
C. $\sin (x-a)+\sin x+c$
D. $\cos (x-a)+\cos x+c$

Answer: A

D Watch Video Solution

58. $\int_{0}^{1} \frac{d}{d x}\left[\sin ^{-1} \frac{2 x}{1+x^{2}}\right] d x$ is equal to -
A. 0
B. π
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: C

- Watch Video Solution

59. $\int_{-2}^{2}\left|1-x^{2}\right| d x$ is equal to -
A. 0
B. 1
C. 2
D. 4

Answer: D

60. The value of $\int_{0}^{\sqrt{2}}\left[x^{2}\right] d x$ is -
A. $2-\sqrt{2}$
B. $\sqrt{2}-1$
C. $2+\sqrt{2}$
D. $\sqrt{2}+1$

Answer: B

- Watch Video Solution

61. The value of $\int^{\frac{\pi}{2}} \sin 2 x \log (\tan x) d x$ is equal to -
A. 0
B. π
C. $\frac{\pi}{2}$
D. 1

Answer: A

D Watch Video Solution

62. The value of of $\int \frac{d x}{\sqrt{2 x-x^{2}}}$ is -
A. $\sin ^{-1}(x+1)+c$
B. $\sqrt{2 x-x^{2}}+c$
C. $-\sqrt{x-x^{2}}+c$
D. $\sin ^{-1}(x-1)+c$

Answer: D

63. The value of $\int \frac{x e^{x}}{(x+1)^{2}} d x$ is equal to -
A. $\frac{e^{x}}{(x+1)^{2}}+c$
B. $\frac{e^{x}}{x+1}+c$
C. $-\frac{e^{x}}{x+1}+c$
D. none of these

Answer: B

- Watch Video Solution

64. The value of $\int \cos ^{-1}\left(\frac{1}{x}\right) d x$ is equal to -
A. $x \sec ^{-1} x+\log \left|x+\sqrt{x^{2}-1}\right|+c$
B. $x \sec ^{-1} X-\sin ^{-1} X+c$
C. $x \sec ^{-1} x-\log \left|x+\sqrt{x^{2}-1}\right|+c$
D. $x \sec ^{-1} x-2 \log \left|x+\sqrt{x^{2}-1}\right|+c$

Answer: C

- Watch Video Solution

65. The value of the integral $\int_{\frac{1}{n}}^{\frac{a n-1}{n}} \frac{\sqrt{x} d x}{\sqrt{a}-x+\sqrt{x}}$ is -
A. $\frac{a n-2}{2 n}$
B. $\frac{a}{2}$
C. $\frac{a n+2}{2 n}$
D. none of these

- Watch Video Solution

66. The value of $\int \frac{x d x}{x^{2}+4 x+5}$ is equal to -
A. $\frac{1}{2} \log \left|x^{2}+4 x+5\right|+2 \tan ^{-1} x+c$
B. $\frac{1}{2} \log \left|x^{2}+4 x+5\right|-\tan ^{-1}(x+2)+c$
C. $\frac{1}{2} \log \left|x^{2}+4 x+5\right|+\tan ^{-1}(x+2)+c$
D. $\frac{1}{2} \log \left|x^{2}+4 x+5\right|-2 \tan ^{-1}(x+2)+c$

Answer: D

- Watch Video Solution

67.

The
value
of
$\left[\lim _{n \rightarrow \infty} \frac{1+2^{4}+3^{4}+\ldots+n^{4}}{n^{5}}-\lim n \rightarrow \infty \frac{1+2^{3}+3^{3}+\ldots+n^{3}}{n^{5}}\right]$
is equal to -
A. $\frac{1}{5}$
B. $\frac{1}{30}$
C. 0
D. $\frac{1}{4}$

Answer: A

- Watch Video Solution

68. If $f(a+b-x)=f(x)$, then $\int_{a}^{b} x f(x) d x$ is equal to -
A. $\frac{a+b}{2} \int_{a}^{b} f(a+b-x) d x$
B. $\frac{a+b}{2} \int_{a}^{b} f(b-x) d x$
C. $\frac{a-b}{2} \int_{a}^{b} f(x) d x$
D. $\frac{b-a}{2} \int_{a}^{b} f(x) d x$

Answer: A

- Watch Video Solution

69. The value of the integral $\int_{-1}^{1} x|x| d x$ is equal to -
A. 1
B. 2
C. 4
D. 0

Answer: D

70. The value of $\lim n \rightarrow \infty\left[\frac{n!}{n^{n}}\right]^{\frac{1}{n}}$ is equal to -

- Watch Video Solution

$$
1+x+\sqrt{x+x^{2}}
$$

71. The value of $\int \frac{}{\sqrt{x}+\sqrt{1+x}} d x$ is equal to -
A. $\frac{1}{2} \sqrt{x+1}+c$
B. $\frac{2}{3}(1+x)^{\frac{3}{2}}+c$
C. $\sqrt{x+1}+c$
D. $2(1+x)^{\frac{3}{2}}+c$

Answer: B

72. If the order and degree of the differential equation
$\sqrt{\frac{d y}{d x}}-4 \frac{d y}{d x}-7 x=0$ are m and n respectively, then -
A. $m=1, n=\frac{1}{2}$
B. $m=2, n=1$
C. $m=1, n=1$
D. $m=1, n=2$

Answer: D

- Watch Video Solution

73. The general solution of the differential equation $(x+y) d x+x d y=0$ is -

$$
\text { A. } y^{2}+2 x y=c
$$

B. $x^{2}+y^{2}=c$
C. $x^{2}+2 x y=c$
D. $2 x^{2}-y^{2}=c$

Answer: C

- Watch Video Solution

74. The solution of the differential equation $\frac{d y}{d x}=x y+2 y$ subject to the condition $\mathrm{y}=1$ at $\mathrm{x}=1$ is -
A. $y=e^{2 x+\frac{x^{2}}{2}-2}$
B. $y=e^{2 x+\frac{x^{2}}{2}-\frac{5}{2}}$
C. $y=e^{2 x+\frac{x^{2}}{2}-\frac{2}{3}}$
D. $y=e^{2 x+\frac{x^{2}}{2}-\frac{3}{2}}$

Answer: B

- Watch Video Solution

75. The general solution of the differential equation $\frac{d y}{d x}=2^{y-x}$ is -
A. $2^{-x}-2^{-y}=c$
B. $2^{-x}+2^{-y}=c$
C. $2^{x}+2^{y}=c$
D. $2^{x}-2^{y}=c$

Answer: A

- Watch Video Solution

76. The solution of the differential equation $\frac{d y}{d x}=e^{x-y}+1$ is -
A. $e^{y-x}=y+c$
B. $e^{x-y}=y+c$
C. $e^{x-y}=x+c$
D. $e^{y-x}=x+c$

Answer: D

D Watch Video Solution

77. The differential equation for which $y=a \cos x+b \sin x$ is a solution is -
A. $\frac{d^{2} y}{d x^{2}}=y$
B. $\frac{d^{2} y}{d x^{2}}+(a+b) y=0$
C. $\frac{d^{2} y}{d x^{2}}+y=0$
D. $\frac{d^{2} y}{d x^{2}}+(a-b) y=0$

Answer: C

- Watch Video Solution

78. The integrating factor of the differential equation $x \log x \frac{d y}{d x}+2 y=\log x$ is -
A. $\log x$
B. $(\log x)^{2}$
C. $\frac{1}{\log x}$
D. x^{2}

Answer: B
79. If $f(x)=\left\{\begin{array}{ll}x & \text { when } 0 \leq x \leq 1 \\ 2 x-1 & \text { when } x>1\end{array}\right.$ then -
A. $f(x)$ is continuous but not differentiable at $x=1$
B. $f(x)$ is discontinuous at $x=1$
C. $f(x)$ is differentiable at $x=1$
D. none of these

Answer: A

- Watch Video Solution

80. The differential equation of the family of parabolas whose vertex is at $(1,2)$ and axis is parallel to x-axis is -

$$
\text { A. } x \frac{d y}{d x}=y-2
$$

B. $\left(\frac{d y}{d x}\right)^{2}-3 x y=0$
C. $(x-1) \frac{d y}{d x}=y-2$
D. $2(x-1) \frac{d y}{d x}=y-2$

Answer: D

- Watch Video Solution

81. The area (in square unit) of the region bounded by the curve $x^{2}=4 y$, the line $x=2$ and x - axis is -
A. 1
B. $\frac{2}{3}$
C. $\frac{4}{3}$
D. $\frac{8}{3}$

- Watch Video Solution

82. Let $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \phi, b \tan \phi)$ where $\theta+\phi=\frac{\pi}{2}$ be two point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.lf (h, k) be the point of intersection of the normals at P and Q, then the value of k is -
A. $\frac{a^{2}+b^{2}}{a}$
B. $-\frac{a^{2}+b^{2}}{a}$
C. $\frac{a^{2}+b^{2}}{b}$
D. $-\frac{a^{2}+b^{2}}{b}$

Answer: D

83. The equation of the tangent to the curve $\left(1+x^{2}\right) y=2-x$ where it crosses the x -axis is-
A. $x+5 y=2$
B. $x-5 y=2$
C. $5 y-y=2$
D. $5 x+y=2$

Answer: A

- Watch Video Solution

84. The area (in square unit) bounded by the parabolas
$y^{2}=4 a x$ and $x^{2}=4 a y$ is -
A. $\frac{64 a^{2}}{3}$
B. $\frac{32 a^{2}}{3}$
C. $\frac{16 a^{2}}{3}$
D. $\frac{8 a^{2}}{3}$

Answer: C

- Watch Video Solution

85. Equations of the tangent and the normal drawn at the point
$(6,0)$ on the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{9}=1$ respectively are-
A. $x=6, y=0$
B. $x+y=6, y-x+6=0$
C. $x=0, y=3$
D. $x=-6, y=0$

Answer: A

- Watch Video Solution

86. The are (in square unit) of the figure bounded by the curves
$y=\cos x$ and $y=\sin x$ and the ordinates $x=0, x=\frac{\pi}{4}$ is-
A. $\sqrt{2}+1$
B. $\sqrt{2}-1$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{\sqrt{2}-1}{\sqrt{2}}$

Answer: B

87. The straight line $x+y=a$ will be a tangent to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ if the value of a is -
A. 8
B. ± 10
C. ± 5
D. ± 6

Answer: C

- Watch Video Solution

88. The equation of the tangent to the parabola $y^{2}=8 x$ which is perpendicular to the line $x-3 y+8=0$ is -
A. $3 x+y+2=0$
B. $3 x-y-1=0$
C. $9 x-3 y+2=0$
D. $9 x+3 y+2=0$

Answer: D

- Watch Video Solution

89. The area (in square unit) bounded by the parabola $y^{2}=8 x$ and its latus rectum is -
A. $\frac{16}{3}$
B. $\frac{25}{3}$
C. $\frac{16 \sqrt{2}}{3}$
D. $\frac{32}{3}$

Answer: D

- Watch Video Solution

90. If the curves $y^{2}=4 x$ and $x y=k$ cut orthogonally, then the value of k^{2} will be-
A. 16
B. 32
C. 36
D. 8

Answer: B

- Watch Video Solution

91. Find the area bounded by the curve $x^{2}=4 y$ and the line $x=4 y$

- 2.

A. $\frac{8}{3}$
B. $\frac{3}{8}$
C. 8
D. 3

Answer: C

- Watch Video Solution

92. If the slope of the normal to the curve $x^{3}=8 a^{2} y$ at P is $\left(\frac{-2}{3}\right)$, then the coordinates of P are-
A. $(2 a, a)$
B. (a, a)
C. $(2 a,-a)$
D. none of these

Answer: A

- Watch Video Solution

93. If $a>2 b>0$, then the positive value of m for which the line $y=m x-b \sqrt{1+m^{2}}$ is a common tangent to the circles $x^{2}+y^{2}=b^{2}$ and $(x-a)^{2}+y^{2}=b^{2}$ is-
A. $\frac{2 b}{\sqrt{a^{2}-4 b^{2}}}$
B. $\frac{\sqrt{a^{2}-4 b^{2}}}{2 b}$
C. $\frac{2 b}{a-2 b}$
D. $\frac{b}{a-2 b}$

Answer: A

- Watch Video Solution

94. The area (in square unit) of the region bounded by the line $y=|x-1|$ and $y=3-|x|$ is -
A. 6
B. 2
C. 4
D. 3

Answer: C

95. The minimum value of $f(x)=x^{2}+\frac{250}{x}$ is-
A. 55
B. 25
C. 50
D. 75

Answer: D

- Watch Video Solution

96. If $f(x)=k x^{3}-9 x^{2}+9 x+3$ is an increasing function then-
A. $k<3$
B. $k \leq 3$
C. $k>3$
D. k is indeterminate

Answer: C

- Watch Video Solution

97. If $f(x)=\frac{1}{4 x^{2}+2 x+1}$ then its maximum value is -
A. $\frac{2}{3}$
B. $\frac{4}{3}$
C. $\frac{3}{4}$
D. 1

Answer: B

98. If $f(x)=\frac{1}{x+1}-\log (1+x), x>0$ then $\mathrm{f}(\mathrm{x})$ is-
A. a decreasing function
B. an increasing function
C. neither increasing nor decreasing
D. increasing when $x>1$

Answer: A

D Watch Video Solution

99. Let α, β be the roots of $x^{2}+(3-\lambda) x-\lambda=0$, then the value of λ
for which $\alpha^{2}+\beta^{2}$ is minimum, is-
A. 0
B. 1
C. 3
D. 2

Answer: D

- Watch Video Solution

100. The function $f(x)=2 x^{3}-3 x^{2}-12 x+4$ has-
A. no maxima and minima
B. one maximum and one minimum
C. two maxima
D. two minima

Answer: B

101. The height of the cylinder of maximum volume that can be inscribed in a sphere of radius a, is-
A. $\frac{3 a}{2}$
B. $\frac{\sqrt{2} a}{3}$
C. $\frac{2 a}{\sqrt{3}}$
D. $\frac{a}{\sqrt{3}}$

Answer: C

- Watch Video Solution

102. Maximum value of $\frac{\log x}{x}$ in $[2, \infty)$ is-
A. $\frac{\log 2}{2}$
B. 0
C. $\frac{1}{e}$
D. e

Answer: C

- Watch Video Solution

103. Let the function $f: R \rightarrow R$ be defined by $f(x)=2 x+\cos x$, then $f(x)-$
A. has maximum value at $x=0$
B. has minimum value at $x=\pi$
C. is a decreasing function
D. is an increasing function

Answer: D

- Watch Video Solution

104. The maximum distance from the origin of a point on the curve $x=a \sin t-b \sin \left(\frac{a t}{b}\right), y=a \cos t-b \cos \left(\frac{a t}{b}\right)$, both $a, b>0$, is-
A. $a-b$
B. $a+b$
C. $\sqrt{a^{2}+b^{2}}$
D. $\sqrt{a^{2}-b^{2}}$

Answer: B

105. If the slope of the tangent line to the curve $y=\frac{6}{x^{2}-4 x+6}$ at some point on it is zero, then the equation of the tangent is-
A. $y=3$
B. $2 y-1=0$
C. $y=2$
D. $y+3=0$

Answer: A

- Watch Video Solution

106. If the slope of the tangent at (x, y) to a curve passing through the point $(2,1)$ is $\frac{x^{2}+y^{2}}{2 x y}$, then the equation of the curve is-
A. $2\left(x^{2}-y^{2}\right)=3 x$
B. $2\left(x^{2}-y^{2}\right)=3 y$
C. $x\left(x^{2}-y^{2}\right)=6$
D. $x\left(x^{2}+y^{2}\right)=6$

Answer: A

- Watch Video Solution

107. The region represented by the system of in equations
$y \leq 7,2 x+y \leq 4, x \geq 0, y \geq 0$ is
A. bounded in first and second quadrants
B. bounded in first quadrant
C. unbounded in first quadrant
D. none of these

Answer: B

- Watch Video Solution

108. If the radius of a sphere is measured as 14 cm with an error of 0.03 cm , then approximate error in the calculation of its volume is-
A. $20.52 \pi \mathrm{~cm}^{3}$
B. $18.96 \pi \mathrm{~cm}^{3}$
C. $23.52 \pi \mathrm{~cm}^{3}$
D. $24.96 \pi \mathrm{~cm}^{3}$

Answer: C

- Watch Video Solution

109. If $y=3 x^{2}+2$ and if x changes from 10 to 10.1 , then the approximate change in y will be-
A. 8
B. 6
C. 5
D. 4

Answer: B

D Watch Video Solution

110. The rate of change of surface area of a sphere of radius r when the radius is increasing at the rate of $2 \mathrm{~cm} / \mathrm{s}$. is proportional to
A. $\frac{1}{r^{2}}$
B. r^{2}
C. r
D. $\frac{1}{r}$

Answer: C

- Watch Video Solution

Question Paper 2

1. Assuming that the sums and products given below are defined, which of the following is not true for matrices?
A. $A B=A C$ does not imply $B=C$
B. $A+B=B+A$
C. $(A B)^{\prime}=B^{\prime} A^{\prime}$
D. $\mathrm{AB}=0$ implies $\mathrm{A}=0$ or, $\mathrm{B}=0$

Answer: D

- Watch Video Solution

2. The value k for which the line $\frac{x-1}{8}=\frac{y+2}{k}=\frac{z-3}{-6}$ is perpendicular to the plane $4 x+2 y-3 z=5$ is -
A. 6
B. -6
C. 4
D. -4

Answer: C

3. A fair die is thrown till we get 6 , then the probability of getting 6 exactly in even number of turns is -
A. $\frac{11}{36}$
B. $\frac{5}{11}$
C. $\frac{6}{11}$
D. $\frac{1}{6}$

Answer: B

(-) Watch Video Solution

4. If $\vec{\alpha}|=4,|\vec{\beta}|=3$ and $| \vec{\alpha} \times \vec{\beta} \mid=6$, then the angle between the vectors $\vec{\alpha}$ and $\vec{\beta}$ is -
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{2 \pi}{3}$
D. none of these

Answer: A

- Watch Video Solution

5. The equation of the plane through the line of intersection of the planes $2 x+y-z+5=0$ and $x+2 y+3 z=4$ and perpendicular to the plane $5 x+3 y+6 z=10$ is -
A. $51 x+15 y-50 z=173$
B. $5 x-15 y+50 z+117=0$
C. $51 x+15 y-50 z+173=0$
D. $63 x-43 y-50 z+117=0$

Answer: C

- Watch Video Solution

6. If $\mathrm{I}, \mathrm{m}, \mathrm{n}$ are p -th, q -th and r -th terms of a GP, all positive, then
the value of $\left|\begin{array}{lll}\log l & p & 1 \\ \log m & q & 1 \\ \log n & r & 1\end{array}\right|$ is -
A. -1
B. 2
C. 1
D. 0

Answer: D

7. If the straight line joining the points $A(3,4,-1)$ and $B(4, p, 2)$ is parallel to the straight line joining the points $C(2,1, q)$ and $D(4,-3$, 1), then -
A. $p=-5, q=2$
B. $p=2, q=-5$
C. $p=5, q=-2$
D. $p=-2, q=5$

Answer: B

- Watch Video Solution

8. A and B are two events such that $P(A \cup B)=\frac{3}{4}, P(A \cap B)=\frac{1}{4}, P(\bar{A})=\frac{2}{3}$, then the value of $P(\bar{A} \cap B)$ is -
A. $\frac{5}{12}$
B. $\frac{3}{8}$
C. $\frac{5}{8}$
D. $\frac{1}{4}$

Answer: A

- Watch Video Solution

9. One root of the equation $\left|\begin{array}{ccc}x+a & b & c \\ b & x+c & a \\ c & a & x+b\end{array}\right|=0$ is -
A. $-(a+b)$
B. $-(b+c)$
C. $-a$

Answer: D

- Watch Video Solution

10. The coordinates of the foot of the perpendicular drawn from the point $P(1,2,1)$ to the straight line joining the points $Q(1,4,6)$ and $R(5,4,4)$ are -
A. $(3,-5,-4)$
B. $(3,4,5)$
C. $(3,-4,5)$
D. $(-3,-4,5)$

Answer: B

11. If ω is a cube root of unity then the value of $\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|$ is -
A. 1
B. ω
C. 0
D. ω^{2}

Answer: C

D Watch Video Solution

12. The angle between the pair of straight lines whose direction cosines are given by the equations $2 l-m+2 n=0$ and
$m n+n l+l m=0$ is -
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{6}$

Answer: A

- Watch Video Solution

13. If A and B are two events such that $P(A \cup B)=\frac{5}{6}, P(A \cap B)=\frac{1}{3}$, then which one of the following is not correct ?
A. A and B are independent
B. A and \bar{B} are independent
$C . \bar{A}$ and B are independent
D. A and B are dependent

Answer: D

- View Text Solution

14. If $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 1 & -2 \\ 0 & 2 & 1\end{array}\right]$ and $\operatorname{Adj} A=\left[\begin{array}{ccc}5 & a & -2 \\ 1 & 1 & 0 \\ -2 & -2 & b\end{array}\right]$, then the values of a and b are -
A. $a=-4, b=1$
B. $a=-4, b=-1$
C. $a=4, b=1$
D. $a=4, b=-1$

Answer: C

- Watch Video Solution

15. If the straight lines $\frac{x-2}{a}=\frac{y+3}{-4}=\frac{z-2}{3}$ and $\frac{x+2}{3}=\frac{y-1}{2 a}=\frac{z+3}{5}$ are perpendicular to each other, then the value of a is -
A. $\frac{15}{11}$
B. 3
C. -3
D. $-\frac{15}{11}$

Answer: B

16. The coordinates of the point where the line $\frac{x-3}{1}=\frac{y-4}{2}=\frac{z-5}{2}$ meets the plane $x+y+z=17$ are -
A. $(-4,-6,7)$
B. $(4,6,-7)$
C. $(4,-6,7)$
D. $(4,6,7)$

Answer: D

- Watch Video Solution

17. If $a=1+2+4+\ldots$ to n terms, $b=1+3+9 \ldots$ to n terms and $c=1+5+25+\ldots$ to n terms, then the value of $\left|\begin{array}{ccc}a & 2 b & 4 c \\ 2 & 2 & 2 \\ 2^{n} & 3^{n} & 5^{n}\end{array}\right|$ is -
A. $(30)^{n}$
B. $(10)^{n}$
C. 0
D. $2^{n}+3^{n}+5^{n}$

Answer: C

- Watch Video Solution

18. The distance between the point ($-1,-5,-10$) and the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ with the plane $x-y+z=5$ is -
A. 13 unit
B. 7 unit
C. $5 \sqrt{3}$ unit

Answer: A

- Watch Video Solution

19. If the direction ratios of two lines are $2,-3,6$ and $1,-2,2$ respectively then the angle between the lines is -
A. $\frac{\pi}{2}$
B. $\cos ^{-1} \frac{20}{21}$
C. $\cos ^{-1} \frac{3}{5}$
D. $\cos ^{-1} \frac{8}{21}$

Answer: B

20. A coin and a six faced die, both unbiased, are thrown simultaneously. The probability of getting a head on the coin and an odd number on the die is -
A. $\frac{1}{2}$
B. $\frac{3}{4}$
C. $\frac{1}{4}$
D. $\frac{2}{3}$

Answer: C

- Watch Video Solution

21. A number is chosen at random among the first 120 natural numbers. What is the probability that the number chosen being a multiple of 5 or 15 ?
A. $\frac{1}{5}$
B. $\frac{1}{8}$
C. $\frac{1}{15}$
D. $\frac{1}{6}$

Answer: A

D Watch Video Solution

22. If $A=\left(\begin{array}{cc}-1 & 0 \\ 0 & 2\end{array}\right)$ then the value of $A^{3}-A^{2}$ is equal to -
A. I
B. A
C. 2A
D. 21

Answer: C

- Watch Video Solution

23. If $1, \omega, \omega^{2}$ are the cube roots of unity then the vlue of m for
which the matrix $\left[\begin{array}{ccc}1 & \omega & m \\ \omega & m & 1 \\ m & 1 & \omega\end{array}\right]$ is singular, is -
A. 1
B. -1
C. ω
D. ω^{2}

Answer: D

24. If $A=\left[\begin{array}{cc}-x & -y \\ z & t\end{array}\right]$, then the transpose of $\operatorname{adj} A$ is -
A. $\left[\begin{array}{cc}t & z \\ -y & -x\end{array}\right]$
B. $\left[\begin{array}{cc}t & y \\ -z & -x\end{array}\right]$
C. $\left[\begin{array}{ll}t & -z \\ y & -x\end{array}\right]$
D. none of these

Answer: C

- Watch Video Solution

25. A die is thrown if it shows a six, we draw ball from is bag containing 2 black balls and 6 white balls. If it does not show a six then we toss a coin. Then the number of event points in the sample space of this experiment is -
A. 18
B. 14
C. 12
D. 10

Answer: A

- Watch Video Solution

26. The solutions of the equation $\left|\begin{array}{ccc}x & 2 & -1 \\ 2 & 5 & x \\ -1 & 2 & x\end{array}\right|=0$ are -
A. $-3,1$
B. $3,-1$
C. 3,1
D. $-3,-1$

Answer: B

- Watch Video Solution

27. The vector of magnitude 12 , which is perpendicular to both the vectors $4 \hat{i}-\hat{j}+3 \hat{k}$ and $-2 \hat{i}+\hat{j}-2 \hat{k}$ is -

> A. $-4 \hat{i}+8 \hat{j}+8 \hat{k}$
> B. $-2 \hat{i}+4 \hat{j}+4 \hat{k}$
C. $-6 \hat{i}+12 \hat{j}+12 \hat{k}$
D. none of these

Answer: A

28. If A is a square matrix of order 3×3 and λ is a scalar, then adj (λA) is equal to -
A. $\lambda \operatorname{adj} \mathrm{A}$
B. $\lambda^{2} \operatorname{adj} A$
C. $\lambda^{3} \operatorname{adj} A$
D. $\lambda^{4} \operatorname{adj} A$

Answer: B

- Watch Video Solution

29. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\vec{o}$, then the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is -
A. $-\frac{3}{2}$
B. $\frac{3}{2}$
C. 3
D. -3

Answer: A

- Watch Video Solution

30. The points with position vectors $60 \hat{i}+3 \hat{j}, 40 \hat{i}-8 \hat{j}$ and $a \hat{i}-52 \hat{j}$ are collinear if -
A. $a=40$
B. $a=-40$
C. $a=20$
D. $a=-20$

Answer: B

- Watch Video Solution

31. If the diagonals of a parallelogram are $3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+4 \hat{k}$, then the area of the parallelogram is -
A. $5 \sqrt{3}$ square units
B. $10 \sqrt{3}$ square units
C. $\frac{10}{\sqrt{3}}$ square units
D. $20 \sqrt{3}$ square units

Answer: A

32. Let $P Q R S$ be a parallelogram whose diagonals $P R$ and $Q S$
intersect at O^{\prime}. If O is the origin, then $(\overrightarrow{O P}+\overrightarrow{O Q}+\overrightarrow{O R}+\overrightarrow{O S})$ is equal to -
A. $2 \overrightarrow{O^{\prime}}$
B. $\overrightarrow{O O^{\prime}}$
C. $4 \overrightarrow{O O^{\prime}}$
D. $3 \overrightarrow{O^{\prime}}$

Answer: C

- Watch Video Solution

33. If $f(x)=\frac{2 x+1}{3 x-2}$, then (fof)(2) is equal to -
A. 3
B. 1
C. 2
D. 4

Answer: C

- Watch Video Solution

34. The relation R is defined on the set of natural numbers N as x is a factor of y where $\mathrm{x}, \mathrm{y} \in \mathrm{N}$. Then R is -
A. an equivalence relations
B. relexive and transitive
C. symmetric and transitive
D. reflexive and symmetric

Answer: B

- Watch Video Solution

35. The value of $\sin \left(\frac{1}{2} \cos ^{-1} \frac{4}{5}\right)$ is -
A. $\frac{1}{10}$
B. $\frac{1}{\sqrt{10}}$
C. $-\frac{1}{10}$
D. $-\frac{1}{\sqrt{10}}$

Answer: B

0
 Watch Video Solution

36. Let C and R be the sets of complex numbers and real numbers respectively. Then the mapping $f: c \rightarrow R$ defined by $\mathrm{f}(\mathrm{z})=|\mathrm{z}|$ for all $z \in C$, is -
A. injective
B. surjective
C. bijective
D. none of these

Answer: D

- Watch Video Solution

37. Let X be the random variable of the number of points obtained in single throw of an unbiased die. Then, the value of \bar{X}
A. 7
B. 14
C. $\frac{7}{2}$
D. 4

Answer: C

- Watch Video Solution

38. If n and p are two parameters of a binomial distribution, state which one of the following is not true -
A. mean $=3$, S.D. $=\sqrt{2}$
B. mean $=4$, variance $=3$
C. mean $=4$, variance $=3.2$
D. mean $=4$, S.D. $=3$

Answer: D

- Watch Video Solution

39. The domain of definition of the function $\sin ^{-1}\left[\log _{3}\left(\frac{x}{3}\right)\right]$ is -
A. $[-9,-1]$
B. $[-1,9]$
C. $[1,9]$
D. $[-9,1]$

Answer: C

- Watch Video Solution

40. The value of $\cot \left(\frac{\pi}{4}-2 \cot ^{-1} 3\right)$ is -
A. 5
B. 6
C. 8
D. 7

Answer: D

- Watch Video Solution

41. If $y=\sqrt{\sin \sqrt{x}}$, then the value of $\frac{d y}{d x}$ is -
A. $\frac{1}{2 \sqrt{\sin \sqrt{x}}}$
B. $\frac{\sqrt{\cos \sqrt{x}}}{2 x}$
C. $\frac{1}{2 \sqrt{\cos \sqrt{x}}}$

$$
\cos \sqrt{x}
$$

D. $\frac{\sqrt{x} \sqrt{\sin \sqrt{x}}}{4}$

Answer: D

- Watch Video Solution

42. If $f(x)=\cos ^{-1}\left[\frac{1-(\log x)^{2}}{1+(\log x)^{2}}\right]$, then the value of $f^{\prime}(e)$ is -
A. $\frac{2}{e}$
B. $\frac{1}{e}$
C. 1
D. $\frac{1}{e^{2}}$
43. If $y=a \cos m x-b \sin m x$, then the value of $\frac{d^{2} y}{d x^{2}}$ is -
A. $-m^{2} y$
B. $m^{2} y$
C. -my
D. $m y$

Answer: A

- Watch Video Solution

44. If $y=x^{e^{x}}$, then the value of $\frac{d y}{d x}$ is -
A. $y\left(\log x+e^{x}\right)$
B. $y \log x\left(e^{x}+\frac{1}{2}\right)$
C. $y e^{x}\left(\log x+\frac{1}{x}\right)$
D. $y e^{x}(x+\log x)$

Answer: C

- Watch Video Solution

45. If $2^{x}+2^{y}=2^{x+y}$, then the value of $\frac{d y}{d x}$ at $x=y=1$ is -
A. 0
B. -1
C. 1
D. 2

Watch Video Solution

46. If $f(x)=x(x-1)(x-2), 0 \leq x \leq 4$, then the point $\mathrm{x}=\mathrm{c}$ which satisfies mean value theorem satisfies -
A. $0<c<1$
B. $c>3$
C. $0<c<\frac{1}{2}$
D. $1<c<3$

Answer: D

- Watch Video Solution

47. Let $f(x)=x|x|$. Then the set of points where $f(x)$ is twice differentiable is -
A. $\forall x \in R$
B. $\forall x \in R-\{0\}$
C. $\forall x \in R-\{0,1\}$
D. $\forall x \in R-\{1\}$

Answer: B

- Watch Video Solution

48. If $x=\sin ^{-1} t, y=\log \left(1-t^{2}\right), 0 \leq t<1$, then the value of $\frac{d^{2} y}{d x^{2}}$ at
$t=\frac{1}{3}$ is -
A. $-\frac{9}{4}$
B. $-\frac{9}{8}$
C. $\frac{9}{4}$
D. $\frac{9}{8}$

Answer: A

- Watch Video Solution

49. If $2 a+3 b+6 c=0 \quad(a, b, c \in R)$, then the quadratic equation $a x^{2}+b x+c=0$ has at least one root -
A. in $(0,1)$
B. in $(2,3)$
C. in $(4,5)$
D. none of these

Answer: A

50. If $y=\left(x+\sqrt{1+x^{2}}\right)^{n}$, then $\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}$ is equal to A. $-y$
B. $n^{2} y$
C. $-n^{2} y$
D. $2 n^{2} y$

Answer: B

D Watch Video Solution

51. If $\sin y+e^{-x \cos y}=e$, then the value of $\frac{d y}{d x}$ at $(1, \pi)$ is -
A. 0
B. 1
C. e
D. -1

Answer: C

- Watch Video Solution

52. If $x=2 \cos t+\cos 2 t$ and $y=2 \sin t-\sin 2 t$, then the value of $\frac{d y}{d x}$ at
$t=\frac{\pi}{4}$ is -
A. $-(\sqrt{2}+1)$
B. $\sqrt{2}$
C. $\sqrt{2}-1$
D. $1-\sqrt{2}$

Answer: D

53. The value of $\lim x \rightarrow \infty\left(\sqrt{x^{2}+a x}-x\right)$ is -
A. $\frac{a}{2}$
B. 2 a
C. a
D. 4 a

Answer: A

D Watch Video Solution

54. If $\log x=z$, then the value of $x^{2} \frac{d^{2} y}{d x^{2}}$ is -
A. $\frac{d^{2} y}{d z^{2}}$
B. $\frac{d^{2} y}{d z^{2}}+\frac{d y}{d z}$
C. $\frac{d^{2} y}{d z^{2}}-\frac{d y}{d z}$
D. $\frac{d^{2} y}{d z^{2}}-2 \frac{d y}{d z}$

Answer: C

D View Text Solution

55. The value of $\int e^{\sqrt{x}} d x$ is -
A. $e^{\sqrt{x}}+c$
B. $2(\sqrt{x}-1) e^{\sqrt{x}}+c$
C. $\frac{1}{2} e^{\sqrt{x}}+c$
D. $2(\sqrt{x}+1) e^{\sqrt{x}}+c$

© Watch Video Solution

56. If $\int x \sin x d x=-x \cos x+m$, then the value of m is -
A. $\sin x+c$
B. $\cos x+c$
C. $\cos x-\sin x+c$
D. $x \cos x+c$

Answer: A

- Watch Video Solution

57. The value of $\int \frac{a^{\sqrt{x}}}{\sqrt{x}} d x$ is -
A. $2 \log a \cdot a^{\sqrt{x}}+c$
B. $\log a \cdot a^{\sqrt{x}}+c$
C. $\frac{a^{\sqrt{x}}}{\log a}+c$
D. $\frac{2 a^{\sqrt{x}}}{\log a}+c$

Answer: D

D Watch Video Solution

58. The value of $\int \frac{e^{\tan ^{-1} x} d x}{1+x^{2}}$ is -
A. $\tan ^{-1} X+c$
B. $\frac{1}{1+x^{2}}+c$
C. $e^{\tan ^{-1} x}+c$
$2 x e^{\tan ^{-1} x}$
D. $\frac{2 x e}{}+$
$\left(1+x^{2}\right)^{2}$

Answer: C

- Watch Video Solution

59. The value of $\int \frac{\pi}{2} \frac{d x}{1+\cot x}$ is -
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. 0
D. π

Answer: A

- Watch Video Solution

60. If $I_{1}=\int_{e}^{e^{2}} \frac{d x}{\log x}$ and $I_{2}=\int_{1}^{2} \frac{e^{x}}{x} d x$, then which of the following is correct ?
A. $I_{1}+I_{2}=0$
B. $I_{1}=I_{2}$
C. $I_{1}=2 I_{2}$
D. $2 I_{1}=I_{2}$

Answer: B

- Watch Video Solution

61. If $I_{n}=\int^{\frac{\pi}{d}} \tan ^{n} \theta d \theta$, for any positive integer n, then the value of $n\left(I_{n-1}+I_{n+1}\right)$ is -
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. 1
D. 5

Answer: C

- Watch Video Solution

62. The value of $\int_{1}^{2}\left[x^{2}\right] d x$ is -
A. $5-\sqrt{3}-\sqrt{2}$
B. $5+\sqrt{2}-\sqrt{3}$
C. $4+\sqrt{3}-\sqrt{2}$
D. $4+\sqrt{2}-\sqrt{3}$

Answer: A

(D) Watch Video Solution

63. The value of $\int_{-\pi}^{\pi} \frac{2 x(1+\sin x)}{1+\cos ^{2} x} d x$ is equal to -
A. 0
B. $\frac{\pi}{2}$
C. $\frac{\pi^{2}}{4}$
D. π^{2}

Answer: D

- Watch Video Solution

64. The value of $\int \frac{d x}{\sin x-\cos x+\sqrt{2}}$ is -
A. $\frac{1}{\sqrt{2}} \cot \left(\frac{x}{2}+\frac{\pi}{8}\right)+c$
B. $-\frac{1}{\sqrt{2}} \cot \left(\frac{x}{2}+\frac{\pi}{8}\right)+c$
C. $\frac{1}{\sqrt{2}} \tan \left(\frac{x}{2}+\frac{\pi}{8}\right)+c$
D. $\frac{1}{\sqrt{2}} \tan \left(\frac{x}{2}+\frac{\pi}{8}\right)+c$

Answer: B

- Watch Video Solution

65. The value of $\int_{0}^{\pi} e^{\sin ^{2} x} \cos ^{3} x d x$ is equal to -
A. 0
B. -1
C. 1
D. π

D Watch Video Solution

66. Let $I=\int_{-2}^{2}(x-[x]) d x$ where $[x]$ represents the greatest integer in x not greater than x. Then the value of I is -
A. 4
B. 3
C. 2
D. 1

Answer: C

D Watch Video Solution

67. The value of $\int_{0}^{\pi} \frac{d x}{5+3 \cos x}$ is -
A. $\frac{\pi}{4}$
B. $\frac{\pi}{8}$
C. $\frac{\pi}{2}$
D. 0

Answer: A

- Watch Video Solution

68. The value of $\int e^{x}\left[f(x)+f^{\prime}(x)\right] d x$ is equal to -
A. $e^{x}+f(x)+c$
B. $e^{x} f^{\prime}(x)+c$
C. $e^{x} f(x)+c$
D. $e^{x}-f(x)+c$

Answer: C

- Watch Video Solution

69. The value of $\int e^{\log (\tan x)} d x$ is equal to -
A. $\log (\tan x)+c$
B. $e^{\tan x}+c$
C. $\log (\cos x)+c$
D. $\log (\sec x)+c$

Answer: D

- Watch Video Solution

70. The integral $\int\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x$ is equal to
A. $(x+1) e^{x+x^{-1}}+c$
B. $x \cdot e^{x+x^{-1}}+c$
C. $(x-1) e^{x+x^{-1}}+c$
D. $-x e^{x+x^{-1}}+c$

Answer: B

- Watch Video Solution

71. The value of $\int_{0}^{\pi} \frac{x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x$ is equal to -
A. $\frac{\pi}{2 a b}$
B. $\frac{\pi}{a b}$
C. $\frac{\pi^{2}}{2 a b}$
D. $\frac{\pi^{2}}{a b}$

Answer: C

- Watch Video Solution

72. If m and n are the order and degree respectively of the
differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{5}+4 \cdot \frac{\left(\frac{d^{2} y}{d x^{2}}\right)^{3}}{\frac{d^{3} y}{d x^{3}}}+\frac{d^{3} y}{d x^{3}}=x^{2}-1$, then -
A. $m=3, n=2$
B. $m=3, n=3$
C. $m=3, n=5$
D. $m=3, n=1$

Answer: A

$$
2-\sqrt{x+4}
$$

73. If the function $f(x)=\frac{}{\sin 2 x}(x \neq 0)$ is continuous at $x=0$, then $f(0)$ is equal to -
A. $\frac{1}{8}$
B. $-\frac{1}{8}$
C. $\frac{1}{4}$
D. $-\frac{1}{4}$

Answer: B

D Watch Video Solution

74. The integrating factor of the differential equation
$(x+1) \frac{d y}{d x}-n y=e^{x}(x+1)^{n+1}$ is -
A. $e^{(x+1)^{n}}$
B. $(x+1)^{n}$
C. $\frac{1}{(x+1)^{n+1}}$
D. $\frac{1}{(x+1)^{n}}$

Answer: D

D Watch Video Solution

75. The solution of the differential equation $\frac{d y}{d x}-y \tan x=-2 \sin x$ is -
A. $y \sec x=\cos 2 x+c$
B. $y \sec x=\frac{1}{2} \cos 2 x+c$
C. $y \cos x=\frac{1}{2} \cos 2 x+c$
D. $y \cos x=\cos 2 x+c$

Answer: C

- Watch Video Solution

76. The differential equation of the family of lines passing through the origin is -
A. $x \frac{d y}{d x}=y$
B. $x+\frac{d y}{d x}=0$
C. $\frac{d y}{d x}=x$
D. $x \frac{d y}{d x}+y=0$

Answer: A

- Watch Video Solution

77. Which of the following statements is not true?
A. a polynomial function is always continuous
B. a differentiable function is always continuous
C. a continuous function is always differentiable
D. $\log _{e} x$ is continuous for all $x>0$

Answer: C

D Watch Video Solution

78. If $f(x)= \begin{cases}x \sin \frac{1}{x} & \text { when } x \neq 0 \\ 0 & \text { when } x=0\end{cases}$
then at $x=0$, the function $f(x)$ is -
A. differentiable but not continuous
B. continuous and differentiable
C. not continuous
D. continuous but not differentiable

Answer: D

- Watch Video Solution

79. The differentiable equation of the family of curves $y=A(x+B)^{2}$ after eliminating A and B is -
A. $y y^{\prime \prime}=\left(y^{\prime}\right)^{2}$
B. $2 y y^{\prime}{ }^{\prime}=y^{\prime}+y$
C. $2 y y^{\prime \prime}=\left(y^{\prime}\right)^{2}$
D. $2 y y^{\prime \prime}=y^{\prime}-y$

Answer: C

- Watch Video Solution

80. The solution of the differential equation $\log \left(\frac{d y}{d x}\right)=a x+b y$ is
A. $\frac{e^{b y}}{b}=\frac{e^{a x}}{a}+c$
B. $\frac{e^{a x}}{b}-\frac{e^{-b y}}{a}=c$
C. $\frac{e^{a x}}{a}+\frac{e^{-b y}}{b}=c$
D. none of these

Answer: C

81. If the curves $y=a^{x}$ and $y=b^{x}$ intersect at an angle α, then the value of $\tan \alpha$ is-
A. $\frac{a-b}{1+a b}$
B. $\frac{\log a-\log b}{1+\log a \log b}$
C. $\frac{a+b}{1-a b}$
D. $\frac{\log a+\log b}{1+\log a \log b}$

Answer: B

- Watch Video Solution

82. If the straight line $y=4 x-5$ touches the curve $y^{2}=p x^{3}+q$ at
$(2,3)$, then the values of p and q are-
A. $p=2, q=-7$
B. $p=2, q=7$
C. $p=-2, q=-7$
D. $p=-2, q=7$

Answer: A

- Watch Video Solution

83. The area (in square unit) of the figure bounded by $y^{2}=12 x, x=0$ and $y=6$ is-
A. 12
B. 16
C. 3
D. 6

Answer: D

84. The area (in square unit) of the region bounded by the curves
$4 x+3 y=12$ is -
A. 6
B. 8
C. 4
D. 3

Answer: C

- Watch Video Solution

85. The ratio of the areas bounded by the curves $y=\cos x$ and
$y=\cos 2 x$ between $x=0, x=\frac{\pi}{3}$ and x-axis is-
A. $\sqrt{2}: 1$
B. 1:1
C. 1:2
D. $2: 1$

Answer: D

- Watch Video Solution

86. The equation of the normal to the parabola $y^{2}=4 a x$ at the point $\left(a t^{2}, 2 a t\right)$ is-
A. $t x+y=2 a t+a t^{3}$
B. $x+t y=2 a t+a t^{3}$
C. $t x-y=a t+2 a t^{3}$
D. $x-t y=a t+2 a t^{3}$

Answer: A

- Watch Video Solution

87. If the slope of the normal to the parabola $3 y^{2}+4 y+2=x$ at a point on it is 8 , then the coordinates of the point are-
A. $(1,-1)$
B. $(6,-2)$
C. $(9,1)$
D. $(2,0)$

Answer: B

- Watch Video Solution

88. If the line $l x+m y+n=0$ is a tangent to the parabola $y^{2}=4 a x$, then-
A. $a n^{2}=m l$
B. $a l^{2}=m n$
C. $a m^{2}=n l$
D. $a^{2} m=n l$

Answer: C

D Watch Video Solution

89. The area (in square unit) in the first quadrant bounded by the parabolas $y^{2}=4 x, y^{2}=16 x$ and the straight line $x=9$ is-
B. 24
C. 18
D. 9

Answer: A

- Watch Video Solution

90. The equations of the tangents to the hyperbola $3 x^{2}-4 y^{2}=12$ which are inclined at an angle 60° to the x - axis are-
A. $y=\sqrt{3} x \pm 12$
B. $y=\sqrt{3} x \pm 10$
C. $y=\sqrt{3} x \pm 15$
D. $y=\sqrt{3} x \pm 3$

Answer: D

- Watch Video Solution

91. The equation of tangent to the curve $x y^{2}=4(4-x)$ where it meets the line $y=x$ is-
A. $x+y+4=0$
B. $x+y=4$
C. $x-y=2$
D. $x-y+2=0$

Answer: B

- Watch Video Solution

92. The normal to the curve $x=3 \cos \theta-\cos ^{3} \theta, y=3 \sin \theta-\sin ^{3} \theta$ at $\theta=\frac{\pi}{4}-$
A. is at a distance of 2 unit from the origin
B. is at a distance of 4 unit from the origin
C. passes through the origin
D. passes through the point $(2,3)$

Answer: C

- Watch Video Solution

93. The area bounded by the parabolas $y=4 x^{2}, y=\frac{x^{2}}{9}$ and the straight line $y=2$ is
A. $\frac{20}{3}$
B. $\frac{16}{3}$
C. 8
D. $\frac{32}{3}$

Answer: A

- Watch Video Solution

94. The point on the curve $x^{2}+2 y=10$ at which the tangent to the curve is perpendicular to the line $2 x-4 y=7$, is -
A. $(2,3)$
B. $(-2,3)$
C. $(4,-3)$
D. (-4, - 3)

- Watch Video Solution

95. Let x and y be two variables and $x>0, x y=1$, then the minimum value of $x+y$ is-
A. 1
B. $\frac{5}{2}$
C. $\frac{10}{3}$
D. 2

Answer: D

- Watch Video Solution

96. The function $f(x)=1-x^{3}-x^{5}$ is decreasing for -
A. $1 \leq x \leq 5$
B. all real values of x
C. $x \leq 3$
D. $x \geq 5$

Answer: B

- Watch Video Solution

97. The function $y=a(1-\cos x)$ is maximum when x is-
A. $\frac{\pi}{2}$
B. $-\frac{\pi}{2}$
C. π
D. $\frac{\pi}{3}$

Answer: C

- Watch Video Solution

98. Let $f(x)=x^{3}+6 x^{2}+p x+2$, if the largest possible interval in which $f(x)$ is a decreasing function is $(-3,-1)$, then the value of p is-
A. 3
B. 9
C. -2
D. none of these

Answer: B
99. In $-4<x<4$, the function $f(x)=\int_{-10}^{x}\left(t^{4}-4\right) e^{-4 t} d t$ has-
A. no extrema
B. one extremum
C. two extrema
D. four extrema

Answer: C

- Watch Video Solution

100. If $a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}$ are n positive real numbers whose product is a fixed number c, then the minimum value of $a_{1}+a_{2}+\ldots+a_{n-1}+2 a_{n}$ is -
A. $n(2 c)^{\frac{1}{n}}$
B. $(n+1) C^{\frac{1}{n}}$
C. $2 n c^{\frac{1}{n}}$
D. $(n+1)(2 c)^{\frac{1}{n}}$

Answer: A

- Watch Video Solution

101. The length of the longest interval in which the function $3 \sin x-4 \sin ^{3} x$ is increasing, is-
A. $\frac{\pi}{2}$
B. π
C. $\frac{3 \pi}{2}$
D. $\frac{\pi}{3}$

Answer: D

- Watch Video Solution

102. The real number x when added to its inverse gives the minimum value of the sum at x equal to-
A. -2
B. 2
C. 1
D. -1

Answer: C

- Watch Video Solution

103. If minimum value of $f(x)=x^{2}+2 b x+2 c^{2}$ is greater than maximum value of $g(x)=-x^{2}-2 c x+b^{2}$, then for real value of $x-$
A. $\sqrt{2}|c|>|b|$
B. $|c|>\sqrt{2}|b|$
C. $0<c<2 b$
D. none of these

Answer: B

D Watch Video Solution

104. Let $f(x)=x^{3}+b x^{2}+c x+d, 0<b^{2}<c$. Then $\mathrm{f}(\mathrm{x})-$
A. has a local maximum
B. has a local minimum
C. is strictly decreasing
D. is strictly increasing

Answer: D

- Watch Video Solution

105. If $v=\frac{4}{3} \pi r^{3}$, then the rate (in cubic unit) at which v is increasing when $r=10$ and $\frac{d r}{d t}=0.01$, is-
A. 4π
B. π
C. 40π
D. $\frac{4 \pi}{3}$
106. If the time rate of change of the radius of a sphere is $\frac{1}{2 \pi}$, then the rate of change of its surface area(in square cm), when the radius is 5 cm , is-
A. 20
B. 10
C. 4
D. 5

Answer: A

- Watch Video Solution

107. The length of a side of a cube is 10 cm , if an error of 0.05 cm is made in measuring the side, then the percentage error made in calculating its volume is-
A. 2.5
B. 1.6
C. 2.6
D. 1.5

Answer: D

- Watch Video Solution

108. Let $y=2 x^{2}-3 x+2$, if x changes to 3.02 from 3 , then the approximate change in y is-
A. 0.16
B. 0.18
C. 0.09
D. 0.12

Answer: B

- Watch Video Solution

109. Objective function of a linear programming problem is a-
A. function to be optimized
B. constraint
C. linear function of the variables to be optimized
D. relation among the variables

Answer: C

D View Text Solution

110. If the rate of change of y with respect to x is 4 and y is changing at the rate of 12 units/s, then the rate of change of x per second is-
A. 6
B. 4
C. 3
D. 2

Answer: C

- Watch Video Solution

1. Let $A=\{x, y, z\}$ be a given set and a relation R on A ios defined as follows :
$R=\{(x, x),(y, y),(z, z),(x, y),(y, z),(z, x)\}$
Then the relation R on A is -
A. symmetric only
B. transitive only
C. reflexive only
D. an equivalence relation

Answer: C

2. Let the function $f: R \rightarrow R$ be defined by $f(x)=x+\sin x$ for all x in R. Then f is -
A. one-one but not onto
B. one-one and onto
C. onto but not one-one
D. neither one-one nor onto

Answer: B

D Watch Video Solution

3. Let the mappings $f: R \rightarrow R$ and $g: R \rightarrow R$ be defined respectively by $f(x)=5|x|-x^{2}$ and $g(x)=2 x-3$. Then the value of $(\mathrm{gof})(-2)$ is -
A. 9
B. 8
C. 7
D. 10

Answer: A

- Watch Video Solution

4. Let $A=\{1,2,3\}$ and $R=\{(2,2),(3,3),(1,2)\}$ be a relation on A. Then the minimum number of ordered pairs to be added to R to make it an equivalence relation is -
A. 3
B. 1
C. 4
D. 2

Answer: D

- Watch Video Solution

5. State which one of the following is true -
A. $\sec \left(\tan ^{-1} x\right)=\tan \left(\sec ^{-1} x\right)$
B. $\cos \left(\tan ^{-1} x\right)=\tan \left(\cos ^{-1} x\right)$
C. $\sin \left(\cos ^{-1} x\right)=\cos \left(\sin ^{-1} x\right)$
D. none of these

Answer: C

6. If $\cos ^{-1} \sqrt{p}+\cos ^{-1} \sqrt{1-p}+\cos ^{-1} \sqrt{1-q}=\frac{3 \pi}{4}$, then the value of q is -
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{2}}$
C. 1
D. $\frac{1}{4}$

Answer: A

- Watch Video Solution

7. In the equation $p x^{2}+r x+r=0$ ratio of the roots are $a: b$ then prove that $p(a+b)^{2}=r a b$
8. If n and p are two parameters of binomial distribution then its standard deviation is -
A. $n p^{2}-n p$
B. $n p-n p^{2}$
C. $\sqrt{n p-n p^{2}}$
D. none of these

Answer: C

- Watch Video Solution

9. If the cartesian equation of a line $A B$ is $\frac{x-1}{2}=\frac{2 y-1}{12}=\frac{z+5}{3}$, then the direction cosines of a line parallel to $A B$ are -
A. $\frac{2}{\sqrt{157}}, \frac{2}{\sqrt{157}}, \frac{3}{\sqrt{157}}$
B. $\frac{1}{\sqrt{37}}, \frac{6}{\sqrt{37}}, \frac{3}{2 \sqrt{37}}$
C. $\frac{2}{7}, \frac{12}{7}, \frac{3}{7}$
D. $\frac{2}{7}, \frac{6}{7}, \frac{3}{7}$

Answer: D

- Watch Video Solution

10. The straight line $\frac{x-3}{2}=\frac{y+4}{0}=\frac{z-2}{5}$ is perpendicular to -
A. y-axis
B. x-axis
C. z-axis
D. both x-axis and z-axis

D Watch Video Solution

11. The angle between the lines $-6 x=y=4 z$ and $2 x=3 y=-z$ is -
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\cos ^{-1} \frac{5}{13}$
D. none of these

Answer: B

- Watch Video Solution

12. The shortest distance between the lines whose vector

$$
\begin{aligned}
& \text { equations are } \vec{r}=\hat{i}-2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-\hat{j}+\hat{k}) \\
& \vec{r}=\hat{i}-\hat{j}-\hat{k}+\mu(\hat{i}+2 \hat{j}-2 \hat{k}) \text { is - }
\end{aligned}
$$ and

A. $\frac{7}{3 \sqrt{2}}$
B. $\frac{5}{\sqrt{2}}$
C. $\frac{3}{\sqrt{2}}$
D. $\sqrt{2}$

Answer: C

D Watch Video Solution

13. Two events A and B are such that $P(A)=\frac{1}{4}, P(B / A)=\frac{1}{2}$ and $P(A / B)=\frac{1}{4}$, then the value of $P\left(A^{c} / B^{c}\right)$ is -
A. $\frac{1}{4}$
B. $\frac{3}{4}$
C. $\frac{1}{2}$
D. $\frac{2}{3}$

Answer: B

(Watch Video Solution

14. The probability that a regularly scheduled flight departs on time is 0.9 , the probability that it arrives on time is 0.8 and the probability that it departs and arrives on time is 0.7 . Then the probability that a plane arrives on time, given that it departs on time, is -
A. 0.72
B. $\frac{8}{9}$
C. $\frac{7}{9}$
D. 0.56

Answer: C

- Watch Video Solution

15. A sample of 4 items is drawn at random from a lot of 10 items, containing 3 defectives. If x denotes the number of defective items in the sample, then $P(0<x<3)$ is equal to -
A. $\frac{4}{5}$
B. $\frac{3}{10}$
C. $\frac{1}{2}$
D. $\frac{1}{6}$

Answer: A

- Watch Video Solution

16. A and B are two independent events such that $P(A)=\frac{1}{2}$ and $P(B)=\frac{1}{3}$. Then the value of $P\left(A^{c} \cap B^{c}\right)$ is -
A. $\frac{2}{3}$
B. $\frac{1}{6}$
C. $\frac{5}{6}$
D. $\frac{1}{3}$

Answer: D

- Watch Video Solution

17. If n things are arranged at random in a row then the probability that m particular things are never together is -
A. $\frac{m!(n-m)!}{n!}$
B. $1-\frac{m!(n-m)!}{n!}$
C. $1-\frac{m!}{n!}$
D. $1-\frac{m!(n-m+1)!}{n!}$

Answer: D

- Watch Video Solution

18. If $A=\left[\begin{array}{ll}3 & 5 \\ 2 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 17 \\ 0 & -10\end{array}\right]$ then $|A B|$ is equal to -
A. 80
B. 100
C. -110
D. 92

Watch Video Solution

19. The inverse of the matrix $\left[\begin{array}{cc}5 & -2 \\ 3 & 1\end{array}\right]$ is -
A. $\frac{1}{3}\left[\begin{array}{cc}-2 & 5 \\ 1 & 3\end{array}\right]$
B. $\left[\begin{array}{cc}1 & 2 \\ -3 & 5\end{array}\right]$
C. $\frac{1}{11}\left[\begin{array}{cc}1 & 2 \\ -3 & 5\end{array}\right]$
D. $\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right]$

Answer: C

- Watch Video Solution

20. If $A_{i}=\left[\begin{array}{ll}a^{i} & b^{i} \\ b^{i} & a^{i}\end{array}\right]$ and $|a|<1,|b|<1$ then the value of $\sum_{i=1}^{\infty} \operatorname{det}$ $\left(A_{i}\right)$ is -
$a^{2}-b^{2}$
A.

$$
\left(1-a^{2}\right)\left(1-b^{2}\right)
$$

B. $\frac{a^{2}}{(1-a)^{2}}-\frac{b^{2}}{(1-b)^{2}}$
C. $\frac{a^{2}}{(1-a)^{2}}+\frac{b^{2}}{(1-b)^{2}}$
D. $\frac{a^{2}}{(1+a)^{2}}-\frac{b^{2}}{(1+b)^{2}}$

Answer: A

- Watch Video Solution

21. If A is a singular matrix of order n then $A \cdot(\operatorname{adj} A)$ is equal to -
A. a null matrix
B. a row matrix
C. a column matrix
D. none of these

Answer: A

- Watch Video Solution

22. If the determinant of the matrix $\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right]$ is denoted by
D, then the determinant of the matrix $\left[\begin{array}{lll}a_{1}+3 b_{1}-4 c_{1} & b_{1} & 4 c_{1} \\ a_{2}+3 b_{2}-4 c_{2} & b_{2} & 4 c_{2} \\ a_{3}+3 b_{3}-4 c_{3} & b_{3} & 4 c_{3}\end{array}\right]$
will be -
A. D
B. 2D
C. 3D
D. 4D

Answer: D

- Watch Video Solution

23. If $\left|\begin{array}{ccc}x-2 & 2 x-3 & 3 x-4 \\ x-4 & 2 x-9 & 3 x-16 \\ x-8 & 2 x-27 & 3 x-64\end{array}\right|=0$, then the value of x is -
A. -2
B. 3
C. 4
D. 0

Answer: C

- Watch Video Solution

24. If a, b, c, d, e and f are in G.P. then the value of $\left|\begin{array}{lll}a^{2} & d^{2} & x \\ b^{2} & e^{2} & y \\ c^{2} & f^{2} & z\end{array}\right|$
depends on -
A. x and y
B. y and z
C. z and x
D. none of x, y and z

Answer: D

25. If a, b, c are respectively the p-th, q-th, r-th terms of an A.P.
then the value of $\left|\begin{array}{lll}a & p & 1 \\ b & q & 1 \\ c & r & 1\end{array}\right|$ is -
A. $p+q+r$
B. 0
C. 1
D. pqr

Answer: B

D Watch Video Solution
26. If for a triangle $A B C,\left|\begin{array}{lll}1 & a & b \\ 1 & c & a \\ 1 & b & c\end{array}\right|=0$ then the value of $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C$ is -
A. $\frac{4}{9}$
B. $\frac{9}{4}$
C. 1
D. $\frac{3 \sqrt{3}}{4}$

Answer: B

- Watch Video Solution

27. If the points with position vectors $10 \hat{i}+3 \hat{j}, 12 \hat{i}-5 \hat{j}$ and $p \hat{i}+11 \hat{j}$ be collinear, then the value of p is -
A. 4
B. 12
C. 8
D. -8

Answer: C

- Watch Video Solution

28. If $A B C D E F$ be a regular hexagon then $(\overrightarrow{A D}+\overrightarrow{E B}+\overrightarrow{F C})$ is equal to -

$$
\begin{array}{r}
\overrightarrow{~ A . ~} 4 A B \\
\overrightarrow{~ B . ~} 3 A B \\
\text { B. } \\
\text { C. } 2 A B
\end{array}
$$

D. $\overrightarrow{0}$

Answer: A

- Watch Video Solution

29. The value of $\cos \left[\cos ^{-1}\left(-\frac{1}{7}\right)+\sin ^{-1}\left(-\frac{1}{7}\right)\right]$ is -
A. $\frac{4}{9}$
B. $\frac{1}{3}$
C. $-\frac{1}{3}$
D. 0

Answer: D

30. The vector equation of yz-plane is -
A. $\vec{r} \cdot \hat{k}=0$
B. $\vec{r} \cdot \hat{j}=0$
C. $\vec{r} \cdot \hat{i}=0$
D. $\vec{r} \cdot(\hat{j}+\hat{k})=0$

Answer: C

- Watch Video Solution

31. The foot of the perpendicular drawn from the origin to a plane is $(2,-3,4)$, then the equation of the plane is -
A. $2 x-3 y+4 z=25$
B. $2 x-3 y+4 z=20$
C. $2 x-3 y+4 z=29$
D. none of these

Answer: C

- Watch Video Solution

32. The direction cosines of the line $\frac{x+3}{2}=\frac{2 y-3}{-3}=\frac{z-1}{0}$ are -
A. $2,-3,0$
B. $\frac{2}{\sqrt{13}},-\frac{2}{\sqrt{13}}, 0$
C. $\frac{2}{5}, \frac{3}{5}, 0$
D. $\frac{4}{5},-\frac{3}{5}, 0$

Answer: D

33. Let $f(x)=a^{x}(a>0)$ be written as $f(x)=g(x)+h(x)$ where $g(x)$ is an even function and $h(x)$ is an odd function. Then the value of $g(x+y)+g(x-y)$ is -
A. $g(x) h(x)$
B. $2 g(x)$
C. $2 g(x) g(y)$
D. $2 g(x+y) g(x-y)$

Answer: C

D Watch Video Solution

34. The area of the parallelogram formed by the vectors $3 \hat{i}-2 \hat{j}+\hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$ is -
A. $8 \sqrt{3}$ sq. unit
B. $4 \sqrt{3}$ sq. unit
C. $6 \sqrt{3}$ sq. unit
D. $16 \sqrt{3}$ sq. unit

Answer: A

- Watch Video Solution

35. If $\vec{a}=2 \hat{i}-5 \hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-4 \hat{j}+6 \hat{k}$, then a unit vector in the direction of the vector $2 \vec{a}-\vec{b}$ is -
A. $\frac{1}{7}(2 \hat{i}-3 \hat{j}+6 \hat{k})$
B. $\frac{1}{7}(6 \hat{i}-3 \hat{j}+2 \hat{k})$
C. $\frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k})$
D. none of these

Answer: C

- Watch Video Solution

36. If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=3,|\vec{b}|=5$ and $|\vec{c}|=7$, then the cosine of the angle between the vectors \vec{a} and \vec{b} is -
A. $\frac{3}{5}$
B. $\frac{1}{2}$
C. $-\frac{1}{2}$
D. $-\frac{3}{5}$

Answer: B

- Watch Video Solution

37. If $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ be three unit vectors such that $|\vec{\alpha}+\vec{\beta}+\vec{\gamma}|=1$ and $\vec{\alpha}$ is perpendicular to $\vec{\beta}$ while $\vec{\gamma}$ makes angles θ and ϕ with $\vec{\alpha}$ and $\vec{\beta}$ respectively, then the value of $\cos \theta+\cos \phi$ is -
A. $\frac{5}{4}$
B. $-\frac{5}{4}$
C. 1
D. -1

Answer: D

- Watch Video Solution

38. If $\vec{a}=2 \hat{i}+5 \hat{j}+7 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+5 \hat{k}$, then the vecor components of the vector $2 \vec{a}-3 \vec{b}$ along the coordinate axes are -
A. $13 \hat{i},-\hat{j},-\hat{k}$
B. $\hat{i}, 13 \hat{j},-\hat{k}$
C. $-\hat{i}, 6 \hat{j},-\hat{k}$
D. none of these

Answer: B

- Watch Video Solution

39. The image of the point $(-3,5,2)$ in the plane $2 x-y+z+3=0$ is -
A. $(1,3,4)$
B. $(3,1,4)$
C. $(-1,4,-3)$
D. $(-1,-3,4)$

- Watch Video Solution

40. The equation of the plane passing through the points $(1,-1,2)$
and $(2,-2,2)$ and perpendicular to the plane $6 x-2 y+2 z=10$ is -
A. $x+4 y+z+1=0$
B. $x+4 y+z+4=0$
C. $x+y-2 z+4=0$
D. none of these

Answer: C

- Watch Video Solution

41. The values of x, at which the first derivative of the function

$$
\left(x+\frac{1}{x}\right) \text { w.r.t. } \mathrm{x} \text { is } \frac{3}{4} \text {, are }-
$$

A. $\pm \frac{1}{2}$
B. $\pm \frac{2}{\sqrt{3}}$
C. $\pm \frac{\sqrt{3}}{2}$
D. ± 2

Answer: D

- Watch Video Solution

42. If $f(x)=\sin 3 x \cos 4 x$, then the value of $f^{\prime}\left(\frac{\pi}{2}\right)$ is -
B. 25
C. -25
D. -24

Answer: B

- Watch Video Solution

43. Let $f(x)$ be a differentiable even function, consider the following statements :
(i) $f^{\prime}(x)$ is an even function.
(ii) $f^{\prime}(x)$ is an odd function.
(iii) $f^{\prime}(x)$ may be even or odd.

Which of the above statements is/are correct ?
A. (i) only
B. (i) and (iii)
C. (ii) only
D. (ii) and (iii)

Answer: C

D Watch Video Solution

44. If $y=x+x^{2}+x^{3}+\ldots \infty$ where $|x|<1$, then for $|y|<1$ the value of $\frac{d x}{d y}$ is equal to -
A. $1-2 y+3 y^{2}-\ldots \infty$
B. $y+y^{2}+y^{3}+\ldots \infty$
C. $1-y+y^{2}-y^{3}+\ldots \infty$
D. $1+2 y+3 y^{2}+\ldots \infty$

Answer: A
45. Find which function does not obey mean value theorem in [0, 1] -
A. $f(x)= \begin{cases}\frac{1}{2}-x & \text { when } x<\frac{1}{2} \\ \left(\frac{1}{2}-x\right)^{2} & \text { when } x \geq \frac{1}{2}\end{cases}$
B. $f(x)=|x|$
C. $f(x)=x|x|$
D. $f(x)= \begin{cases}\frac{\sin x}{x} & \text { when } x \neq 0 \\ 1 & \text { when } x=0\end{cases}$

Answer: A

- Watch Video Solution

46. The derivative of $\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right)$ w.r.t. $\sqrt{1-x^{2}}$ at $x=\frac{1}{2}$ is -
A. 2
B. 4
C. 1
D. -2

Answer: B

- Watch Video Solution

47. The derivative of the function $f(x)=\log _{5}\left(\log _{7} x\right)[x>7]$ is -
A. $\frac{1}{x \log _{e} x}$
B. $\frac{1}{x \log _{e} 5 \log _{e} 7}$
C. $\frac{1}{x \log _{e} 5 \log _{e} 7 \log _{7} x}$
D. none of these

Answer: C

- Watch Video Solution

48. If $2 y=(x-a) \sqrt{2 a x-x^{2}}+a^{2} \sin ^{-1} \frac{x-a}{a}$, then the value of $\frac{d y}{d x}$ is equal to -
A. $\sqrt{a x-x^{2}}$
B. $\sqrt{x^{2}-a x}$
C. $\sqrt{x^{2}-2 a x}$
D. $\sqrt{2 a x-x^{2}}$

Answer: D

49. The value of $\lim x \rightarrow 0(1+3 x)^{\frac{x+2}{x}}$ is -
A. e^{3}
B. e^{6}
C. e^{5}
D. e

Answer: B

- Watch Video Solution

$$
\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}
$$

A. $\frac{3}{5 \sqrt{10}}$
B. $\frac{5}{3 \sqrt{10}}$
C. $\frac{4}{3 \sqrt{10}}$
D. $\frac{3}{4 \sqrt{10}}$

Answer: A

- Watch Video Solution

51. If $x=\frac{1}{z}, y=f(x)$ and $\frac{d^{2} y}{d x^{2}}=k z^{3} \frac{d y}{d z}+z^{4} \frac{d^{2} y}{d z^{2}}$, then the value of k is -
A. -1
B. 1
C. 2
D. -2

Answer: C

- Watch Video Solution

52. If $x y=a x^{2}+\frac{b}{x}$, then the value of $x^{2} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}$ is -
A. y
B. $-y$
C. $-2 y$
D. 2 y

Answer: D

- Watch Video Solution

53. The value of c in Rolle's theorem when

$$
f(x)=2 x^{3}-5 x^{2}-4 x+3, x \in\left[\frac{1}{2}, 3\right] \text { is - }
$$

A. $-\frac{1}{3}$
B. $\frac{2}{3}$
C. 2
D. -2

Answer: C

- Watch Video Solution

54. Let $f(x)= \begin{cases}\frac{\sin \pi x}{5 x} & \text { when } x \neq 0 \\ k & \text { when } x=0\end{cases}$

If $f(x)$ is continuous at $x=0$, then the value of k is -
A. 1
B. $\frac{\pi}{5}$
C. $\frac{5}{\pi}$
D. 0

Answer: B

- Watch Video Solution

55. If $\int f(x) d x=f(x)$, then $\int\{f(x)\}^{2} d x$ is equal to -
A. $\frac{1}{2}\{f(x)\}^{2}+c$
B. $\{f(x)\}^{3}+c$
C. $\frac{|f(x)|^{3}}{3}+c$
D. $\{f(x)\}^{2}+c$

Answer: A

- Watch Video Solution

56. The value of $\int \frac{\sqrt{\tan x}}{\sin x \cos x} d x$ is equal to -
A. $2 \sqrt{\sec x}+c$
B. $\frac{2}{\sqrt{\tan x}}+c$
C. $2 \sqrt{\cos x}+c$
D. $2 \sqrt{\tan x}+c$

Answer: D

57. The value of $\int_{0}^{\frac{\pi}{2}} x \sin x d x$ is equal to -
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. 1
D. π

Answer: C

- Watch Video Solution

58. $\int_{-2}^{2}(|x|+|x-1|) d x$ is equal to -
A. 10
B. 9
C. 8
D. 7

Answer: B

- Watch Video Solution

59. The value of $\int \overline{2} \log (\tan x) d x$ is equal to -
A. $\frac{\pi}{8} \log 2$
B. 1
C. $\frac{\pi}{4} \log 2$
D. 0

Answer: D

- Watch Video Solution

60. The value of $\int_{0}^{\pi} \log \sin ^{2} x d x$ is equal to -
A. $2 \pi \log \frac{1}{2}$
B. $\pi \log 2$
C. $\frac{\pi}{2} \log \frac{1}{2}$
D. $\pi \log \frac{1}{2}$

Answer: A

- Watch Video Solution

61. The value of the integral $\int_{1}^{e}(\log x)^{2} d x$ is -
A. e
B. 2 e
C. $e-2$
D. $e-1$

Answer: C

- Watch Video Solution

62. The value of $\int \frac{d x}{e^{x}+e^{-x}}$ is equal to -
A. $\log \left(e^{x}+e^{-x}\right)+c$
B. $\tan ^{-1}\left(e^{x}\right)+c$
C. $\tan ^{-1}\left(e^{2 x}\right)+c$
D. $e^{x}-e^{-x}+c$

Answer: B

- Watch Video Solution

63. For an integrable function $f(x)$ in $[-3,3], \int_{-3}^{3} f(x) d x=0$ when $f(x)$ is -
A. an even function
B. any function
C. only a trigonometric function
D. an odd function

Answer: D

- Watch Video Solution

64. If $I_{m}=\int_{1}^{e}\left(\log _{e^{x}}\right)^{m} d x$, then the value of $\left(I_{m}+m I_{m-1}\right)$ is -
A. <3
B. $=3$
C. >3
D. none of these

Answer: A

- Watch Video Solution

65. If $\frac{d}{d x} f(x)=g(x)$, then the value of $\int_{a}^{b} f(x) g(x) d x$ is -
A. $\frac{1}{2}[f(b)-f(a)]$
B. $\frac{1}{2}[g(b)-g(a)]$
C. $\frac{1}{2}\left[\{f(b)\}^{2}-\{f(a)\}^{2}\right]$
D. $\frac{1}{2}\left[\{g(b)\}^{2}-\{g(a)\}^{2}\right]$

Answer: C

66. The value of the integral $\int_{0}^{1} x(1-x)^{n} d x$ is -
A. $\frac{1}{n+1}+\frac{1}{n+2}$
B. $\frac{1}{n+1}$
C. $\frac{1}{n+2}$
D. $\frac{1}{n+1}-\frac{1}{n+2}$

Answer: D

- Watch Video Solution

67. The value of $\lim n \rightarrow \infty \sum_{r=1}^{n} \frac{r^{2}}{r^{3}+n^{3}}$ is -
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{1}{3} \log _{e} 2$
D. $\frac{1}{2} \log _{e} 2$

Answer: C

- Watch Video Solution

68. The value of $\int_{0}^{1} \frac{\log (1+x) d x}{1+x^{2}}$ is -
A. $\frac{\pi}{4}$
B. $\frac{\pi}{4} \log 2$
C. π
D. $\frac{\pi}{8} \log 2$

Answer: D

$$
\int_{0}^{x^{2}} \sec ^{2} t d t
$$

69. The value of $\lim x \rightarrow 0 \frac{x \sin x}{}$ is equal to -
A. 1
B. 2
C. 3
D. 0

Answer: A

- Watch Video Solution

70. If $\phi(x)=f(x)+x f^{\prime}(x)$, then the value of $\int \phi(x) d x$ is -
A. $\frac{1}{2} f(x)+c$
B. $x f(x)+c$
C. $\frac{1}{2} x f(x)+c$
D. $2 x f(x)+c$

Answer: B

- Watch Video Solution

71. The value of the integral $\int_{0}^{2 \pi}(\sin x+|\sin x|) d x$ is equal to -
A. 1
B. 2
C. 4
D. 0

Answer: C

72. The solution of the differential equation $\cos x \sin y d x+\sin x \cos y d y=0$ is -
A. $|\sin x \sin y|=c$
B. $\left|\frac{\sin x}{\sin y}\right|=c$
C. $|\cos x \cos y|=c$
D. $\left|\frac{\cos x}{\cos y}\right|=c$

Answer: A

- Watch Video Solution

73. If m and n denote respectively the order and degree of a differential equation, then for the equation

$$
\left[a+\left(\frac{d y}{d x}\right)^{6}\right]^{\frac{7}{5}}=b \frac{d^{2} y}{d x^{2}}, \text { the value of }(\mathrm{m}, \mathrm{n}) \text { will be - }
$$

A. $(1,6)$
B. $(1,7)$
C. $(2,6)$
D. $(2,5)$

Answer: D

- Watch Video Solution

74. The solution of the differential equation $\frac{d y}{d x}=\frac{x-y}{x+y}$ is -
A. $x^{2}-y^{2}+2 x y=c$
B. $x^{2}-y^{2}+x y=c$
C. $x^{2}-y^{2}-2 x y=c$
D. $x^{2}-y^{2}-x y=c$

Answer: C

- Watch Video Solution

75. The solution of the differential equation $y-x \frac{d y}{d x}=a\left(y^{2}+\frac{d y}{d x}\right)$ is -
A. $|(x+a)(x+a y)|=c|y|$
B. $|(x+a)(1-a y)=c| y \mid$
C. $|(x+a)(1-a y)|=c$
D. none of these

Answer: B
76. The integrating factor of the differential equation $x \frac{d y}{d x}+(x-1) y=x^{2}$ is -
A. $\frac{e^{x}}{x}$
B. $\frac{x}{e^{x}}$
C. $x e^{X}$
D. $(x+1) e^{x}$

Answer: A

- Watch Video Solution

77. The solution of differential $\frac{d y}{d x}=\frac{y}{x}+\frac{\phi\left(\frac{y}{x}\right)}{\left(\frac{y}{x}\right)}$ is -
$\phi^{\prime}\left(\frac{y}{x}\right)$
A. $\left|y \phi\left(\frac{y}{x}\right)\right|=k$
B. $\left|\phi\left(\frac{y}{x}\right)\right|=k|y|$
C. $\left|x \phi\left(\frac{y}{x}\right)\right|=k$
D. $\left|\phi\left(\frac{y}{x}\right)\right|=k|x|$

Answer: D

- Watch Video Solution

78. The order and degree of the differential equation of the family of all parabolas whose axis is x-axis are -
A. 3, 2
B. 1, 2
C. 2, 1
D. 2,3

Answer: C

- Watch Video Solution

79. If $y(t)$ is the solution of the differential equation
$(t+1) \frac{d y}{d t}-t y=1$ and $y(0)=-1$, then the value of y at $t=1$ is -
A. $e+\frac{1}{2}$
B. $-\frac{1}{2}$
C. $e-\frac{1}{2}$
D. $\frac{1}{2}$

Answer: B
80. If $f(x)=|x-3|+|x-4|$, then in the interval $0 \leq x \leq 5$, the function $f(x)$ is -
A. not differentiable at $x=3$ and $x=4$
B. not continuous in $0 \leq x \leq 5$
C. differentiable at $x=3$
D. differentiable at $x=4$

Answer: A

D Watch Video Solution

81. Two perpendicular tangents to $y^{2}=4 a x$ always intersect on the line-
A. $x=a$
B. $x+a=0$
C. $x+2 a=0$
D. $x=2 a$

Answer: B

- Watch Video Solution

82. If the gradient of the tangent at any point (x, y) of a curve which passes through the point $\left(1, \frac{\pi}{4}\right)$ is $\left\{\frac{y}{x}-\sin ^{2}\left(\frac{y}{x}\right)\right\}$, then the equation of the curve is-
A. $y=\cot ^{-1}(\log x)$
B. $y=\cot ^{-1}\left\{\log \left(\frac{x}{e}\right)\right\}$
C. $y=x \cot ^{-1}\{\log (x e)\}$
D. $y=\cot ^{-1}\left\{\log \left(\frac{e}{x}\right)\right\}$

Answer: C

- Watch Video Solution

83. The number of tangents that can be drawn from the point
$(6,2)$ on the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ is-
A. 0
B. 1
C. 2
D. 4

Answer: A
84. The equation of the tangent to the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ at the point $\left(a \cos ^{3} \alpha, a \sin ^{3} \alpha\right)$ is-
A. $x \cos \alpha+y \sin \alpha=a \sin \alpha \cos \alpha$
B. $x \cos \alpha-y \sin \alpha=a \sin 2 \alpha$
C. $x \sin \alpha-y \cos \alpha=a \sin 2 \alpha$
D. $x \sin \alpha+y \cos \alpha=a \sin \alpha \cos \alpha$

Answer: D

- Watch Video Solution

85. If the area enclosed by the parabola $x^{2}=72 y$ and the line $y=k$ be $64 \sqrt{2}$ square unit, then the value of k is-
A. 2
B. 3
C. 4
D. 6

Answer: C

- Watch Video Solution

86. Two intersecting circles have their radii 1 metre and $\sqrt{3}$ metre. The distance between their centres is 2 metre Then the overlapping area (in square metre) is-
$19 \pi+6 \sqrt{3}$
A. 6
$5 \pi+6 \sqrt{3}$
B. 6
C. $\frac{\pi}{6}$
D. $\frac{5 \pi-6 \sqrt{3}}{6}$

Answer: D

- View Text Solution

87. The equation of the tangent to the curve $y=b e^{-\frac{x}{a}}$ at the point where it crosses the y-axis is-
A. $b x+a y=a b$
B. $a x+b y=1$
C. $b x-a y=a b$
D. $a x-b y=1$

Answer: A

88. The equations of the two common tangents to the circle $x^{2}+y^{2}=2 a^{2}$ and the parabola $y^{2}=8 a x$ are-
A. $x= \pm(y+2 a)$
B. $y= \pm(x+2 a)$
C. $x= \pm(y+a)$
D. $y= \pm(x+a)$

Answer: B

- Watch Video Solution

89. If the curve $y=a \sqrt{x}+b x$ passes through the point $(1,2)$ and the area bounded by the curve, the line $x=4$ and x-axis is 8 square unit, then the values of a and b are-
A. $a=3, b=1$
B. $a=-3, b=1$
C. $a=3, b=-1$
D. $a=-3, b=-1$

Answer: C

- Watch Video Solution

90. The area (in square unit) bounded by the curve $y=\sin x$ between the ordinates $x=0, x=\pi$ and the x -axis is-
A. 2
B. 4
C. 3
D. 6

- Watch Video Solution

91. The equation of the normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point $(a \cos \theta, b \sin \theta)$ on it is-
A. $a x \sin \theta-b y \cos \theta=a^{2}-b^{2}$
B. $a x \sin \theta+b y \cos \theta=a^{2}-b^{2}$
C. $a x \cos \theta-b y \sin \theta=\left(a^{2}-b^{2}\right) \sin \theta \cos \theta$
D. $a x \sin \theta-b y \cos \theta=\left(a^{2}-b^{2}\right) \sin \theta \cos \theta$

Answer: D

92. The point on the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$, the normal at which is parallel to the x-axis is-
A. $(0,0)$
B. $(a, 0)$
C. $(0, a)$
D. $\left(\frac{a}{4}, \frac{a}{4}\right)$

Answer: C

D Watch Video Solution

93. The slope of the tangent to the curve $x=3 t^{2}+1, y=t^{3}-1$ at $x=1$ is-
A. $\frac{1}{2}$
B. 0
C. -2
D. undefined

Answer: B

- Watch Video Solution

94. If the area above the x-axis bounded by the curve $y=2^{k x}$ and the lines $x=0, x=2$ is $\frac{3}{\log 2}$ square unit, then the value of k is-
A. 1
B. $\frac{1}{2}$
C. -1
D. 2

Answer: A

- Watch Video Solution

95. If the line $x+y=1$ is a tangent to the parabola $y^{2}-y+x=0$, then the point of contact is-
A. $(0,1)$
B. $(a, 0)$
C. $(1,1)$
D. $(-1,0)$

Answer: A

- Watch Video Solution

96. The angle between the curves $y=\sin x$ and $y=\cos x$ is-
A. $\tan ^{-1}(5 \sqrt{2})$
B. $\tan ^{-1}(3 \sqrt{3})$
C. $\tan ^{-1}(3 \sqrt{2})$
D. $\tan ^{-1}(2 \sqrt{2})$

Answer: D

D Watch Video Solution

97. The function $f(x)=\cos x-2 a x$ is monotonically decreasing when-
A. $a<\frac{1}{2}$
B. $a>\frac{1}{2}$
C. $a<0$
D. $a>0$

Answer: B

- Watch Video Solution

98. If $P Q$ and $P R$ are the two sides of a triangle, then the angle between them which gives maximum area of the triangle is-
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{2 \pi}{3}$

Answer: C

99. The function $f(x)=x^{3}+3 x^{2}+4 x+7$ is increasing for-
A. all real values of x
B. $x<0$
C. $x>0$
D. $x=0$

Answer: A

(Watch Video Solution

100. If $x+y=60, x, y>0$, then the maximum value of $x y^{3}$ is-
A. 30
B. 60
C. $45 \times(15)^{3}$
D. $15 \times(45)^{3}$

Answer: D

- Watch Video Solution

101. The points of extrema of $f(x)=\int_{0}^{x} \frac{\sin t}{t} d t$ in the domain $x>0$, are-
A. $(2 n+1) \frac{\pi}{2}$
B. $n \pi$
C. $(4 n+1) \frac{\pi}{2}$
D. $(2 n+1) \frac{\pi}{4}$

Answer: B

- Watch Video Solution

102. If the function $f(x)=2 x^{3}-9 a x^{2}+12 a^{2} x+1$, where $a>0$ attains its maximum and minimum at $x=p$ and $x=q$ respectively, such that $p^{2}=q$, then the value of a is-
A. $\frac{1}{2}$
B. 3
C. 1
D. 2

Answer: D

103. A land in the form of a circular sector has been fenced by wire of 40 metre length. The area of the land will be maximum when the radius of the circular sector (in metre) is-
A. 25
B. 20
C. 10
D. 15

Answer: C

D View Text Solution

104. The maximum value of the function $f(x)=3 \cos x-4 \sin x$ is-
A. 5
B. 4
C. 3
D. 2

Answer: A

D Watch Video Solution

105. The function $f(x)=\frac{\lambda \sin x+6 \cos x}{2 \sin x+3 \cos x}$ is monotonic increasing when-
A. $\lambda>1$
B. $\lambda>4$
C. $\lambda<1$
D. $\lambda<4$

Answer: B

- Watch Video Solution

106. The surface area of a spherical bubble is increasing at the rate of $2 \mathrm{~cm}^{2} / \mathrm{s}$. Then the rate at which the volume of the bubble is increasing at the instant when its radius is 6 cm , is-
A. $3 \mathrm{~cm}^{3} / \mathrm{s}$
B. $2 \mathrm{~cm}^{3} / \mathrm{s}$
C. $4 \mathrm{~cm}^{3} / \mathrm{s}$
D. $6 \mathrm{~cm}^{3} / \mathrm{s}$

Answer: D

107. A point on the parabola $y^{2}=18 x$ at which the ordinate increases at twice the rate of the abscissa is-
A. $\left(-\frac{9}{8}, \frac{9}{2}\right)$
B. $(2,-6)$
C. $(2,6)$
D. $\left(\frac{9}{8}, \frac{9}{2}\right)$

Answer: D

- Watch Video Solution

108. A function $y=f(x)$ has a second order derivative $f^{\prime}(x)=6(x-1)$. If its graph passes through the point $(2,1)$ and at that point the tangent to the graph is $y=3 x-5$, then the function is-
A. $(x+1)^{3}$
B. $(x-1)^{3}$
C. $(x-1)^{2}$
D. $(x-1)^{3}+2$

Answer: B

- Watch Video Solution

109. Maximize : $Z=5 y+2 x$ subject to constraints-
$x+2 y \leq 4,7 x+8 y \geq 56, x \geq 0, y \geq 0$. The solution of the above LPP is-
A. 30
B. 48
C. 36
D. none of these

Answer: D

- View Text Solution

110. An open box with a square base is made out of a given iron sheet of area 27 sq.m. Then, the maximum volume of the box is-
A. $9 m^{3}$
B. $27 m^{3}$
C. $13.5 m^{3}$
D. $18 m^{3}$

Answer: C

1. A function f from the set of natural numbers N to the set of integers Z is defined by
$f(n)= \begin{cases}\frac{n-1}{2} & \text { when } \mathrm{n} \text { is odd } \\ -\frac{n}{2} & \text { when } \mathrm{n} \text { is even }\end{cases}$
Then $f(n)$ is -
A. neither one-one nor onto
B. one-one but not onto
C. onto but not one-one
D. one-one and onto both

Answer: D

2. If \vec{a} is unit vector in xy-plane making an angle $\frac{\pi}{4}$ with the x-axis, then \vec{a} is equal to -
A. $\hat{i}+\hat{j}$
B. $\hat{i}-\hat{j}$
C. $\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$
D. $\frac{1}{\sqrt{2}}(\hat{i}-\hat{j})$

Answer: C::D

D Watch Video Solution

3. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined by $f(x)=2 x+3$ and $g(x)=x^{2}+7$, then the values of x such that $(\mathrm{gof})(\mathrm{x})=8$ are -
A. $1,-2$
B. $-1,2$
C. $-1,-2$
D. 1, 2

Answer: C

- Watch Video Solution

4. The relation $R=\{(1,1),(2,2),(3,3)\}$ on the set $A=\{1,2,3\}$ is -
A. symmetric
B. reflexive
C. transitive
D. an equivalence relation

Answer: D

- Watch Video Solution

5. If $e^{f(x)}=\frac{10+x}{10-x}, x \in(-10,10)$ and $f(x)=k f\left(\frac{200 x}{100+x^{2}}\right)$, then the value the value of k is -
A. $\frac{1}{2}$
B. $\frac{4}{5}$
C. $\frac{7}{10}$
D. $\frac{2}{3}$

Answer: A
6. The position vectors of the three vertices of a triangle are $(-\hat{i}-3 \hat{j}+2 \hat{k}),(5 \hat{i}+7 \hat{j}-5 \hat{k})$ and $(2 \hat{i}+5 \hat{j}+6 \hat{k})$, then the position vector of the point of intersection of the medians of the triangle is -
A. $\hat{i}+3 \hat{j}-\hat{k}$
B. $2 \hat{i}+3 \hat{j}+\hat{k}$
C. $2 \hat{i}+2 \hat{j}+\hat{k}$
D. $3 \hat{i}+2 \hat{j}-\hat{k}$

Answer: B

- Watch Video Solution

7. The inverse of the function $f(x)=\frac{10^{x}-10^{-x}}{10^{x}+10^{-x}}$ is -
A. $f^{-1}(x)=\frac{1}{2} \log _{10} \frac{1+x}{1-x}$
B. $f^{-1}(x)=\log _{10}(2-x)$
C. $f^{-1}(x)=\frac{1}{2} \log _{10}(2 x-1)$
D. $f^{\prime}(x)=\frac{1}{4} \log _{10} \frac{2 x}{2-x}$

Answer: A

D Watch Video Solution

8. Let R be the set of real numbers and $f: R \rightarrow R$ be defined by $f(x)=x^{2}+2$, then the set $f^{-1}(11 \leq x \leq 27)$ is -
A. $\{x:-3 \leq x \leq 3\}$
B. $\{x:-5 \leq x \leq-3$ or , $3 \leq x \leq 5\}$
C. $\{x: 0 \leq x \leq 6\}$
D. $\{x:-5 \leq x \leq 5\}$

Answer: D

- Watch Video Solution

> 9. Domain of definition of the function $f(x)=\frac{3}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$ is -
A. $(1,2) \cup(2, \infty)$
B. $(-1,0) \cup(1,2) \cup(2, \infty)$
C. $(1,2)$
D. $(-1,0) \cup(1,2)$

Answer: B

- Watch Video Solution

10. If $f(x)=\left|\begin{array}{ccc}1 & x & x+1 \\ 2 x & x(x-1) & x(x+1) \\ 3 x(x-1) & x(x-1)(x-2) & x(x-1)(x+1)\end{array}\right|$ then the value of $f(11)$ is -
A. 0
B. 1
C. 11
D. -11

Answer: A

- Watch Video Solution

11. the value of the determinant

$$
\left|\begin{array}{ccc}
0 & b^{3}-a^{3} & c^{3}-a^{3} \\
a^{3}-b^{3} & 0 & c^{3}-b^{3} \\
a^{3}-c^{3} & b^{3}-c^{3} & 0
\end{array}\right| \text { is equal to - }
$$

A. $a^{3}+b^{3}+c^{3}$
B. $a^{3}-b^{3}-c^{3}$
C. 0
D. $2\left(a^{3}+b^{3}+c^{3}\right)$

Answer: C

12. If $a^{2}+b^{2}+c^{2}=-2$ and

$$
f(x)=\left|\begin{array}{ccc}
1+a^{2} x & \left(1+b^{2}\right) x & \left(1+c^{2}\right) x \\
\left(1+a^{2}\right) x & 1+b^{2} x & \left(1+c^{2}\right) x \\
\left(1+a^{2}\right) x & \left(1+b^{2}\right) x & 1+c^{2} x
\end{array}\right| \text { then } \mathrm{f}(\mathrm{x}) \text { is a polynomial }
$$

of degree-
A. 3
B. 2
C. 1
D. 0

Answer: B

- Watch Video Solution

13. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are all different and $\left|\begin{array}{lll}a & a^{3} & a^{4}-1 \\ b & b^{3} & b^{4}-1 \\ c & c^{3} & c^{4}-1\end{array}\right|=0$ then the value of $a b c(a b+b c+c a)$ is -
A. $a+b+c$
B. 0
C. $a^{2}+b^{2}+c^{2}$
D. $a^{3}+b^{3}+c^{3}$

Answer: A

14. If $p \neq 0$, then the solutions of the equation

$$
\left|\begin{array}{ccc}
1 & 1 & x \\
p+1 & p+1 & p+x \\
3 & x+1 & x+2
\end{array}\right|=0 \text { are }-
$$

A. 2,3
B. 1, p, 2
C. 1, 2, -p
D. 1, 2

Answer: D

- Watch Video Solution

15. If A and B are two square matrices and if A^{-1} and B^{-1} exist, then $(A B)^{-1}$ is equal to -
A. $A^{-1} B^{-1}$
B. $A B^{-1}$
C. $A^{-1} B$
D. $B^{-1} A^{-1}$

Answer: D

- Watch Video Solution

16. If $A=\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]$, then the value of $A^{2}-5 A$ is equal to -
A. I
B. 141
C. 0
D. none of these

Answer: B

- Watch Video Solution

17. If $A=\left|\begin{array}{ccc}5 & 6 & -3 \\ -4 & 3 & 2 \\ -4 & -7 & 3\end{array}\right|$ then the cofactors of the elements of second row are -
A. $-3,3,11$
B. $3,-3,11$
C. $-39,3,-11$
D. $39,-3,-11$

Answer: A

18. If $A=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$ and $A^{2}=\left[\begin{array}{ll}\alpha & \beta \\ \beta & \alpha\end{array}\right]$, then -
A. $\alpha=2 a b, \beta=a^{2}+b^{2}$
B. $\alpha=a^{2}+b^{2}, \beta=a b$
C. $\alpha=a^{2}+b^{2}, \beta=2 a b$
D. $\alpha=a^{2}+b^{2}, \beta=a^{2}-b^{2}$

Answer: C

- Watch Video Solution

19. If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$, then -
A. both $A B$ and $B A$ exist
B. neither $A B$ nor $B A$ exist
C. AB exists but BA does not exist
D. $A B$ does not exist but BA exists

Answer: C

- Watch Video Solution

20. If $A=\left[\begin{array}{cc}2 & -1 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 0 \\ -1 & -1\end{array}\right]$ then $(A+B)^{2}$ is not equal to -
A. $A^{2}+A B+B A+B^{2}$
B. $A^{2}+A B+B A+B^{2} I$
C. $A^{2} I+A B+B A+B^{2}$
D. $A^{2}+2 A B+B^{2}$

Answer: D

- Watch Video Solution

21. If A be any $n \times n$ matrix and k any scalar, then detkA is equal to
A. $k \operatorname{det} A$
B. $n^{k} \operatorname{det} \mathrm{~A}$
C. $k^{n} \operatorname{det} \mathrm{~A}$
D. $\mathrm{kn} \operatorname{det} \mathrm{A}$

Answer: C

- Watch Video Solution

22. The probability that in a year of 22 nd century chosen at rendom, there will be 53 Sundays S is -
A. $\frac{3}{28}$
B. $\frac{9}{28}$
C. $\frac{7}{28}$
D. $\frac{5}{28}$

Answer: D

D Watch Video Solution

23. The probability that in a family of 5 members, exactly 2 members have birthday on Sunday is -

$$
\text { A. } \frac{12 \times 5^{3}}{7^{5}}
$$

B. $\frac{10 \times 6^{2}}{7^{5}}$
C. $\frac{2}{3}$
D. $\frac{10 \times 6^{3}}{7^{5}}$

Answer: D

- Watch Video Solution

24. A bag contains 5 white and 3 black balls and 4 balls are successively drawn out and not replaced. The probability that they are alternately of different colours is -
A. $\frac{1}{7}$
B. $\frac{3}{7}$
C. $\frac{13}{56}$
D. $\frac{1}{196}$

- Watch Video Solution

25. The probability that A speaks truth is $\frac{4}{5}$, while this probability for B is $\frac{3}{4}$, then the probability that they will contradict each when asked to speak on a fact, is -
A. $\frac{1}{5}$
B. $\frac{7}{20}$
C. $\frac{3}{20}$
D. $\frac{2}{5}$

Answer: B

26. Three distinct numbers are selected from first 100 natural numbers. The probability that all the three numbers are divisible by 2 and 3 is -
A. $\frac{4}{25}$
B. $\frac{4}{35}$
C. $\frac{4}{55}$
D. $\frac{4}{1155}$

Answer: D

D Watch Video Solution

27. In a bolt factory three machines A, B and C manufacture respectively 2000, 2500 and 4000 bolts everyday. Of their outputs $3 \%, 4 \%$ and 2.5% are defective bolts. One bolts. One bolt is
drawn at random from a day's production and is found to be defective. Then the probability that it was produced by machine C is -
A. $\frac{3}{13}$
B. $\frac{4}{13}$
C. $\frac{5}{13}$
D. $\frac{7}{13}$

Answer: C

- Watch Video Solution

28. If $x>0$, then the value of $\sin \left[\cot ^{-1} \cos \left(\tan ^{-1} x\right)\right]$ is equal to -
A. $\sqrt{\frac{x^{2}-1}{x^{2}+2}}$
B. $\sqrt{\frac{x^{2}+1}{x^{2}+2}}$
C. $\sqrt{\frac{x-2}{x^{2}+2}}$
D. $\sqrt{\frac{x^{2}-1}{x^{2}-2}}$

Answer: B

D Watch Video Solution

29. If $\theta=\sin ^{-1}\left[\sin \left(-600^{\circ}\right)\right]$, then one of the possible values of θ is -
A. $-\frac{\pi}{3}$
B. $\frac{\pi}{3}$
C. $\frac{2 \pi}{3}$
D. $\frac{\pi}{2}$

Answer: B

- Watch Video Solution

30. If vectors $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are such that $\vec{\alpha}+\vec{\beta}+\vec{\gamma}=\overrightarrow{0}$ and $|\vec{a}|=2,|\vec{\beta}|=3$ and $|\vec{\gamma}|=4$, then the value of $2(\vec{\alpha} \cdot \vec{\beta}+\vec{\beta} \cdot \vec{\gamma}+\vec{\gamma} \cdot \vec{\alpha})$ is -
A. -29
B. $\frac{29}{2}$
C. 25
D. $-\frac{29}{2}$

Answer: A
31. If $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\hat{i}-6 \hat{j}-\hat{k}$ are the position vectors of the points A, B, C, D respectively, then the angle between $A B$ and $C D$ is -
A. $\frac{\pi}{6}$
B. $\frac{2 \pi}{3}$
C. $\frac{\pi}{3}$
D. π

Answer: D

- Watch Video Solution

32. In the equation $x^{2}-p x+q=0$ ratio of the roots are $2: 3$, then prove that $6 p^{2}=25 q$
33. If the probability that a randomly selected bulb produced by a factory will fuse after 200 days of use is 0.15 , then in a random selection of 8 bulbs, the probability of getting not more than one bulb that will fuse after 200 days of use is -
A. $2.05 \times(0.85)^{7}$
B. $1-2.05 \times(0.85)^{7}$
C. $(0.85)^{8}$
D. none of these

Answer: A

D Watch Video Solution

34. If $\vec{a}=\hat{i}+3 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}-\hat{k} \quad$ and $\quad \vec{c}=m \hat{i}+7 \hat{j}+3 \hat{k}$ are coplanar, then the value of m is -
A. $m=-2$
B. $\mathrm{m}=0$
C. $m=1$
D. $m=3$

Answer: B

- Watch Video Solution

35. The direction cosines of the line which is perpendicular to the lines with direction ratios $1,-2,-2$ and $0,2,1$ are -
A. $2,-1,2$
B. $\frac{2}{3}, \frac{1}{3}, \frac{2}{3}$
C. $\frac{2}{3},-\frac{1}{3}, \frac{2}{3}$
D. $-2,1,-2$

Answer: C

- Watch Video Solution

36. The cosine of the angle between the lines
$\vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k})$ and $\vec{r}=5 \hat{i}-2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k})$
is -
A. $\frac{17}{21}$
B. $-\frac{17}{21}$
C. $-\frac{19}{21}$
D. $\frac{19}{21}$

Answer: D

- Watch Video Solution

37. The coordinates of the point of intersection of the lines
$\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(3 \hat{i}-\hat{j})$ and $\vec{r}=(4 \hat{i}-\hat{k})+\mu(2 \hat{i}+3 \hat{k})$
A. $(4,0,-1)$
B. $(-4,0,1)$
C. $(0,4,-1)$
D. $(4,0,1)$

Answer: A

38. The value of a for which the lines $\frac{x-5}{5 a+2}=\frac{2-y}{5}=\frac{1-z}{-1}$ and $\frac{x}{1}=\frac{2 y+1}{4 a}=\frac{1-z}{-3}$ are perpendicular to each other is -
A. $a=-\frac{1}{2}$
B. $a=1$
C. $a=-1$
D. $a=2$

Answer: B

D Watch Video Solution

39. The equation of the plane passing through the point ($1,-3,-2$) and perpendicular to the planes $x+2 y+2 z=5$ and $3 x+3 y+2 z=8$ is -
A. $2 x-4 y+3 z+8=0$
B. $3 x+4 y-3 z=12$
C. $4 x-3 y+2 z+12=0$
D. $2 x-4 y+3 z=8$

Answer: D

- Watch Video Solution

40. If a, b be two fixed positive integers such that $f(a+x)=b+\left[b^{3}+1-3 b^{2} f(x)+3 b\{f(x)\}^{3}-\{f(x)\}^{3}\right]^{\frac{1}{3}}$ for all real x, then $f(x)$ is a periodic function with period -
A. b
B. $2 b$
C. 2a
D. a

Answer: C

- Watch Video Solution

41. The derivative of the function $\frac{\sec x+\tan x}{\sec x-\tan x}$ is -
A. $2 \sec x(\sec x+\tan x)$
B. $2 \sec ^{2} x(\sec x+\tan x)^{2}$
C. $2 \sec x(\sec x+\tan x)^{2}$
D. $\sec x(\sec x+\tan x)$

Answer: C

42. If $y=\sin x^{\circ}$ and $z=\log _{10^{x}}$, then the value of $\frac{d y}{d z}$ is -
A. $\frac{x^{\circ} \cos x^{\circ}}{\log _{10} e}$
$x \cos x^{\circ}$
B. $\frac{\log _{e} 10}{}$
$x \cos x^{\circ}$
C. $\overline{\log _{10} e}$
D. $\frac{x^{\circ} \cos x^{\circ}}{\log _{e} 10}$

Answer: A

- Watch Video Solution

43. The value of $\frac{d}{d x}\left[\tan ^{-1}\left\{\frac{\sqrt{x}(3-x)}{1-3 x}\right\}\right]$ is -
A. $\frac{3}{2(1-x) \sqrt{x}}$
B. $\frac{3}{2(1+x) \sqrt{x}}$
C. $\frac{2}{(1+x) \sqrt{x}}$
D. $\frac{3}{(1+x) \sqrt{x}}$

Answer: B

- Watch Video Solution

44. If $x=\sin t$ and $y=\operatorname{cospt}$, then which of the following is true?
A. $\left(1-x^{2}\right) y_{2}+x y_{1}+p^{2} y=0$
B. $\left(1-x^{2}\right) y_{2}+x y_{1}-p^{2} y=0$
C. $\left(1+x^{2}\right) y_{2}-x y_{1}+p^{2} y=0$
D. $\left(1-x^{2}\right) y_{2}-x y_{1}+p^{2} y=0$

Answer: D

45. In the mean value theorem $f(b)-f(a)=(b-a) f^{\prime}(c)(a<c<b)$, if $a=4, b=9$ and $f(x)=\sqrt{x}$, then the value of c is -
A. 8
B. 5.25
C. 4
D. 6.25

Answer: D

- Watch Video Solution

46. If the function $f(x)=4 x^{3}+a x^{2}+b x-1$ satisfies all the
conditions of Rolle's theorem in $-\frac{1}{4} \leq x \leq 1$ and if $f^{\prime}\left(\frac{1}{2}\right)=0$, then the values of a and b are -
A. $a=2, b=3$
B. $a=1, b=-4$
C. $a=-1, b=4$
D. $a=-4, b=-1$

Answer: B

- Watch Video Solution

47. The value of $\lim x \rightarrow 0 \frac{e^{x}-\log (e+e x)}{x}$ is -
A. 0
B. 1
C. 2
D. -2

Answer: A

- Watch Video Solution

48. Let $f(x)=\left\{\begin{array}{ll}\frac{1-\sin x}{\pi-2 x}, & \text { when } x \neq \frac{\pi}{2} \\ \lambda, & \text { when } x-\frac{\pi}{2}\end{array}\right.$ If $\lim x \rightarrow \frac{\pi}{2} f(x)=f\left(\frac{\pi}{2}\right)$, then the value of λ is-
A. -2
B. 2
C. 0
D. 1

Answer: C

49. If $(\sqrt{x})^{(\sqrt{x})^{(\sqrt{x}) \cdots \infty}}$ and $x \frac{d y}{d x}=\frac{f(y)}{2-y \log x}$, then the value of $f(y)$ is -
A. ylogy
B. logy
C. 2 y
D. y^{2}

Answer: D

- Watch Video Solution

 is -
A. 2 y
B. $2 y$
C. 4 y
D. $-4 y$

Answer: B

- Watch Video Solution

51. If $y=f\left(x^{2}\right)$ and $f^{\prime}(x)=\sqrt{3 x^{2}+1}$ then the value of $\frac{d y}{d x}$ at $x=2$ is -
A. $4 \sqrt{13}$
B. $2 \sqrt{13}$
C. 28
D. 14

Answer: C

- Watch Video Solution

52. If $x=\sec \theta-\cos \theta, y=\sec ^{n} \theta-\cos$
$\left(x^{2}+4\right)\left(\frac{d y}{d x}\right)^{2}=k\left(y^{2}+4\right)$ then the value of k is -
A. n^{2}
B. $2 n$
C. $-n^{2}$
D. $-2 n$

Answer: A

- Watch Video Solution

53. If $\mathrm{f}(\mathrm{x})$ is a differentiable function for all $x>0$ and $\lim _{y \rightarrow x} \frac{y^{2} f(x)-x^{2} f(y)}{y-x}=2$, then the value of $\mathrm{f}^{\prime}(x)$ is -
A. $\frac{1}{x^{2}}[x f(x)-1]$
B. $\frac{2}{x^{2}}[f(x)-2]$
C. $\frac{1}{x^{2}}[x f(x)-2]$
D. $\frac{2}{x^{2}}[x f(x)-1]$

Answer: D

- Watch Video Solution

54. If $y^{2}=4 a x$, then the value of $\frac{d^{2} y}{d x^{2}} \cdot \frac{d^{2} x}{d y^{2}}$ is -
A. $\frac{2 a}{y^{3}}$
B. $-\frac{2 a}{y^{3}}$
C. $-\frac{a}{y^{3}}$
D. $\frac{a}{y^{3}}$

Answer: B

- Watch Video Solution

55. The value of $\lim n \rightarrow \infty \frac{1^{p}+2^{p}+3^{p}+\ldots+n^{p}}{n^{p+1}}$ is -
A. $\frac{1}{p+1}$
B. $\frac{1}{1-p}$
C. $\frac{1}{p+2}$
D. $\frac{1}{p}$

Answer: A

56. The value of $\int_{0}^{1.5}\left[x^{2}\right] d x$ is -
A. $3 \sqrt{2}-2$
B. $2+\sqrt{2}$
C. $2-\sqrt{2}$
D. $4-2 \sqrt{2}$

Answer: C

- Watch Video Solution

57. If $I_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$, then the value of $\lim n \rightarrow \infty n\left(I_{n}+I_{n-2}\right)$ is -
A. 0
B. $\frac{1}{2}$
C. 1
D. 2

Answer: C

- Watch Video Solution

58. The value of $\int \frac{\pi}{2} \frac{\sin x d x}{\sin x+\cos x}$ is equal to -
A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer: D

59. The value of the integral $\int_{-\frac{\pi}{7}}^{\frac{\pi}{7}} x^{3} \sin ^{2} x d x$ is -
A. $\frac{\pi}{4}$
B. 0
C. 1
D. 2

Answer: B

D Watch Video Solution

60. $\int \operatorname{cosec}^{4} x d x$ is equal to -
A. $-\cot x-\frac{1}{3} \cot ^{3} x+c$
B. $\cot x+\frac{1}{3} \cot ^{3} x+c$
C. $\tan x+\frac{1}{3} \tan ^{3} x+c$
D. $-\cot x+\frac{1}{3} \cot ^{3} x+c$

Answer: A

D Watch Video Solution

61. The value of $\int \frac{d x}{2 \sqrt{x}(x+1)}$ is -
A. $\frac{1}{2} \tan ^{-1}(\sqrt{x})+c$
B. $2 \tan ^{-1}(\sqrt{x})+c$
C. $\tan ^{-1}(\sqrt{x})+c$
D. $\tan ^{-1}(2 \sqrt{x})+c$

Answer: C

62. The value of the integral $\int_{0}^{1} \frac{d x}{x^{2}+2 x \cos \alpha+1}$ is equal to -
A. $\sin \alpha$
B. $\alpha \sin \alpha$
C. $\frac{\alpha}{2 \sin \alpha}$
D. $\frac{1}{2} \alpha \sin \alpha$

Answer: C

- Watch Video Solution

63. Let $\frac{d}{d x} F(x)=\frac{e^{\sin x}}{x}, x>0$,

If $\int_{1}^{4} \frac{3}{x} e^{\sin x^{3}} d x=F(k)-F(1)$, then one of the possible value of k is -
A. 64
B. 15
C. 16
D. 63

Answer: A

- Watch Video Solution

64. The value of $\int_{0}^{1000} e^{x-[x]} d x$ is equal to -
A. $e^{1000}-1$
B. $\frac{e^{1000}-1}{e-1}$
C. $\frac{1000}{e-1}$
D. $1000(e-1)$

Answer: D

65. $\int_{0}^{2 a} f(x) d x$ is equal to -
A. $2 \int_{0}^{a} f(x) d x$
B. $\int_{0}^{a} f(x) d x+\int_{0}^{a} f(2 a-x) d x$
C. 0
D. $\int_{0}^{a} f(x) d x+\int_{0}^{2 a} f(2 a-x) d x$

Answer: B

- Watch Video Solution

66. $\int \sin ^{3} x \cos x d x$ is equal to -
A. $\frac{1}{4} \cos ^{4} x+c$
B. $-\frac{1}{4} \sin ^{4} x+c$
C. $-\frac{1}{4} \cos ^{4} x+c$
D. $\frac{1}{4} \sin ^{4} x+c$

Answer: D

- Watch Video Solution

67. The value of $\int_{0}^{1} \sin \left[2 \tan ^{-1} \sqrt{\frac{1+x}{1-x}}\right] d x$ is equal to -
A. $\frac{\pi}{4}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{2}$
D. π

- Watch Video Solution

68. The value of $\int \sqrt{1+\sin \frac{x}{4}} d x$ is equal to -
A. $8\left(\sin \frac{x}{8}+\cos \frac{x}{8}\right)+c$
B. $8\left(\cos \frac{x}{8}-\sin \frac{x}{8}\right)+c$
C. $8\left(\sin \frac{x}{8}-\cos \frac{x}{8}\right)+c$
D. $4\left(\sin \frac{x}{8}-\cos \frac{x}{8}\right)+c$

Answer: C

- Watch Video Solution

69. The value of $\int_{\frac{1}{e}}^{e}|\log x| d x$ is equal to -
A. $2\left(1-\frac{1}{e}\right)$
B. $2\left(1+\frac{1}{e}\right)$
C. 2
D. $\frac{2}{e}$

Answer: A

- Watch Video Solution

70. If $f(t)$ is an odd function, then $\int_{0}^{x} f(t) d t$ is -
A. an odd function
B. an even function
C. neither even nor odd
D. 1

D Watch Video Solution

71. The value of $\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{d x}{1+\cos x}$ is -
A. π
B. $\frac{\pi}{2}$
C. 1
D. 2

Answer: D

- Watch Video Solution

72. The solution of the differential equation $\left(x+2 y^{3}\right) \frac{d y}{d x}=y$ is -
A. $x=y^{2}+c$
B. $y=x^{2}+c$
C. $x=y\left(y^{2}+c\right)$
D. $y=x\left(x^{2}+c\right)$

Answer: C

- Watch Video Solution

73. The integrating factor of linear differential equation $\frac{d y}{d x}+y \tan x=\sec x$ is -
A. $\cos x$
B. $\sec x$
C. $e^{\cos x}$
D. $e^{\sec x}$

Answer: B

- Watch Video Solution

74. The order and degree of the differential equation representing the family of curves $y^{2}=2 k(x+\sqrt{k})$ are respectively
A. 1, 3
B. 2, 4
C. 1, 4
D. 1, 2

Answer: A

- Watch Video Solution

75. The solution of the differential equation $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$ is -
A. $y=\tan ^{-1} x+c$
B. $x=\tan ^{-1} y+c$
C. $\tan (x y)=c$
D. $y-x=c(1+x y)$

Answer: D

- Watch Video Solution

76. The degree of the differential equation $\frac{d y}{d x}-x=\left(y-x \frac{d y}{d x}\right)^{-4}$ is -
A. 1
B. 3
C. 5
D. 4

Answer: C

- Watch Video Solution

77. The solution of the equation $\frac{d y}{d x}=\sqrt{1-x^{2}-y^{2}+x^{2} y^{2}}$ is -
A. $\sin ^{-1} y=\frac{1}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x+c$
B. $\sin ^{-1} y=\frac{1}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x+c$
C. $\sin ^{-1} y=\frac{1}{2} x \sqrt{1-x^{2}}+\frac{1}{4} \cos ^{-1} x+c$
D. $\sin ^{-1} y=\frac{1}{2} x \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x+c$

Answer: D
78. The solution of the equation $\frac{d y}{d x}=\frac{x \log x^{2}+x}{\sin y+y \cos y}$ is -
A. $y \sin y=x^{2} \log x+c$
B. $y \sin y=x^{2}+c$
C. $y \sin y=x^{2}+\log x+c$
D. $y \sin y=x \log x+c$

Answer: A

- Watch Video Solution

79. The solution of the differential equation $y d x+\left(x+x^{2} y\right) d y=0$ is -
A. $\frac{1}{x y}+\log |y|=c$
B. $-\frac{1}{x y}+\log |y|=c$
C. $\frac{1}{x y}+2 \log |y|=c$
D. $\log |y|=c x$

Answer: B

- Watch Video Solution

80. The solution of the differential equation $e^{\frac{d y}{d x}}=x+1$, when
$y(0)=3$, is -
A. $y=x \log x-x+2$
B. $y=(x+1) \log |x+1|-x+3$
C. $y=(x+1) \log |x+1|+x+3$
D. $y=x \log x+x+3$

Answer: B

- Watch Video Solution

81. The point on the curve $y^{2}=x$, the tangent at which makes an angle 45° with the x - axis is-
A. $(0,0)$
B. $\left(\frac{1}{4}, \frac{1}{2}\right)$
C. $\left(\frac{1}{2}, \frac{1}{4}\right)$
D. $(2,4)$

Answer: B

82. If p_{1} and p_{2} be the lengths of the perpendiculars from the origin upon the tangent and normal respectively to the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ at the point $\left(x_{1}, y_{1}\right)$, then-
A. $p_{1}^{2}+4 p_{2}^{2}=a^{2}$
B. $p_{1}^{2}+4 p_{2}^{2}=2 a^{2}$
C. $4 p_{1}^{2}+p_{2}^{2}=2 a^{2}$
D. $4 p_{1}^{2}+p_{2}^{2}=a^{2}$

Answer: D

- Watch Video Solution

83. Find the area of the region included between the parabola
$y^{2}=x$ and the line $x+y=2$.
84. If the straight line joining the point $(0,3)$ and $(5,-2)$ is a tangent to the curve $y(x+1)=c$, then the value of c will be-
A. 3
B. -3
C. 4
D. -4

Answer: C

- Watch Video Solution

85. The equation of the normal to the hyperbola $x=a \sec \theta, y=b \tan \theta$ at the point $(a \sec \theta, b \tan \theta)$ is-
A. $a x \cos \theta+b y \cot \theta=a^{2}+b^{2}$
B. $a x \cos \theta+b y \tan \theta=a^{2}+b^{2}$
C. $a x \sin \theta-b y \cot \theta=a^{2}-b^{2}$
D. $a x \cos \theta-b y \tan \theta=a^{2}-b^{2}$

Answer: A

- Watch Video Solution

86. If the straight line $l x+m y=1$ is a normal to the parabola $y^{2}=4 a x$, then-
A. $a l^{2}+2 l m=m^{2}$
B. $a l^{3}-2 a l m=m^{2}$
C. $a l^{3}+2 a l m^{2}=m^{2}$
D. $a l^{2}+2 a m l=m^{2}$

Answer: C

- Watch Video Solution

87. The area (in square unit) of the region $\left\{(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right\}$ is-
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{\pi^{2}}{4}$
D. $\frac{\pi}{4}-\frac{1}{2}$

Answer: D

- View Text Solution

88. The area (in square unit) bounded by the curve $y=\sec x$, the
x-axis and the lines $x=0$ and $x=\frac{\pi}{4}$ is-
A. $\log (\sqrt{2}-1)$
B. $\log (\sqrt{2}+1)$
C. $\frac{1}{2} \log 2$
D. $\sqrt{2}$

Answer: B

- Watch Video Solution

89. The angle between the parabolas $y^{2}=x$ and $x^{2}=y$ at the origin is-
A. $2 \tan ^{-1} \frac{3}{4}$
B. $\tan ^{-1} \frac{4}{3}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: C

- Watch Video Solution

90. The area (in square unit) of the smaller segment cut off from the circle $x^{2}+y^{2}=9$ by the line $x=1$ is-
A. $\frac{1}{2}\left(9 \sec ^{-1} 3-\sqrt{8}\right)$
B. $9 \mathrm{sec}^{-1} 3-\sqrt{8}$
C. $\sqrt{8}-9 \mathrm{sec}^{-1} 3$
D. $9 \mathrm{sec}^{-1} 3+\sqrt{8}$

Answer: B

- Watch Video Solution

91. The optimal value of the objective function in a LPP is attained at points-
A. given by intersection of inequations with coordinate axes,
B. given by intersection of constraints with y-axis,
C. given by intersection of constraints with x-axis,
D. given by corner points of solution region.

Answer: D

D View Text Solution
92. If the tangent at any point P to the parabola $y^{2}=4 a x$ meets the directrix at the point K, then the angle which KP subtends at its focus is-
A. 90°
B. 60°
C. 45°
D. 30°

Answer: A

- Watch Video Solution

93. The point (or points) on the curve $y^{3}+3 x^{2}=12 y$ where tangent is vertical is/ are-
A. $\left(\pm \frac{4}{\sqrt{3}}, 2\right)$
B. $(0,0)$
C. $\left(\pm \sqrt{\frac{11}{3}}, 1\right)$
D. $\left(\pm \frac{4}{\sqrt{3}},-2\right)$

Answer: A

- Watch Video Solution

94. Tangents are drawn to the ellipse $5 x^{2}+9 y^{2}=45$ at the four ends of two latera recta. The area (in square unit) of the quadrilateral so formed is-
A. $\frac{81}{4}$
B. $\frac{27}{4}$
C. 27
D. $\frac{27}{2}$

Answer: C

- Watch Video Solution

95. The normal to the parabola $y^{2}=8 x$ at the point $(2,4)$ meets the parabola again at the point-
A. (-18, - 12)
B. $(-18,12)$
C. $(18,12)$
D. $(18,-12)$

Answer: D

96. A tangent is drawn at the point $(3 \sqrt{3} \cos \theta, \sin \theta)\left(0<\theta<\frac{\pi}{2}\right)$ to the ellipse $x^{2}+27 y^{2}=27$, then the least value of the sum of the intercepts on the coordinate axes by this tangent is attained when the value of θ is-
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{8}$

Answer: B

97. A cone of height h is inscribed in a sphere of radius R, if the volume of the inscribed cone is maximum, then the value of $h: R$ will be-
A. $\frac{\sqrt{3}}{1}$
B. $\frac{4}{3}$
C. $\frac{2}{3}$
D. $\frac{3}{2}$

Answer: B

- Watch Video Solution

98. If $f(x)=\int_{x^{2}}^{x^{2}+1} e^{-t^{2}} d t$, then the interval in which $f(x)$ is increasing, is-
A. $(-\infty, 0)$
B. $(0, \infty)$
C. $[-2,2]$
D. $[3,5]$

Answer: A

- Watch Video Solution

99. The minimum value of $f(x)=2 x^{2}+x-1$ is-
A. $-\frac{1}{4}$
B. $\frac{3}{4}$
C. $\frac{9}{4}$
D. $-\frac{9}{8}$

Answer: D

- Watch Video Solution

100. The point on the curve $x y^{2}=1$ that is nearest to the origin is-
A. $(1,1)$
B. $\left(4, \frac{1}{2}\right)$
C. $\left(2^{-\frac{1}{3},} 2^{\frac{1}{6}}\right)$
D. $\left(\frac{1}{4}, 2\right)$

Answer: C

101. The number of values of x for which $f(x)=\cos x+\cos \sqrt{2} x$ attains its maximum value is-
A. 1
B. 0
C. 2
D. infinite

Answer: A

- Watch Video Solution

102. The function $f(x)=2 x^{3}-15 x^{2}+36 x+1$ is increasing in the interval-
A. $x \leq 1$ or $x \geq 3$
B. $x<2$ or $x>3$
C. $x \geq 2$ or $x \leq 3$
D. none of these

Answer: b

- Watch Video Solution

103. The coordinates of the point for minimum value of $Z=7 x-8 y$, subject to the conditions $x+y \leq 20, y \geq 5$ and $x \geq 0$ are-
A. $(20,0)$
B. $(0,20)$
C. $(15,5)$
D. $(0,5)$

- Watch Video Solution

104. If M and m are the maximum and minimum values respectively of the function $f(x)=x+\frac{1}{x}$, then the value of $M-m$ is-
A. 0
B. 2
C. 4
D. -4

Answer: D

105. The interval in which the function $f(x)=2 x^{2}-\log |x|(x \neq 0)$ is increasing, is-
A. $0<x<\frac{1}{2}$
B. $x<-\frac{1}{2}$
C. $-\frac{1}{2}<x<0$ or, $x>\frac{1}{2}$
D. none of these

Answer: C

- Watch Video Solution

106. The sides of an equilateral triangle are increasing at the rate of $2 \mathrm{~cm} / \mathrm{s}$., then the rate at which the area (in $\mathrm{cm}^{2} / \mathrm{s}$) increases
when the side is 10 cm , is-
A. $\sqrt{3}$
B. $10 \sqrt{3}$
C. 10
D. $10 \sqrt{2}$

Answer: B

- Watch Video Solution

107. Air is being pumped into a spherical balloon at the rate of 30
$\mathrm{cm}^{3} / \mathrm{s}$. Then the rate (in cm / s) at which the radius increases when
it reaches the value 15 cm , is-
A. $\frac{1}{30 \pi}$
B. $\frac{1}{15 \pi}$
C. $\frac{1}{20}$
D. $\frac{1}{25}$

Answer: A

- Watch Video Solution

108. If the curves $x y=a$ and $x=y^{2}$ intersect at right angles, then-
A. $16 a^{2}=1$
B. $8 a^{2}+1=0$
C. $8 a^{2}=1$
D. $16 a^{2}+1=0$

Answer: C

109. A curve having the condition that the slope of tangent at some point is two times the slope of the straight line joining the same point to the origin of coordinates is $a /$ an-
A. circle
B. parabola
C. ellipse
D. hyperbola

Answer: B

- Watch Video Solution

110. An edge of a variable cube is increasing at the rate of $2 \mathrm{~cm} / \mathrm{s}$.

When the edge of a cube is 8 cm long, then its volume will increase at the rate of-
A. $128 \mathrm{~cm}^{3} / \mathrm{s}$
B. $192 \mathrm{~cm}^{3} / \mathrm{s}$
C. $384 \mathrm{~cm}^{3} / \mathrm{s}$
D. none of these

Answer: C

D Watch Video Solution

Question Paper 5

1. Two mappings $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined as follows:
$f(x)=\left\{\begin{array}{ll}0 & \text { when } \mathrm{x} \text { is rational } \\ 1 & \text { when } \mathrm{x} \text { is irrational }\end{array}\right.$ and
$g(x)=\left\{\begin{array}{ll}-1 & \text { when } \mathrm{x} \text { is rational } \\ 0 & \text { when } \mathrm{x} \text { is irrational }\end{array}\right.$ then the value of
$[(g \circ f)(e)+(f o g)(\pi)]$ is -
A. 0
B. -1
C. 1
D. 2

Answer: B

- Watch Video Solution

2. Let S be the set of real numbers. Then the relation $R=\{(a, b): 1+a b>0\}$ on S is -
A. symmetric and transitive but not reflexive
B. reflexive and transitive but not symmetric
C. reflexive and symmetric but not transitive
D. reflexive, transitive and symmetric

Answer: C

- Watch Video Solution

3. If R denotes the set of all real numbers then the mapping $f: R \rightarrow R$ defined by $f(x)=|x|$ is -
A. one-one only
B. onto only
C. both one-one and onto
D. neither one-one not onto

Answer: D

- Watch Video Solution

4. If \hat{a} and \hat{b} are two unit vectors inclined at an angle θ, then the value of $|\hat{a}-\hat{b}|$ is -
A. $2 \sin \frac{\theta}{2}$
B. $2 \cos \frac{\theta}{2}$
C. $2 \sin \theta$
D. $2 \cos \theta$

Answer: A

- Watch Video Solution

5. The value of p for which the vectors $60 \hat{i}+3 \hat{j}, 40 \hat{i}-8 \hat{j}$ and $p \hat{i}-52 \hat{j}$ are collinear is -
B. 32
C. -40
D. 40

Answer: C

- Watch Video Solution

6. The range of the function $f(x)=\sin \left(\sin ^{-1} X+\cos ^{-1} x\right)(|x| \leq 1)$ is-
A. $\{0\}$
B. $\{1\}$
C. $\{-1\}$
D. $\{x:-1 \leq x \leq 1\}$
7. The vector equation of the line passing through the points (2,
$-3,1)$ and $(-4,3,6)$ is -
A. $\vec{r}=-4 \hat{i}+3 \hat{j}+6 \hat{k}+\lambda(2 \hat{i}-3 \hat{j}+\hat{k})$
B. $\vec{r}=2 \hat{i}-3 \hat{j}+\hat{k}+\lambda(-4 \hat{i}+3 \hat{j}+6 \hat{k})$
C. $\vec{r}=-6 \hat{i}+6 \hat{j}+5 \hat{k}+\lambda(2 \hat{i}-6 \hat{j}-5 \hat{k})$
D. $\vec{r}=2 \hat{i}-3 \hat{j}+\hat{k}+\lambda(-6 \hat{i}+6 \hat{j}+5 \hat{k})$

Answer: D

D Watch Video Solution

8. If $f(x)=\frac{3 x+2}{5 x-3}\left(x \neq \frac{3}{5}\right)$, then which one of the following is
A. $f^{-1}(x)=f(x)$
B. $f^{-1}(x)=-f(x)$
C. $(f o f)(x)=-x$
D. $f^{-1}(x)=\frac{1}{19} f(x)$

Answer: A

D Watch Video Solution

9. Let $f(x)=\sin x+\cos x$ and $g(x)=x^{2}-1$, then $g\{f(x)\}$ is invertible if -

$$
\begin{aligned}
& \text { A. }-\frac{\pi}{2} \leq x \leq 0 \\
& \text { B. }-\frac{\pi}{2} \leq x \leq \pi \\
& \text { C. } 0 \leq x \leq \frac{\pi}{2} \\
& \text { D. }-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}
\end{aligned}
$$

Answer: D

- Watch Video Solution

10. $A B C D$ is a quadrilateral, $A B$ and $C D$ are parallel, P and Q are the midpoints of the sides BC and AD respectively. They, the value of
$A B+D C$ is -
A. $Q P$
B. $5 Q P$
C. 2QP
D. $4 Q P$

Answer: C

11. If $\sin ^{-1} \frac{5}{x}+\sin ^{-1} \frac{12}{x}=\frac{\pi}{2}$, then the value of x is -
A. ± 13
B. 13
C. $\frac{13}{7}$
D. $\pm \frac{13}{7}$

Answer: B

- Watch Video Solution

12. The chance of throwing a total of 7 or 12 with two dice is -
A. $\frac{2}{9}$
B. $\frac{5}{9}$
C. $\frac{5}{36}$
D. $\frac{7}{36}$

Answer: D

- Watch Video Solution

13. Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is -
A. $\frac{4}{5}$
B. $\frac{2}{5}$
C. $\frac{3}{5}$
D. $\frac{1}{5}$

Answer: B

14. For three events A, B and C, if $P(B)=\frac{3}{4}, P\left(A^{c} \cap B \cap C^{C}\right)=\frac{1}{3}$ and $P\left(A \cap B \cap C^{C}\right)=\frac{1}{3}$, then the value of $P(B \cap C)$ is -
A. $\frac{1}{12}$
B. $\frac{5}{12}$
C. $\frac{1}{4}$
D. $\frac{23}{36}$

Answer: A

- Watch Video Solution

15. In tossing a fair coin twice, let A and B denote the events of occurrence of head on first toss and second toss respectively,
then the value of $P(A \cup B)$ is -
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. $\frac{3}{4}$
D. $\frac{1}{3}$

Answer: C

- Watch Video Solution

16. A bag X contains 2 white and 3 black balls and another bag Y contains 4 white and 2 black balls. One bag is selected at random and a ball is drawn from it. Then the probability for the ball chosen be white is -
A. $\frac{2}{15}$
B. $\frac{7}{15}$
C. $\frac{14}{15}$
D. $\frac{8}{15}$

Answer: D

- Watch Video Solution

17. A five digit number of formed by writing the digits $1,2,3,4,5$ in a random order without repeatation. Then the probability that the number is divisible by 4 , is -
A. $\frac{3}{5}$
B. $\frac{5}{18}$
C. $\frac{1}{5}$
D. $\frac{5}{6}$

Answer: C

- Watch Video Solution

18. The value of the determinant $\left|\begin{array}{lll}b^{2} c^{2} & b c & b+c \\ c^{2} a^{2} & c a & c+a \\ a^{2} b^{2} & a b & a+b\end{array}\right|$ is -
A. $a b c\left(a^{2}+b^{2}+c^{2}\right)$
B. 0
C. $a b c(b c+c a+a b)$
D. $(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)(a b+b c+c a)$

Answer: B

19. If $\left|\begin{array}{ccc}\cos (A+B) & -\sin (A+B) & \cos 2 B \\ \sin A & \cos A & \sin B \\ -\cos A & \sin A & \cos B\end{array}\right|=0$ then the value of B is -
A. $(2 n+1) \frac{\pi}{2}$
B. $n \pi$
C. $(2 n+1) \pi$
D. $2 n \pi$

Answer: A

- Watch Video Solution

20. If $\left|\begin{array}{ccc}x & -3 i & 1 \\ y & 1 & i \\ 0 & 2 i & -i\end{array}\right|=6+11 i$, then the values of x and y are -
A. $x=-3, y=4$
B. $x=3, y=4$
C. $x=3, y=-4$
D. $x=-3, y=0$

Answer: A

- Watch Video Solution

21. If $1, \omega, \omega^{2}$ are the cube roots of unity, then the value of
$\left|\begin{array}{ccc}1 & \omega^{n} & \omega^{2 n} \\ \omega^{n} & \omega^{2 n} & 1 \\ \omega^{2 n} & 1 & \omega^{n}\end{array}\right|$ is equal to -
A. ω^{2}
B. 0
C. 1
D. ω

Answer: B

- Watch Video Solution

22. If $\left|\begin{array}{ccc}x+1 & 1 & 1 \\ 2 & x+2 & 2 \\ 3 & 3 & x+3\end{array}\right|=0$, then the value of x is -
A. 0,6
B. $0,-6$
C. 0,2
D. $2,-1$

Answer: B
23. If $A=\left[\begin{array}{cc}-i & 0 \\ 0 & i\end{array}\right]$ then $A^{T} A$ is equal to-
A. $\left[\begin{array}{cc}-5 & -2 \\ -3 & 1\end{array}\right]$
B. $\frac{1}{11}\left[\begin{array}{cc}-5 & -2 \\ -3 & 1\end{array}\right]$
C. $\frac{1}{11}\left[\begin{array}{cc}5 & 2 \\ 3 & -1\end{array}\right]$
D. $\left[\begin{array}{cc}5 & 2 \\ 3 & -1\end{array}\right]$

Answer: C

D Watch Video Solution

24. If $A=\left[\begin{array}{cc}-1 & 2 \\ 2 & -1\end{array}\right], B=\left[\begin{array}{l}5 \\ 7\end{array}\right]$ and $A X=B$ then X is equal to -
A. [19, 17]
B. $\frac{1}{3}\left[\begin{array}{l}19 \\ 17\end{array}\right]$
C. $\frac{1}{3}[19,17]$
D. $\left[\begin{array}{l}19 \\ 17\end{array}\right]$

Answer: B

- Watch Video Solution

25. If $i=\sqrt{-1}, P=\left[\begin{array}{ccc}i & 0 & -i \\ 0 & -i & i \\ -i & i & 0\end{array}\right]$ and $Q=\left[\begin{array}{cc}-i & i \\ 0 & 0 \\ i & -i\end{array}\right]$ then PQ is equal to -
A. $\left[\begin{array}{cc}2 & -2 \\ -1 & 1 \\ -1 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}-2 & 2 \\ 1 & -1 \\ 1 & -1\end{array}\right]$
C. $\left[\begin{array}{cc}2 & -2 \\ -1 & 1\end{array}\right]$
D. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Answer: A

- Watch Video Solution

26. If $A \neq 0$ and $B \neq 0$ are two 2×2 matrices such that $A B=0$, then which of the following is correct?
A. $\operatorname{det} \mathrm{A}=0 \operatorname{or} \operatorname{det} \mathrm{~B}=0$
B. $\operatorname{det} \mathrm{A}=0$ and $\operatorname{det} \mathrm{B}=0$
C. $\operatorname{det} A=\operatorname{det} B \neq 0$
D. none of these

Answer: B

- Watch Video Solution

27. The value of $\left|\begin{array}{cc}\log _{3} 512 & \log _{4} 3 \\ \log _{3} 8 & \log _{4} 9\end{array}\right| \times\left|\begin{array}{cc}\log _{2} 3 & \log _{8} 3 \\ \log _{3} 4 & \log _{3} 4\end{array}\right|$ is -
A. 7
B. 17
C. 13
D. 10

Answer: D

- Watch Video Solution

28. It is known that a lot of 10 articles contains 3 defectives. A sample of 4 articles is drawn at random from the lot. If X be the random variable of defective articles in the sample, then the value of $P(0<X<2)$ is -
A. $\frac{1}{2}$
B. $\frac{2}{3}$
C. $\frac{1}{2}$
D. $\frac{1}{3}$

Answer: C

- Watch Video Solution

29. If the mean and variance of a binomial distribution are $\frac{-}{3}$ and 8 $\frac{-}{9}$ respectively, then the value $P(X \geq 1)$ is -
A. $\frac{16}{81}$
B. $\frac{65}{81}$
C. $\frac{32}{81}$
D. none of these

Answer: B

- Watch Video Solution

30. If the function $\mathrm{f}(\mathrm{x})$ is defined by $f(x)=a+b x$ and $f^{r}=f f f \ldots$ (repeated r times), then $f^{r}(x)$ is equal to -
A. $a\left(b^{r}-1\right)+b^{r}{ }_{X}$
B. $a r+b x^{r}$
C. $a \cdot \frac{b^{r}-1}{b-1}+b^{r} X$
D. $(a+x) b^{r}$

Answer: C

- Watch Video Solution

31. The range of the function $\quad{ }^{7-x} P_{x-3}$ is -
A. $\{1,2,3,4,5\}$
B. $\{1,2,3,4\}$
C. $\{1,2\}$
D. $\{1,2,3\}$

Answer: D

- Watch Video Solution

32. The domain of definition of the function $f(x)=\frac{\sin ^{-1}(x-3)}{\sqrt{9-x^{2}}}$ is -
A. $2 \leq x<3$
B. $1 \leq x \leq 2$
C. $1 \leq x<2$
D. $2 \leq x \leq 3$

Answer: A

- Watch Video Solution

33. The acute angle between the z-axis and the straight line joining the points $(3,2,3)$ and $(-3,-1,5)$ is -
A. $\cos ^{-1} \frac{2}{7}$
B. $\cos ^{-1} \frac{6}{7}$
C. $\cos ^{-1} \frac{3}{7}$
D. none of these

Answer: A

- Watch Video Solution

34. Let $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}, \vec{b}=2 \hat{i}+2 \hat{j}, \vec{c}=3 \hat{i}+5 \hat{j}-2 \hat{k}$ and $\vec{d}=-\hat{j}+\hat{k}$, then the ratio of the modulis of the vectors $\vec{b}-\vec{a}$ and $\vec{d}-\vec{c}$ is -
A. $2: 3$
B. $3: 1$
C. 1:3
D. 3:2

Answer: C

- Watch Video Solution

35. If $\vec{r}_{1}=\hat{i}+2 \hat{j}-2 \hat{k}$ and $\vec{r}_{2}=3 \hat{j}-4 \hat{k}$, then the angle between \vec{r}_{1} and \vec{r}_{2} is -
A. $\cos ^{-1} \frac{4}{5}$
B. $\cos ^{-1} \frac{14}{15}$
C. $\cos ^{-1} \frac{5}{13}$
D. $\cos ^{-1} \frac{12}{13}$

Answer: B

D Watch Video Solution

36. A unit vector which is perpendicular to both the vectors
$\vec{a}=\hat{i}-\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+\hat{k}$ is -
A. $\hat{i}+\hat{k}$
B. $\frac{1}{\sqrt{2}}(\hat{j}-\hat{k})$
C. $\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$
D. $\frac{1}{\sqrt{2}}(-\hat{j}+\hat{k})$

Answer: D

D Watch Video Solution

37. If $|\vec{a}|=7,|\vec{b}|=\sqrt{26}$ and $|\vec{a} \times \vec{b}|=35$, then the value of $\vec{a} \cdot \vec{b}$ is -
A. $\sqrt{26}$
B. 13
C. 7
D. $2 \sqrt{13}$

Answer: C

- Watch Video Solution

38. The equation of any plane parallel to y-axis is -
A. $y=b$
B. $x=a, z=c$
C. $a x+b y+d=0$
D. $a x+c z+d=0$

Answer: D

- Watch Video Solution

39. If $|\vec{b}|=4$ and $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=9$, then the value $|\vec{a}|$ is -
A. 5
B. $2 \sqrt{6}$
C. $3 \sqrt{2}$
D. none of these

Answer: A

- Watch Video Solution

40. If the line $\vec{r}=(2 \hat{i}-\hat{j}+3 \hat{k})+\lambda(2 \hat{i}+\hat{j}+2 \hat{k})$ is parallel to the plane $\vec{r} \cdot(3 \hat{i}-2 \hat{j}+p \hat{k})=4$ then the value of p is -
A. 2
B. -2
C. 3
D. -3

Answer: B

(Watch Video Solution

41. If the equation $a x^{4}+b x^{3}+c x^{2}+k x=0$ has a root $\alpha>0$, then the equation $4 a x^{3}+3 b x^{2}+2 c x+k=0$ has -
A. one negative and two positive roots
B. at least one root in $(0, \alpha)$
C. no root in $(0, \alpha)$
D. none of these

Answer: B

- View Text Solution

42. The chord of the curve $a x^{2}+b x+c=0$, joining the points $\mathrm{x}=\mathrm{p}$ and $\mathrm{x}=\mathrm{q}$ on the curve is parallel to the tangent to the curve at $\mathrm{x}=\mathrm{c}$ where -
A. $c=\frac{a+b}{2}$
B. $c=\frac{p+q}{2}$
C. $c=\frac{a-b}{2}$
D. $c=\frac{p-q}{2}$

Answer: B

- Watch Video Solution

43. The value of $\lim x \rightarrow 0 \frac{10^{x}-2^{x}-5^{x}+1}{x \log (1+x)}$ is -
A. $\log _{e} 5 \log _{e} 10$
B. 0
C. 1
D. $\log _{e} 5 \log _{e} 2$

Answer: D

- Watch Video Solution

44. If $f(x)=\log _{x}\left(\log _{e^{x}} x\right)$, then the value of $f^{\prime}(e)$ is -
A. 0
B. e
C. $\frac{1}{e}$
D. $\frac{1}{e^{2}}$

Answer: C
45. If $y=\left(\cos ^{-1} x\right)^{2}$, then the value of $\left(1-x^{2}\right) y_{2}-x y_{1}$ is -
A. 4
B. 2
C. y
D. 2 y

Answer: B

- Watch Video Solution

46. If $y=\sin \left(x^{2}\right), z=e^{y^{2}}$ and $t=\sqrt{z}$, then the value of $\frac{d t}{d x}$ is -
A. $\frac{x y z}{t}$
B. $\frac{2 x y z}{t}$
C. $\frac{2 x y z}{t} \cos \left(x^{2}\right)$
D. $-\frac{x y z}{t} \cos \left(x^{2}\right)$

Answer: C

- Watch Video Solution

47. If $y=a^{x} b^{2 x-1}$, then the value of $\frac{d^{2} y}{d x^{2}}$ is -
A. $y\left(\log a b^{2}\right)^{2}$
B. $y \log \left(a b^{2}\right)$
C. $y\left(\log a^{2} b\right)^{2}$
D. $y^{2} \log \left(a b^{2}\right)$

A. $-\frac{\cos x}{2 y-1}$
B. $\frac{\sin x}{1-2 y}$
C. $-\frac{\sin x}{1-2 y}$
D. $\frac{\cos x}{2 y-1}$

Answer: D

- Watch Video Solution

49. If $y=\log _{a} x+\log _{x} a+\log _{x} x+\log _{a} a$, then the value of $\frac{d y}{d x}$ is -
A. $\frac{\log a}{x}+\frac{x}{\log a}$
B. $\frac{1}{x \log a}-\frac{\log a}{x(\log x)^{2}}$
C. $\frac{1}{x \log a}$
D. $\frac{1}{x}+x \log a$

Answer: B

- Watch Video Solution

50. If $f(x)= \begin{cases}\frac{\left(4^{x}-1\right)^{3}}{\sin \frac{x}{a} \log \left(1+\frac{x^{2}}{3}\right)} & \text { when } x \neq 0 \\ 9\left(\log _{e} 4\right)^{3} & \text { when } x=0\end{cases}$
function at $x=0$, then the value of a is -
A. 1
B. 2
C. $-\frac{1}{2}$
D. 3

Answer: D

- Watch Video Solution

51. If $(x+y)^{m+n}=x^{m} y^{n}$, then the value of $\frac{d y}{d x}$ is -
A. $\frac{x}{y}$
B. $x y$
C. $\frac{y}{x}$
D. $-\frac{x}{y}$

Answer: C

52. If $x+y=e^{x-y}$ then the value of $\frac{d^{2} y}{d x^{2}}$ is -
A. $\frac{4(x+y)}{(x+y+1)^{3}}$
B. $\frac{2(x+y)}{(x+y+1)^{3}}$
C. $\frac{4(x+y)}{(x+y+1)^{2}}$
D. $\frac{2(x+y)}{(x+y+1)^{2}}$

Answer: A

- Watch Video Solution

53. If $x=2 \cos \theta-\cos 2 \theta$ and $y=2 \sin \theta-\sin 2 \theta$, then the value of $\frac{d^{2} y}{d x^{2}}$ at $\theta=\frac{\pi}{2}$ is -
B. $-\frac{3}{2}$
C. $\frac{3}{2}$
D. 0

Answer: B

- Watch Video Solution

54. Let $f(x)$ be differentiable for all x. If $f(1)=-2$ and $f^{\prime}(x) \geq 2$ for $x \in[1,6]$ then -

D View Text Solution

55. The value of the integral $\int_{\pi}^{10 \pi}|\sin x| d x$ is equal to -
B. 8
C. 10
D. 18

Answer: D

- Watch Video Solution

56. The value of the integral $\int \frac{d x}{x^{2}+4 x+13}$ is -
A. $\frac{1}{3} \tan ^{-1}\left(\frac{x+2}{3}\right)+c$
B. $\log \left(x^{2}+4 x+13\right)+c$
C. $\frac{1}{6} \log \left|\frac{x+5}{x-1}\right|+c$
D. $\frac{x+2}{\left(x^{2}+4 x+13\right)^{2}}+c$
$\left(x^{2}+4 x+13\right)^{2}$

- Watch Video Solution

57. The value of $\int_{-\frac{1}{2}}^{\frac{1}{2}} \cos x \log \left(\frac{1-x}{1+x}\right) d x$ is -
A. $2 \sqrt{e}$
B. 1
C. \sqrt{e}
D. 0

Answer: D

- Watch Video Solution

58. The value of the integral $\int \frac{\pi}{2}|\sin x-\cos x| d x$ is -
A. 0
B. $2(\sqrt{2}-1)$
C. $2 \sqrt{2}$
D. $2(\sqrt{2}+1)$

Answer: B

- Watch Video Solution

59. The value of $\int_{0}^{3} \frac{3 x+1}{x^{2}+9} d x$ is equal to-
A. $\log (2 \sqrt{2})+\frac{\pi}{12}$
B. $\log (2 \sqrt{2})+\frac{\pi}{2}$
C. $\log (2 \sqrt{2})+\frac{\pi}{6}$
D. $\log (2 \sqrt{2})+\frac{\pi}{3}$

Answer: A

D Watch Video Solution

60. The value of $\int e^{x}\left(\frac{2+\sin 2 x}{1+\cos 2 x}\right) d x$ is equal to -
A. $e^{x} \sec ^{2} \frac{x}{2}+c$
B. $e^{x} \sec \frac{x}{2}+c$
C. $e^{x} \tan \frac{x}{2}+c$
D. $e^{x} \tan x+c$

Answer: D

61. The value of $\int_{0}^{1} \tan ^{-1}\left(\frac{1}{x^{2}-x+1}\right) d x$ is equal to -
A. $\log 2$
B. $\frac{\pi}{4}+\log 2$
C. $\frac{\pi}{2}+\log 2$
D. $\frac{\pi}{2}-\log 2$

Answer: D

- Watch Video Solution

62. The value of $\int \frac{a^{\frac{x}{2}}}{\sqrt{a^{-x}-a^{x}}} d x$ is equal to -

$$
\text { A. } \frac{1}{\log a} \sin ^{-1}\left(a^{x}\right)+c
$$

B. $\frac{1}{\log a} \tan ^{-1}\left(a^{x}\right)+c$
C. $\log \left(a^{x}-1\right)+c$
D. $\sin ^{-1}\left(a^{x}\right)+c$

Answer: A

- Watch Video Solution

63. The value of $\int_{a}^{b} \frac{x}{|x|} d x, a<b<0$, is equal to -
A. $-(|a|+b|b|)$
B. $|b|-|a|$
C. $|a|-|b|$
D. $|a|+|b|$

(Watch Video Solution

64. If $g(x)=\frac{1}{2}[f(x)-f(-x)]$ defined over $-3 \leq x \leq 3$ and $f(x)=2 x^{2}-4 x+1$, then the value of $\int_{-3}^{3} g(x) d x$ is -
A. 4
B. -4
C. 0
D. 8

Answer: C

- Watch Video Solution

65. If $I_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$, then the value of $\left(I_{8}+I_{6}\right)$ is -
A. $\frac{1}{7}$
B. $\frac{1}{6}$
C. $\frac{1}{5}$
D. $\frac{1}{8}$

Answer: A

- Watch Video Solution

66. The value of $\lim n \rightarrow \infty \sum_{r=1}^{n} \frac{1}{n} e^{\frac{r}{n}}$ is -
A. $1-e$
B. $e-1$
C. e
D. $e+1$

Answer: B

- Watch Video Solution

67. $\int_{0}^{1} \sqrt{\frac{1-x}{1+x}} d x$ is equal to -
A. $\frac{\pi}{2}+1$
B. $\frac{\pi}{2}-1$
C. π
D. 1

Answer: B

- Watch Video Solution

68. If $\int \frac{\sin x d x}{\sin (x-a)}=A x+B \log |\sin (x-a)|+c$, then the value of (A, B) is -
A. $(\cos a, \sin a)$
B. $(-\sin a, \cos a)$
C. $(\sin a, \cos a)$
D. ($-\cos a, \sin a)$

Answer: A

D Watch Video Solution

69. The value of $\int_{-2}^{3}\left|1-x^{2}\right| d x$ is equal to -
A. $\frac{7}{3}$
B. $\frac{14}{3}$
C. $\frac{1}{3}$
D. $\frac{28}{3}$

Answer: D

- Watch Video Solution

70. If $\int_{0}^{t^{2}} x f(x) d x=\frac{2}{5} t^{5}, t>0$, then the value of $f\left(\frac{4}{25}\right)$ is -
A. $\frac{5}{2}$
B. $-\frac{2}{5}$
C. $\frac{2}{5}$
D. 1

Answer: C

71. If $P=\int_{0}^{3 \pi} f\left(\cos ^{2} x\right) d x$ and $Q=\int_{0}^{\pi} f\left(\cos ^{2} x\right) d x$, then -
A. $P=5 Q$
B. $P=3 Q$
C. $P=2 Q$
D. $P=Q$

Answer: B

- Watch Video Solution

72. The order and degree of differential equation $\left(1+3 \frac{d y}{d x}\right)^{\frac{4}{3}}=4 \frac{d^{3} y}{d x^{3}}$ are respectively -
A. 2, 2
B. 3,1
C. 3,3
D. 1, 4

Answer: C

Watch Video Solution
73. The solution of the differential equation $\frac{d y}{d x}+P(x) y=0$ is -
A. $y=c e^{-\int P(x) d x}$
B. $y=c e^{\int P(x) d x}$
C. $y^{-1}=c e^{-\int P(x) d x}$
D. $y^{-1}=c e^{\int P(x) d x}$
74. The solution of the equation $\frac{d y}{d x}+y=e^{-x}, y(0)=0$ is -
A. $y=e^{-x}(x-1)$
B. $y=x e^{x}$
C. $y=x e^{-x}+1$
D. $y=x e^{-x}$

Answer: D

- Watch Video Solution

75. The differential equation of the family of curves $y^{2}=4 a(x+a)$ is -
A. $2 y \frac{d y}{d x}=\frac{d^{2} y}{d x^{2}}$
B. $\left(2 x+y \frac{d y}{d x}\right) \frac{d y}{d x}=y$
C. $y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0$
D. $y^{2} \frac{d y}{d x}+4 y+1=0$

Answer: B

- Watch Video Solution

76. The differential equation $\cot y d x=x d y$ has a solution of the form -
A. $|y|=|\cos x|$
B. $|x|=|\sin y|$
C. $|x|=|\sec y|$
D. $|y|=|\sin x|$

Answer: C

- Watch Video Solution

77. The integrating factor of the differential equation $3 \frac{d y}{d x}+\frac{3 y}{x}=2 x^{4} y^{4}$ is -
A. $\frac{1}{x^{3}}$
B. $\frac{1}{x^{2}}$
C. $\frac{1}{x^{4}}$
D. x^{3}

Answer: A
78. The degree of the differential equation
$\left(\frac{d^{3} y}{d x^{3}}\right)^{\frac{2}{3}}-3 \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+4 y=0$ is -
A. 3
B. 6
C. $\frac{2}{3}$
D. 2

Answer: D

D Watch Video Solution

79. The differential equation of all non-horizontal lines in a plane is -

$$
\text { A. } \frac{d x}{d y}=0
$$

B. $\frac{d y}{d x}=0$
C. $\frac{d^{2} y}{d x^{2}}=0$
D. $\frac{d^{2} x}{d y^{2}}=0$

Answer: D

- Watch Video Solution

80. The differential equation obtained by eliminating. constants A and B from $A x^{2}+B y^{2}=1$ is -
A. $x+y y^{\prime}=0$
B. $\left(y^{\prime}\right)^{2}+y y^{\prime \prime}+1=0$
C. $x y y^{\prime \prime}+x\left(y^{\prime}\right)^{2}=y y^{\prime}$
D. $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=y y^{\prime}$

Answer: C

- Watch Video Solution

81. The equation of a tangent to the hyperbola $x^{2}-2 y^{2}=2$ parallel to the line $2 x-2 y+5=0$ is-
A. $y=2 x+1$
B. $y=2 x-1$
C. $y=x \pm 1$
D. $x+y+1=0$

Answer: C

- Watch Video Solution

82. The area (in square unit) surrounded by the curve $|x|+|y|=1$ is-
A. 5
B. 4
C. 3
D. 2

Answer: D

- Watch Video Solution

83. The slope of the normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $(a \sec \theta, b \tan \theta)$ is-
A. $\frac{b}{a} \sin \theta$
B. $-\frac{a}{b} \sin \theta$
C. $\frac{a}{b} \sin \theta$
D. $-\frac{b}{a} \sin \theta$

Answer: B

- Watch Video Solution

84. If the straight line $y=x \sin \alpha+a \sec \alpha$ is a tangent to the circle $x^{2}+y^{2}=a^{2}$ then-
A. $\cos 2 \alpha=1$
B. $\sin ^{2} \alpha=1$
C. $\sin 2 \alpha=1$
D. $\tan ^{2} \alpha=2$

- Watch Video Solution

85. The angle between the pair of tangents drawn to the ellipse $3 x^{2}+2 y^{2}=5$ from the point $(1,2)$ is-
A. $\tan ^{-1}\left(\frac{12}{5}\right)$
B. $\tan ^{-1}\left(\frac{12}{\sqrt{5}}\right)$
C. $\tan ^{-1}\left(\frac{6}{\sqrt{5}}\right)$
D. $\tan ^{-1}\left(\frac{6}{5}\right)$

Answer: B

86. The angle of intersection of the cuves $y=x^{2}$ and $6 y=7-x^{3}$ at $(1,1)$ is-
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

87. If the tangent at the point p on the circle $x^{2}+y^{2}+6 x+6 y-2=0$ meets the straight line $5 x-2 y+6=0$ at the point Q on the y-axis, then the length of $P Q$ is-
A. 4 units
B. $2 \sqrt{5}$ units
C. 5 units
D. $3 \sqrt{5}$ units

Answer: C

D Watch Video Solution

88. The equation of the common tangent to the curves $y^{2}=8 x$ and $x y=-1$ is-
A. $3 y=9 x+2$
B. $y=x+2$
C. $y=2 x+1$
D. $2 y=x+8$

Answer: B

- Watch Video Solution

89. Area (in square unit) bounded by the curve $y=\sqrt{x}$, the straight line $x=2 y+3$ in first quadrant and x - axis is-
A. 9
B. $2 \sqrt{3}$
C. 18
D. $\frac{35}{3}$

Answer: A

- Watch Video Solution

90. The area bounded by the coordinate axes and the curve $\sqrt{x}+\sqrt{y}=1$ is equal to-
A. $\frac{1}{6}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. 1

Answer: A

D Watch Video Solution

91. The normal to the curve $x=a(1+\cos \theta), y=a \sin \theta$ at the point θ always passes throught the fixed point-
A. $(0,0)$
B. $(0, a)$
C. (a, a)
D. $(a, 0)$

Answer: D

- Watch Video Solution

92. If the area bounded by the parabola $y=a x^{2}$ and $x=a y^{2}, a>0$ is 1 square unit , then the value of a is-
A. 1
B. $\frac{1}{\sqrt{3}}$
C. $\frac{1}{3}$
D. $\frac{1}{\sqrt{2}}$

Answer: B

- Watch Video Solution

93. The locus of the middle point of the intercept of the tangent drawn from an external point to the ellipse $x^{2}+2 y^{2}=2$ between the coordinate axes is-
A. $\frac{1}{x^{2}}+\frac{1}{2 y^{2}}=1$
B. $\frac{1}{4 x^{2}}+\frac{1}{2 y^{2}}=1$
C. $\frac{1}{2 x^{2}}+\frac{1}{4 y^{2}}=1$
D. $\frac{1}{2 x^{2}}+\frac{1}{y^{2}}=1$

Answer: C

94. Which one of the following definite integrals represents the area included between the parabola $4 y=3 x^{2}$ and the straight line $2 y=3 x+12$?
A. $\int_{-2}^{4} \frac{3 x^{2}}{4} d x$
B. $\int_{0}^{4}\left(\frac{3 x+12}{2}-\frac{3 x^{2}}{4}\right) d x$
C. $\int_{-2}^{4}\left(\frac{3 x+12}{2}-\frac{3 x^{2}}{4}\right) d x$
D. $\int_{-2}^{2}\left(\frac{3 x+12}{2}-\frac{3 x^{2}}{4}\right) d x$

Answer: C

- Watch Video Solution

95. A normal to the parabola $y^{2}=5 x$ makes an angle 45° with the x-axis. Find the equation of the normal and the cooridnates
of its foot.
A. $\left(\frac{5}{4},-\frac{5}{2}\right)$
B. $\left(\frac{5}{2},-\frac{5}{4}\right)$
C. $\left(\frac{5}{4}, \frac{5}{2}\right)$
D. $\left(\frac{5}{2}, \frac{5}{4}\right)$

Answer: A

- Watch Video Solution

96. If the tangents to the graph of the function $y=f(x)$ make angle $\frac{\pi}{4}$ and $\frac{\pi}{3}$ with the x - axis at the point $x=2$ and $x=4$ respectively, then the value of $\int_{2}^{4} f^{\prime}(x) f^{\prime \prime}(x) d x$ is-
A. $f(4)$
B. $f(2)$
C. 0
D. 1

Answer: D

- Watch Video Solution

97. The maximum value of $x y$ when $x+2 y=8$ is
A. 20
B. 16
C. 8
D. 24

Answer: C

98. The function $f(x)=\tan ^{-1}(\sin x+\cos x), x>0$ is always an increasing function on the interval-
A. $(0, \pi)$
B. $\left(0, \frac{\pi}{2}\right)$
C. $\left(0, \frac{\pi}{4}\right)$
D. $\left(0, \frac{3 \pi}{4}\right)$

Answer: C

99. The points of extrema of the function $f(x)=\int_{0}^{x} \frac{\sin t}{t} d t$ in the domain $x>0$ are-
A. $(2 n+1) \frac{\pi}{2}, n=1,2,3, \ldots$
B. $(4 n+1) \frac{\pi}{2}, n=1,2,3, \ldots$
C. $(2 n+1) \frac{\pi}{4}, n=1,2,3, \ldots$
D. $n \pi, n=1,2,3, \ldots$

Answer: D

- Watch Video Solution

100. The minimum value of the function $f(x)=\sin x+\cos x$ is-
A. $-\sqrt{2}$
B. $-2 \sqrt{2}$
C. -1
D. $\sqrt{2}$

Answer: A

- Watch Video Solution

101. The perimeter of a sector is p, then the area of the sector is maximum when its radius is-
A. p
B. $\frac{p}{4}$
C. $\frac{p}{3}$
D. $\frac{p}{2}$

Answer: B
102. The value of $a(a \geq 3)$ for which the sum of the cubes of the roots of $x^{2}-(a-2) x+(a-3)=0$, assumes the least value is-
A. 3
B. 4
C. 5
D. none of these

Answer: D

- Watch Video Solution

103. If $f(x)=x^{3}+\frac{1}{x^{3}}(x \neq 0)$, then its greatest value is-
B. 1
C. 3
D. none of these

Answer: D

- Watch Video Solution

104. The nearest point on the line $3 x-4 y=25$ from the origin is
A. $(3,-4)$
B. $(-1,-7)$
C. $(-5,8)$
D. $(3,4)$
105. If the slope of the tangent at (x, y) to a curve passing through the point $(2,1)$ is $\frac{x^{2}+y^{2}}{2 x y}$, then the equation of the curve is-
A. $x^{2}-y^{2}=3 y$
B. $x\left(x^{2}-y^{2}\right)=6$
C. $2\left(x^{2}-y^{2}\right)=3 x$
D. $x\left(x^{2}+y^{2}\right)=6$

Answer: C

106. An open box, with a square base, is to be made out of a given quantity of metal sheet of area A^{2}, then the maximum volume of the box is-
A. $\frac{A^{3}}{3 \sqrt{3}}$
B. $\frac{2 A^{3}}{3 \sqrt{3}}$
C. $\frac{A^{3}}{6 \sqrt{3}}$
D. $\frac{A^{3}}{2 \sqrt{3}}$

Answer: C

- Watch Video Solution

107. If the radius of a sphere is measured as 5 m with an error of 0.02 m , then the approximate error in calculating its volume is-
A. π
B. 2π
C. 4π
D. 5π

Answer: B

- Watch Video Solution

108. If the volume of a sphere increases at a constant rate, then the rate at which its radius increases, is-
A. inversely proportional to the surface area of the sphere ,
B. a constant ,
C. proportional to the radius ,
D. inversely proportional to the radius.

Answer: A

- Watch Video Solution

109. Let $A(0,75), B(90,0), C(60,40)$ and $D(45,25)$ be the corner points of the bounded feasible region of a LPP. If the objective function is $Z=3 x+4 y$, then Z is maximum at corner point-
A. B
B. D
C. A
D. C

Answer: D

Watch Video Solution

110. If $f(x)=2 x^{2}+10 x-7$, then the approximate value of $f(2.05)$ is-
A. 24.08
B. 28.9
C. 21.9
D. 21.08

Answer: C

- Watch Video Solution

Question Paper 6

1. The value of the determinant $\left|\begin{array}{lll}441 & 442 & 443 \\ 445 & 446 & 447 \\ 449 & 450 & 451\end{array}\right|$ is -
A. $441 \times 446 \times 451$
B. 1
C. -1
D. 0

Answer: D

- Watch Video Solution

2. In complex plane z_{1}, z_{2} and z_{3} be three collinear complex
numbers, then the value of $\left|\begin{array}{lll}z_{1} & \bar{z}_{1} & 1 \\ z_{2} & \bar{z}_{2} & 1 \\ z_{3} & \bar{z}_{3} & 1\end{array}\right|$ is -
A. 1
B. -1
C. 0
D. 2

Answer: C

D Watch Video Solution

3. The solution of the equation
$\left|\begin{array}{ccc}\cos \theta & \sin \theta & \cos \theta \\ -\sin \theta & \cos \theta & \sin \theta \\ -\cos \theta & -\sin \theta & \cos \theta\end{array}\right|=0$ is -
A. $(2 n+1) \frac{\pi}{2}$
B. $n \pi$
C. $n \pi+(-1)^{n} \frac{\pi}{4}$
D. $1 n \pi \pm \frac{\pi}{4}$

- Watch Video Solution

4. If $\left|\begin{array}{lll}a+a_{1} x & 1+b_{1} x & 1+c_{1} x \\ 1+a_{2} x & 1+b_{2} x & 1+c_{2} x \\ 1+a_{3} x & 1+b_{3} x & 1+c_{3} x\end{array}\right|=A_{0}+A_{1} x+A_{2} x^{2}+A_{3} x^{3}$, then the value of A_{1} is -
A. $a_{1} a_{2} a_{3}+b_{1} b_{2} b_{3}+c_{1} c_{2} c_{3}$
B. 0
C. 1
D. -1

Answer: B

5. The roots of the equation $\left|\begin{array}{ccc}1 & 4 & 20 \\ 1 & -2 & 5 \\ 1 & 2 x & 5 x^{2}\end{array}\right|=0$ are -
A. $-1,-2$
B. $-1,2$
C. $1,-2$
D. 1,2

Answer: B

- Watch Video Solution

6. Let \vec{a} and \vec{b} are non-collinear vectors and
$\vec{p}=(x+4 y) \vec{a}+(2 x+y+1) \vec{b}$,
$\vec{q}=(-2 x+y+2) \vec{a}+(2 x-3 y-1) \vec{b}$
if $3 \vec{p}=2 \vec{q}$, then the values of x and y are -
A. $x=2, y=-1$
B. $x=-2, y=1$
C. $x=1, y=2$
D. $x=-2, y=-1$

Answer: A

- Watch Video Solution

7. The position vectors of the points A, B, C and D are $\hat{i}+3 \hat{j}-\hat{k},-\hat{i}-\hat{j}+\hat{k}, 2 \hat{i}-3 \hat{j}+3 \hat{k}$ and $-3 \hat{i}+2 \hat{j}+\hat{k}$ respectively. Then, the ratio of the moduli of the vectors $A B$ and $C D$ is -

$$
\text { A. } 2: 1
$$

B. $3: 2$
C. 1:2
D. $2: 3$

Answer: D

- Watch Video Solution

8. A function $f: R \rightarrow R$ is defined by $f(x)=(x-1)(x-2)$. Which one of the following is correct in respect of the function?
A. it is one-one but not onto
B. it is onto but not one-one
C. it is neither one-one nor onto
D. it is both one-one and onto

Answer: C

- Watch Video Solution

9. If $f(x)=a x+b$ and $g(x)=c x+d$ are such that $(f \circ g)(x)=(g \circ f)(x)$, then which one of the following is correct ?
A. $f(b)=g(a)$
B. $f(c)=g(d)$
C. $f(d)=g(b)$
D. $f(a)=g(c)$

Answer: C

- Watch Video Solution

10. Let $f(x)=[x]$ where $[x]$ denotes the greatest integer in x. Which one of the following is correct ?
A. both domain and range of $f(x)$ are sets of real numbers,
B. domain of $f(x)$ is the set of real numbers and its range is the set of integers,
C. both domain and range of $f(x)$ are sets of integers,
D. none of these

Answer: B

- Watch Video Solution

11. The value of $\left(\sin ^{-1} \frac{4}{5}+2 \tan ^{-1} \frac{1}{3}\right)$ is -
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{2 \pi}{3}$
D. $\frac{3 \pi}{4}$

Answer: A

- Watch Video Solution

12. If $\sin \left[\sin ^{-1} \frac{1}{5}+\cos ^{-1} x\right]=1$, then the value of x is -
A. $\frac{2}{5}$
B. 1
C. $\frac{1}{3}$
D. $\frac{1}{5}$

Answer: D

D Watch Video Solution

13. If $f(x)=\sin ^{2} x$ and and composite function $g\{f(x)\}=|\sin x|$, then the function $g(x)$ is equal to -
A. $\sqrt{x+1}$
B. \sqrt{x}
C. $-\sqrt{x}$
D. $\sqrt{x-1}$

Answer: B

D Watch Video Solution

14. If $f(2 x+3)=\sin x+2^{x}$, then the value of $f(4 m-2 n+3)$ is -
A. $\sin (m-2 n)+2^{2 m-n}$
B. $\sin (2 m-n)+2^{\frac{m-n}{2}}$
C. $\sin (m-2 n)+2^{\frac{m-n}{2}}$
D. $\sin (2 m-n)+2^{2 m-n}$

Answer: D

- Watch Video Solution

15. If $l(x)$ is the integer not less than x and $g(x)$ is the greatest integer not greater than x , then $\lim x \rightarrow \pi+e[l(x)+g(x)]$ is equal to -
A. 10
B. 11
C. 9
D. 12

Answer: B

- Watch Video Solution

16. It is known that the probability of a male birth is $\frac{1}{2}$, then the probability of a least one boy and one girl in a family of 6 children is -
A. $\frac{31}{32}$
B. $\frac{63}{64}$
C. $\frac{57}{64}$
D. none of these

Answer: A

17. Let X represent the difference between the number of heads and the number of tails obtained when an unbiased coin is tossed 7 times. Then, the possible values of X are -
A. $0,2,4,6$
B. $0,1,2,3,4$
C. $1,3,5,7$
D. none of these

Answer: C

18. If A is a square matrix of order 3×3 and k a scalar, then $\operatorname{adj}(\mathrm{kA})$ is equal to which of the following ?
A. $k \operatorname{adj} \mathrm{~A}$
B. $k^{2} \operatorname{adj} A$
C. $k^{3} \operatorname{adj} A$
D. $2 \mathrm{k} \operatorname{adj} \mathrm{A}$

Answer: B

- Watch Video Solution

19. If $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$ and its inverse $B=\left[b_{i j}\right]$, then the element b_{23} of matrix B is -
A. -1
B. 1
C. -2
D. 2

Answer: A

- Watch Video Solution

20. The inverse of the matrix $\left[\begin{array}{rr}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]$ is -
A. $\left[\begin{array}{ll}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]$
B. $\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right]$
C. $\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]$
D. $\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]$

Answer: D

D Watch Video Solution

21. If $\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right]\left[\begin{array}{cc}-1 & -2 \\ -2 & 0 \\ 0 & -4\end{array}\right]\left[\begin{array}{ccc}-4 & -5 & -6 \\ 0 & 0 & 1\end{array}\right]$, then the value of a_{22} is -
A. 40
B. -40
C. -20
D. 20

(-) Watch Video Solution

22. If $2 X+\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}3 & 8 \\ 7 & 2\end{array}\right]$, then the matrix X is equal to -
A. $\left[\begin{array}{cc}2 & 6 \\ 4 & -2\end{array}\right]$
B. $\left[\begin{array}{ll}1 & -3 \\ 2 & -1\end{array}\right]$
C. $\left[\begin{array}{cc}1 & 3 \\ 2 & -1\end{array}\right]$
D. $\left[\begin{array}{ll}2 & -6 \\ 4 & -2\end{array}\right]$

Answer: C

- Watch Video Solution

23. If $A=\left[\begin{array}{ll}\alpha & 2 \\ 2 & \alpha\end{array}\right]$ and $\left|A^{3}\right|=125$, then the value of α is -
A. ± 2
B. ± 3
C. ± 5
D. 0

Answer: B

- Watch Video Solution

24. From a set of 100 cards numbered 1 to 100 , one card is drawn
at random. The probability that the number obtained on the card is divisible by 6 or 8 but not by 24 is -
A. $\frac{6}{25}$
B. $\frac{1}{5}$
C. $\frac{2}{5}$
D. $\frac{8}{25}$

Answer: B

- Watch Video Solution

25. Two persons A and B take turns in throwing a pair of dice. The first person to throw 9 from both will get the prize. If A throws first then the probability of B winning the prize is -
A. $\frac{8}{17}$
B. $\frac{9}{17}$
C. $\frac{4}{9}$
D. $\frac{5}{9}$

Answer: A

26. A fair coin is tossed n times. The probability of getting head at least once is greater than 0.8. Then the least value of n is -
A. 5
B. 4
C. 3
D. 6

Answer: C

D Watch Video Solution

27. A card is drawn from an ordinary pack of 52 cards and a gambler bets that either a spade or an ace is going to appear.

Then the odds against his winning the prize are -
A. $3: 10$
B. $10: 3$
C. $4: 9$
D. 9:4

Answer: D

- Watch Video Solution

28. Out of 30 consecutive natural numbers, 2 are chosen at random. The probability that their sum is odd is -
A. $\frac{14}{29}$
B. $\frac{15}{29}$
C. $\frac{12}{29}$
D. $\frac{10}{29}$

Answer: B

- Watch Video Solution

29. A relation R is defined on the set of integers Z as follows:
$R\{(x, y): x, y \in Z$ and $x-y$ is odd $\}$
Then the relation R on Z is -
A. reflexive
B. symmetric
C. an equivalence relation
D. transitive

Answer: C

30. The projection of vector $\vec{\alpha}=2 \hat{i}+3 \hat{j}+2 \hat{k}$ on the vector $\vec{\beta}=\hat{i}+2 \hat{j}+\hat{k}$ is -
$5 \sqrt{6}$
A. $\frac{}{3}$
B. $\frac{5}{2} \sqrt{6}$
C. $\frac{4}{3} \sqrt{5}$
D. none of these

Answer: A

- Watch Video Solution

31. If the position vectors of the points A, B, C, D are $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\hat{i}-6 \hat{j}-\hat{k}$ respectively, then the angle between the vectors $A B$ and $C D$ is -
A. $\frac{\pi}{3}$
B. π
C. $\frac{\pi}{4}$
D. $\frac{2 \pi}{3}$

Answer: B

- Watch Video Solution

32. Let $O P=21$ where O is the origin, if the direction radios of $O P$ are proportional to $6,-2,3$, then the coordinates of P are -
A. $(6,-2,-3)$
B. $(-6,2,3)$
C. $(12,-4,-6)$
D. $(18,-6,9)$

Answer: D

- Watch Video Solution

33. The vector equation of the line passing through the point (3, $-1,2)$ and parallel to the vector $2 \hat{i}-3 \hat{j}+4 \hat{k}$ is -
A. $\vec{r}=2 \hat{i}-3 \hat{j}+4 \hat{k}+\lambda(3 \hat{i}-\hat{j}+2 \hat{k})$
B. $\vec{r}=-3 \hat{i}+\hat{j}-2 \hat{k}+\lambda(2 \hat{i}-3 \hat{j}+4 \hat{k})$
C. $r=3 \hat{i}-\hat{j}+2 \hat{k}+\lambda(\hat{i}+2 \hat{j}-2 \hat{k})$
D. $\vec{r}=3 \hat{i}-\hat{j}+2 \hat{k}+\lambda(2 \hat{i}-3 \hat{j}+4 \hat{k})$ where λ is a scalar

Answer: D

- Watch Video Solution

34. The angle between the pair of lines $\frac{x-2}{1}=\frac{y+3}{-2}=\frac{z-4}{2}$ and $\frac{x+1}{-6}=\frac{y-2}{-3}=\frac{z+5}{2}$ is -
A. $\cos ^{-1} \frac{1}{7}$
B. $\cos ^{-1} \frac{4}{21}$
C. $\cos ^{-1} \frac{2}{3}$
D. $\cos ^{-1} \frac{8}{21}$

Answer: B

D Watch Video Solution

35. The cartesian equation of a straight line is $\frac{x-3}{4}=\frac{y+2}{5}=\frac{z-4}{3}$, its vector form will be -
A. $\vec{r}=4 \hat{i}+5 \hat{j}+3 \hat{k}+\lambda(3 \hat{i}-2 \hat{j}+4 \hat{k})$
B. $\vec{r}=-3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(4 \hat{i}+5 \hat{j}+3 \hat{k})$
C. $\vec{r}=3 \hat{i}-2 \hat{j}+4 \hat{k}+\lambda(4 \hat{i}+5 \hat{j}+3 \hat{k})$
D. none of these

Answer: C

- Watch Video Solution

36. Three vectors $\vec{a}, \vec{b}, \vec{c}$ are such that $|\vec{a}|=3,|\vec{b}|=2,|\vec{c}|=6$, if each vector is perpendicular to the sum of the other two vectors,
then the value of $|\vec{a}+\vec{b}+\vec{c}|$ is -
A. $4 \sqrt{3}$
B. $5 \sqrt{2}$
C. 14
D. 7

Answer: D

Watch Video Solution
37. The value of $\hat{i} \cdot(\hat{k} \times \hat{j})+\hat{j} \cdot(\hat{i} \times \hat{k})+\hat{k} \cdot(\hat{j} \times \hat{i})$ is -
A. -3
B. -1
C. 1
D. 3

Answer: A

Watch Video Solution
38. The angle between the planes $x-2 y+2 z=5$ and $2 x-3 y+6 z=11$ is -
A. $\cos ^{-1} \frac{5}{21}$
B. $\cos ^{-1} \frac{20}{21}$
C. $\cos ^{-1} \frac{4}{21}$
D. $\cos ^{-1} \frac{4}{7}$

Answer: B

- Watch Video Solution

39. If $|\vec{a} \times \vec{b}|=3$ and $\vec{a} \cdot \vec{b}=4$, then the value of $|\vec{a}|^{2}|\vec{b}|^{2}$ is -
A. 49
B. 12
C. 25
D. 7

Answer: C

- Watch Video Solution

40. If the equation of a straight line is $6 x-2=3 y+1=2 z-2$, then direction cosines of the line are -
A. $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$
B. $\frac{6}{7}, \frac{3}{7}, \frac{2}{7}$
C. $-\frac{2}{3}, \frac{1}{3},-\frac{2}{3}$
D. none of these

Answer: A

41. If $y=\sin \left(\frac{\pi}{6} e^{x y}\right)$, then the value of $\frac{d y}{d x}$ at $x=0$ is -
A. $\frac{\sqrt{3}}{24}$
$\sqrt{3} \pi$
B. 24
C. $\frac{\sqrt{3}}{12}$
D. $\frac{\sqrt{3} \pi}{12}$

Answer: B

- Watch Video Solution

42. In the mean value theorem
$f(a+h)=f(a)+h f^{\prime}(a+\theta h)(0<\theta<1), \quad$ if $\quad f(x)=\sqrt{x}, a=1, h=3$,
then the value of θ is -
A. $\frac{5}{12}$
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer: A

- Watch Video Solution

43. If $y=\log \left(\tan \frac{x}{2}\right)+\sin ^{-1}(\cos x)$, then the value of $\frac{d y}{d x}$ is -
A. $\sec x+1$
B. $\operatorname{cosec} x+1$
C. $\operatorname{cosec} x-1$
D. $\sec x-1$

Answer: C

- Watch Video Solution

44. Let $f(x)=4 x^{3}+x^{2}-4 x-1$. The equation $\mathrm{f}(\mathrm{x})=0$ has roots 1 and
$\left(-\frac{1}{4}\right)$. Find the root of $f^{\prime}(x)=0$ mentioned in Rolle's theorem.
A. $\frac{1}{3}$
B. $\frac{2}{5}$
C. $\frac{3}{4}$
D. $\frac{1}{2}$

Answer: D

- Watch Video Solution

45. At $x=0$ the function $f(x)=x^{3}+1$ has -
A. a maximum value
B. a minimum value
C. a point of inflection
D. none of the above

Answer: c

- Watch Video Solution

46. If $y=\frac{1}{1+x+x^{2}+x^{3}}$, then the value of $\frac{d^{2} y}{d x^{2}}$ at $x=0$ is -
A. 0
B. 1
C. -1
D. 2

Answer: A

- Watch Video Solution

47. If $y=\sin x \log \left(\tan \frac{x}{2}\right)$ then the value of $\frac{d^{2} y}{d x^{2}}+y$ is -
A. $-\cot x$
B. $\tan x$
C. $\cot x$
D. $-\tan x$

Answer: C

48. If t is a parameter and $x=t^{2}+2 t, y=t^{3}-3 t$, then the value of $\frac{d^{2} y}{d x^{2}}$ at $t=1$ is -
A. $-\frac{3}{8}$
B. $\frac{3}{8}$
C. $-\frac{3}{4}$
D. $\frac{3}{4}$

Answer: B

- Watch Video Solution

49. $\frac{d}{d x}\left[\sin ^{2} \cot ^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right)\right]$ is equal to -
A. $-\frac{1}{2}$
B. -1
C. 1
D. $\frac{1}{2}$

Answer: D

- Watch Video Solution

50. If $x=\sin ^{-1}\left(3 t-4 t^{3}\right)$ and $y=\cos ^{-1} \sqrt{1-t^{2}}$ then $\frac{d y}{d x}=$
A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. 2
D. $\frac{3}{2}$

Answer: A

- Watch Video Solution

51. The derivative of $\sin ^{2} x$ w.r.t. $\cos ^{2} x$ is -
A. $\tan ^{2} x$
B. $\tan x$
C. $-\tan x$
D. none of these

Answer: D

- Watch Video Solution

52. If $y=\operatorname{cosec}^{-1}\left(\frac{x+1}{x-1}\right)+\cos ^{-1}\left(\frac{x-1}{x+1}\right)$, then $\frac{d y}{d x}$ is equal to -
A. 1
B. π
C. 0
D. $\frac{\pi}{2}$

Answer: C

- Watch Video Solution

53. If $y=\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$ and $z=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$, then $\frac{d y}{d z}$ is equal to -
A. $\frac{1}{8}$
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. 1

Answer: B

- Watch Video Solution

54. If $f(x)=\frac{1}{1-x}$, then the derivative of the composite function $\mathrm{f}[f\{f(\mathrm{x})\}]^{\prime}$ is equal to
A. 1
B. $\frac{1}{2}$
C. 0
D. 2

Answer: A

55. The value of $\left[\sum_{n=1}^{10} \int_{-2 n-1}^{-2 n} \sin ^{27} x d x+\sum_{n=1}^{10} \int_{2 n}^{2 n+1} \sin ^{27} x d x\right]$ is equal to -
A. 0
B. 54
C. $(27)^{2}$
D. -54

Answer: A

D Watch Video Solution

56. The value of the integral $\int x^{3} \log x d x$ is equal to -
A. $\frac{1}{8}\left(x^{4} \log x-4 x^{4}\right)+c$
B. $\frac{1}{16}\left(4 x^{4} \log x-x^{4}\right)+c$
C. $\frac{1}{16}\left(4 x^{4} \log x+x^{4}\right)+c$
D. $\frac{1}{4} x^{4} \log x-x^{4}+c$

Answer: B

- Watch Video Solution

57. The value of $\int_{-\frac{1}{2}}^{\frac{1}{2}}\left\{[x]+\log \left(\frac{1+x}{1-x}\right)\right\} d x$ is equal to -
A. 0
B. 1
C. $-\frac{1}{2}$
D. $2 \log \frac{1}{2}$

View Text Solution

58. If $I_{n}=\int(\log x)^{n} d x$, then the value of $\left(I_{n}+n I_{n-1}\right)$ is -
A. $(\log x)^{n-1}+c$
B. $n(\log x)^{n}+c$
C. $(x \log x)^{n}+c$
D. $x(\log x)^{n}+c$

Answer: D

D Watch Video Solution

59. The value of $\int_{0}^{\infty} \frac{x d x}{(1+x)\left(1+x^{2}\right)}$ is equal to -
A. $\frac{\pi}{2}$
B. 0
C. $\frac{\pi}{4}$
D. 1

Answer: C

- Watch Video Solution

60. The value of $\int \frac{e^{x} d x}{\left(e^{x}+2\right)\left(e^{x}+1\right)}$ is equal to -
A. $\log \frac{e^{x}+1}{e^{x}+2}+c$
B. $\log \frac{e^{x}+2}{e^{x}+1}+c$
C. $\frac{e^{x}+1}{e^{x}+2}+c$
D. $\frac{e^{x}+2}{e^{x}+1}+c$

Answer: A

D Watch Video Solution

61. The value of $\int \frac{d x}{\cos x-\sin x}$ is equal to -
A. $\frac{1}{\sqrt{2}} \log \left|\tan \left(\frac{x}{2}-\frac{3 \pi}{8}\right)\right|+c$
B. $\frac{1}{\sqrt{2}} \log \left|\cot \frac{x}{2}\right|+c$
C. $\frac{1}{\sqrt{2}} \log \left|\tan \left(\frac{x}{2}+\frac{3 \pi}{8}\right)\right|+c$
D. $\frac{1}{\sqrt{2}} \log \left|\tan \left(\frac{x}{2}-\frac{\pi}{8}\right)\right|+c$

Answer: C

- Watch Video Solution

62. The value of $\int \frac{\pi}{\frac{\pi}{2}} \frac{(\sin x+\cos x)^{2}}{\sqrt{1+\sin 2 x}} d x$ is equal to -
A. 1
B. 2
C. 0
D. 3

Answer: B

- Watch Video Solution

63. If $\int_{0}^{\pi} x f(\sin x) d x=A \int^{\frac{\pi}{2}} f(\sin x) d x$, then the value of A is -
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. π
D. 2π

Answer: C

- Watch Video Solution

64. The value of $\int \frac{\left(x-x^{3}\right)^{\frac{1}{3}}}{x^{4}} d x$ is equal to -
A. $-\frac{3}{8}\left(\frac{1}{x^{2}}-1\right)^{\frac{4}{3}}+c$
B. $\frac{3}{8}\left(\frac{1}{x^{2}}-1\right)^{\frac{4}{3}}+c$
C. $\frac{1}{8}\left(1-\frac{1}{x^{2}}\right)^{\frac{4}{3}}+c$
D. $\frac{1}{x^{2}}\left(x-x^{3}\right)^{\frac{4}{3}}+c$

Answer: A

- Watch Video Solution

65. The value of $\int e^{x \log a} \cdot e^{x} d x$ is equal to -
A. $(a e)^{x}+c$
B. $\frac{e^{x}}{1+\log a}+c$
C. $\frac{e^{x}}{\log a}+c$
D. $\frac{(a e)^{X}}{\log (a e)}+c$

Answer: D

- Watch Video Solution

66. The value of $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} x^{3} \sin ^{4} x d x$ is equal to -
A. $\frac{\pi}{4}$
B. 0
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: B

- Watch Video Solution

67. If $f(x)=\cos x-\cos ^{2} x+\cos ^{3} x-\ldots \infty$, then the value of $\int f(x) d x$ is equal to -
A. $x-\tan \frac{x}{2}+c$
B. $\frac{1}{2}\left(x-\tan \frac{x}{2}\right)+c$
C. $x+\tan \frac{x}{2}+c$
D. $x-\frac{1}{2} \tan \frac{x}{2}+c$

Answer: A

- Watch Video Solution

68. The value of $\int_{0}^{1} \frac{x d x}{\left(x+\sqrt{1-x^{2}}\right) \sqrt{1-x^{2}}}$ is equal to -

$$
\left(x+\sqrt{1-x^{2}}\right) \sqrt{1-x^{2}}
$$

A. 0
B. 1
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: C

- Watch Video Solution

69. The value of $\int_{0}^{2 a} \frac{f(x)}{f(x)+f(2 a-x)} d x$ is equal to -
A. $f(a)$
B. $\mathrm{f}(\mathrm{O})$
C. 2a
D. a

Answer: D

- Watch Video Solution

70. The value of $\int\left\{\frac{\log x-1}{1+(\log x)^{2}}\right\}^{2} d x$ is equal to-
A. $\frac{x e^{x}}{1+x^{2}}+c$
B. $\frac{x}{1+(\log x)^{2}}+c$
C. $\frac{\log x}{1+(\log x)^{2}}+c$
D. $\frac{x}{x^{2}+1}+c$

Answer: B

- Watch Video Solution

71. The value of $\int_{\pi}^{2 \pi}[2 \cos x] d x$ is equal to -
A. $-\frac{\pi}{2}$
B. $\frac{\pi}{2}$
C. π
D. $\frac{3 \pi}{2}$

Answer: A
72. The order and degree of the differential equation $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}=\frac{d^{2} y}{d x^{2}}$ are respectively -
A. $(2,3)$
B. $\left(\frac{3}{2}, 2\right)$
C. $(2,2)$
D. $(3,4)$

Answer: C

- Watch Video Solution

73. The differential equation of the system of circles touching the y-axis at the origin, is -
A. $x^{2}+y^{2}-2 x y \frac{d y}{d x}=0$
B. $x^{2}+y^{2}+2 x y \frac{d y}{d x}=0$
C. $x^{2}-y^{2}-2 x y \frac{d y}{d x}=0$
D. $x^{2}-y^{2}+2 x y \frac{d y}{d x}=0$

Answer: D

- Watch Video Solution

74. The integrating factor of the differential equation $\cos x \frac{d y}{d x}+y \sin x=1$ is -
A. $\cos x$
B. secx
C. $\tan x$
D. $\cot x$

Answer: B

- Watch Video Solution

75. The general solution of $y^{2} d x+\left(x^{2}-x y+y^{2}\right) d y=0$ is -
A. $\tan ^{-1}\binom{\frac{x}{y}}{y}+\log |y|+c=0$
B. $2 \tan ^{-1}\left(\frac{x}{y}\right)+\log |x|+c=0$
C. $\log \left(y+\sqrt{x^{2}+y^{2}}\right)+\log |y|+c=0$
D. $\log \left(x+\sqrt{x^{2}+y^{2}}\right)+\log |x|=c$

Answer: A

76. The general solution of the linear differential equation $\cos ^{2} x \frac{d y}{d x}+y=\tan x$ is -
A. $y=\tan x+c e^{\tan x}$
B. $y=\tan x+1+c e^{\tan x}$
C. $y=\tan x-1+c e^{-\tan x}$
D. $y=\tan x+1+c e^{-\tan x}$

Answer: C

- Watch Video Solution

77. The value of $\lim x \rightarrow \infty \sqrt{x}(\sqrt{x+2}-\sqrt{x})$ is -
A. 2
B. -1
C. $\frac{1}{2}$
D. 1

Answer: D

- Watch Video Solution

78. The differential equation obtained by eliminating constants A and B from $\mathrm{y}=A e^{2 x}+B e^{-\frac{x}{2}}$ is -
A. $2 \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}-2 y=0$
B. $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=0$
C. $2 \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}-2 y=0$
D. $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=0$

79. Solution of the differential
 $\tan y \frac{d y}{d x}=\sin (x+y)+\sin (x-y)$ is -

A. $\sec y-2 \cos x=c$
B. $\sec y+2 \cos x=c$
C. $\cos y-2 \sin x=c$
D. $\sec y+2 \sin x=c$

Answer: B

- Watch Video Solution

80. If $f(x)=\left\{\begin{array}{ll}\frac{\sin 5 x}{x^{2}+2 x} & \text { when } x \neq 0 \\ k+\frac{1}{2} & \text { when } x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then the
value of k is-
A. $\frac{3}{2}$
B. -2
C. 1
D. 2

Answer: D

- Watch Video Solution

81. The equation of the tangent to the parabola $y^{2}=4 x+5$ which is parallel to the line $y=2 x+7$ is-
A. $y=2 x-3$
B. $y=2 x+3$
C. $y=2 x-5$
D. $y=2 x+5$

Answer: B

- Watch Video Solution

82. The slope of the normal to the curve $y=\frac{2 x}{1+x^{2}}$ at $\mathrm{y}=1$ is-
A. 1
B. 0
C. 2
D. ∞

Answer: D

- Watch Video Solution

83. A function $y=f(x)$ is defined as follows:
$y=f(x)=\left\{\begin{array}{l}x^{2} \text { when } 0 \leq x \leq 1 \\ \sqrt{x} \text { when } x \geq 1\end{array}\right.$
Then the area (in square unit) above the x - axis included between the curve $y=f(x)$ and the line $x=4$ is-
A. $\frac{15}{3}$
B. 4
C. 5
D. 6

Answer: C

84. The coordinates of the point on the parabola $x=3 y^{2}+4 y+2$ at which the slope of the normal is 8 , are-
A. $(6,-2)$
B. $(2,0)$
C. $(1,-1)$
D. $(9,1)$

Answer: A

- Watch Video Solution

85. The area (in square unit) of the region bounded by the curve
$9 x^{2}+4 y^{2}=36$ is-
A. 36π
B. 9π
C. 6π
D. 4π

Answer: C

- Watch Video Solution

86. If θ is the acute angle of intersection at a real point of intersection of the circle $x^{2}+y^{2}=5$ and the parabola $y^{2}=4 x$, then the value of $\tan \theta$ is-
A. 1
B. $\sqrt{3}$
C. $\frac{1}{\sqrt{3}}$
D. 3

Answer: D

- Watch Video Solution

87. The area (in square unit) of the triangle bounded by the lines
$y=2, x+y=0$ and $x-y=0$ is-
A. 4
B. 8
C. 12
D. 16

Answer: B

88. If the tangent to the curve $y^{2}=x^{3}$ at the point $\left(m^{2}, m^{3}\right)$ is also the normal to the curve at $\left(M^{2}, M^{3}\right)$, then the value of mM is-
A. $-\frac{4}{9}$
B. $-\frac{1}{3}$
C. $-\frac{2}{9}$
D. $-\frac{1}{9}$

Answer: A

D Watch Video Solution

89. If A is the area of the region bounded by the curve $y=\sqrt{3 x+4}, x$ - axis and the lines $x=-1$ and $x=4$ and B is the
area bounded by the curve $y^{2}=3 x+4$ and the lines $x=-1$ and $x=4$, then the value of A : B is-
A. $1: 1$
B. $2: 1$
C. 2:3
D. 3:2

Answer: A

- Watch Video Solution

90. The locus of a point $P(\alpha, \beta)$ moving under the condition that
the line $y=\alpha x+\beta$ is a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is a/an-
A. parabola
B. hyperbola
C. circle
D. ellipse

Answer: B

- Watch Video Solution

91. The curves $y=\sin x$ and $y=\cos x$ intersect infinitely many times giving bounded regions of equal areas. The area (in square unit) of one such region is-
A. $4 \sqrt{2}$
B. $3 \sqrt{2}$
C. $\sqrt{2}$
D. $2 \sqrt{2}$

Answer: D

- Watch Video Solution

92. From a point (d, 0) three normals are drawn to the parabola
$y^{2}=x$, then
A. 30°
B. 45°
C. 90°
D. 60°

Answer: C

- Watch Video Solution

93. The condition that the line $a x+b y+c=0$ is a tangent to the parabola $y^{2}=4 a x$ is-
A. $a=b$
B. $b^{2}=c$
C. $b^{2}=a$
D. $a^{2}=b$

Answer: B

D Watch Video Solution

94. The normal to the curve $x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$ at any point θ is such that-
A. it passes through the origin
B. it passes through ($a,-\mathrm{a}$)
C. it is at a constant distance from the origin
D. it makes angle $\left(\frac{\pi}{4}+\theta\right)$ with the x - axis

Answer: C

- Watch Video Solution

95. If the tangent to the parabola $y=x^{2}+6$ at the point $(1,7)$ also touches the circle $x^{2}+y^{2}+16 x+12 y+c=0$, then the coordinates of the point of contact are-
A. $(-1,-2)$
B. $(2,3)$
C. $(6,-7)$
D. $(-6,-7)$

Answer: D

- Watch Video Solution

96. The parabolas $y^{2}=4 x$ and $x^{2}=4 y$ divide the square region bounded by the line $x=4, y=4$ and the coordinate axes into three parts. If S_{1}, S_{2}, S_{3} are respectively the areas of these three parts numbered from top to bottom then $S_{1}: S_{2}: S_{3}$ is-
A. $1: 1: 1$
B. $2: 1: 2$
C. $1: 2: 1$
D. 1:2:3

Answer: A

97. The greatest value of the function $f(x)=x^{2} \log \frac{1}{x}$ is-
A. $\frac{1}{e}$
B. $\frac{1}{2 e}$
C. e
D. 2 e

Answer: B

- Watch Video Solution

98. If $f(x)=x^{3}-6 x^{2}+9 x+3$ be a decreasing function, then x lies in-
B. $(-\infty,-1) \cup(3, \infty)$
C. $(3, \infty)$
D. none of these

Answer: A

- Watch Video Solution

99. The minimum value of the function $f(\theta)=6 \cos \theta+8 \sin \theta+11$ is -
A. 2
B. $\frac{1}{2}$
C. 1
D. 0

Answer: C

100. The abscissa of the point on the parabola $y^{2}=2 p x$ which is nearest to the point $(a, 0)$ is-
A. $a+p$
B. $-(a+p)$
C. $p-a$
D. $a-p$

Answer: D

- Watch Video Solution

101. The value of a for which the function $(a+2) x^{3}-3 a x^{2}+9 a x-1$ decreases monotonically throughout for all real values of x, are-
A. $a<-2$
B. $a>-2$
C. $-3<a<0$
D. $a \leq-3$

Answer: D

- Watch Video Solution

102. A minimum value of the function $f(x)=\int_{0}^{x} t e^{-t^{2}} d t$ is-
A. 0
B. 1
C. 2
D. -2

Answer: A

- Watch Video Solution

103. If $f(x)=x^{3}+a x^{2}+b x+c$ is an increasing function for all real values of x then-
A. $a^{2}>3 b$
B. $a^{2}<3 b$
C. $b^{2}>3 a$
D. $b^{2}<3 a$

Answer: B

- Watch Video Solution

104. The area (in square unit) in the first quadrant bounded by the parabolas $y^{2}=4 x, y^{2}=16 x$ and the straight line $x=9$ is-
A. 9
B. 18
C. 36
D. 72

Answer: C

D Watch Video Solution

105. The slope of the tangent at (x, y) to a curve passing through

$$
\left(1, \frac{\pi}{4}\right) \text { is given by } \frac{y}{x}-\cos ^{2}\left(\frac{y}{x}\right) \text {, then the equation of the curve is- }
$$

$$
\text { A. } y=\tan ^{-1}\left[\log \left(\frac{e}{x}\right)\right]
$$

B. $y=x \tan ^{-1}\left[\log \left(\frac{x}{e}\right)\right]$
C. $y=x \tan ^{-1}\left[\log \left(\frac{e}{x}\right)\right]$
D. $y=\tan ^{-1}\left[\log \left(\frac{x}{e}\right)\right]$

Answer: C

- Watch Video Solution

106. The time rate of change of the radius of a sphere is $\frac{1}{2 \pi}$. When its radius is 5 cm , then the rate of change of the area of the surface (in square cm) of the sphere with time will be-
A. 25
B. 15
C. 24
D. 20

Answer: D

- Watch Video Solution

107. The rate at which microbe multiply is proportional to the instantaneous number present. If the original number doubles in

2 hours, then they will triple in-
A. $4 \cdot \frac{\log 2}{\log 3}$ hours
B. $2 \cdot \frac{\log 3}{\log 2}$ hours
C. $5 \cdot \frac{\log 2}{\log 3}$ hours
D. $\frac{\log 3}{\log 2}$ hours

Answer: B

108. A spherical iron ball of radius 10 cm is coated with layer of ice of uniform thickness that melts at a rate of $50 \mathrm{~cm}^{3} / \mathrm{min}$. When the thickness of ice is 5 cm , then the rate at which the thickness of ice (in cm / min unit) decreases, is-
A. $\frac{1}{18 \pi}$
B. $\frac{1}{36 \pi}$
C. $\frac{5}{6 \pi}$
D. $\frac{1}{54 \pi}$

Answer: A

D Watch Video Solution

109. The length of a longest interval in which the function $f(x)=3 \sin x-4 \sin ^{3} x$ is increasing, is-
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. π
D. $\frac{3 \pi}{2}$

Answer: B

- Watch Video Solution

110. The vertex of the parabola $x^{2}-6 x+4 y+1=0$ is
A. $(2,3)$
B. $(3,2)$
C. $(3,1)$
D. none of these

Answer: B

- Watch Video Solution

Question Paper 7

1. The inverse of the matrix $\left[\begin{array}{lll}1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1\end{array}\right]$ is -
A. $\left[\begin{array}{ccc}1 & 0 & 0 \\ -a & 1 & 0 \\ a c-b & -c & 1\end{array}\right]$
B. $\left[\begin{array}{ccc}1 & 0 & 0 \\ -a & 1 & 0 \\ -b & -c & 1\end{array}\right]$
C. $\left[\begin{array}{ccc}1 & -a & a c-b \\ 0 & 1 & -c \\ 0 & 0 & 1\end{array}\right]$
D. $\left[\begin{array}{ccc}1 & 0 & 0 \\ -a & 1 & 0 \\ a c & b & 1\end{array}\right]$

Answer: A

- Watch Video Solution

2. If $A=\left|a_{i j}\right|$ and $A_{i j}$ denotes the cofactor of $a_{i j}$, then which of the following is not equal to zero ?
A. $a_{31} A_{11}+a_{32} A_{12}+a_{33} A_{13}$
B. $a_{11} A_{31}+a_{12} A_{32}+a_{13} A_{33}$
C. $A_{21} A_{21}+a_{22} A_{22}+a_{23} A_{23}$
D. $a_{31} A_{21}+a_{32} A_{22}+a_{33} A_{23}$

Answer: C

- Watch Video Solution

3. The minors of (-4) and 9 and the cofactors of (-4) and 9 in
matrix $\left[\begin{array}{ccc}-1 & -2 & 3 \\ -4 & -5 & -6 \\ -7 & 8 & 9\end{array}\right]$ are respectively -
A. $42,3,-42,3$
B. $-42,-3,42,-3$
C. $42,3,-42,-3$
D. $42,3,42,3$

Answer: B

4. If $\left|\begin{array}{ccc}0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0\end{array}\right|=0$ then the value of x is -
A. $a+b+c$
B. $a+b c$
C. $b+c a$
D. 0

Answer: D

- Watch Video Solution

5. If the system of equations $x+y+z=6, x+2 y+k z=0$ and $x+2 y+3 z=10$ has no solution, then the value of k is -
A. 5
B. 4
C. 3
D. 2

Answer: C

- Watch Video Solution

6. If $A=\left[\begin{array}{cc}-i & 0 \\ 0 & i\end{array}\right]$ then $A^{T} A$ is equal to -
A. A
B. $-A$
C. I
D. $-I$

Watch Video Solution

7. If $A=\left[\begin{array}{ll}0 & 3 \\ 4 & 5\end{array}\right]$ and $k A=\left[\begin{array}{cc}0 & 4 a \\ 3 b & 60\end{array}\right]$, then the values of k, a and b are respectively -
A. $12,9,16$
B. $9,12,16$
C. $12,9,12$
D. 16, 12, 9

Answer: A

- Watch Video Solution

8. The value of the determinant $\left|\begin{array}{lll}1 & a & a^{2}-b c \\ 1 & b & b^{2}-c a \\ 1 & c & c^{2}-a b\end{array}\right|$ is -
A. abc
B. $(a+b+c)(b c+c a+a b)$
C. 0
D. $(a-b)(b-c)(c-a)$

Answer: C

- Watch Video Solution

9. If the matrix A stisfies the equation $\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \cdot A=\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right]$, then which one of the following represents A ?
A. $\left[\begin{array}{cc}1 & 4 \\ -1 & 0\end{array}\right]$
B. $\left[\begin{array}{cc}1 & 4 \\ 0 & -1\end{array}\right]$
C. $\left[\begin{array}{cc}1 & -4 \\ 1 & 0\end{array}\right]$
D. $\left[\begin{array}{ll}1 & -2 \\ 0 & -1\end{array}\right]$

Answer: B

- Watch Video Solution

10. For any matrix A , if A^{-1} exists then which of the following is not true?
A. $\left(A^{-1}\right)^{-1}=A$
B. $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
C. $\left(A^{2}\right)^{-1}=\left(A^{-1}\right)^{2}$
D. $\left|A^{-1}\right|=|A|^{-1}$

Answer: C

- Watch Video Solution

11. If $a_{1}, a_{2}, a_{3} \ldots, a_{n}$ are in G.P., then the value of the determinant
$D=\left|\begin{array}{ccc}\log a_{n} & \log a_{n+1} & \log a_{n+2} \\ \log a_{n+3} & \log a_{n+4} & \log a_{n+5} \\ \log a_{n+6} & \log a_{n+7} & \log a_{n+8}\end{array}\right|$ is -
A. 0
B. 2
C. 1
D. 3

- Watch Video Solution

12. The value of the determinant $\left|\begin{array}{lll}(10)! & (11)! & (12)! \\ (11)! & (12)! & (13)! \\ (12)! & (13)! & (14)!\end{array}\right|$ is -
A. 2 (10!)(11!)
B. $2(10!)(13!)$
C. 2(11!)(12!)(13!)
D. $2(10!)(11!)(12!)$

Answer: D

- Watch Video Solution

13. If C is the midpoint of $A B$ and P is any point outside $A B$, then which one of the following is correct ?
A. $\overrightarrow{P A}+\overrightarrow{P B}+2 \overrightarrow{P C}=\overrightarrow{0}$
B. $\overrightarrow{P A}+\overrightarrow{P B}=2 \overrightarrow{P C}$
C. $\overrightarrow{P A}+\overrightarrow{P B}=\overrightarrow{P C}$
D. $\overrightarrow{P A}+\overrightarrow{P B}+\overrightarrow{P C}=\overrightarrow{0}$

Answer: B

- Watch Video Solution

14. The position vectors of the points A, B, C are $(\hat{i}-3 \hat{j}-5 \hat{k}),(2 \hat{i}-\hat{j}+\hat{k})$ and $(3 \hat{i}-4 \hat{j}-4 \hat{k})$ respectively. Then A, B,

C form adan -
A. equilateral triangle
B. isosceles triangle
C. right angled triangle
D. right angled isosceles triangle

Answer: C

D Watch Video Solution

15. If N be the set of natural numbers and and $N_{a}=\{a n: n \in N\}$ then $N_{5} \cap N_{7}$ is -
A. N_{35}
B. N_{12}
C. N
D. N_{7}

Answer: A

- Watch Video Solution

16. If the function $f: R \rightarrow R$ is defined by $f(x)=x^{2}-6 x-14$, then $f^{-1}(2)$ is equal to -
A. $\{2,8\}$
B. $\{-2,8\}$
C. $\{-2,-8\}$
D. $\{2,-8\}$

Answer: B

- Watch Video Solution

17. Let $f: R \rightarrow R$ be defined by $f(x)=x^{2}$ and $g: R \rightarrow R$ be defined by $g(x)=x+5$. Then , $(g \circ f)(x)$ is equal to -
A. $x+5$
B. $(x+5)^{2}$
C. $x^{2}+25$
D. $x^{2}+5$

Answer: D

- Watch Video Solution

18. If $f: R \rightarrow S$ is defined by $f(x)=\sin x-\sqrt{3} \cos x+1$ is onto, then the interval of S is -
A. $[-1,3]$
B. $[0,1]$
C. $[-1,1]$
D. $[0,3]$

Answer: A

(D) Watch Video Solution

19. If $\frac{x^{3}}{(2 x-1)(x+2)(x-3)}=A+\frac{B}{2 x-1}+\frac{C}{x+2}+\frac{D}{x-3}$, then the value of A is-
A. 1
B. 2
C. $\frac{1}{2}$
D. $\frac{1}{3}$

Answer: C

- Watch Video Solution

20. The value of $\left[\tan ^{-1} \frac{m}{n}-\tan ^{-1}\left(\frac{m-n}{m+n}\right)\right]$ is -
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. $-\frac{\pi}{4}$
D. $-\frac{\pi}{2}$

Answer: B

- Watch Video Solution

21. If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2}$, then then the value of $(x+y+z)$ is -
A. $\frac{1}{3}$
B. $-\frac{1}{3}$
C. -3
D. 3

Answer: D

- Watch Video Solution

22. A real valued function $f(x)$ stisfies the functional relation
$f(x-y)=f(x) f(y)-f(a-x) f(a+y)$ where a is a given constant and $f(0)=1$. Then, $f(2 a-x)$ is equal to -
A. $f(a)+f(a-x)$
B. $f(-x)$
C. $-f(x)$
D. $f(x)$

Answer: C

- Watch Video Solution

23. The probability of having a king and a queen when two cards are drawn at random from a pack of 52 cards is -
A. $\frac{8}{663}$
B. $\frac{16}{283}$
C. $\frac{16}{663}$
D. $\frac{8}{283}$

- Watch Video Solution

24. A, B, C are mutually exclusive events such that $P(A)=\frac{3 x+1}{3}, P(B)=\frac{1-x}{4}$ and $P(C)=\frac{1-2 x}{2}$, then the set of possible values of x are in the interval -
A. $\left[\frac{1}{3}, \frac{1}{2}\right]$
B. $[0,1]$
C. $\left[\frac{1}{3}, \frac{2}{3}\right]$
D. $\left[\frac{1}{3}, \frac{13}{3}\right]$

Answer: A

25. The chance of throwing a total of 7 or 12 with two dice is -
A. $\frac{2}{9}$
B. $\frac{7}{36}$
C. $\frac{5}{36}$
D. $\frac{5}{9}$

Answer: B

- Watch Video Solution

26. If A and B are two events, then the probability that one and only one event occurs is -
A. $P\left(A^{c}\right)+P\left(B^{c}\right)+2 P\left(A^{c} \cap B^{c}\right)$
B. $P\left(A^{c}\right)+P(B)-2 P\left(A^{c} \cap B^{c}\right)$
C. $P(A)+P(B)-2 P\left(A^{c} \cap B^{c}\right)$
D. $P(A)+P(B)-2 P(A \cap B)$

Answer: D

- Watch Video Solution

27. If A and B are two events and
$P(A \cup B)=\frac{5}{6}, P(A \cap B)=\frac{1}{3}$ and $P\left(B^{c}\right)=\frac{1}{2}$ then A and B are -
A. dependent
B. independent
C. mutually exclusive
D. none of these

Answer: B
28. If two fair coins are tossed together 5 times, then the probability of getting 5 heads and 5 tails is -
A. $\frac{63}{256}$
B. $\frac{9}{128}$
C. $\frac{189}{512}$
D. $\frac{63}{512}$

Answer: A

- Watch Video Solution

29. If n and p are two parameters of Binomial Distribution and its variance is σ^{2} then -
A. $\sigma^{2}>4 n$
B. $\sigma^{2} \geq 4 n$
C. $4 \sigma^{2} \leq n$
D. none of these

Answer: C

- Watch Video Solution

30. 5 unbiased coins are tossed at random. The probability of getting at least two tails is -
A. $\frac{31}{32}$
B. $\frac{27}{32}$
C. $\frac{13}{16}$
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

31. Roots of the equation $3 x^{2}-6 x+4=0$ are α and β then find the value of $\alpha^{3}+\beta^{3}$

- Watch Video Solution

32. The angle between the normals to the planes $x-y+2 z=8$ and $2 x+y+z=12$ is -
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{2 \pi}{3}$

- Watch Video Solution

33. The acute angle between the normals to the planes the points
$(3,2,3)$ and $(-3,-1,5)$ is -
A. $\cos ^{-1} \frac{3}{7}$
B. $\cos ^{-1} \frac{2}{7}$
C. $\cos ^{-1} \frac{6}{7}$
D. $\frac{\pi}{3}$

Answer: B

- Watch Video Solution

34. If the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=\frac{z-0}{1}$ intersect, then the coordinates of their point of intersection are -
A. $(-1,2,1)$
B. $(-1,1,1)$
C. $(-1,-1,-1)$
D. $(-1,-1,2)$

Answer: C

- Watch Video Solution

35. The equation of the line passing through the point $(2,-3,1)$ and parallel to the line $\frac{3 x-2}{3}=\frac{2 y+1}{4}=\frac{3-z}{2}$ is -
A. $\frac{x-2}{3}=\frac{y+3}{4}=\frac{z-1}{-2}$
B. $\frac{x-2}{1}=\frac{y+3}{2}=\frac{z-1}{2}$
C. $\frac{x+2}{1}=\frac{y-3}{2}=\frac{z+1}{-2}$
D. $\frac{x-2}{1}=\frac{y+3}{2}=\frac{z-1}{-2}$

Answer: D

- Watch Video Solution

36. If the straight line joining the points $(4,-3,2)$ and $(3,-1,5)$ is perpendicular to the straight line joining the points ($m,-2,1$) and $(7,3,-2)$, then the value of m is -
A. -6
B. 12
C. -12
D. 6

Answer: D

- Watch Video Solution

37. If $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{b}=-2 \hat{i}+\hat{j}-2 \hat{k}$, then the value of $|\vec{a} \times \vec{b}|$ is -
A. $\sqrt{26}$
B. $3 \sqrt{6}$
C. $5 \sqrt{3}$
D. $4 \sqrt{6}$

Answer: A
38. A unit vector perpendicular to both the vectors $\hat{i}+\hat{j}$ and $\hat{j}+\hat{k}$ is -
A. $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$
B. $\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}$
C. $\frac{\hat{i}-\hat{j}-\hat{k}}{\sqrt{3}}$
D. $\frac{-\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}$

Answer: B

- Watch Video Solution

39. If the vectors $\vec{\alpha}=\hat{i}+3 \hat{j}+\hat{k}, \vec{\beta}=2 \hat{i}-\hat{j}-\hat{k}$ and $\vec{\gamma}=\gamma \hat{i}+7 \hat{j}+3 \hat{k}$ are coplanar, then the value of λ is -
B. -1
C. 0
D. 2

Answer: C

- Watch Video Solution

40. If $|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}=196$ and $|\vec{b}|=2$, then the value of $|\vec{a}|$ is -
A. 7
B. 6
C. 5
D. 4

Answer: A

- Watch Video Solution

41. If $e^{y}+x y=e^{2}$ then the value of $\frac{d^{2} y}{d x^{2}}$ at $x=0$ is -
A. 0
B. 1
C. $\frac{1}{e^{2}}$
D. $\frac{1}{e}$

Answer: A

- Watch Video Solution

42. Derivative of $\sin ^{-1} x$ w.r.t. $\cos ^{-1} \sqrt{1-x^{2}}$ is -
A. $\frac{1}{1-x^{2}}$
B. $\cos ^{-1} X$
C. 1
D. none of these

Answer: C

D Watch Video Solution

43. If $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$, then the value of $\frac{d y}{d x}$ is -
A. $\tan \theta$
B. $\tan \frac{\theta}{2}$
C. $\cot \theta$
D. $\cot \frac{\theta}{2}$

Answer: B

D Watch Video Solution

44. The equation $a x^{2}+b x+c=0$ has one real root between 0 and k . If $4 a+3 b+3 c=0$, then the value of k is -
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. 1
D. 2

Answer: D

D View Text Solution
45. If $\lim x \rightarrow \infty\left[\frac{x^{3}+1}{x^{2}+1}-(a x+b)\right]=2$, then the values of a and b are -
A. $a=1, b=1$
B. $a=1, b=-1$
C. $a=1, b=2$
D. $a=1, b=-2$

Answer: D

- Watch Video Solution

46. Let $f(x)$ be continuous in $(-\infty, \infty)$ and $f^{\prime}(x)$ exists in $(-\infty, \infty)$. If $f(3)=-6$ and $f(x) \geq 6$ for all $x \in[3,6]$ then -
B. $f(6) \geq 12$
C. $f(6) \leq 24$
D. $f(6) \leq 12$

Answer: B

D Watch Video Solution

47. The value of $\lim x \rightarrow 0(1-3 x)^{\frac{3}{x}}$ is equal to -
A. e^{a}
B. 1
C. e^{-a}
D. $e^{2 a}$
48. If $y=2 \sin ^{-1}\left(\frac{x-2}{\sqrt{6}}\right)-\sqrt{2+4 x-x^{2}}$ then prove that $\frac{d y}{d x}$ at $x=2$ is $\frac{2}{\sqrt{6}}$
A. $-\frac{2}{\sqrt{6}}$
B. $\frac{1}{\sqrt{6}}$
C. $\frac{2}{\sqrt{6}}$
D. $\frac{1}{2} \sqrt{6}$

Answer: C

- Watch Video Solution

49. If $f(x)=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)$ and $\phi(x)=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$, then the
value of $\lim x \rightarrow a \frac{f(x)-f(a)}{\phi(x)-\phi(a)}\left(0<a<\frac{1}{2}\right)$ is -
A. $\frac{3}{2\left(1+a^{2}\right)}$
B. $-\frac{3}{2\left(1+a^{2}\right)}$
C. $\frac{3}{2}$
D. $-\frac{3}{2}$

Answer: D

- Watch Video Solution

50. If $y=\sec \left(\tan ^{-1} x\right)$, then $\frac{d y}{d x}$ is equal to -
A. $\frac{x}{\sqrt{1+x^{2}}}$
B. $-\frac{x}{\sqrt{1+x^{2}}}$
C. $\frac{x}{\sqrt{1-x^{2}}}$
D. none of these

Answer: A

- Watch Video Solution

51. If $y=e^{x+e^{x+e^{x+\ldots \infty}}}$, then the value of $\frac{d y}{d x}$ is -
A. $\frac{y}{y+1}$
B. $\frac{y}{1-y}$
C. $\frac{1+y}{1-y}$
D. none of these

Answer: B

- Watch Video Solution

52. If $y=\frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}+\log \sqrt{1-x^{2}}$, then the value of $\frac{d^{2} y}{d x^{2}}$ at $x=0$ is -
A. 0
B. $\frac{1}{2}$
C. 1
D. 2

Answer: C

- Watch Video Solution

53. For $|x|<1$, let $y=1+x+x^{2}+\ldots \infty$, then the value of $\frac{d y}{d x}-y$ is equal to -
A. $\frac{x}{y}$
B. $\frac{x^{2}}{y^{2}}$
C. $\frac{x}{y^{2}}$
D. $x y^{2}$

Answer: D

- Watch Video Solution

54. Observe the following statements :
(i) $f(x)=a x^{41}+b x^{-40} \Rightarrow \frac{f^{\prime \prime}(x)}{f(x)}=1640 x^{-2}$
(ii) $\frac{d}{d x}\left(\frac{2 x}{1-x^{2}}\right)=\frac{1}{1+x^{2}}$

Which of the following is correct ?
A. (i) is true, but (ii) is false,
B. both (i) and (ii) are true,
C. neither (i) nor (ii) is true,
D. (i) is false, but (ii) is true.

Answer: A

- Watch Video Solution

55. If $f(y)=e^{y}, g(y)=y, y>0$ and $F(t)=\int_{0}^{t} f(t-y) g(y) d y$, then -
A. $F(t)=t e^{-t}$
B. $F(t)=1-e^{-t}(t+1)$
C. $F(t)=e^{t}-(t+1)$
D. $F(t)=t e^{t}$

Answer: C

- Watch Video Solution

56. If $m, n \in R$, then the value of $I(m, n)=\int_{0}^{1} t^{m}(1+t)^{n} d t$ is -
A. $\frac{n}{1+m} I\left[\begin{array}{c}m+1 \\ n-1\end{array}\right]$
B. $\frac{2^{n}}{1+m}-\frac{n}{m+1} I\left[\begin{array}{c}m+1 \\ n-1\end{array}\right]$
C. $\frac{m}{n+1} I\left[\begin{array}{c}m+1 \\ n-1\end{array}\right]$
D. $\frac{2^{n}}{1+m}-\frac{m}{n+1} I\left[\begin{array}{c}m+1 \\ n-1\end{array}\right]$

Answer: B
57. The value of $\int_{-2}^{2}\left[p \log \left(\frac{1+x}{1-x}\right)+q \log \left(\frac{1-x}{1+x}\right)^{-2}+r\right] d x$ depends on -
A. the value of p
B. the value of q
C. the values of p and q
D. the value of r

Answer: D

- Watch Video Solution

58. The value of $\int \frac{f^{\prime}(x)}{f(x) \log \{f(x)\}} d x$ is equal to -
A. $\log [\log \{f(x)\}]+c$
B. $\frac{f(x)}{\log \{f(x)\}}+c$
C. $f(x) \log \{f(x)\}+c$
D. $\frac{1}{\log [\log \{f(x)\}]}+c$

Answer: A

- Watch Video Solution

59. The value of $\int e^{-\log x} d x$ is -
A. $\frac{1}{x}+c$
B. $-\frac{1}{x}+c$
C. $\log |x|+c$
D. $\log x+c$

Answer: C

- Watch Video Solution

60.

$f(x)=\frac{e^{x}}{1+e^{x}}, I_{1}=\int_{f(-a)}^{f(a)} x g\{x(1-x)\} d x$ and $I_{2}=\int_{f(-a)}^{f(a)} g\{x(1-x)\} d x$ then the value of $\frac{I_{2}}{I_{1}}$ is -
A. -1
B. 2
C. -3
D. 1

Answer: B

61. The value of $\int \sqrt{x} e^{\sqrt{x}} d x$ is -
A. $2 \sqrt{x}-e^{\sqrt{x}}-4 \sqrt{x} e^{\sqrt{x}}+c$
B. $(1-4 \sqrt{x}) e^{\sqrt{x}}+c$
C. $(2 x+4 \sqrt{x}+4) e^{\sqrt{x}}+c$
D. $(2 x-4 \sqrt{x}+4) e^{\sqrt{x}}+c$

Answer: D

- Watch Video Solution

62. The value of $\int_{-1}^{1}|1-x| d x$ is equal to -
A. 2
B. -2
C. 0
D. 4

Answer: A

- Watch Video Solution

63. The value of $\iint^{\frac{\pi}{8}} \cos ^{3} 4 \theta d \theta$ is equal to -
A. $\frac{2}{3}$
B. $\frac{1}{4}$
C. $\frac{1}{3}$
D. $\frac{1}{6}$

Answer: D

- Watch Video Solution

64. The value of $\int \frac{d x}{\sin x \cos x}$ is equal to -
A. $\log |\sin x|+c$
B. $\log |\tan x|+c$
C. $\log |\cos x|+c$
D. $\log |\cot x|+c$

Answer: B

- Watch Video Solution

65. If $\int \frac{e^{x}(1+\sin x)}{1+\cos x} d x=e^{x} f(x)+c$, then the value of $f(x)$ is -
A. $\sin \frac{x}{2}$
B. $\cos \frac{x}{2}$
C. $\tan \frac{x}{2}$
D. $\cot \frac{x}{2}$

Answer: C

- Watch Video Solution

66. The value of $\int_{0}^{\pi} \frac{\cos x d x}{x^{4}+(\pi-x)^{4}}$ is equal to -
A. 0
B. π
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: A

- Watch Video Solution

$$
\left(e^{x}-e^{-x}\right) d x
$$

67. The value of \int

$$
\left(e^{x}+e^{-x}\right) \log \left(e^{x}+e^{-x}\right)
$$

is equal to -
A. $2 \log \left(e^{x}+e^{-x}\right)+c$
B. $2 \log \left(e^{x}-e^{-x}\right)+c$
C. $2 \log \left[\log \left(e^{x}+e^{-x}\right)\right]+c$
D. $\log \left[\log \left(e^{x}+e^{-x}\right)\right]+c$

Answer: D

- Watch Video Solution

68. The value of $\lim n \rightarrow \infty \sum_{r=1}^{n} \frac{r}{n^{2}} \sec ^{2} \frac{r^{2}}{n^{2}}$ is equal to -
A. $\tan 1$
B. $\frac{1}{2} \tan 1$
C. sec 1
D. $\frac{1}{2} \sec 1$

Answer: B

- Watch Video Solution

69. Let $f: R \rightarrow R$ be a differentiable function and $f(1)=4$ and
$f^{\prime}(1)=2$, then the value of $\lim x \rightarrow 1 \int_{4}^{f(x)} \frac{2 t}{x-1} d t$ is -
A. 4
B. 8
C. 16
D. 32

Answer: C

70. The value of $\int_{-2}^{0}\left[x^{3}+3 x^{2}+3 x+3+(x+1) \cos (x+1)\right] d x$ is equal to -
A. 0
B. 2
C. 4
D. 6

Answer: C

- Watch Video Solution

71. If $a>0$, then the value of $\int_{-\pi}^{\pi} \frac{\cos ^{2} x}{1+a^{x}} d x$ is equal to-
A. $\frac{\pi}{2}$
B. $\frac{\pi}{a}$
C. $a \pi$
D. 2π

Answer: A

- Watch Video Solution

72. The solution of the differential equation
$(2 y-1) d x-(2 x+3) d y=0$ is -
A. $\left|\frac{2 x-1}{2 y+3}\right|=c$
B. $\left|\frac{2 y+1}{2 x-3}\right|=c$
C. $\left|\frac{2 x-1}{2 y-1}\right|=c$
D. $\left|\frac{2 x+3}{2 y-1}\right|=c$

Answer: D

- Watch Video Solution

73. The order and degree of the differential equation
$\left(\frac{d^{3} y}{d x^{3}}\right)^{2}-3 \frac{d^{2} y}{d x^{2}}+2\left(\frac{d y}{d x}\right)^{4}=y^{4}$ respectively are -
A. 2, 4
B. 3,2
C. 1, 4
D. 3, 4

Answer: B
74. The integrating factor of the linear differential equation $\cos ^{2} x \frac{d y}{d x}-y \tan 2 x=\cos ^{4} x$ is -
A. $\left(1-\tan ^{2} x\right)$
B. $\tan ^{2} x$
C. $\sec ^{-2} X$
D. $-\operatorname{cosec}^{2} x$

Answer: A

- Watch Video Solution

75. The general solution of the differential equation $(2 x-y+1) d x+(2 y-x+1) d y=0$ is -
A. $x^{2}+y^{2}+x y-x+y=c$
B. $x^{2}+y^{2}-x y+x+y=c$
C. $x^{2}-y^{2}+2 x y-x+y=c$
D. $x^{2}-y^{2}-2 x y+x-y=c$

Answer: B

- Watch Video Solution

76. Examine whether the function f given by $f(x)=x^{2}$ is continuous at $\mathrm{x}=0$.
A. (i), (ii) and (iii)
B. (i) and (iii)
C. (i) and (ii)
D. (ii) and (iii)

Answer: C

- Watch Video Solution

77. If $f^{\prime}(x)=\frac{2 x}{}$ where $f^{\prime}(x)=1, f(x)=2$ when $x=0$, when

$$
\left(1+x^{2}\right)^{2}
$$

the value of $f(x)$ is -
A. $x+1+\tan ^{-1} x$
B. $2(x+1)-\tan ^{-1} x$
C. $2(x+1)+\tan ^{-1} x$
D. $x+1-\tan ^{-1} x$

Answer: B

78. The points of discontinuity of the function

$$
f(x)=\frac{2 x^{2}+7}{x^{3}+3 x^{2}-x-3} \text { are }-
$$

A. $x=1, x=-1$ and $x=-3$
B. $x=1$ and $x=-1$
C. $x=-1$ and $x=3$
D. none of these

Answer: A

D Watch Video Solution

79. Which one of the following equations represent the differential equation of circles, with centres on the x-axis and all passing through the origin ?

$$
\text { A. } 2 y \frac{d y}{d x}=x^{2}+y^{2}
$$

B. $2 x y \frac{d y}{d x}=x^{2}-y^{2}$
C. $y d y+x d x=0$
D. $2 x y \frac{d y}{d x}=y^{2}-x^{2}$

Answer: D

- Watch Video Solution

80. The general solution of the differential equation $\frac{d y}{d x}+1=\operatorname{cosec}(x+y)$ is -
A. $\cos (x+y)+c=0$
B. $\sin (x+y)+x+c=0$
C. $\cos (x+y)+x+c=0$
D. $x-\sin (x+y)+c=0$

Answer: C

- Watch Video Solution

81. If the line $a x+b y+c=0$ is a normal to the curve $x y=1$ at the point (1, 1), then -
A. $a=b$
B. $a=-b$
C. $a^{2}=b$
D. $b^{2}=a$

Answer: B

- Watch Video Solution

82. Two equal parabolas have the same vertex and their axes are at right angles. Then the angle between the tangents to them at their point of intersection (other than vertex) is-
A. $\frac{\pi}{4}$
B. $\tan ^{-1} 2$
C. $\tan ^{-1} \frac{3}{4}$
D. $\frac{\pi}{3}$

Answer: C

- View Text Solution

83. If three normals are drawn from the point $(c, 0)$ to the parabola $y^{2}=x$, then-
A. $c<\frac{1}{2}$
B. $c \geq 2$
C. $c<2$
D. $c \geq \frac{1}{2}$

Answer: D

- Watch Video Solution

84. If tangents are drawn from the origin to the curve $y=\sin x$, then their points of contact lie on-
A. $x^{2} y^{2}=x^{2}-y^{2}$
B. $x^{2} y^{2}=y^{2}-x^{2}$
C. $x^{2} y^{2}=x^{2}+y^{2}$
D. $x^{2} y^{2}=2\left(x^{2}-y^{2}\right)$

- Watch Video Solution

85. The line, among the following, that touches the parabola $y^{2}=4 a x$ is -
A. $x+m y+a m^{3}=0$
B. $x-m y+a m^{2}=0$
C. $x+m y-a m^{2}=0$
D. $y+m x+a m^{2}=0$

Answer: B

- Watch Video Solution

86. If $y=3 x$ is a tangent to a circle with centre $(1,1)$, then the other tangent drawn throught $(0,0)$ to the circle is-
A. $3 x+y=0$
B. $2 x+y=0$
C. $y=2 x$
D. $x=3 y$

Answer: D

- Watch Video Solution

87. From any point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ of the curve $y=x^{m}(m>0, x>0)$ perpendiculars PN and PM are dropped on the coordinate axes.

Then the ratio of the area OMPO and the area of the rectangle ONPM (O represents the origin) is-
A. $\frac{1}{m+1}$
B. $\frac{1}{2(m+1)}$
C. $\frac{2}{m+1}$
D. $\frac{1}{3(m+1)}$

Answer: A

- Watch Video Solution

88. The area enclosed between the curve $y=\log _{e}(x+e)$ and the coordinate axes (in square unit) is-
A. 3
B. 4
C. 1
D. 2

Answer: C

- Watch Video Solution

89. Let $f(x)$ be non- negative continuous function such that the area bounded by the curve $y=f(x)$, x - axis and the ordinates $x=\frac{\pi}{4}$ and $x=\beta\left(\beta>\frac{\pi}{4}\right)$ is $\beta \sin \beta+\frac{\pi}{4} \cos \beta+\sqrt{2} \beta$. Then the value of $f\left(\frac{\pi}{2}\right)$ is-
A. $1-\frac{\pi}{4}-\sqrt{2}$
B. $1-\frac{\pi}{4}+\sqrt{2}$
C. $\frac{\pi}{4}+\sqrt{2}-1$
D. $\frac{\pi}{4}-\sqrt{2}+1$

Answer: B
90. If the equation of the tangent to the circle $x^{2}+y^{2}-2 x+6 y-6=0$ parallel to the line $3 x-4 y+7=0$ is $3 x-4 y+k=0$, then the value of k is-
A. $5,-35$
B. $-5,35$
C. 7, - 32
D. $-7,32$

Answer: A

- Watch Video Solution

91. The locus of the point of intersection of a pair of perpendicular tangents to an ellipse is a/an-
A. parabola
B. ellipse
C. hyperbola
D. circle

Answer: D

- Watch Video Solution

92. The straight line $x+y=\sqrt{2} p$ will touch the hyperbola $4 x^{2}-9 y^{2}=36$ if-
A. $p^{2}=2$
B. $2 p^{2}=5$
C. $p^{2}=5$
D. $5 p^{2}=2$

Answer: B

- Watch Video Solution

93. If the focal chord of $y^{2}=16 x$ is a tangent to the circle $(x-6)^{2}+y^{2}=2$, then the possible values of the slope of the chord are-
A. $-2, \frac{1}{2}$
B. $-\frac{1}{2}, 2$
C. $1,-1$
D. $\frac{1}{2}, 2$

Answer: C

- Watch Video Solution

94. The area (in square unit) bounded by the curves $y=|x|-1$
and $y=-|x|+1$ is-
A. 1
B. 2
C. $2 \sqrt{2}$
D. 4

Answer: B

- Watch Video Solution

95. If the normal at the point $\left(b t_{1}^{2}, 2 b t_{1}\right)$ to the parabola $y^{2}=4 b x$ meets it again at the point $\left(b t_{2}^{2}, 2 b t_{2}\right)$, then-
A. $t_{2}=t_{1}-\frac{2}{t_{1}}$
B. $t_{2}=-t_{1}+\frac{2}{t_{1}}$
C. $t_{2}=t_{1}+\frac{2}{t_{1}}$
D. $t_{2}=-t_{1}-\frac{2}{t_{1}}$

Answer: D

- Watch Video Solution

96. The line $y=m x+c$ touches the hyperbola $b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$
if-
A. $c^{2}=a^{2} m^{2}-b^{2}$
B. $c^{2}=a^{2} m^{2}+b^{2}$
C. $c^{2}=b^{2} m^{2}-a^{2}$
D. $a^{2}=b^{2} m^{2}+c^{2}$

Answer: A

- Watch Video Solution

97. The least value of the sum of any positive real number and its reciprocal is-
A. 1
B. -1
C. -2
D. 2

Answer: D

- Watch Video Solution

98. The function $f(x)=x^{\frac{1}{x}}$ is-
A. increasing in $(1, \infty)$
B. decreasing in $(1, \infty)$
C. increasing in $(-\infty, e)$ and decreasing in (e, ∞)
D. decreasing in $(1, e)$ and increasing in (e, ∞)

Answer: C

- Watch Video Solution

99. If the chord of contact of tangents from a point on the circle $x^{2}+y^{2}=a^{2}$ to the circle $x^{2}+y^{2}=b^{2}$ touches the circle $x^{2}+y^{2}=c^{2}$, then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in-
A. A.P.
B. H.P.
C. G.P.
D. none of these

Answer: C

- Watch Video Solution

100. The value of x for which the polynomial $2 x^{3}-9 x^{2}+12 x+4$ is a decreasing function of x, is-
A. $-1<x<1$
B. $1<x<2$
C. $0<x<2$
D. $1<x<3$

Answer: B

- Watch Video Solution

101. The length of the rectangle of maximum area that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter, is-
A. $\sqrt{2}$ unit
B. 2 unit
C. $\frac{\sqrt{2}}{3}$ unit
D. $\sqrt{3}$ unit

Answer: A

- Watch Video Solution

102. If the tangent at any point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ intersects the coordinate axes at P and Q , then the minimum value of the area (in square unit) of the triangle OPQ is (O being the origin)-
A. $a b$
B. $\frac{1}{2}\left(a^{2}+b^{2}\right)$
C. 2ab
D. $a^{2}+b^{2}$

Watch Video Solution

103. The minimum value of $4 e^{2 x}+9 e^{-2 x}$ is-
A. 12
B. 11
C. 10
D. 14

Answer: A

- Watch Video Solution

104. Suppose the function $f(x)$ is defined as follows:
$f(x)=x(x-1)(x-2)(x-3) \ldots(x-100)$
Then which one of the following is correct ?
A. The function has 100 local maxima
B. The function has 50 local maxima
C. The function has 51 local maxima
D. Local maxima do not exist for this function

Answer: B

D Watch Video Solution

105. The pressure p and the volume v of a gas are connected by the relation $p v^{1.4}=k$, where k is a constant. Then a decrease of 0.5% in the volume of the gas corresponds to an increase of pressure by-
A. 0.6 \%
B. 0.7 \%
C. 0.8 \%
D. 0.9 \%

Answer: B

- Watch Video Solution

106. The population of a country doubles in 50 years. Assuming that the rate of increase of population is proportional to the number of inhabitants, in how many years would the population becomes three times?
A. $50 \cdot \frac{\log 3}{\log 2}$
B. $50 \cdot \frac{\log 2}{\log 3}$
C. $50 \log 6$
D. 75

Answer: A

- Watch Video Solution

107. Let $y=f(x)$ be the function, which passes through $(1,2)$ and has slope $2 x+1$, then the area bounded between the curve $x=1$ and x - axis (in square unit) is-
A. 6
B. $\frac{4}{3}$
C. $\frac{1}{6}$
D. $\frac{5}{6}$

Answer: C

- Watch Video Solution

108. The radius of a cylinder is increasing at the rate of $3 \mathrm{~m} / \mathrm{s}$ and its altitude is decreasing at the rate of $4 \mathrm{~m} / \mathrm{s}$. The rate of change of volume $\left(\mathrm{m}^{3} / \mathrm{s}\right)$ when radius is 4 m and altitude 6 m is -
A. 144π
B. 80
C. -80π
D. 80π

Answer: D

- Watch Video Solution

109. The function $f(x)=x^{2}+4 x-2$ has a minimum value at-
A. $x=3$
B. $x=2$
C. $x=-2$
D. $x=-3$

Answer: C

- Watch Video Solution

110. The normal at any point to a curve always passes through a given point (a, b), if the curve passes through the origin, then the curve is a/an -
A. circle
B. ellipse
C. parabola
D. hyperbola

Answer: A

- Watch Video Solution

Question Paper 8

1. A fair coin is tossed 10 times. The probability of getting exactly 6 heads is -
A. $\frac{15}{64}$
B. $\frac{105}{512}$
C. $\frac{105}{1024}$
D. $\frac{21}{256}$

Answer: B

2. A box contains 5 apples and 7 oranges and another box contains 4 apples and 8 oranges. One fruit is picked out from each box. Then the probability that the fruits are both apples or both oranges is -
A. $\frac{1}{6}$
B. $\frac{7}{18}$
C. $\frac{17}{36}$
D. $\frac{19}{36}$

Answer: D

- Watch Video Solution

3. Three numbers are chosen at random from the first 20 natural numbers. The probability that their product is even, is -
A. $\frac{2}{19}$
B. $\frac{15}{19}$
C. $\frac{17}{19}$
D. $\frac{12}{19}$

Answer: C

- Watch Video Solution

4. If $P(A \cup B)=0.8$ and $P(A \cap B)=0.3$ then the value of $[P(\bar{A})+P(\bar{B})]$ is -
A. 0.9
B. 0.7
C. 1.1
D. 0.8

Answer: A

- Watch Video Solution

5. 12 balls are kept in 3 different boxes, then the probability that the box will contain 3 balls is -
A. $\frac{1}{4}$
B. $\frac{2^{9}}{3^{12}}$
C. $\frac{{ }^{12} C_{3} \times 2^{12}}{3^{12}}$
D. $\frac{{ }^{12} C_{3} \times 2^{9}}{3^{12}}$

Answer: D

- Watch Video Solution

6. Which one of the following is not true for any two events A and

B ?
A. $P(A \cap B) \geq P(A)+P(B)-1$
B. $P(A \cap B) \leq P(A)$
C. $P\left(A^{c} \cap B^{C}\right)=1-P(A \cap B)$
D. $P(A) \leq P(A \cup B)$

Answer: C

- Watch Video Solution

7. The value of $\left(\sin ^{-1} \frac{1}{2}+2 \cos ^{-1} \frac{1}{2}\right)$ is -
A. $\frac{2 \pi}{3}$
B. $\frac{5 \pi}{6}$
C. $\frac{3 \pi}{4}$
D. $\frac{\pi}{2}$

Answer: B

- Watch Video Solution

8. If $\cos ^{-1} x+\cos ^{-1} y=\pi$, then the value of $\left(\sin ^{-1} x+\sin ^{-1} y\right)$ is -
A. 0
B. $\frac{\pi}{3}$
C. π
D. 2π

Answer: A

- Watch Video Solution

9. If $2 f\left(\frac{1}{x}\right)+f(x)=3 x$, then the value of $f(2)$ is -
A. $\frac{1}{6}$
B. $\frac{1}{3}$
C. -1
D. $-\frac{1}{3}$

Answer: C

10. If the position vectors of two given points A and B be $4 \hat{i}+\hat{j}+2 \hat{k}$ and $2 \hat{i}-5 \hat{j}-\hat{k}$ respectively, then a unit vector in the direction of $A B$ is -
A. $\frac{1}{7}(2 \hat{i}+6 \hat{j}-3 \hat{k})$
B. $\frac{1}{7}(-2 \hat{i}-6 \hat{j}+3 \hat{k})$
C. $\frac{1}{7}(2 \hat{i}-6 \hat{j}+3 \hat{k})$
D. $\frac{1}{7}(-2 \hat{i}-6 \hat{j}-3 \hat{k})$

Answer: D

- Watch Video Solution

11. If the points with position vectors $2 \hat{i}+6 \hat{j}, \hat{i}+2 \hat{j}$ and $m \hat{i}+10 \hat{j}$ are collinear, then the value of m is -
A. -3
B. 3
C. 5
D. -5

Answer: B

- Watch Video Solution

12. Let $R=\{(3,3),(6,6),(9,9),(12,12),(6,12),(3,9),(3,12),(3,6)\}$ be a relation on the set $A=\{3,6,9,12\}$, then the relation is -
A. reflexive and transitive
B. reflexive only
C. an equivalence relation
D. reflexive and symmetric

- Watch Video Solution

13. Let $f: R \rightarrow R$ be defined by $f(x)=x|x|$, then the function f is -
A. one-one only
B. onto only
C. neither one-one nor onto
D. one-one and onto

Answer: D

- Watch Video Solution

14. If $f: R \rightarrow R, g: R \rightarrow R$ and $h: R \rightarrow R$ be defined respectively by $f(x)=\sin x, g(x)=3 x-1$ and $h(x)=x^{2}-4$, then the value of $[h o(g o f)]\left(\frac{\pi}{2}\right)$ is -
A. 1
B. -1
C. 0
D. 2

Answer: C

- Watch Video Solution

15. Let R be the set of real numbers and $f: R \rightarrow R$ be defined by $f(x)=2 x^{2}-5 x+6$, then the value of $f^{-1}(2)$ is -
A. $\{2,-2\}$
B. $\{\sqrt{2},-\sqrt{2}\}$
C. ϕ
D. $\left\{\frac{5+\sqrt{17}}{4}, \frac{5-\sqrt{17}}{4}\right\}$

Answer: C

D Watch Video Solution

16. If $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}+2$, then the value of $f^{-1}(x)$ is -
A. $\frac{1}{2} \log _{e} \frac{x-1}{3-x}$
B. $\log _{e} \frac{3-x}{x-1}$
C. $\log _{e} \frac{x-1}{3-x}$
D. $\frac{1}{2} \log _{e} \frac{3-x}{x-1}$

Answer: A

- Watch Video Solution

17. If I is the unit matrix of order 10×10, then the determinant of I is equal to -
A. 10
B. $\frac{1}{10}$
C. 9
D. 1

Answer: D

- Watch Video Solution

18. If A and B are two square matrices of the same order, then $(A-B)^{2}$ is equal to -
A. $A^{2}-2 A B+B^{2}$
B. $A^{2}-A B-B A+B^{2}$
C. $A^{2}-2 B A+B^{2}$
D. $A^{2}+2 A B+B^{2}$

Answer: B

- Watch Video Solution

19. The root of the equation $\left|\begin{array}{ccc}x & 3 & 7 \\ 2 & x & -2 \\ 7 & 8 & x\end{array}\right|=0$ are A. $-2,-7,5$
B. $2,5,-7$
C. 2, 5, 7
D. $-2,-5,7$

Answer: B

- Watch Video Solution

20. The value of the determinant
$\left|\begin{array}{lll}5^{2} & 5^{3} & 5^{4} \\ 5^{3} & 5^{4} & 5^{5} \\ 5^{4} & 5^{6} & 5^{7}\end{array}\right|$ is -
A. 5^{13}
B. 5^{9}
C. 0
D. 5^{11}

Answer: C

- Watch Video Solution

21. If $A=\left|\begin{array}{ccc}-1 & 2 & 4 \\ 3 & 1 & 0 \\ -2 & 4 & 2\end{array}\right|$ and $B=\left|\begin{array}{ccc}-2 & 4 & 2 \\ 6 & 2 & 0 \\ -2 & 4 & 8\end{array}\right|$, then which one of the
following is correct ?
A. $B=-A$
B. $B=6 A$
C. $B=4 A$
D. $B=-4 A$

Answer: D

22. For how many values of x in the closed interval [-4, -1], the
$\operatorname{matrix}\left[\begin{array}{ccc}3 & -1+x & 2 \\ 3 & -1 & x+2 \\ x+3 & -1 & 2\end{array}\right]$ is singular ?
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

23. $\left[\begin{array}{lll}7 & 1 & 2 \\ 9 & 2 & 1\end{array}\right] \times\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]+2\left[\begin{array}{l}4 \\ 2\end{array}\right]$ is equal to the matrix-
A. $\left[\begin{array}{l}43 \\ 44\end{array}\right]$
B. $\left[\begin{array}{l}43 \\ 45\end{array}\right]$
C. $\left[\begin{array}{l}45 \\ 44\end{array}\right]$
D. $\left[\begin{array}{l}44 \\ 45\end{array}\right]$

Answer: A

- Watch Video Solution

24. If $C=2 \cos \theta$, then the value of the determinant
$D=\left|\begin{array}{lll}C & 1 & 0 \\ 1 & C & 1 \\ 6 & 1 & C\end{array}\right|$ is -
A. $\frac{\sin 4 \theta}{\sin \theta}$
B. $\frac{2 \sin ^{2} 2 \theta}{\sin \theta}$
C. $4 \cos ^{2} \theta(2 \cos \theta-1)$
D. none of these

Answer: D

- Watch Video Solution

25. If $A=\left[\begin{array}{ll}3 & 4 \\ 5 & 7\end{array}\right]$, then the value of $A(\operatorname{adj} A)$ is equal to -
A. I
B. $|\mathrm{A}|$
C. $|A| \cdot I$
D. none of these

Answer: C

26. The value of the determinant $\left|\begin{array}{ccc}\frac{1}{a} & 1 & b c \\ \frac{1}{b} & 1 & c a \\ \frac{1}{c} & 1 & a b\end{array}\right|$ is -
A. 0
B. $a b c$
C. $(a-b)(b-c)(c-a)$
D. $\frac{1}{a b c}$

Answer: A
27. If $\left[\begin{array}{cc}x+y & 2 x+z \\ x-y & 2 z+w\end{array}\right]=\left[\begin{array}{cc}4 & 7 \\ 0 & 10\end{array}\right]$ then the values of x, y, z and w are -
A. $2,3,1,2$
B. 2, 2, 3, 4
C. $3,3,0,1$
D. $2,2,4,3$

Answer: B

D Watch Video Solution

28. The matrix $\left[\begin{array}{ccc}2 & \lambda & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ is non-singular if -
A. $\lambda \neq 2$
B. $\lambda \neq 3$
C. $\lambda \neq-3$
D. $\lambda \neq-2$

Answer: D

- Watch Video Solution

29. The domain of defination of the function $f(x)=\sqrt{\frac{\sqrt{x+1}}{\sqrt{x}}}$ is-
A. $(-1, \infty)-\{0\}$
B. $(-1, \infty)$
C. $(0, \infty)$
D. $[0, \infty)$

Answer: C

- Watch Video Solution

30. The period of the function $\sin ^{4} x+\cos ^{4} x$ is -
A. $\frac{\pi}{2}$
B. π
C. 2π
D. $\frac{3 \pi}{2}$

Answer: A

- Watch Video Solution

31. The range of the function $f(x)={ }^{9-x} P_{x-1}$ is -
A. $\{2,7,24,36,60\}$
B. $\{1,7,24,30,60\}$
C. $\{1,6,24,36,64\}$
D. $\{2,9,16,23,30\}$

Answer: B

- Watch Video Solution

32. Roots of the equation $3 x^{2}-6 x+4=0$ are α and β then find the value of $\alpha^{2} \beta+\alpha \beta^{2}$

- Watch Video Solution

33. On a multiple choice examination with 4 possible answers for each of 6 questions the probability that a student would get at
least two correct answers just by guessing is -
A. $\frac{3367}{4096}$
B. $\frac{1319}{2048}$
C. $\frac{2187}{4096}$
D. $\frac{1909}{4096}$

Answer: D

- Watch Video Solution

34. The distance of the point $(3,-4,2)$ from the plane $\vec{r} \cdot(3 \hat{i}-6 \hat{j}+2 \hat{k})=9$ is -
A. $\frac{24}{7}$ unit
B. 4 unit
C. $\frac{29}{7}$ unit
D. $\frac{46}{7}$ unit

Answer: B

D Watch Video Solution

35. The coordinates of the point where the line through the points $(2,-3,4)$ and $(-5,2,3)$ intersects the yz plane are -
A. $\left(0, \frac{11}{7},-\frac{26}{7}\right)$
B. $\left(0,-\frac{11}{7},-\frac{26}{7}\right)$
C. $\left(0,-\frac{11}{7}, \frac{26}{7}\right)$
D. $\left(0, \frac{11}{7}, \frac{26}{7}\right)$

Answer: C

36. The equation of the plane passing through the point $(1,-2,3)$ and perpendicular to each of the planes $3 x-4 y+z=7$ and $2 x+3 y-4 z=8$ is -
A. $13 x+14 y+17 z=36$
B. $3 x+14 y+17 z=26$
C. $13 x+14 y-7 z+36=0$
D. none of these

Answer: A

- Watch Video Solution

37. The acute angle between the straight lines whose direction numbers are $1,1,2$ and $(\sqrt{3}-1),(-\sqrt{3},-1), 4$ is -
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{5 \pi}{12}$

Answer: B

- Watch Video Solution

38. The vector equation of the plane passing through the point (1, $-1,2$) and having $2,3,2$ as direction numbers of the normal to the plane is -
A. $\vec{r} \cdot(2 \hat{i}+3 \hat{j}+2 \hat{k})+4=0$
B. $\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})+(\hat{i}-\hat{j}+\hat{k}) \cdot(2 \hat{i}+3 \hat{j}+2 \hat{k})=0$
C. $\vec{r} \cdot(2 \hat{i}+3 \hat{j}+2 \hat{k})+3=0$
D. $\vec{r} \cdot(2 \hat{i}+3 \hat{j}+2 \hat{k})=3$

Answer: D

- Watch Video Solution

39. If the vectors $\vec{a}=3 x \hat{i}+4 y \hat{j}-12 \hat{k}$ and $\vec{b}=3 x \hat{i}-4 y \hat{j}+12 \hat{k}$ are mutually perpendicular, then the locus of the point (x, y) is $a / a n-$
A. ellipse
B. circle
C. parabola
D. hyperbola

Answer: D

40. If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular vectors and $|\vec{a}|=|\vec{b}|=|\vec{c}|=m$, then the value of $|\vec{a}+\vec{b}+\vec{c}|$ is -
A. 3 m
B. 2 m
C. $\sqrt{3} \mathrm{~m}$
D. $\sqrt{2} \mathrm{~m}$

Answer: C

- Watch Video Solution

41. Find the range of the function $f(x)=|x-1|+|x-2|,-1 \leq x \leq 3$
A. $a=-11, b=6$
B. $a=-6, b=11$
C. $a=-6, b=-11$
D. $a=11, b=-6$

Answer: B

- Watch Video Solution

42.

In the
mean
value
theorem
$f(b)-f(a)=(b-a) f^{\prime}(c)(a<c<b)$, if $a=\frac{\pi}{6}, b=\frac{5 \pi}{6}$ and $f(x)=\log (\sin x)$
, then the value of c is -
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{2 \pi}{3}$

Answer: C

- Watch Video Solution

43. The value of $\lim x \rightarrow 0 \frac{27^{x}-9^{x}-3^{x}+1}{\text { is equal to - }}$

$$
\log _{e}\left(1+\frac{x^{2}}{2}\right)
$$

A. $4\left(\log _{e} 3\right)^{2}$
B. $2\left(\log _{e} 3\right)^{2}$
C. $8\left(\log _{e} 3\right)^{2}$
D. $\left(\log _{e} 3\right)^{2}$

Answer: A

- Watch Video Solution

44. The value of $\lim x \rightarrow 0(1-3 x)^{\frac{3}{x}}$ is equal to -
A. e^{6}
B. e^{-6}
C. e^{9}
D. e^{-9}

Answer: D

- Watch Video Solution

45. If $x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}=k$, then the value of $\frac{d y}{d x}$ at $x=0$ is -
A. $\sqrt{1-k^{2}}$
B. $-\sqrt{1-k^{2}}$
C. k
D. $-k$

Answer: B

- Watch Video Solution

46. If $x=a \cot \theta$ and $y=\frac{1}{x^{2}+a^{2}}$, then the value of $\frac{d^{2} y}{d x^{2}}$ at $\theta=\frac{\pi}{6}$ is
A. $\frac{1}{a^{2}}$
B. $-\frac{1}{4 a^{4}}$
C. $\frac{2}{a^{4}}$
D. $-\frac{2}{a^{4}}$

Answer: A

47. If $y=\left(\sin ^{-1} x\right)^{2}+\left(\cos ^{-1} x\right)^{2}$, then which of the following is correct?
A. $\left(1-x^{2}\right) y_{2}+x y_{1}+4=0$
B. $\left(1+x^{2}\right) y_{2}-x y_{1}-4=0$
C. $\left(1-x^{2}\right) y_{2}+(x-2) y_{1}=2$
D. $\left(1-x^{2}\right) y_{2}-x y_{1}+4=0$

Answer: C

- Watch Video Solution

48. If $y=e^{m \sin ^{-1} x}$, then the value of $\left[\frac{d^{2} y}{d x^{2}}\right]_{x=0}$ is -
A. $m^{2} e^{m \pi}$
B. $-m^{2} e^{m \pi}$
C. m^{2}
D. $-m^{2}$

Answer: C

- Watch Video Solution

49. If $x \sqrt{1+y}+y \sqrt{1+x}=0$ then the value of $\frac{d y}{d x}$ is -
A. $\frac{1}{1+x^{2}}$
B. $-\frac{1}{1+x^{2}}$
C. $\frac{1}{(1+x)^{2}}$
D. $-\frac{1}{(1+x)^{2}}$

(Watch Video Solution

50. If $x^{2}+y^{2}=t+\frac{1}{t}$ and $x^{4}+y^{4}=t^{2}+\frac{1}{t^{2}}$, then the value of $-x^{3} y \frac{d y}{d x}$ is -
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer: A

- Watch Video Solution

51. If $\sin y=x \sin (a+y)$, then the value of $\frac{d y}{d x}$ is -
A. $\sin (a+y)$
B. $\frac{\sin ^{2}(a+y)}{\sin a}$
C. $\frac{\sin ^{2}(a+y)}{\cos a}$
D. $\frac{\sin ^{2}(a+y)}{\sin y}$

Answer: B

- Watch Video Solution

52. If $y=\tan ^{-1} \frac{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}$, then the value of $\frac{d y}{d x}$ is -
A. $\frac{x^{2}}{\sqrt{1-x^{4}}}$
B. $\frac{x^{2}}{\sqrt{1+x^{4}}}$
C. $\frac{x}{\sqrt{1-x^{4}}}$
D. $\frac{x}{\sqrt{1-x^{4}}}$

Answer: C

- Watch Video Solution

53. If the equation $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x=0\left(a_{1} \neq 0, n \geq 2\right)$, has a positive root α, then the equation $n a_{n} x^{n-1}+(n-1) a_{n-1} x^{n-2}+\ldots+a_{1}=0$ has a positive root, which is -
A. greater than or equal to α,
B. equal to α,
C. smaller than α,
D. greater than α.

Answer: C

Watch Video Solution

54. If $x \sin y+y \cos x=\pi$, then the value of $y^{\prime \prime}(0)$ is -
A. π
B. $-\pi$
C. 1
D. 0

Answer: A

- Watch Video Solution

55. Let $f(x)$ be a function satisfying $f^{\prime}(x)=f(x)$ with $f(0)=1$ and $g(x)$ be a function that satisfies $f(x)+g(x)=x^{2}$. Then the value of the integral $\int_{0}^{1} f(x) g(x) d x$ is equal to -
A. $e+\frac{e^{2}}{2}+\frac{5}{2}$
B. $e-\frac{e^{2}}{2}-\frac{5}{2}$
C. $e+\frac{e^{2}}{2}-\frac{5}{2}$
D. $e-\frac{e^{2}}{2}-\frac{3}{2}$

Answer: D

- Watch Video Solution

56. The value of $\int \frac{d x}{x\left(x^{7}+1\right)}$ is equal to -
A. $\log \left|\frac{x^{7}}{x^{7}+1}\right|+c$
B. $\frac{1}{7} \log \left|\frac{x^{7}}{x^{7}+1}\right|+c$
C. $\log \left|\frac{x^{7}+1}{x^{7}}\right|+c$
D. $\frac{1}{7} \log \left|\frac{x^{7}+1}{x^{7}}\right|+c$

Answer: B

- Watch Video Solution

57. If $f(x)=|x-1|$, then the value of $\int_{0}^{2} f(x) d x$ is -
A. 2
B. 0
C. 1
D. -2

Answer: C

58. If $I_{m}=\int_{1}^{x}(\log x)^{m} d x$ satisfies the relation $I_{m}=x(\log x)^{m}-I I_{m-1}$, then which one of the following is correct ?
A. $l=m$
B. $l=m-1$
C. $l=m+1$
D. $l=m^{2}+1$

Answer: A

- Watch Video Solution

59. If $\int_{-\frac{1}{2}}^{\frac{1}{2}} \cos x \log \left(\frac{1+x}{1-x}\right) d x=k \log 2$, then the value of k is -
A. $\frac{1}{2}$
B. 0
C. 1
D. -1

Answer: B

- Watch Video Solution

60. The value of $\int \cos \left[2 \cot ^{-1} \sqrt{\frac{1-x}{1+x}}\right] d x$ is equal to -
A. $\frac{1}{2} x+c$
B. $\frac{1}{2} \sin \left[\cot ^{-1} \sqrt{\frac{1-x}{1+x}}\right]+c$
C. $\frac{1}{2} x^{2}+c$
D. $-\frac{1}{2} x^{2}+c$

Answer: D

A. 3
B. $\sqrt{3}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{1}{3}$

Answer: A

- Watch Video Solution

62. If $\int \frac{\cos 4 x+1}{\cot x-\tan x} d x=k \cos 4 x+c$, then the value of k is -
A. $-\frac{1}{2}$
B. $-\frac{1}{4}$
C. $-\frac{1}{8}$
D. $\frac{1}{8}$

Answer: C

- Watch Video Solution

63. The value of integral $\int \frac{d x}{\sin (x-a) \sin (x-b)}$ is -
A. $\frac{1}{\sin (a-b)} \log \left|\frac{\sin (x-a)}{\sin (x-b)}\right|+c$
B. $\frac{1}{\sin (b-a)} \log \left|\frac{\sin (x-a)}{\sin (x-b)}\right|+c$
C. $\frac{1}{\sin (a-b)} \log \left|\frac{\sin (x-b)}{\sin (x-a)}\right|+c$
D. $\frac{1}{\sin (b-a)} \log \left|\frac{\sin (x-b)}{\sin (x-a)}\right|+c$

Answer: A

D Watch Video Solution

64. If an antiderivative of $\mathrm{f}(\mathrm{x})$ is e^{x} and that of $\mathrm{g}(\mathrm{x})$ is $\cos \mathrm{x}$, then the value of $\int f(x) \cos x d x+\int g(x) e^{x} d x$ is equal to -
A. $f(x) g(x)+c$
B. $e^{x} \cos x+c$
C. $f(x)+g(x)+c$
D. $e^{x} \cos x+f(x) g(x)+c$

Answer: B

- Watch Video Solution

65. The value of $\int \sqrt{e^{x}-1} d x$ is equal to -
A. $2\left[\sqrt{e^{x}-1}+\tan ^{-1} \sqrt{e^{x}-1}\right]+c$
B. $\sqrt{e^{x}-1}-\tan ^{-1} \sqrt{e^{x}-1}+c$
C. $\sqrt{e^{x}-1}+\tan ^{-1} \sqrt{e^{x}-1}+c$
D. $2\left[\sqrt{e^{x}-1}-\tan ^{-1} \sqrt{e^{x}-1}\right]+c$

Answer: D

- Watch Video Solution

66. If $I_{1}=\int \sin ^{-1} x d x$ and $I_{2}=\int \sin ^{-1} \sqrt{1-x^{2}} d x$ then -
A. $I_{1}=I_{2}$
B. $I_{2}=\frac{\pi}{2} I_{1}$
C. $I_{1}+I_{2}=\frac{\pi}{2} x$
D. $I_{1}+I_{2}=\frac{\pi}{2}$

Answer: C

- Watch Video Solution

67. The value of $\int \cos ^{-\frac{3}{7}} x \sin ^{-\frac{11}{7}} x d x$ is equal to -
A. $-\frac{7}{4} \tan ^{-\frac{4}{7}} x+c$
B. $\frac{4}{7} \frac{4}{\tan } \overline{7} x+c$
C. $\log \left|\sin ^{\frac{4}{7}} x\right|+c$
D. $\log \left|\cos ^{\frac{3}{7}} x\right|+c$

Answer: A
68. The value of $\int \frac{\pi}{2} \frac{2^{\sin x} d x}{2^{\sin x}+2^{\cos x}}$ is equal to-
A. π
B. $\frac{\pi}{2}$
C. 2π
D. $\frac{\pi}{4}$

Answer: D

- Watch Video Solution

69. The value of $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{d x}{1+\sqrt{\tan x}}$ is equal to -
A. $\frac{\pi}{2}$
B. $\frac{\pi}{12}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{4}$

Answer: B

- Watch Video Solution

70. The value of $\int \frac{\pi}{\frac{\pi}{\sigma}} \frac{\sin ^{4} x d x}{\sin ^{4} x+\cos ^{4} x}$ is equal to -
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. π
D. 2π

Answer: C

71. State which of the following is correct :

If $f(x)$ is a continuous function, then -
A. $\int_{-2}^{2} f(x) d x=\int_{0}^{2}[f(x)-f(-x)] d x$
B. $\int_{-3}^{5} 2 f(x) d x=\int_{-6}^{10} f(x-1) d x$
C. $\int_{-3}^{5} f(x) d x=\int_{-4}^{4} f(x-1) d x$
D. $\int_{-3}^{5} f(x) d x=\int_{-2}^{6} f(x-1) d x$

Answer: D

- Watch Video Solution

72. The integrating factor of the linear differential equation
$\left(1-x^{2}\right)^{2} \frac{d y}{d x}+\sqrt{1-x^{2}} y=x+\sqrt{1-x^{2}}$ is -
A. $\frac{x}{\sqrt{1-x^{2}}}$
B. $-\frac{x}{\sqrt{1-x^{2}}}$
C. $e^{\frac{x}{\sqrt{1-x^{2}}}}$
D. $e^{-\frac{x}{\sqrt{1-x^{2}}}}$

Answer: C

D Watch Video Solution

73. Let $f(x)=\frac{1-\tan x}{4 x-\pi}$ when $0 \leq x \leq \frac{\pi}{2}$ and $x \neq \frac{\pi}{4}$, if $\mathrm{f}(\mathrm{x})$ is continuous at $x=\frac{\pi}{4}$, then the value of $f\left(\frac{\pi}{4}\right)$ is -
A. $-\frac{1}{2}$
B. $\frac{1}{2}$
C. 1
D. -1

Answer: A

- Watch Video Solution

74. The solution of the differential equation $(x+y)(d x-d y)=d x+d y$ is -
A. $\log |x+y|=y-x+c$
B. $\log |x+y|=x-y+c$
C. $\log |x+y|=x+y+c$
D. $\log |x+y|+x+y=c$

Answer: B

75. The solution of the equation $d y=\cos x(2-y \operatorname{cosec} x) d x$, where $y=\frac{3}{\sqrt{2}}$ when $x=\frac{\pi}{4}$ is -
A. $y=\sin x+\operatorname{cosec} x$
B. $y=\tan \frac{x}{2}+\cot \frac{x}{2}$
C. $y=\frac{1}{\sqrt{2}} \sec \frac{x}{2}+\sqrt{2} \cos \frac{x}{2}$
D. none of these

Answer: A

- Watch Video Solution

76. The order of differential equations of all parabolas having directrix parallel to x-axis is -
A. 1
B. 2
C. 4
D. 3

Answer: D

- Watch Video Solution

77. The general solution of equation $\frac{d y}{d x}+y=\sin x$ is -
A. $y=c e^{-2 x}+\frac{1}{4} \sin x-\frac{1}{2} \cos x$
B. $y=c e^{-x}$
C. $y=c e^{-x}+\frac{1}{2} \sin x-\frac{1}{2} \cos x$
D. $y=c e^{-x}+\sin x$

Answer: C
78. Solution of the differential equation $\frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0$ is
A. $y \sqrt{1-y^{2}}+x \sqrt{1-x^{2}}=a$
B. $x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}=a$
C. $x \sqrt{1-y^{2}}-y \sqrt{1-x^{2}}=a$
D. $y \sqrt{1-y^{2}}-x \sqrt{1-x^{2}}=a$

Answer: B

(D) Watch Video Solution

79. The degree of the differential equation

$$
\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{4}}=\left(\frac{d^{2} y}{d x^{2}}\right)^{\frac{1}{3}} \text { is - }
$$

A. 4
B. $\frac{3}{4}$
C. 9
D. 6

Answer: A

- Watch Video Solution

80. Given $f(0)=0$ and $f(x)=\frac{1}{1-e^{-\frac{1}{x}}}$ for $x \neq 0$. Then the function $f(x)$ is -
A. both continuous and differentiable at $\mathrm{x}=0$
B. continuous but not differentiable at $\mathrm{x}=0$
C. continuous at $\mathrm{x}=0$
D. not continuous at $\mathrm{x}=0$

Answer: D

- Watch Video Solution

81. If the line $y=2 x+k$ is a tangent to the curve $x^{2}=4 y$, then the value of k is -
A. 4
B. $\frac{1}{2}$
C. -4
D. $-\frac{1}{2}$

Answer: C

82. The are (in square unit) bounded by the parabola $x^{2}=16 y, y-$ axis and its latus rectum is -
A. $\frac{32}{3}$
B. $\frac{64}{3}$
C. $\frac{128}{3}$
D. $\frac{16}{3}$

Answer: B

- Watch Video Solution

83. The tangent drawn at the point $(0,1)$ on the curve $y=e^{2 x}$ meets the x-axis at the point -
A. $(0,0)$
B. $(2,0)$
C. $\left(\frac{1}{2}, 0\right)$
D. $\left(-\frac{1}{2}, 0\right)$

Answer: D

D Watch Video Solution

84. The area (in square unit) bounded by the curve $f(x)=4-|x|$ and the x-axis is -
A. 16
B. 32
C. 12
D. 24

Answer: A

- Watch Video Solution

85. If the area bounded by the parabola $y=x-x^{2}$ and the line 9
$y=m x$ is $\frac{-}{2}$ square unit, then one value of m is -
A. 1
B. 2
C. 3
D. 4

Answer: D

86. The point of intersection of the tangents to the parabola $y^{2}=4 a x$ at the points t_{1} and t_{2} is -
A. $\left\{2 a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right\}$
B. $\left\{2 a t_{1} t_{2}, 2 a\left(t_{1}+t_{2}\right)\right\}$
C. $\left\{a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right\}$
D. none of these

Answer: C

- Watch Video Solution

87. The locus of the point of intersection of two perpendicular tangents to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ is -
A. $x^{2}+y^{2}=5$
B. $x^{2}+y^{2}=13$
C. $x^{2}+y^{2}=4$
D. $x^{2}+y^{2}=9$

Answer: B

- Watch Video Solution

88. If the area bounded by the parabola $y=2-x^{2}$ and the line $x+y=0$ is A square unit, then the value of A is -
A. $\frac{9}{2}$
B. $\frac{2}{9}$
C. $\frac{1}{3}$
D. $\frac{7}{3}$

- Watch Video Solution

89. The angle between the tangents drawn from the point $(1,4)$ to the parabola $y^{2}=4 x$ is -
A. $\frac{\pi}{2}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

Answer: D

- Watch Video Solution

90. The area (in square unit) of the region bounded by the curve $y=|x-2|, x$-axis and the ordinates $\mathrm{x}=1, \mathrm{x}=3$ is -
A. 4
B. 3
C. 2
D. 1

Answer: D

D Watch Video Solution

91. If the line $2 x+\sqrt{6} y=2$ is a tangent to the hyperbola $x^{2}-2 y^{2}=4$, then the coordinates of the point of contact are -
A. $(4,-\sqrt{6})$
B. $(7,-2 \sqrt{6})$
C. $(2,3)$
D. $(\sqrt{6}, 1)$

Answer: A

- Watch Video Solution

92. The equation of the normal to the curve $x^{3}+y^{3}=8 x y$ at the point where it meets the parabola $y^{2}=4 x$ is -
A. $x+y=0$
B. $x-y=0$
C. $x-y+4=0$
D. $x+y+4=0$

- Watch Video Solution

93. The curve $x=1-3 t^{2}, y=t-3 t^{3}$ is symmetrical with respect to -
A. both axes
B. y-axis
C. x-axis
D. none of these

Answer: C

- Watch Video Solution

94. The equation of the curve in which the portion of the tangent between the coordinate axes is bisected at the point of contact is a/an-
A. ellipse
B. rectangular hyperbola
C. hyperbola
D. parabola

Answer: B

- Watch Video Solution

95. The equation of the normal to the parabola $y^{2}=5 x$. Which makes an angle of 45° with the x-axis is -
A. $x-y=15$
B. $2(x-y)=15$
C. $4(x-y)=15$
D. $8(x-y)=15$

Answer: C

- Watch Video Solution

96. The maximum value of $Z=3 x+4 y$ subject to the constraints
$x+y \leq 40, x+2 y \leq 60, x \geq 0$ and $y \geq 0$ is -
A. 140
B. 120
C. 100
D. 80

- Watch Video Solution

97. The minimum value of $\frac{1}{2}(7-\cos 2 x)$ is -
A. $\frac{7}{2}$
B. 4
C. $\frac{5}{2}$
D. 3

Answer: D

- Watch Video Solution

98. If $g(x)=\min \left(x, x^{2}\right)$ where x is a real number then -
A. $g(x)$ is a decreasing function
B. $g(x)$ is an increasing function
C. $g(x)$ is a constant function
D. The function $g(x)$ is neither decreasing nor increasing

Answer: B

- Watch Video Solution

99. The value of a so that the sum of the squares of the roots of the equation $x^{2}-(a-2) x+1-a=0$ assumes the least value is -
A. 3
B. 2
C. 1
D. -1

Answer: C

- Watch Video Solution

100. Twenty metres are available to fence a land in the form of a circular sector. If the land should have the greatest possible surface area, then the the radius of the circle must be -
A. 5 m
B. 4 m
C. 6 m
D. 3 m

Answer: A

Watch Video Solution

101. Area (in square unit) of the greatest rectangle that can be inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is -
A. $\sqrt{a b}$
B. $\frac{a}{b}$
C. ab
D. 2 ab

Answer: D

- Watch Video Solution

102. The point on the parabola $2 y=x^{2}$, which is nearest to the point $(0,3)$ is -
A. $(\pm 4,8)$
B. $\left(\pm 1, \frac{1}{2}\right)$
C. $(\pm 2,2)$
D. $\left(\pm 3, \frac{9}{2}\right)$

Answer: C

- Watch Video Solution

103. Let $f(x)$ be a differentiable function. If $h(x)=\frac{1}{3}\{f(x)\}^{3}+\{f(x)\}^{2}+f(x)+\frac{1}{3}$ then which one of the
following is correct ?
A. $h(x)$ increases as $f(x)$ decreases
B. $h(x)$ increases as $f(x)$ increases
C. $h(x)$ always increases whether $f(x)$ increases or decreases
D. nothing definite can be said

Answer: B

D Watch Video Solution

104. What is the value of b for which the function $f(x)=\sin x-b x+c$ is decreasing in the interval $(-\infty, \infty) ?$
A. $b>1$
B. $b \geq 1$
C. $b<1$
D. $b \leq 1$

Answer: A

105. The radius of a circular plate is increasing at the rate of 0.01 cm / s when the radius is 12 cm . Then the rate at which the area (in $\mathrm{cm}^{2} / \mathrm{s}$) increases is -
A. 0.25π
B. 0.60π
C. 1.2π
D. 0.24π

Answer: D

- Watch Video Solution

106. A spherical balloon is being inflated at the rate of $35 \mathrm{~cm}^{3}$ $/ \mathrm{min}$. Then the rate of increase of the surface area (in $\mathrm{cm}^{2} / \mathrm{min}$) of the balloon when its diameter is 14 cm , is -
A. 7
B. 10
C. 17.5
D. 28

Answer: B

- Watch Video Solution

107. Electric current C, measured by a galvanometer, is given by the equation $C=k \tan \theta$, where k is constant. Then the percentage error in the current corresponding to an error 0.7 percent in the measurement of θ when $\theta=45^{\circ}$ is -
A. 1.4
B. 2.8
C. 1.1
D. 2.2

Answer: C

- Watch Video Solution

108. The value of $\operatorname{Var}(4 x+3)$ is
A. $16 \operatorname{Var}(\mathrm{x})$
B. $4 \operatorname{Var}(\mathrm{x})$
C. $12 \operatorname{Var}(\mathrm{x})$
D. $16 \operatorname{Var}(\mathrm{x})+9$

Answer: A
109. If the side of an equilateral triangle increases at the rate of $\sqrt{3} \mathrm{~cm} / \mathrm{s}$ and its area at the rate of $12 \mathrm{~cm}^{2} / \mathrm{s}$, then the length (in $\mathrm{cm})$ of a side of the triangle is -
A. 4
B. 6
C. 8
D. 16

Answer: C

- Watch Video Solution

110. If $y=3 x^{2}+2$ and if x changes from 10 to 10.1 , then the approximate change in y will be -
A. 4
B. 6
C. 5
D. 8

Answer: B

- Watch Video Solution

