©゙ doubtnut

MATHS

BOOKS - CHHAYA PUBLICATION MATHS (BENGALI ENGLISH)

MISCELLANEOUS EXAMPLES

SET THEORY AND RELATION (OR FUCNTION)

1. For three sets A, B and C,if $A \cap C=B \cap C$ and $A \cup C=B \cup C$, then prove that $A=B$

- Watch Video Solution

2. For any three sets A, B and $C n$ if $A \cap B=A \cap C$ and $A \cup G B=A \cap C$ then prove that $\mathrm{B}=\mathrm{C}$
3. Two finite sets A and B consist of m and n elements respectively. The number of subsets in A exceeds that of B by 112. Find the values of m and
n.

- Watch Video Solution

4. A survey shows that 75% of the stubents of a school like Mathematics and 65% like Physics. If $\mathrm{x} \%$ of the students like both Mathematric and Physice, find the maximum and minimum values of x .

- Watch Video Solution

5. In a survey of 35 students of a class it was found that 17 students like mathematics and 10 like Mathematics but not Biology. Find the number of students who like (i) Biology, (ii) Biology but not Mathematics, it being given that each student takes at least one of the two subjects.
6. An inquiry into 100 candidates who failed in English of H.S. Examination revealed the following data : failed in Aggregate-66, failed in Paper I-37, failed Paper II-59, failed in Aggregate and Paper I-17, failed in Aggregate and Paper II-43 and failed in both papers-13.

Find the number of candidates who failed in
(i) Aggregate or Paper II but not in Paper I
(ii) Aggregate but not in Paper I and Paper II.

- Watch Video Solution

7. In a survey it was found that 76 men read magazine $A, 30$ read magazine $B, 40$ read magazine C and 6 men read all the thee magazines. If the total number of men who read magazines be 116, find how many men read exactly two of the three magazines.
8. For two sets A and B the three elements of $A \times B$ are $(a, x),(b, y),(c, x)$, find $B \times A$

Watch Video Solution

9. If (a, b) and (b, c) are elements of $A \times A$, find the set A and other elements of $A \times A$

- Watch Video Solution

10. If two-empty sets A and B have n elements in common, then show that $A \times B$ and $B \times A$ have n^{2} elements in common.

- Watch Video Solution

11. A relation R on the set of integers Z is defined as follows :
$(x, y) \in R \Rightarrow x \in Z,|x|<4$ and $y=|x|$
12. Let $\{x\}$ and $[x]$ denote the fractional and integral parts of a real number x respectively. Solve $4\{x\}=x+[x]$.

- Watch Video Solution

13. Find the natural number a for which $\sum_{k=1}^{n} f(a+k)=16\left(2^{n}-1\right)$ where the function f satisfies the relation $f(x+y)=f(x) f(y)$ for all natural numbers x, y and further $f(1)=2$.

- Watch Video Solution

14. If $f(x)=\cos \left[\pi^{2}\right] x+\cos \left[-\pi^{2}\right] x$ where $[x]$ denotes the greatest integer function, then show that $f(-\pi)=0$
15. If $f(x)=\cos \left[\pi^{2}\right] x+\cos \left[-\pi^{2}\right] x$ where $[x]$ denotes the greatest integer function, then show that
$f\left(\frac{\pi}{2}\right)=-1$

- Watch Video Solution

16. If $f(x)=\cos \left[\pi^{2}\right] x+\cos \left[-\pi^{2}\right] x$ where $[\mathrm{x}]$ denotes the greatest integer function, then show that
$f\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$

- Watch Video Solution

17. Find the domain of definiion of each of the functions:
$f(x)=\frac{1}{\log _{10}(1-x)}+\sqrt{x+2}$
18. Find the domain of definiion of each of the functions:
$g(x)=\sqrt{|x|-x}$

Watch Video Solution

19. Find the domain of definition of each of the functions:
$f(x)=\log \frac{3+x}{3-x}$

- Watch Video Solution

20. If $f(x)=\max \left(x, \frac{1}{x}\right)$ for $x>0$, where $\max (\mathrm{p}, \mathrm{q})$ denotes the greater of
p and q , find the value of $f(a) f\left(\frac{1}{a}\right)$, wheres $a>0$

- Watch Video Solution

21. If $f(x+y)=f(x)+f(y)$ for all real x and y, show that $f(x)=x f(1)$.
22. Find the domain of definition of each of the functions:
$f(x)=\frac{\sqrt{4-x^{2}}}{\sin ^{-1}(2-x)}$

- Watch Video Solution

23. Find the domain of definition of each of the functions :
$y=\frac{\sqrt{\cos x-\frac{1}{2}}}{\sqrt{6+35 x-6 x^{2}}}$

- Watch Video Solution

24. Find the domain of definition of each of the functions:
$f(x)=\sin \left[\log \frac{\sqrt{4-x^{2}}}{1-x}\right]$
25. Find the domain of definition of each of the functions :
$\sqrt{\left(\log _{3} x\right)^{2}-3 \log _{3} x-4}$

Watch Video Solution

26. If $f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}$ find $\mathrm{f}(\mathrm{x})$.

- Watch Video Solution

27. If $2 f\left(\frac{1}{x}\right)+f(x)=3 x$, find $f\left(x-\frac{1}{x}\right)$

- Watch Video Solution

28. $f(x)=\tan \left(x-\frac{\pi}{4}\right)$, find $f(x) \cdot f(-x)$
29. A cubic $f(x)$ satisfies the relation $f(x)+f\left(\frac{1}{x}\right)=f(x) \cdot f\left(\frac{1}{x}\right)$, show that $f(x)=1+x^{3}$ or $1-x^{3}$. Further, if $f(2)=9$, show that $f(4)=65$

- Watch Video Solution

TRIGONOMETRY

1. If $2 \cos \theta=a+\frac{1}{a}$ and $2 \cos \phi=b+\frac{1}{b}$, show that $2 \cos (\theta-\phi)=\frac{a}{b}+\frac{b}{a}$

- Watch Video Solution

2. If angles α and β satisfy the equation $a \cos \theta+b \sin \theta=c(a, b, c$ are constants), prove that-
(a) $\sin (\alpha+\beta)=\frac{2 a b}{a^{2}+b^{2}}$
(b) $\cos (\alpha+\beta)=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$
(c) $\cos (\alpha-\beta)=\frac{2 c^{2}-\left(a^{2}+b^{2}\right)}{a^{2}+b^{2}}$

- Watch Video Solution

3. If $\sec \alpha$ and $\operatorname{cosec} \alpha$ are the roots of $x^{2}-p x+q=0$ then show that $p^{2}=q(q+2)$

- Watch Video Solution

4. If $\cot ^{2} \theta=\cot (\theta-\alpha) \cot (\theta-\beta)$, prove that $\cot \alpha+\cot \beta=2 \cot 2 \theta$

- Watch Video Solution

5.

$\cos 2 A \sin 2 B=\cos 2 C \sin 2 D$,
prove
that
$\tan (C+A) \tan (C-A) \tan (B+D)=\tan (D-B)$
6. If $\sin (y+z-x), \sin (z+x-y)$ and $\sin (x+y-z)$ are in A.P., show that $\tan x$, $\tan y$ and $\tan z$ are also in A.P.

- Watch Video Solution

7. If $\cos \beta \cos (\gamma-\alpha)=\cos (\alpha-\beta+\gamma)$, prove that $\cot \alpha+\cot y=2 \cot \beta$

D Watch Video Solution

8. If $\tan ^{2} \alpha+2 \tan \alpha \tan 2 \beta=\tan ^{2} \beta+2 \tan \beta \tan 2 \alpha$, show that $\tan \beta= \pm \tan \alpha$.

D Watch Video Solution

9. If $\operatorname{cosec} 2 A+\operatorname{cosec} 2 B+\operatorname{cosec} 2 C=0, \quad$ prove that $\tan A+\tan B+\tan C+\cot A+\cot B+\cot C=0$
10. Let $f(x-1)=5 x-3$. then find $f^{-1}(x)$

- Watch Video Solution

11. If $\frac{\tan (\alpha-\beta+\gamma)}{\tan (\alpha+\beta-\gamma)}=\frac{\tan \beta}{\tan \gamma}$, show that either $\sin (\beta-\gamma)=0$ or $\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma=0$

(Watch Video Solution

12. If $0<\alpha<\frac{\pi}{2}, \frac{\pi}{2}<\beta<\pi$ and $\cos \alpha=\frac{4}{5}, \cos \beta=-\frac{3}{5}$, find the value of $\cos \frac{\alpha-\beta}{2}$. Show also that $\beta=\frac{\pi}{2}+\alpha$.

(Watch Video Solution

13. If α and β be two roots of the equation $a \cos \theta+b \sin \theta=c$, show that $\sin \alpha+\sin \beta=\frac{2 b c}{a^{2}+b^{2}}, \sin \alpha \sin \beta=\frac{c^{2}-a^{2}}{a^{2}+b^{2}}$ and $\tan (\alpha+\beta)=\frac{2 a b}{a^{2}-b^{2}}$
14. If $-360^{\circ}<A<-270^{\circ}$, show that $\sin \frac{A}{2}=-\sqrt{\frac{1-\cos A}{2}}$

- Watch Video Solution

15. If $2 \sin A=\sqrt{1+\sin 2 A}-\sqrt{1-\sin 2 A}$ then find the limits of values of A.

- Watch Video Solution

16. Prove that:
$\tan 11^{\circ} 15^{\prime}=\sqrt{4+2 \sqrt{2}}-\sqrt{2}-1$

- Watch Video Solution

17. In triangle $A B C$, if C is a right prove that $\frac{\sin ^{2} A}{\sin ^{2} B}-\frac{\cos ^{2} A}{\cos ^{2} B}=\frac{a^{4}-b^{4}}{a^{2} b^{2}}$
18. Using the identity $\tan A=\frac{\sin 2 A}{1+\cos 2 A}$ find the value of $\tan 15^{\circ}$ and $\tan 75^{\circ}$ and hence solve that the equation $\sec ^{2} \theta=4 \tan \theta$.

- Watch Video Solution

19. Prove that the lengths of the chord of a circle which subtends an angle 108° at the centre is equal to the sum of the lenths of the chords which subtend angles 36° and 60° at the centre of the same circle.

- Watch Video Solution

20. In any triangle $A B C i f \frac{b+c}{a}=\cot \frac{A}{2}$, prove that the triangle is rightangled.

- Watch Video Solution

21. If the angles of a triangle be, A, B, C and $\cos \theta(\sin B+\sin C)=\sin A$, prove that $\tan ^{2} \frac{\theta}{2}=\tan \frac{B}{2} \tan \frac{C}{2}$

- Watch Video Solution

22. If the sides a, b, c of a triangle $A B C$ are in A.P., prove that $\cos A \cot \frac{A}{2}, \cos B \cot \frac{B}{2}, \cos C \cot \frac{C}{2}$ are also in A.P.

- Watch Video Solution

23. If a is the smallest side of a triangle and a, b, c are in A.P. prove that $\cos A=\frac{4 c-3 b}{2 c}$

Watch Video Solution

24. In a triangle $A B C$ if $b+c=3 a$ then find the value of $\cot \left(\frac{B}{2}\right) \cot \left(\frac{C}{2}\right)$
25. If the medium $A D$ is perpendicular to the side $A B$ in the triangle $A B C$, show that $\tan A+2 \tan B=0$.

- Watch Video Solution

26. Show that the perimeter of any triangle is equal to
$2 \cos \frac{A}{2} \cos \frac{B}{2} \sec \frac{A+B}{2}$

- Watch Video Solution

27. If $\sin \theta+\cos \theta=a, \tan \theta+\cot \theta=b$, show that $\frac{a^{2}-1}{2}=\frac{1}{b}$

- Watch Video Solution

28. If the three side of a triangle be $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and $\tan \theta=\frac{2 \sqrt{a b}}{a-b} \sin \frac{C}{2}$, then show that $\sec \theta=\frac{c}{a-b}$.

- Watch Video Solution

29. In the triangle $A B C$, if $\cos 3 A+\cos 3 B+\cos 3 C=1$, show that the triangle is obtuse-angled.

- Watch Video Solution

30. Show that:
$\tan 20^{\circ}+\tan 70^{\circ}=2 \operatorname{cosec} 40^{\circ}$

- Watch Video Solution

31. Show that:
$\sin 2 \frac{\pi}{7}+\sin \frac{4 \pi}{7}-\sin \frac{6 \pi}{7}=4 \sin \frac{\pi}{7} \sin \frac{2 \pi}{7} \sin \frac{3 \pi}{7}$

Watch Video Solution

32. Show that :
$\tan 70^{\circ}=2 \tan 40^{\circ}+\tan 20^{\circ}+4 \tan 10^{\circ}$

- Watch Video Solution

33. The length of hypotenuse and one side of a right -angle triangle are $[3+2(\sin \theta+\cos \theta)]$ and $[2(1+\sin \theta)+\cos \theta)]$ respectively, show that the lengths of the other side of the triangle is $[2(1+\cos \theta)+\sin \theta]$

- Watch Video Solution

34. If $\cos A=\frac{3}{4}$, show that $32 \sin \frac{A}{2} \sin \frac{5 A}{2}=11$

- Watch Video Solution

35. If $\cos A=\tan B, \cos B=\tan C, \cos C=\tan A$, show that $\sin A=\sin B=\sin C=2 \sin 18^{\circ}$

Watch Video Solution

$$
\begin{aligned}
& \text { 36. If } \tan (\pi \cot \theta)=\cot (\pi \tan \theta) \text {, then show that } \\
& \tan \theta=\frac{1}{4}\left[2 n+1 \pm \sqrt{4 n^{2}+4 n-15}\right] \text {, where } n>1 \text { or } n<-2 \text {. }
\end{aligned}
$$

- Watch Video Solution

37. If $\tan (\pi \cos \theta)=\cot (\pi \sin \theta)$, show that $\cos \left(\theta-\frac{\pi}{4}\right)= \pm \frac{1}{2 \sqrt{2}}$

- Watch Video Solution

38. If $u_{n}=2 \cos n \theta$, then show that $u_{n+1}=u_{1} u_{n}-u_{n-1}$, hence, show that $2 \cos 5 \theta=u_{1}^{5}-5 u_{1}^{3}+5 u_{1}$
39. Show that the value of $\frac{\cot 3 x}{\cot x}$ cannot lie between $\frac{1}{3}$ and 3 .

- Watch Video Solution

40. If $(\sin \theta+\cos \theta)=\sqrt{2} \cos \theta$, show that $\cot \theta=(\sqrt{2}+1)$.

- Watch Video Solution

41. Show that $3(\sin x-\cos x)^{4}+4\left(\sin ^{6} x+\cos ^{6} x\right)+6(\sin x+\cos x)^{2}=13$

- Watch Video Solution

42. Show that
$1+\cos 56^{\circ}+\cos 58^{\circ}-\cos 66^{\circ}=4 \cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}$

- Watch Video Solution

43. If $\alpha=\frac{2 \pi}{7}$, then prove that $\cos \alpha+\cos 2 \alpha+\cos 4 \alpha=-\frac{1}{2}$. Hence, deduce that $\sin \alpha+\sin 2 \alpha+\sin 4 \alpha=\frac{\sqrt{7}}{2}$

D Watch Video Solution

44. In any triangle $A B C$ if $\sin A \sin B \sin C+\cos A \cos B=1$, then show that $a: b: c=1: 1: \sqrt{2}$.

(Watch Video Solution

45. If $\sin \theta+\sin \phi=\sqrt{3}(\cos \phi-\cos \theta)$, then show that $\sin 3 \theta+\sin 3 \phi=0$

- Watch Video Solution

46. Prove that :
$\tan 70^{\circ}+\tan 10^{\circ}-\tan 50^{\circ}=\sqrt{3}$
47. Prove that :
$4 \sin 50^{\circ}-\sqrt{3} \tan 50^{\circ}=1$

- Watch Video Solution

48. If α, β, γ lengths of the altitudes of a triangle ABC , prove that $\alpha^{-2}+\beta^{-2}+\gamma^{-2}=\frac{1}{\Delta}(\cot A+\cot B+\cot C)$, where Δ is the area of the triangle.

- Watch Video Solution

49. If $a \sin \theta+b \cos \theta=0$,then find θ

- Watch Video Solution

50. If $\cos ^{3} \theta=k \cos (\alpha-3 \theta)$ and $\sin ^{3} \theta=k \sin (\alpha-3 \theta)$, then show that $2 k^{2}-k \cos \alpha-1=0$

Watch Video Solution

51. Show that the general solution of
$\sin x-3 \sin 2 x+\sin 3 x=\cos x-3 \cos 2 x+\cos 3 x$ is $\frac{n \pi}{2}+\frac{\pi}{8}$, where n is any integer.

Watch Video Solution

52. If k is a positive integer, show that
$2[\cos x+\cos 3 x+\cos 5 x+\ldots+\cos (2 k-1) x]=\frac{\sin 2 k x}{\sin x}$

- Watch Video Solution

53. If $\alpha=\frac{\pi}{8 n}$ then prove that $\sin ^{2} \alpha+\sin ^{2} 3 \alpha+\sin ^{2} 5 \alpha+\ldots$ to $2 n$ terms $=n$.
54. If $\sin A+\tan A=a$ and $\cos A+\cot A=b$, then show that
$(1+a)^{-2}+(1+b)^{-2}=(1-a b)^{-2}$

- Watch Video Solution

55. If $a^{2}(1-\sin \theta)+b^{2}(1+\sin \theta)=2 a b \cos \theta$ then show that $2 \tan \theta=\frac{a}{b}-\frac{a}{a}$

- Watch Video Solution

56. Show that
$\frac{1+\sin A}{\cos A}+\frac{\cos B}{1-\sin B}=\frac{2(\sin A-\sin B)}{\sin (A-B)+\cos A-\cos B}$

- Watch Video Solution

57. If n is positive integer and $\cos \frac{\pi}{2 n}+\sin \frac{\pi}{2 n}=\frac{\sqrt{n}}{2}$, then prove that $4 \leq n \leq 8$

Watch Video Solution

58. Solve :
$\sec \theta+\operatorname{cosec} \theta=2 \sqrt{2}$

Watch Video Solution

59. Solve :
$\tan ^{3} \theta+\cot ^{3} \theta=8 \operatorname{cosec}^{3} 2 \theta+12$

- Watch Video Solution

60. Solve :
$\frac{\sin \frac{x}{2} \cos \frac{x}{2}}{1-8 \sin ^{2} \frac{x}{2} \cos ^{2} \frac{x}{2}}+\frac{\cos x\left(4 \cos ^{2} x-3\right)}{2 \sin 4 x}=0$

Watch Video Solution

61. Solve :
$\cos \theta \cos 2 \theta \cos 3 \theta=\frac{1}{4}(0 \leq \theta \leq \pi)$

- Watch Video Solution

62. If $\cos \beta$ is the geometric mean of $\sin \alpha$ and $\cos \alpha$, then show that $\cos 2 \beta=-2 \cos ^{2}\left(\frac{\pi}{4}+\alpha\right)$

- Watch Video Solution

63. Prove that $\sin \frac{\pi}{14} \sin \frac{3 \pi}{14} \sin \frac{5 \pi}{14} \sin \frac{7 \pi}{14}=\frac{1}{8}$

Watch Video Solution

64. The sides of a triangles are in A.P.and the greatest angle exceeds the least by 90°, prove that the side are proportional to $(\sqrt{7}+1), \sqrt{7}$ and $(\sqrt{7}-1)$

- Watch Video Solution

65. Let $0<x<\pi, 0<y<\pi$ and $\cos x+\cos y-\cos (x+y)=\frac{3}{2}$. Prove that $x=y=\frac{\pi}{3}$

- Watch Video Solution

66. Eliminate x and y from the following equations : $a \sin ^{2}+b \cos ^{2} x=c, b \sin ^{2} y+a \cos ^{2} y=d, a \tan x=b \tan y$.
67. Find the root of equation $2 x^{2}+3 x+11=0$.

- Watch Video Solution

68. If $a \cos \theta+b \sin \theta=c$ then find the quadratic equation whose root are $\sin ^{2} \alpha$ and $\sin ^{2} \beta$

- Watch Video Solution

69. If $\alpha=\frac{2 \pi}{7}$ then prove that $\sin \alpha \sin 2 \sin 4 \alpha=-\frac{\sqrt{7}}{8}$

- Watch Video Solution

70. If A, B, C are the angles of a triangle, show that that greatest value of $\sin 2 A+\sin 2 B+\sin 2 C i s \frac{3 \sqrt{3}}{2}$
71. If A, B, C are the angles of a triangle, find the maximum values of : $\sin A+\sin B+\sin C$

Watch Video Solution

72. If A, B, C are the angles of a triangle, find the maximum values of : $\sin A \sin B \sin C$

- Watch Video Solution

73. If A, B, C are the angles a triangle, prove that $\cos A+\cos B+\cos C \leq \frac{3}{2}$

Watch Video Solution

74. If A, B, C are the angles of a triangle, prove that the maximum value of $\cos A \cos B \cos C i s \frac{1}{8}$
75. If $\theta+\phi=\alpha$, where $0<\theta<\frac{\pi}{2}, 0<\phi<\frac{\pi}{2}$ and α is constant, find the minimum values of
$\operatorname{cosec} \theta+\operatorname{cosec} \theta$

- Watch Video Solution

76. If $\theta+\phi=\alpha$, where $0<\theta<\frac{\pi}{2}, 0<\phi<\frac{\pi}{2}$ and α is constant, find the minimum values of
$\sec \theta+\sec \phi$

Watch Video Solution

77. If $\theta+\phi=\alpha$, where $0<\theta<\frac{\pi}{2}, 0<\phi<\frac{\pi}{2}$ and α is constant, find the minimum values of
$\tan \theta+\tan \phi$
78. Show that $\frac{1}{3}<\frac{\sec ^{2} \theta-\tan \theta}{\sec ^{2} \theta+\tan \theta}<3$.

- Watch Video Solution

79. Find the minimum values of:
$\tan ^{2} \frac{A}{2}+\tan ^{2} \frac{B}{2}+\tan ^{2} \frac{C}{2}$
where A, B, C are the angles of a triangle.

- Watch Video Solution

80. Find the minimum values of:
$\cot ^{2} A+\cot ^{2} B+\cot ^{2} C$
where A, B, C are the angles of a triangle.

- Watch Video Solution

81. Find the minimum values of:
$4 \sin A+3 \cos A$

Watch Video Solution

82. Find the minimum values of:
$\sin ^{2} \frac{A}{2}+\sin ^{2} \frac{B}{2}+\sin \frac{C}{2}$
where A, B, C are the angles of a triangle.

- Watch Video Solution

83. If $A+B+C=\pi$ and $\tan \frac{B+C-A}{4} \tan \frac{C+A-B}{4} \cdot \tan \frac{A+B-C}{4}=1$, then prove that $\cos A+\cos B+\cos C=-1$

- Watch Video Solution

84. Prove that,
$\left|\begin{array}{lll}6 a & a & a \\ 12 b & 2 b & 2 b \\ 9 c & c & -2 c\end{array}\right|=0$

- Watch Video Solution

85. If $\cos \alpha+\cos \beta=a \sin \alpha+\sin \beta=b$, then show that
$\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}=\frac{4 b}{a^{2}+b^{2}+2 a}$

- Watch Video Solution

86. Determine the value of k for which $x-1$ is a factor of $\left(x^{2}+1\right)+(x+k)$

Watch Video Solution

87. Prove that :

$$
\sec \alpha+\sec \left(120^{\circ}+\alpha\right) \sec \left(120^{\circ}-\alpha\right)=-3 \sec 3 \alpha
$$

Watch Video Solution

88. Prove that :
$\operatorname{cosec} \alpha+\operatorname{cosec}\left(\frac{2 \pi}{3}+\alpha\right)+\operatorname{cosec}\left(\frac{\pi}{3}+\alpha\right)=2 \operatorname{cosec} 3 \alpha$

- Watch Video Solution

89. find the differtiation of $\tan \left(a^{x}\right)$

- Watch Video Solution

90. If α, β, γ are positive acute angles, prove that $\sin \alpha+\sin \beta+\sin \gamma>\sin (\alpha+\beta+\gamma)$

- Watch Video Solution

91. find the differtiation of $\sin \left(e^{x}\right)$

Watch Video Solution

92. If $\cos \alpha+\cos \beta=a$ and $\sin \alpha+\sin \beta=b$, then show that
$\sin 2 \alpha+\sin 2 \beta=2 a b\left(1-\frac{2}{a^{2}+b^{2}}\right)$.

- Watch Video Solution

93. Find $\sin \frac{A}{2}$ and $\cos \frac{A}{2}$ in terms of $\tan \frac{A}{4}$.

- Watch Video Solution

94. If $\tan \theta(\cos \alpha+\sin \beta)$, then show that one value of $\tan \frac{\alpha}{2} \tan \left(\frac{\pi}{4}-\frac{\beta}{2}\right)$.

- Watch Video Solution

95. If $\sin (\pi \cot \theta)=\cos (\pi \tan \theta)$ and n is an integer, then prove that the value of $\cot 2 \theta$ is of the form $\frac{1}{4}+k$.

- Watch Video Solution

96. Prove that the maximum value of $\left(\cos \alpha_{1}\right)\left(\cos \alpha_{2}\right) \ldots\left(\cos \alpha_{r}\right)$ uder the restrictions
$0 \leq \alpha_{r} \leq \frac{\pi}{2}(r=1,2, \ldots, n)$ and $\left(\cot \alpha_{1}\right)\left(\cot \alpha_{2}\right) \ldots\left(\cot \alpha_{r}\right)=1$ is $\frac{1}{2^{\frac{n}{2}}}$

- Watch Video Solution

97.

Show
that
$\sin ^{2} 12^{\circ}+\sin ^{2} 21^{\circ}+\sin ^{2} 39^{\circ}+\sin ^{2} 48^{\circ}=1+\sin ^{2} 9^{\circ}+\sin ^{2} 18^{\circ}$

- Watch Video Solution

98. If $\alpha+\beta=\frac{\pi}{2}$ and $\beta+\gamma=\alpha$ then prove that $\tan \alpha=\tan \beta+2 \tan \gamma$.

- Watch Video Solution

99. θ and θ_{2} are two distinct values of $\theta\left[0 \leq \theta_{1} 2 \pi, 0 \leq \theta_{2}<2 \pi\right]$ satisfying the equation $\sin (\theta+\alpha)=\frac{1}{2} \sin 2 \alpha$. Prove that, $\frac{\sin \theta_{1}+\sin \theta_{2}}{\cos \theta_{1}+\cos \theta_{2}}=\cot \alpha$. s

- Watch Video Solution

100. Find the values of α and $\beta\left[0<\alpha, \beta<\frac{\pi}{2}\right]$ satisfying the equation $\cos \alpha \cos \beta \cos (\alpha+\beta)=-\frac{1}{8}$

- Watch Video Solution

101. Find all the values of α for which the equation $\sin ^{4} x+\cos ^{4} x+\sin 2 x+\alpha=0$ is valid.
102. In $\sin \alpha+\sin \beta=\frac{1}{2}$ and $\cos \alpha+\cos \beta=\frac{5}{4}$, find the value of $\tan \alpha+\tan \beta$.

Watch Video Solution

103. A 12 cm long wire is bent to form a triangle with one of its angles as
60°. Find the sides of the triangle when its area is the largest.

- Watch Video Solution

104. If $\frac{\cos \alpha+\cos \beta+\cos \gamma}{\cos (\alpha+\beta+\gamma)}=\frac{\sin \alpha+\sin \beta+\sin \gamma}{\sin (\alpha+\beta+\gamma)}$, then show that each side is euqal to $\cos (\alpha+\beta)+\cos (\beta+\gamma)+\cos (\gamma+\alpha)$.

- Watch Video Solution

105. If $a \tan x+b \tan y+c \tan z=m$, then show that the minimum value of $\tan ^{2} x+\tan ^{2} y+\tan ^{2}$ zis $\frac{m^{2}}{a^{2}+b^{2}+c^{2}}$.
$\tan \left(\alpha+\frac{\pi}{3}\right) \tan \left(\alpha-\frac{\pi}{3}\right)+\tan \alpha \tan \left(\alpha+\frac{\pi}{3}\right)+\tan \left(\alpha-\frac{\pi}{3}\right) \tan \alpha+3=0$

- Watch Video Solution

107.

If
$\sin \alpha+\sin \gamma+\sin \alpha \sin \beta \sin \gamma=0$,
show
that
$\cos ^{2} \alpha(1+\sin \beta \sin \gamma)^{2}=\cos ^{4} \beta(1+\sin \gamma \sin \alpha)^{2}=\cos ^{4} \gamma(1+\sin \alpha \sin \beta)^{2}$.

- Watch Video Solution

108. If $\cos \alpha+\cos \beta+\cos \gamma+\cos \alpha \cos \beta \cos \gamma=0$, show that $\sin \alpha(1+\cos \beta \cos \gamma)= \pm \sin \beta \sin \gamma$.

- Watch Video Solution

109. Given the product p of sines of the angles of a triangle and the prodcut q of their cosines, find the cubic equation whos coefficients are functions of p and q.

- Watch Video Solution

110. If $0<x<\pi$ and $\sin x+\sin ^{2} x+\sin ^{3} x=1$, find the minimu value of $\cot ^{2} x$.

- Watch Video Solution

111. If $0 \leq \theta<\frac{\pi}{2}$ and $\cos \theta+\cos ^{2} \theta+\cos ^{3} \theta=1$ find the minimum value of $\tan \theta$.

- Watch Video Solution

> 112. If $p \sin (\alpha+\beta)=\cos (\alpha-\beta)$, then show that $\frac{1}{1-p \sin 2 \alpha}+\frac{1}{1-p \sin 2 \beta}=\frac{2}{1-p^{2}}$.

- Watch Video Solution

113. If $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$ and $x \sin \theta-y \cos \theta=\sqrt{a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta}$, prove that $\frac{x^{2}}{a}+\frac{y^{2}}{b}=a+b$.

- Watch Video Solution

114.

$\cot x=\left(a+a^{3}+a^{3}\right)^{\frac{1}{2}}, \cot y=\left(1+a+a^{-1}\right)^{\frac{1}{2}}$ and $\cot x=\left(a^{-1}+a^{-2}+a^{-3}\right)^{\frac{1}{2}}$ prove that $d x+y=z$.

- Watch Video Solution

115. Show that :
$\frac{1}{\cos \alpha-\cos 3 \alpha}+\frac{1}{\cos \alpha-\cos 5 \alpha}+\frac{1}{\cos \alpha-\cos 7 \alpha}+\ldots+\frac{1}{\cos \alpha-\cos (2 n+1) \alpha}=\frac{\operatorname{cosec} c}{2}$

- Watch Video Solution

116. If $\cos \alpha=\frac{\sin y}{\sin x}, \cos \beta=\frac{\sin z}{\sin x}$ and $\cos (\alpha-\beta)=\sin y \sin z$, prove that $\tan ^{2} x=\tan ^{2}+\tan ^{2} z$.

(Watch Video Solution

117. Show that the value of $\frac{\tan x+2 \tan 2 x}{\tan x}$ cannot lie within 1 and 5 .

(Watch Video Solution

118. If $\alpha+\beta=\frac{\pi}{3}(\alpha>0, \beta>0)$ find the maximum value of $\tan \alpha \tan \beta$.
119. Solve $\sqrt{2 \cos ^{2} x+1}+\sqrt{2 \sin ^{2} x+1}=2 \sqrt{2}$

- Watch Video Solution

120. If $\tan \alpha=x \tan \beta(x>0)$, show that $\tan ^{2}(\alpha-\beta) \leq \frac{(x-1)^{2}}{4 x}$

- Watch Video Solution

121. Prove that $\cos \theta\left(\sin \theta \pm \sqrt{\sin ^{2} \theta+\sin ^{2} \alpha}\right)$ always lies between $\pm \sqrt{1+\sin ^{2} \alpha}$.

- Watch Video Solution

122. If $\cos ^{2} \theta=\frac{a^{2}-1}{3}$ and $\tan ^{2} \frac{\theta}{2}=\tan ^{\frac{2}{3}} \alpha$ prove that $\cos \left(\frac{2}{3}\right) \alpha+\sin ^{\frac{2}{3}} \alpha=\left(\frac{2}{a}\right)^{\frac{2}{2}}$
123. Prove that $\cos ^{8} \frac{\pi}{8}+\cos ^{8} \frac{3 \pi}{8}+\cos ^{8} \frac{5 \pi}{8}+\cos ^{8} \frac{7 \pi}{8}=\frac{17}{16}$,

- Watch Video Solution

124.

Prove
that
$\cos ^{2} 40^{\circ} \cos ^{2} 80^{\circ}+\cos ^{2} 80^{\circ} \cos ^{2} 20^{\circ}+\cos ^{2} 200^{\circ} \cos ^{2} 40^{\circ}=\frac{17}{16}$

- Watch Video Solution

125. If $x+a=a(2 \cos \theta-\cos 2 \theta)$ and $y=a(2 \sin \theta-\sin 2 \theta)$,show that $\left(x^{2}+y^{2}+2 a x\right)^{2}=4 a^{2}\left(x^{2}+y^{2}\right)$.

- Watch Video Solution

126. Show that the value of $\tan \left(\theta+\frac{\pi}{6}\right) \cot \left(\theta-\frac{\pi}{6}\right)$ cannot lie between $(2+\sqrt{3})^{2}$ and $(2-\sqrt{3})^{2}$.

Watch Video Solution

127. In a triangle of base a, the ratio of the other two sides is $r(<1)$. Show that the altitude of the triangle is less than or equal to $\frac{a r}{1-r^{2}}$

- Watch Video Solution

128. In an acute angled triangle $A B C$, prove that $\tan ^{2} a+\tan ^{2} B+\tan ^{2} C \geq 9$.

- Watch Video Solution

129. Given $\sin \alpha+\cos \alpha+\tan \alpha+\cot \alpha+\sec \alpha=7$, find the value of $\sin 2 \alpha$.

- Watch Video Solution

130. If $\tan \theta=\sqrt{\frac{a-b}{a+b}} \tan \frac{A}{2}$ and $\cos \varphi=\frac{b+a \cos A}{a+b \cos A}$, show that $\varphi=2 \theta$.
131. Solve $: \sqrt{\tan \alpha x+\sin x}+\sqrt{\tan x-\sin x}=2 \cos \sqrt{\tan x}$

- View Text Solution

132. Determine the smallest positive value of x (in degrees for which)
$\tan \left(x+100^{\circ}\right)=\tan \left(x+50^{\circ}\right) \tan x \cdot \tan \left(x-50^{\circ}\right)$

- Watch Video Solution

133. Find the value of $\sin \frac{\pi}{18} \sin \frac{5 \pi}{18} \sin \frac{7 \pi}{18}$

- Watch Video Solution

134. If $\tan \alpha=\frac{x}{y}$, then show that
$x \operatorname{cosec} \frac{\alpha}{3}-y \sec \frac{\alpha}{3}=3 \sqrt{x^{2}+y^{2}}\left(0<\alpha<\frac{\pi}{2}\right)$
135. In triangle $A B C$ if $A=60^{\circ}$, show that $\cos ^{2} B+\cos ^{2} C+\cos B \cos C=\frac{3}{4}$.

- Watch Video Solution

136.

$\sin x+\sin (x+y) \sin (x+y+z)=0$ and $\cos x+\cos (x+y)+\cos (x+y+x)=0$.
Show that $y=z=120^{\circ}$.

- Watch Video Solution

137. If $\tan ^{2} z=\tan (x+y) \tan (x-y)$, show that $\cot ^{2} y+\cot (z+x) \cot (z-x)=0$

- Watch Video Solution

138. If $\cos \alpha, \sin \alpha$ and $\cot \alpha$ are in G.P. show that $\tan ^{6} \alpha-\tan ^{2} \alpha=1$
139. Solve:
$4\left[\sin ^{4} \theta+\sin ^{4}\left(\theta+\frac{\pi}{4}\right)+\sin ^{4}\left(\theta-\frac{\pi}{4}\right)\right]=5$

D Watch Video Solution
140. Solve:
$\tan ^{2} \theta+\sec 2 \theta=1$

- Watch Video Solution

141. Solve :
$e^{\sin x+\sqrt{3} \cos x-1}=1(-2 \pi<x<2 \pi)$

- Watch Video Solution

142. Solve :
$3^{\sin 2 x+2 \cos ^{2} x}+3^{1-\sin 2 x+2 \sin ^{2} x}=28$

Watch Video Solution

143.

$x+y+z=n \pi(n=0, \pm 1, \pm 2, \ldots)$ and $\frac{\cos (y+z)}{\cos x}+\frac{\cos (x+y)}{\cos z}=\frac{2 \cos (z+x)}{\cos y}$
, then show that $\tan x+\tan x=2 \tan y$.

- Watch Video Solution

144. If $\frac{\sin (\theta-\alpha)}{\sin (\theta-\beta)}=\frac{x}{y}$ and $\frac{\cos (\theta-\alpha)}{\cos (\theta-\beta)}=\frac{a}{b}$, then show that $\cos (\alpha-\beta)=\frac{a x+b y}{b x+a y}$.

- Watch Video Solution

145. If $\sin ^{2} \theta=\frac{\cos 2 \alpha \cos 2 \beta}{\cos ^{2}(\alpha+\beta)}$ then, show that one value of $\tan ^{2} \frac{\theta}{2}$ is $\tan \left(\frac{\pi}{4}-\alpha\right) \tan \left(\frac{\pi}{4}+\beta\right)$.

- Watch Video Solution

146. Find all the values of m for which the equation $\operatorname{msin}\left(\theta+\frac{\pi}{4}\right)=9+\sin 2 \theta$ is valid.

- Watch Video Solution

147. If $2 n \alpha=\frac{\pi}{2}$, then show that $\tan \alpha \tan 2 \alpha \tan 3 \alpha \ldots . \tan (2 n-2) \alpha \tan (2 n-1) \alpha=1$

- Watch Video Solution

148. If $(m+2) \sin \theta+(2 m-1) \cos \theta=(2 m+1)$, then show that $\tan \theta==\frac{4}{3}$ or $\frac{2 m}{m^{2}-1}$.

- Watch Video Solution

ALGEBRA

1. Solve the equation $z^{2}+|Z|=0$ where z is a complex quantity.

- Watch Video Solution

2. Find the real values of θ when $\frac{3+2 i \sin \theta}{1-2 i \sin \theta}$ will be purely real
3. Find the real values of θ when $\frac{3+2 i \sin \theta}{1-2 i \sin \theta}$ will be purely imaginary.

- Watch Video Solution

4. Find the conjugate, modulus and amplitude of the complex number
$\sqrt{3}-i \sqrt{2}$
$\overline{\sqrt{2}-i \sqrt{2}}$.

- Watch Video Solution

5. Find the modulus -amplitude fomr of the complex number $(-2 \sqrt{3}-2 i)$.

- Watch Video Solution

6. If $z=x+i y$, show that $\sqrt{2}|z| \geq|x|+|y|$.
7. If the modulus of the complex number $a+i b(b \neq o)$ is 1 , showthat the complex number can be represented as follows :
$a+i b=\frac{c+i}{c-i}$, where c is a real quantity.

- Watch Video Solution

8. find the cube roots of i

- Watch Video Solution

9. If z_{1}, z_{2}, z_{3},are three complex numbers, prove that $z_{1} \cdot \operatorname{Im}\left(\bar{z}_{2} z_{3}\right)+z_{2} \cdot \operatorname{Im}\left(\bar{z}_{3} z_{1}\right)+z_{3} \operatorname{Im}\left(\overline{\mathrm{z}}_{1} z_{2}\right)=0$
where $\operatorname{Im}(W)=$ imaginary part of W ,where W is a complex number.

- Watch Video Solution

10. If ω be an imaginary cube root or unity, prove that
$\frac{1}{1+2 \omega}-\frac{1}{1+\omega}+\frac{1}{2+\omega}=0$

- Watch Video Solution

11. If ω be an imaginary cube root or unity, prove that $\left(x+y \omega+z \omega^{2}\right)^{4}+\left(x \omega+y \omega^{2}+z\right)^{4}+\left(x \omega^{2}+y+z \omega\right)^{4}=0$

- Watch Video Solution

12. If ω be an imaginary cube root or unity, prove that
$\left(1-\omega+\omega^{2}\right)\left(1-\omega^{2}+\omega^{4}\right)\left(1-\omega^{4}+\omega^{8}\right) \ldots$ to2nth factor $=2^{2 n}$

- Watch Video Solution

13. Prove that $\left(\frac{-1+\sqrt{-3}}{2}\right)^{n}+\left(\frac{-1-\sqrt{-3}}{2}\right)^{n}$
$=2$, when n is positive integer multipel of $3,=-1$ when n is positive integer but not a multiple of 3 .

- Watch Video Solution

14. If m, n and p are arbitrary integers, show that the equation $x^{3 m}+x^{3 n+1}+x^{3 p+2}=0$ is satisfied by the roots of the equations $x^{2}+x+1=0$

- Watch Video Solution

15. The sides of a right angled triangle are in A.P. ,' show that the sides of the triangle are proportional to the numbers $3,4,5$

- Watch Video Solution

16. The sum of first p terms of an A.P. is zero. Show that the sum of a next q terms is $\left[-\frac{a q(p+q)}{p-1}\right], a$ being the first term of the A.P.

- Watch Video Solution

17. If $a_{1}, a_{2}, \ldots a_{k}$ are in A.P. then the equation $\frac{S_{m}}{S_{n}}=\frac{m^{2}}{n^{2}}$ (where S_{k} is the sum of the first k terms of the A.P) is satisfied. Prove that $\frac{a_{m}}{a_{n}}=\frac{2 m-1}{2 n-1}$

D Watch Video Solution

18. If $f(x)=\frac{1}{x^{2}}$, show that $f(x)-f(x+1)=\frac{2 m-1}{x^{2}(x+1)^{2}}$, hence find the the sum of first n terms of the series $\frac{3}{1^{2} \cdot 2^{2}}+\frac{5}{2^{2} \cdot 3^{2}}+\frac{7}{3^{3} \cdot 4^{2}}+\ldots$.

- Watch Video Solution

19. Let t_{p} be the p th term of an A.P. if its n th tem is zero, show that $t_{1}+t_{3}+t_{5}+\ldots+$ to nth term $=0$.

Watch Video Solution

20. Let a, b, c, d be four quantities such that $a+c=2 b$ and $a b+c d+a d=3 b c(b \neq 0)$. Prove that a, b, c and d are in A.P.

- Watch Video Solution

21. Does there exist a geometric progression containing 27,8 and 12 as three of its terms? If it exists, how many such progressions are possible ?

- Watch Video Solution

22. If $a=2$ and $e=18$, then find three numbers $\mathrm{b}, \mathrm{c}, \mathrm{d}$ betweem a and e such that (i) their sum is 25 , (ii) $2, b, c$ are in A.P. (iii) $c, d, 18$ are in G.P.
23. Prove that any sequence of numbers $a_{1}, a_{2}, \ldots a_{n}$ satisfying the condition,
$\frac{1}{a_{1} a_{2}}+\frac{1}{a_{1} a_{2}}+\ldots+\frac{1}{a_{n-1} a_{n}}=\frac{n-1}{a_{1} a_{n}}$
for every $n \geq 3$, is in arithmetic progression.

- Watch Video Solution

24. If $\frac{a-b x}{a+b x}=\frac{b-c x}{b+c x}=\frac{c-d x}{c+d x}$ show that a,b,c, d are in G.P.

Watch Video Solution

25. Prove that

$$
\begin{aligned}
& 1+(1+x)+\left(1+x+x^{2}\right)+\left(1+x+x^{2}+x^{3}\right)+\ldots+\text { to } \mathrm{n} \text { terms } \\
& =\frac{n}{1-x}-\frac{x\left(1-x^{n}\right)}{(1-x)^{2}}
\end{aligned}
$$

26. Show that in A.P. the sum of two terms equidistant from the begining and end is constant. Hence. Prove that
$\frac{1}{x_{1} x_{n}}+\frac{1}{x_{2} x_{n-1}}+\frac{1}{x_{3} x_{n-2}}+\ldots+\frac{1}{x_{n-1} x_{2}}+\frac{1}{x_{n} x_{1}}=\frac{2}{x_{1}+x_{n}}\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\ldots+\right.$ where $x_{1}, x_{2}, x_{3}, \ldots x_{n}$ are in A.P.

- Watch Video Solution

27. If there be m quantities in a G.P. whose common ratio is r and S_{m} denote the sum of first m terms, prove that the sum of their products taken two and two together is $\frac{r}{r+1} \cdot S_{m} \cdot S_{m-1}$.

- Watch Video Solution

28. If a,b,c are in G.P. are $\log _{c} a, \log _{b} c, \log _{a} b$ are in A.P., prove that the common difference of the A.P. is $\frac{3}{2}$.
29. Find the sum to n terms of the following series. $5+555+55555+\ldots$

- Watch Video Solution

30. If $x \in \mathbb{R}$, solve the inequation $\frac{5 x+8}{4-x}<2$

- Watch Video Solution

31. The population of a twon at the beginning of a year is N and the figure becomes $a+b N$ at the end of the year. Show that the population of the town at the end of k years will be $\frac{a}{1-b}+\left(N-\frac{a}{1-b}\right) b^{k}$.

- Watch Video Solution

32. Examine the validity of the following statement:

If a and b ar odd integers then $a b$ is an odd integer.

Watch Video Solution

33. Show that the total number of permutations of n diferent things not more than r things at a time (repetition being allowed) is $\frac{n\left(n^{r}-1\right)}{n-1}$.

- Watch Video Solution

34. A and B stand in a line with 10 other people. In how many of the permutations there are 3 people between A and B ?

- Watch Video Solution

35. Find the number of permutations of the letters x, x, x, y, y, y, z, w taken

5 at a time.

- Watch Video Solution

36. A bag contains 50 tickets $1,2,3, \ldots 50$ of which 5 are drawn at random and aranged in ascending order of their numbers $x_{1}<x_{2}<x_{3}<x_{4}<x_{5}$. Find the number of selections so that $x_{3}=30$

- Watch Video Solution

37. In $n>7$ prove that ${ }^{n-1} C_{3}+{ }^{n-1} C_{4}>{ }^{n} C_{3}$

- Watch Video Solution

38. If $\frac{{ }^{n} C_{r-1}}{a}=\frac{{ }^{n} C_{r}}{b}=\frac{{ }^{n} C_{r}}{c}$ prove that $n=\frac{a b+2 a c+b c}{b^{2}-a c}$ and $r=\frac{a(b+c)}{b^{2}-a c}$.

- Watch Video Solution

39. A, B and C have respectively 4,3 and 2 differrent books. In how many different ways can they interchange the books among themselves, without altering the total number initially possessed by each ?

- Watch Video Solution

40. Find the modulus and ampltidue of the complex in number
$z=\frac{-2-i 2 \sqrt{3}}{\sqrt{3}-i}$

- Watch Video Solution

41. Find the amplitude of
$z=1+i \tan \frac{3 \pi}{5}$

- Watch Video Solution

42. Find the modulus and amplitude of
$z=\sin \frac{6 \pi}{5}+I\left(1+\cos \frac{6 \pi}{5}\right)$

- Watch Video Solution

43. There are m A.P. Whose common differences are $1,2,3, . . \mathrm{M}$ respectively, the first term of each being unity. Show that the sum of their nth terms is $\frac{m}{2}(m n-m+n+1)$.

- Watch Video Solution

44. If $S_{1}, S_{2}, S_{3}, \ldots S_{m}$ be the sum of first n terms of n A.P. Whose first terms are $1,2,3, \ldots M$ aand common differnece are $1,3,5, \ldots(2 m-1)$ respectively, show that $S_{1}+S_{2}+S_{3}+\ldots+S_{m}=\frac{m n}{2}(m n+1)$.

- Watch Video Solution

45. Show that the sum of the numbers in the n th bracket of the series $(1)+(3+5)+(7+9+11)+\ldots+$ isn 3.

Watch Video Solution

46. Show that the following two A.P. is have 14 common terms $3,7,11,15 \ldots, 407$ and $2,9,16,23, \ldots, 709$,

- Watch Video Solution

47. Show that there are 17 identical terms in the following two A. P. 2, 5, 8... To 60th term and $3,5,7, \ldots$ to 50 th term.

- Watch Video Solution

48. Find the n th term and the sum of first n terms of thefollowing sequence $2,7,20,57,166, \ldots$
49. Solve $\left|x^{2}+4 x+3\right|+2 x+5=0$

- Watch Video Solution

50. For $a>0$, determine all the roots of the equations $x^{2}-2 a|x-a|-3 a^{2}=0$

- Watch Video Solution

51. How many five -digit numbers divisible by 3 can do formed using the digits $0,1,2,3,4$ and 5 when no digit is repeated ?

- Watch Video Solution

52. How many five-digit telephone numbers with pairwise distinct digits can be formed ?

Watch Video Solution

53. Five speakers A, B, C, D and E will speark at a meeting. In how many ways can they take their turrns if (i) A speask immediately before B, and (ii) B does not speak befor A?

- Watch Video Solution

54. If $z_{1}=3 i$ and $z_{2}=-1-i$, where $i=\sqrt{-1}$ find the value of $\arg \left(\frac{z_{1}}{z_{2}}\right)$

- Watch Video Solution

55. Show that the number of solutions of equations $|x|^{2}-3|x|+2=0$ is 4 .
56. Show that $\frac{1}{2}\left[(x-y)^{4}+(y-z)^{4}+(z-x)^{4}\right]$ is perfect square.

- Watch Video Solution

57. In an arithmetic progression of n terms (n is even), the two middle terms are $p-q, p+q$ respectively. Prove that the sum of the squares of all
the term of the progression is $n\left[p^{2}+\frac{n^{2}-1}{3} q^{2}\right]$.

- Watch Video Solution

58. In an A.P. fo n terms (n is even), the two middle terms are $(\alpha-\beta),(\alpha+\beta)$ respectively. Show that the sum of the cubes of all the terms of the A.P. is $n \alpha\left[\alpha^{2}+\left(n^{2}-1\right) \beta^{2}\right]$
59. Prove that the ineuations $\frac{2 x+1}{7 x-1}>5$ and $\frac{x+7}{x-8}>2$ have no solutions

- Watch Video Solution

60. If the argument of $(z-a)(\bar{z}-b)$ is equal to that of $\frac{(\sqrt{3}+i)(1+\sqrt{3} i)}{1+i}$, where a, b are two real numbers and \bar{z} is the complex conjugate of the Argand diagram. Find the values of a and b so that be locus becomes a circle having its centre at $\frac{1}{2}(3+i)$.

- Watch Video Solution

61. Which term of the series $3+4+6+9+13+18+\ldots$ is 5053 ?

- Watch Video Solution

62. z_{1} and $z_{2}\left(\neq z_{1}\right)$ are two complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|$. Sho that the real part of $\frac{z_{1}+z_{2}}{z_{1}-z_{2}}$ is zero.

- Watch Video Solution

63. If $x=\cos \theta+I \sin \theta$ and $y=\cos \psi+I \sin \psi$, then show that $\frac{x}{y}+\frac{y}{x}=2 \cos (\theta-\psi)$.

Watch Video Solution

64. If ω is an imaginary cube root of unity, show that
$\left(x+\omega+\omega^{2}\right)\left(x-\omega^{2}-\omega^{4}\right)\left(x+\omega^{4}+\omega^{8}\right)\left(x-\omega^{8}-\omega^{16}\right)$. . to $\quad 2 n \quad$ factors
$=\left(x^{2}-1\right)^{n}$

- Watch Video Solution

65. If ω is an imaginary cube root of unity, show that
$\frac{a+b \omega+c \omega^{2}}{b+c \omega+a \omega^{2}}+\frac{a+b \omega+c \omega^{2}}{c+a v+b \omega^{2}}=-1$

- Watch Video Solution

66. If ω is an imaginary cube root of unity, show that
$\frac{\omega}{9}\left[(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{4}\right)\left(1-\omega^{8}\right)+9\left(\frac{c+a \omega+b \omega^{2}}{a \omega^{2}+b+c \omega}\right)^{2}\right]=-1$

- Watch Video Solution

67. Find the value of $4+5\left[-\frac{1}{2}-i \frac{\sqrt{3}}{2}\right]^{344}+3\left[-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right]^{365}(i=\sqrt{-1})$
68. If $x=\omega^{3} \sqrt{y}+\omega+\omega^{23} \sqrt{z}$, then prove that

$$
\left(x^{3}-y-z\right)^{3}=27 x^{3} y z
$$

- Watch Video Solution

69. Find the square root of $\frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}+\frac{1}{2 i}\left(\frac{a}{b}+\frac{b}{a}\right)+\frac{31}{16}$.

- Watch Video Solution

70. z_{1} and z_{2} are two non-zero complex numbers such that $z_{1}^{2}+z_{1} z_{2}+z_{2}^{2}=0$. Prove that the ponts z_{1}, z_{2} and the origin form an isosceles triangle in the complex plane.

- Watch Video Solution

formula for the cube of natural number n.

- Watch Video Solution

72. Obtain the sum of $\frac{1}{x+1}+\frac{2}{x^{2}+1}+\frac{4}{x^{4}+1}+\ldots+\frac{2^{n}}{x^{2^{n}}+1}$

- Watch Video Solution

73. Let A and B be two comoplex numbers such that $\frac{A}{B}+\frac{B}{A}=1$. Prove that the origin and the two points represented by A and B form vertices of an equilaterla triangle.

- Watch Video Solution

74. Show that the complex numbers z_{1}, z_{2}, z_{3} satisfying $\frac{z_{1}-z_{3}}{z_{2}-z_{3}}=\frac{1-\sqrt{3}}{2}$ are the verticels of an equilaterla triangle.
75. If z_{1}, z_{2}, z_{3} are complex numbers such that
$\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}\right|=1$, then find $\left|z_{1}+z_{2}+z_{3}\right|$.

- Watch Video Solution

76. Show that (666...ntimes) ${ }^{2}+(888 \ldots \mathrm{~N}$ times $)=(444 \ldots . .2 \mathrm{n}$ times $)$.

- Watch Video Solution

77. Let $z_{1}=10+6 i$ and $z_{2}=4+6 i$. If z is complex number such that the argument of $\frac{z-z_{1}}{z-z_{2}}$ is $\frac{\pi}{4}$ then prove that $|z-7-9 i|=3 \sqrt{2}$.

- Watch Video Solution

78. z_{1} and z_{2} are two non-zero complex numbers, they form an equilateral triangle with the origin in the complex plane. Prove that $z_{1}^{2}-z_{1} z_{2}+z_{2}^{2}=0$

- Watch Video Solution

79. If the complex numbers z_{1}, z_{2}, z_{3} represents the vertices of an equilaterla triangle such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$, show that $z_{1}+z_{2}+z_{3}=0$

- Watch Video Solution

80. If ω is an imaginary cube root of unity. Find the value of the expression $1(2-\omega)\left(2-\omega^{2}\right)+2(3-\omega)+\ldots+(n-1)(n-\omega)\left(n-\omega^{2}\right)$.

- Watch Video Solution

81. Find the sum of all multiples 3 or 4 between 1 and 325 .

- Watch Video Solution

82. The vertices A, B, C of an isosceles right angled triangle with right angle at C are represented by the complex numbers $z_{1} z_{2}$ and z_{3} respectively. Show that $\left(z_{1}-z_{2}\right)^{2}=2\left(z_{1}-z_{3}\right)\left(z_{3}-z_{2}\right)$.

- Watch Video Solution

83. If $n \geq 0$ is integer, using induction method prove that,
$\frac{1}{1+x}+\frac{2}{1+x^{2}}+\frac{4}{1+x^{4}}+\ldots+\frac{2^{n}}{1+x^{2 n}}=\frac{1}{x-1}+\frac{2^{n+1}}{1-x^{2^{n+1}}}$.

- Watch Video Solution

84. Find the differential coefficient of:
$x^{5 x}$

- Watch Video Solution

85. If $x+y=a+b$ and $x^{2}+y^{2}=a^{2}+b^{2}$, then by mathematical induction prove that $x^{n}+y^{n}=a^{n}+b^{n}$. For all $n \in \mathbb{N}$.

- Watch Video Solution

86. By the principle of mathematical induction prove that, $\left(2^{2^{n}}+1\right)$ has 7 in unit's place for all integer $n \geq 2$.

- Watch Video Solution

87. Find the differential coefficient of:
$x^{9}-5 x^{2}+3 x$

- Watch Video Solution

88. Find the solution set of inequation $\frac{x-2}{x+5}>2$.
89. Find the differential coefficient of:
$x^{5}+4 x$

Watch Video Solution

90. Find the differential coefficient of:
$x^{2 x}$

- Watch Video Solution

91. Using mathematical induction prove that,

$$
\tan ^{-1} \frac{x}{1 \cdot 2+x^{2}}+\tan ^{-1} \frac{x}{2 \cdot 3+x^{2}}+\ldots+\tan ^{-1} \frac{x}{n \cdot(n+1)+x^{2}}+\tan ^{-1} x-\tan ^{-1} \frac{1}{n+}
$$

92. Using mathematical induction prove that,
$\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}+\ldots+\tan ^{-1} \frac{1}{n^{2}+n+1}=\tan ^{-1}(n+1)-\frac{\pi}{4}$ for all $n \in \mathbb{N}$.

- Watch Video Solution

93. Using mathematical induction prove that,
$\tan ^{-1}\left(\frac{1}{2 \cdot 1^{2}}\right)+\tan ^{-1}\left(\frac{1}{2 \cdot 2^{2}}\right)+\ldots+\tan ^{-1}\left(\frac{1}{2 \cdot n^{2}}\right)=\tan ^{-1}(2 n+1)+\frac{\pi}{4}$, for all

- Watch Video Solution

94. If $\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1}+x+a_{2} x^{2}+\ldots+a_{2 n} x^{2 n}$, show that $a_{0}+a_{3}+a_{6}+\ldots=a_{1}+a_{4}+a_{7}+\ldots .+=a_{2}+a_{5}+a_{8}+\ldots 3^{n-1}$.

- Watch Video Solution

95. If $(1+x)^{n}=C_{0}+C_{1}+x+C_{2} x^{2}+\ldots+C_{n} x^{n}$

Find the value of $C_{1}+2^{2} \cdot C_{2} x+3^{2} \cdot C_{3} x^{2}+\ldots+n^{2} \cdot C_{n} x^{n-1}$ and hence find the sum of $C_{1}-2^{2} \cdot C_{2}+3^{2} \cdot C_{3}-\ldots .+(-1)^{n-1} \cdot n^{2} \cdot C_{n}$

- Watch Video Solution

96. If $(1+x)^{n}=C_{0}+C_{1}+x+C_{2} x^{2}+\ldots+C_{n} x^{n}$

Show that $C_{1}-\frac{1}{2} \cdot C_{2}+\frac{1}{3} \cdot C_{3}-\ldots+(-1)^{n-1} \cdot \frac{1}{n} C_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$

- Watch Video Solution

97. If $(1+x)^{n}=C_{0}+C_{1}+x+C_{2} x^{2}+\ldots+C_{n} x^{n}$

Show that $1^{2} \cdot C_{1}^{2}+2^{2} \cdot C_{2} \cdot+3^{2} \cdot C_{3}+\ldots+n^{2} \cdot c_{n}^{2}=n^{2} \cdot \frac{(2 n-2)!}{[(n-1)!]^{2}}$

- Watch Video Solution

98. If $(1+x)^{n}=C_{0}+C_{1}+x+C_{2} x^{2}+\ldots+C_{n} x^{n}$

Show that $C_{0}^{2}+2 \cdot C_{1}^{2}+3 \cdot C_{2}^{2}+\ldots+(n+1) \cdot C_{n}^{2}=\frac{(n+2)(2 n-1)!}{n!(n-1)!}$

- Watch Video Solution

99. If $(1+x)^{n}=C_{0}+C_{1}+x+C_{2} x^{2}+\ldots+C_{n} x^{n}$

Show that $\frac{2^{2} \cdot C_{0}}{1 \cdot 2}+\frac{2^{3} \cdot C_{1}}{2 \cdot 3}+\ldots .+\frac{2^{n+2} C_{n}}{(n+1)(n+2)}=\frac{3^{n+2}-2 n-5}{(n+1)(n+2)}$

- Watch Video Solution

100. If $(1+x)^{n}=C_{0}+C_{1}+x+C_{2} x^{2}+\ldots+C_{n} x^{n}$

For all values of a show that

$$
\frac{C_{0}}{a}-\frac{C_{1}}{a+a}+\frac{C_{2}}{a+2}-\ldots+(-1)^{n} \frac{C_{n}}{a+n}=\frac{n!}{a(a+1)(a+2) \ldots(a+n)}
$$

- Watch Video Solution

101. If $(1+x)^{n}=C_{0}+C_{1}+x+C_{2} x^{2}+\ldots+C_{n} x^{n}$

Show that $C_{1}^{2}+2 \cdot C_{2}^{2}+3 \cdot C_{3}^{2} \ldots+n \cdot C_{n}^{2}=\frac{(2 n-1)!}{[(n-1)!]^{2}}$

- Watch Video Solution

102. If $(1+x)^{n}=C_{0}+C_{1}+x+C_{2} x^{2}+\ldots+C_{n} x^{n}$
show
that
$\left(C_{0}\right)^{2}+\left(\frac{1}{2} \cdot C_{1}\right)^{2}+\left(\frac{1}{3} \cdot C_{2}\right)^{2}+\left(\frac{1}{4} \cdot C_{3}\right)^{2}+\ldots+\left(\frac{1}{n+1} \cdot C_{n}\right)^{2}=\frac{1}{(n+1)^{2}}$

(.) Watch Video Solution

103. Show that the sum of the coefficient of first $(r+1)$ terms in the expansions of $(1-x)^{-n}$ is $\frac{(n+1)(n+2) \ldots(n+r)}{r!}$

- Watch Video Solution

104. Show that $4^{m}\left[1+\frac{m}{2}+\frac{m(m+1)}{2 \cdot 4}+\frac{m(m+1)(m+2)}{2 \cdot 4 \cdot 6}+\ldots\right]$
$7^{m}\left[1+\frac{m}{7}+\frac{m(m-1)}{7 \cdot 14}+\frac{m(m-1)(m+2)}{7 \cdot 14 \cdot 21}+\ldots\right]$

- Watch Video Solution

105. It is given that n is an odd integer greater than 3 but n is not multiple of 3 . prove that $\left(x^{3}+x^{2}+x\right)$ is a factor of $(1+x)^{n}-x^{n}-1$.

- Watch Video Solution

106. If $(1+x)^{n}=C_{0}+C_{1}+x+C_{2} x^{2}+\ldots+C_{n} x^{n}$ show that,
$1^{2} \cdot C_{1}+2^{2} \cdot C_{2}+3^{2} \cdot C_{3}+\ldots+n^{2} \cdot C_{n}=n(n+1) 2^{n-2}$,

- Watch Video Solution

107. If $(1+x)^{n}=C_{0}+C_{1}+x+C_{2} x^{2}+\ldots+C_{n} x^{n}$ show that, $C_{0}-2^{2} \cdot C_{1}+3^{2} \cdot C_{2}-\ldots+(-1)^{n} \cdot(n+1)^{2} \cdot C_{n}=0(n>2)$

- Watch Video Solution

108. Using binomial theorem for a positive integral index, prove that $\left(2^{3 n}-7 n-1\right)$ is divisble by 49 , for any positive integer n.

- Watch Video Solution

109. Find the largest coefficient in the expansion of $(1+x)^{n}$, given that the sum of coefficients of the terms in its expansion is 4096.

- Watch Video Solution

110. Given that the 4 th term in the expansion of $\left(2+\frac{3}{8} x\right)^{10}$ has the maximum numerical value, find the range of x for which the statement
will be true.

- Watch Video Solution

111. If $x \in \mathbb{R}$ then find the solution set of the inquation $|3 x-7|>4$.

- Watch Video Solution

112. Solve the following quadratic equation: $x^{2}-(5-i) x+(18+i)=0$

- Watch Video Solution

113. For every natural number n, show that $7^{2 n}+2^{3 n-3} \cdot 3^{n-1}$ is always divisible by 25 .

- Watch Video Solution

114. If the coefficients of the $(r-1)$ th and $(2 r+3)$ th terms in the equation of $(1+x)^{15}$ are equal, find the value of r.

- Watch Video Solution

115. If n is a positive integer then using the indentiy
$(1+x)^{n}=(1+x)^{3}(1+x)^{n-3}$, prove that
${ }^{n} C_{r}={ }^{n-2} C_{r}+3 \cdot{ }^{n-3} C_{r-1} \cdot{ }^{n-3} C_{r-2}+{ }^{n-3} C_{r-3}$

- Watch Video Solution

116. If $S_{1}, S_{2}, S_{3}, \ldots S_{n}$ are the sums of infinite geometric series, whose first terms are $1,2,3, \ldots n$ whose ratios are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \frac{1}{n+1}$ respectively, then find the value of $S_{1}^{2}+S_{2}^{2}+S_{3}^{2}+\ldots+S_{2 n-1}^{2}$.

- Watch Video Solution

117. If $u_{r}=\frac{1}{r!}$ then show that
$u_{0} u_{n}+8 u_{1}+u_{n-1}+8^{2} u_{2} u_{n-2}+\ldots+8^{n} u_{n} u_{0}=\frac{3^{2 n}}{n!}$

- Watch Video Solution

118. a series is given by the following form :
$1+\left(x+x^{2}\right)+\left(x^{3}+x^{4}+x^{5}\right)+\left(x^{6}+x^{7}+x^{8}+x^{9}\right)+\ldots+$ find the first term and sum of the terms in the n th bracket.

- Watch Video Solution

119. If $x=\cos \theta+i \sin \theta$ and $1+\sqrt{1-a^{2}}=n a$, show that,
$\frac{a}{2 n}(1+n x)\left(1+\frac{n}{x}\right)=1+a \cos \theta$

- Watch Video Solution

120. Show that $\left(a+\omega+\omega^{2}\right)\left(a+\omega^{2}+\omega^{4}\right)\left(a+\omega^{4}+\omega^{8}\right) \ldots$ upto $2 n$ factosrs $=(a-1)^{2 n}$.

D Watch Video Solution

121. Let z and ω tow complex number. If $|z|=|\omega|$ and $\operatorname{areg}(z)+\arg (\omega)=\pi$ then show that $z=-\bar{\omega}$.

- Watch Video Solution

122. If $z_{1}+z_{2}$ are two complex number and $\left|\frac{\bar{z}_{1}-2 \bar{z}_{2}}{2-z_{1} \bar{z}_{2}}\right|=1,\left|z_{1}\right| \neq$, then show that $\left|z_{1}\right|=2$.

(Watch Video Solution

123. If $x+$ iy moves on the line $3 x+4 y+5=0$, prove that the minimum value of $|x+i y|$ is 1 .

- Watch Video Solution

124. If $\left|z^{2}\right|=9|z|$, find the maximum and minimum values of $|z|$.

- Watch Video Solution

125. Find the greatest value of $|z|$ when $\left|z-\frac{6}{z}\right|=2, z$ being a complex number.

- Watch Video Solution

126. Find the least value of $\left|z+\frac{1}{z}\right|$ if $|z| \geq 3$ (z being a complex number)
127. If the roots of the equation $i x^{2}-\left(b^{2}+c^{2}\right) x+\left(c^{2}+d^{2}\right)^{2}=0$ be in the ratio 3:4, show that $\frac{\left(b^{2}+c^{2}\right)^{2}}{\left(c^{2}+d^{2}\right)^{2}}=\frac{49 i}{12}$

- Watch Video Solution

128. If one root of the equation $a x^{2}-2 i b x-i c=0$ be square of the other, then prove that $i=\frac{c^{2} a-6 a b c}{8 b^{3}-c a^{2}}$.

- Watch Video Solution

129. Solve
$\frac{7 y^{2}+1}{y^{2}-1}-4\left(\frac{y^{2}-1}{7 y^{2}+1}\right)=-3$

- Watch Video Solution

130. Solve

$$
\left(x-\frac{x}{x+1}\right)^{2}+2 x\left(\frac{x}{x+1}\right)=3
$$

Watch Video Solution

131. If α and β are the roots of $a x^{2}+b x+c i d=0$ find the equation whose rootsare α^{-3}, β^{-3}.

- Watch Video Solution

132. Show that,
$3^{n}-\frac{n}{1!} 3^{n-1}+\frac{n(n-1)}{2!} 3^{n-2}-\ldots+(-1)^{n}={ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\ldots+{ }^{n} C_{2}$

- Watch Video Solution

133.

Find
the
coefficient
of
x^{-5}
in
${ }^{n} C_{0}-{ }^{n} C_{1}\left(\frac{2 x-1}{x}\right)+{ }^{n} C_{2}\left(\frac{2 x-1}{x}\right)^{2}-\ldots .+(-1)^{n}\left(\frac{2 x-1}{x}\right)^{n}$
134. Find the degree of theexpansion,
$\left\{x+\left(x^{3}-1\right)^{1 / 2}\right\}^{5}+\left\{x-\left(x^{3}-1\right)^{1 / 2}\right\}^{5}$

- Watch Video Solution

135. Find the term independent of x in the expansion, $\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}$

- Watch Video Solution

136. Find the remainder if number 2^{2003} is divided by 17 .

- Watch Video Solution

137. Find last three digits of the number 17^{256}.

- Watch Video Solution

138. Find the sum of the series,
$\frac{1^{2}}{3}+\frac{1^{2}+2^{2}}{5}+\frac{1^{2}+2^{2}+3^{2}}{7}+\ldots$ upto nth term.

- Watch Video Solution

139. Find the value of $\sum_{r=1}^{n} \frac{r}{1+r^{2}+r^{4}}$

- Watch Video Solution

140. If $a_{1}, a_{2}, a_{3}, .$. from a G.P. with common ratio r, find in terms of r and a_{1} the sum of $a_{1} a_{2}+a_{2} a_{3}+\ldots+a_{n}+a_{n+1}$
141. Show that $\frac{111 \ldots 1}{91 \text { digits }}$ is a composite number.

- Watch Video Solution

142. If $A=\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right)$,prove by induction that, $A^{n}=\left(\begin{array}{cc}1+2 n & -4 n \\ n & 1-2 n\end{array}\right)$ where n is a positive integer.

- Watch Video Solution

143. If $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right]$, prove that, $A^{2}=\left[\begin{array}{lll}2^{2} & 0 & 0 \\ 0 & 3^{2} & 0 \\ 0 & 0 & 5^{2}\end{array}\right]$, hence by induction
method show that, $A^{n}=\left[\begin{array}{lll}2^{n} & 0 & 0 \\ 0 & 3^{n} & 0 \\ 0 & 0 & 5^{n}\end{array}\right]$
144. Solve by Cramer's rule : ax+by+cz=1,
$c x+a y+b z=0, b x+c y+a z=0$, given that, A, B, C are the cofactors of the elemets a, b, c in D where
$D=a\left|\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right|$

- Watch Video Solution

145. Without expanding prove that,
$\left|\begin{array}{lll}1 & b c & b+c \\ 1 & c a & c+a \\ 1 & a b & a+b\end{array}\right|=\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$

- Watch Video Solution

146. If $D=\left|\begin{array}{lll}1 & \sin a & 1 \\ -\sin a & 1 & \sin a \\ -1 & -\sin a & 1\end{array}\right|$, show that, $2 \leq D \leq 4$.
147. Prove that,
$\left|\begin{array}{lll}-2 a & a & a \\ -2 b & b & b \\ c+a & b+c & -2 c\end{array}\right|=0$

- Watch Video Solution

148. Prove that,
$\left|\begin{array}{lll}(b+c)^{2} & c^{2} & b^{2} \\ c^{2} & (c+a)^{2} & a^{2} \\ b^{2} & a^{2} & (a+b)^{2}\end{array}\right|=2(b c+c a+a b)^{3}$

- Watch Video Solution

149. If $\left|\begin{array}{cc}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right| \times\left|\begin{array}{cc}\alpha-i \beta & \gamma-i \delta \\ -\gamma-i \delta & \alpha+i \beta\end{array}\right|=\left|\begin{array}{cc}A-i B & C-i D \\ -C-i D & A+i B\end{array}\right|$, write down the values of $\mathrm{A}, \mathrm{B}, \mathrm{C},(i=\sqrt{-1})$. Hence show that, the product of two sums, each of four squares, can be expressed as the sum of four squares.

- Watch Video Solution

150. If $s_{r}=x^{r}+y^{r}+z^{r}$, prove by considering the square of the
determinant $\left|\begin{array}{lll}1 & 1 & 1 \\ x & y & z \\ x^{2} & y^{2} & z^{2}\end{array}\right|$ that $\left|\begin{array}{lll}s_{0} & s_{1} & s_{2} \\ s_{1} & s_{2} & s_{3} \\ s_{2} & s_{3} & s_{4}\end{array}\right|=(x-y)^{2}(y-z)^{2}(z-x)^{2}$

- Watch Video Solution

151. Prove that for all values of θ,
$\left|\begin{array}{lll}\sin \theta & \cos \theta & \sin 2 \theta \\ \sin \left(\theta+\frac{2 \pi}{3}\right) & \cos \left(\theta+\frac{2 \pi}{3}\right) & \sin \left(2 \theta+\frac{4 \pi}{3}\right) \\ \sin \left(\theta-\frac{2 \pi}{3}\right) & \cos \left(\theta-\frac{2 \pi}{3}\right) & \sin \left(2 \theta-\frac{4 \pi}{3}\right)\end{array}\right|=0$

- Watch Video Solution

152. Prove that,
$\left|\begin{array}{lll}\sin ^{3} A & \cos A & \sin A \\ \sin ^{3} B & \cos B & \sin B \\ \sin ^{3} C & \cos C & \sin C\end{array}\right|$
$=\sin (A-B) \sin (B-C) \sin (C-A) \sin (A+B+C)$.

D Watch Video Solution

153. Find the inverse of the matrix $B=\left[\begin{array}{ll}4 & -2 \\ 0 & 5\end{array}\right]$. Hence, find a matrix A such that, $A B+\left[\begin{array}{ll}-1 & 3 \\ -9 & 6\end{array}\right]=\left[\begin{array}{ll}3 & 16 \\ 7 & 8\end{array}\right]$.

D Watch Video Solution

154. If $A=\frac{1}{2}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), B=\frac{1}{2}\left(\begin{array}{ll}0 & -i \\ i & 0\end{array}\right)$ and $C=\left(\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right)$, show that,
$A^{2}+B^{2}+C^{2}=\frac{3}{2} I$.
155. Prove that,

$$
\left[\begin{array}{lll}
-b c & b^{2}+b c & c^{2}+b c \\
a^{2}+a c & -a c & c^{2}+a c \\
a^{2}+a b & b^{2}+a b & -a b
\end{array}\right]=(a b+b c+c a)^{3}
$$

Watch Video Solution

156. Without expanding prove that

$$
\left[\begin{array}{lll}
b^{2}-a b & b-c & b c-a c \\
a b-a^{2} & a-b & b^{2}-a b \\
b c-a c & c-a & a b-a^{2}
\end{array}\right]=0
$$

Watch Video Solution

157. If $A=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right], B=\left[\begin{array}{ll}x & 1 \\ y & -1\end{array}\right]$ and $(A+B)^{2}=A^{2}+B^{2}$, find x and y.

- Watch Video Solution

158. Using matrices, solve that following system of equations:
$8 x+4 y+3 z=18,2 x+y+z=5, x+2 y+x=5$.

D Watch Video Solution

159. Using elementary row operations, find the inverse of the matrix $\left(\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right)$.

- Watch Video Solution

160. Using elementary row operations, find the inverse of the matrix
$\left[\begin{array}{lll}1 & 3 & 2 \\ -3 & -3 & -1 \\ 2 & 1 & 0\end{array}\right]$

- Watch Video Solution

161. Find the inverse of the following matrix using elementary operations :
$A=\left[\begin{array}{lll}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]$

- Watch Video Solution

162. Using properties of determinants prove that,
$\left|\begin{array}{lll}(b+c)^{2} & a^{2} & a^{2} \\ b^{2} & (c+a)^{2} & b^{2} \\ c^{2} & c^{2} & (a+b)^{2}\end{array}\right|=2 a b c(a+b+c)^{3}$

- Watch Video Solution

163. Using properties of determinants, prove that,

$$
\left|\begin{array}{lll}
1 & 1+p & 1+p+q \\
2 & 3+2 p & 1+3 p+2 q \\
3 & 6+3 p & 1+6 p+3 q
\end{array}\right|=1
$$

164. By using properties of determinants, prove that,
$\left|\begin{array}{lll}x+4 & 2 x & 2 x \\ 2 x & x+4 & 2 x \\ 2 x & 2 x & x+4\end{array}\right|=(5 x+4)(x-4)^{2}$

- Watch Video Solution

165. Let $A=\left[\begin{array}{lll}3 & 2 & 5 \\ 4 & 1 & 3 \\ 0 & 6 & 7\end{array}\right]$. Express A as sum of two matrices such that one is symmetric and the other is skew-symmetric.

- Watch Video Solution

COORDINATE GEOMETRY (TWO DIMENSIONAL COORDINATE GEOMETRY)

1. If O be the origin and if coordinates of any two points Q_{1} and Q_{2} be
$O Q_{1} \cdot O Q_{2} \cos \angle Q_{1} O Q_{2}=x_{1} x_{2}+y_{1}+y_{2}$.

- Watch Video Solution

2. The ends of a rod of length I move on two mutually perpendicular lines.

Find the locus of the point on the rod which divides it in the ratio $1: 2$.

- Watch Video Solution

3. If the coordinates of the vertices A, B and C of $\triangle A B C$ be $\left(x_{1}, y_{1}\right),\left(x_{2} y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ respectively, then show that the coordinates of the in-centre of the triangle are $\left(\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c}, \frac{a y_{1}+b y_{2}+c y_{3}}{a+b+c}\right)$ where $B C=a C A=b$ and $A B=c$

- Watch Video Solution

4. Prove that if $P(x, y)$ be any point on the line segment joining $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$
$x=x_{1}+k\left(x_{2}-x_{1}\right)$ and $y=y_{1}+k\left(y_{2}-y_{1}\right)$, where $P_{1} P, P_{1} P_{2}=k$
What conclusion can you draw about the position of P if $0<k<1$

- Watch Video Solution

5. Prove that if $P(x, y)$ be any point on the line segment joining $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ then
$x=x_{1}+k\left(x_{2}-x_{1}\right)$ and $y=y_{1}+k\left(y_{2}-y_{1}\right)$, where $P_{1} P, P_{1} P_{2}=k$
What conclusion can you draw about the position of P if $k>1$

- Watch Video Solution

6. Prove that if $P(x, y)$ be any point on the line segment joining $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$
$x=x_{1}+k\left(x_{2}-x_{1}\right)$ and $y=y_{1}+k\left(y_{2}-y_{1}\right)$, where $P_{1} P, P_{1} P_{2}=k$
What conclusion can you draw about the position of P if $k=0$

- Watch Video Solution

7. Prove that if $P(x, y)$ be any point on the line segment joining $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ then
$x=x_{1}+k\left(x_{2}-x_{1}\right)$ and $y=y_{1}+k\left(y_{2}-y_{1}\right)$, where $P_{1} P, P_{1} P_{2}=k$
What conclusion can you draw about the position of P if $k=1$

- Watch Video Solution

8. Prove that if $P(x, y)$ be any point on the line segment joining $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$
$x=x_{1}+k\left(x_{2}-x_{1}\right)$ and $y=y_{1}+k\left(y_{2}-y_{1}\right)$, where $P_{1} P, P_{1} P_{2}=k$
What conclusion can you draw about the position of P if
$k=\frac{1}{2}$?

- Watch Video Solution

9. $(3,2)$ and $(-3,2)$ are the vertices of an equilateral triangle which contains the origin within it, what are the coordinates of the third vertex ?

- Watch Video Solution

10.

Show
that
the
points
$A(a, b), B(a+\alpha+b,+\beta), C(a+\alpha+p, b+\beta+q)$ and $D(a+p, b+q)$ when joined in order, form a parallelogram. Find the cooditions for which the paralleogram is a(i)rectangle (ii) rhombus.
11. Prove that it is impossible to have an equilateral triangle for which of the coordinates of the vertices are all rational numbers.

- Watch Video Solution

12. A straight line moves in such a way that the algebraic sum of the perpendicular distance on it form the vertices of a given triangle is always zero. Show that the stright line always passes through the centroid of the triangle.

- Watch Video Solution

13. The coordinates of two point opposite vertices oc a square are $(3,4)$ and ($1,-1$), find the coordinates of the other two vertices.
14. If L, M, N divide the sides $B C, C A$ and $A B$ of a triangle $A B C$ in the same ratio, then show that the traiangle $A B C$ and dLMN have the same centroid.

- Watch Video Solution

15. Find the equation to the locus represented by $x=\frac{2+t+1}{3 t-2}, y=\frac{t-1}{t+1}$ wher t is variable parameter.

- Watch Video Solution

16. Find the equation to the locus represented by the parametric equations $x=2 t^{2}+t+1, y=t^{2}-t+1$.

- Watch Video Solution

17. If t is a variable parameter, then the equation to the locus defined by the equations $x=2(\sec t+\tan t)-1$ and $y=2(\sec t-\tan t)-2$ is-

- Watch Video Solution

18. The four point $A(a, 0), B(b, 0), C(c, 0)$ and $D(d, 0)$ are such that a and b are the roots of the equation $p_{1} x^{2}+2 q_{1} x+r_{1}=0$ and c and d are the roots of the equation $P_{2} x^{2}++2 q_{2}+r_{2}=0$. Show that the sum of the equation $p_{2} x^{2}+2 q_{2} x+r_{r} 0$. Show that the sum of the ratios in which C and D divide AB is zero if $p_{1} r_{2}+p_{2} r_{1}=2 q_{1} q_{2}$.

- Watch Video Solution

19. The straight lines $y=x=2$ and $y=6 x+3$ are parallel to two sides of the rhombus $A B C D$. If the vertex A lies on y-axis and the diagonals of the rhombus intersect at $(1,2)$ find the coordinat of A .
20. The eqution of the side $B C, C A$ and $A B$ of the triangle $A B C$ are $u_{1}=a_{1} x+b_{1} y+c_{1}=0 . u_{2}=a_{2} x+b_{2} y+c_{2}=0$ and $u_{3}=a_{3} x+b_{3} y+c_{3}=0$ respectively. Prove that the eqution of the straight line through A and paralle to $B C$ is.
$\left(a_{3} b_{1}-a_{1} b_{3}\right) u_{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right) u_{3}=0$

- Watch Video Solution

21. A striaght line intersect x-axis at $A(7,0)$ and y-axis at $B(0,-5)$. The straight line $P Q$ is perpendicular to $A B$ and intersect the x and y-axes at P adn Q respectively. Find the eqution to the locus of the point of intersection of the line $A Q$ and $B P$.

- Watch Video Solution

22. The equation of two diameters of a circle of area 154 sq unit are $2 x-3 y=5$ and $3 x-4 y=7$. Find the equation of the circle.
23. If the four points $\left(m_{i}, \frac{1}{m_{i}}\right)$ where $m_{1}>0(I, 1,2,3,4)$ are concyclic, then prove that $m_{1} m_{2} m_{3} m_{4}=1$.

- Watch Video Solution

24. The ends A and B of a rod $A B$ of length 8 unit slide along the lines $y=2$ and $x=4$ respectively. Find the equation to the locus of the mid point of the rod.

- Watch Video Solution

25. A is a point on the circle $x^{2}+y^{2}=36$. Find the locus of the point P which divides the ordinate $A N$ internally in the ratio 2:1.
26. The coordinates of the points A and B are $(1,3)$ and $(-2,1)$ respectively and the point P lies on the line $x+7 y+c=0$ and $a^{\prime}+x+b^{\prime}+c^{\prime}=0$. Hence find the condition that the diagonals are perpendicular to one another.

- Watch Video Solution

27. Find the equation of the diagonals of the parallelogram formed by the lines $a x+b y$

Watch Video Solution

28. Show that the lines $y=0, \sqrt{3 y}-x y=\sqrt{3}$ and $\sqrt{3 y}+x-10=0$ form a cyclic trapezium. Determine the centre and the radius of the circle and also the area of the trapezium.

- Watch Video Solution

29. Prove analytically that the perpendicular bisector of the sides of a triangle ar concurrent.

- Watch Video Solution

30. The coordinates of the vertex A of the triangle $A B C$ are $(-5,2)$ the equation of $A C$ is $4 x+3 y+14=0$ and the alttitude of the point A meets BC at the point $\mathrm{D}(3,-2)$. If $\angle D A B=45^{\circ}$, find the equastion and gradient of $A B$, the coordinates of B and C and the ratio $B D: D C$.

- Watch Video Solution

31. The coordinates of the vertices of a triangle are $\left[a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right],\left[a t_{2}, t_{3}, a\left(t_{2}+t_{3}\right)\right]$ and $\left.\left[a t_{3} t_{1}, t_{3}+t_{1}\right)\right]$. Find the coordinates of the ortocentre of the triangle.

- Watch Video Solution

32. Prove that diagonals of the parallelogram formed by the four straight lines $\sqrt{3} x+y=0, \sqrt{3} y+x=0, \sqrt{3} x+y=1$ and $\sqrt{3} y+x=1$ are the right angles to one another.

- Watch Video Solution

33. Find the locus of the foot of the perpendicular from the origin upon a stright line which always passes through the point $(2,3)$.

- Watch Video Solution

34. Show that for all values of a, b and c the line $(b-c) x+(c-a) y+a-b=0$ always passes through the point $(2,3)$.

- Watch Video Solution

35. Show that the locus of the point of intersection of the stright lines $x \sin \theta-y(\cos \theta-1)=a \sin \theta$ and $x \sin \theta-y(\cos \theta+1)+a \sin \theta=0$ is a circle, find the equation of the circle.

- Watch Video Solution

36. Prove analytically that in any triangle the perpendiculars drawn from the vertices upon the opposite sides are concurrent.

- Watch Video Solution

37. Prove analytically that the bisectors of the interior angles of a triangle are concurrent.

- Watch Video Solution

38. If d_{1}, d_{2}, d_{3} be the distances of a fixed point from the straight lines $x \cos \alpha+y \sin \alpha_{1}=p_{1} x \cos \alpha_{2}+y \sin \alpha_{2}=p_{2}$ and $x \cos \alpha_{3}=P_{3} \quad$ respectively, show
$\left(d_{1}+p_{1}\right) \sin \left(\alpha_{2}-\alpha_{3}\right)+\left(d_{2}+p_{2}\right) \sin \left(\alpha_{3}-\alpha_{1}\right)+\left(d_{3} p_{3}\right) \sin \left(\alpha_{1}-\alpha_{2}\right)=0$

- Watch Video Solution

39. Show that the quadrilateral formed by the four lines $y=m x+a \sqrt{a+m^{2}}, x+a \sqrt{1+m^{2}}, y=m x-a \sqrt{1+m^{2}}$ and $y=m x-a \sqrt{1+m^{2}}$ is a square of rhombus accroding as $m m=-$ or $m m \neq-1$

- Watch Video Solution

40.

Show
that
the
lines
$x \cos \alpha+y \alpha=p, x \cos \left(\alpha+\frac{2 \pi}{3}\right)+y \sin \left(\alpha+\frac{2 \pi}{3}\right)=p$ and $x \cos \left(\alpha-\frac{2 \pi}{3}\right)+y \sin (\alpha-$
from an equilaterla triangle.
41. $2 x-y+4=0$ is a diameter of a circle which circumscribes a rectangle $A B C D$. If the coordinates of A and B are $(4,6)$ and $(1,9)$ resepectively. Find the area of $A B C D$.

- Watch Video Solution

42. $A B C$ is right-angle triangle, right -angled at A. The coordinates of B and C are $(6,4)$ and $(14,10)$ respectively. The angle between the side $A B$ and x-axis is 45°. Find the coordinates of A.

- Watch Video Solution

43. The line through $A(a \cos \theta, 0)$ and perpendicular to the x-axis meets the lines $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$ and $x \cos \theta+y \sin \theta=a$ at B and C respectively. Show that $A C: A B=a: b$.
44. P and Q are two point on the line $x-y+1=0$, if O is the origin and $O P=O Q=5$ unit, find the area of $\triangle O P Q$.

- Watch Video Solution

45. $O(0,0)$ and $A(4,4)$ are two given points and B is any point. Find the equation to the locus of the point of intersection of the perpendicular bisector of $O B$ and $A B$.

- Watch Video Solution

46. Show that the image of the point (h, k) with respect to the striaight line $x \cos \alpha+y \sin \alpha=p$ is the point
$(2 p \cos \alpha-h \cos 2 \alpha-k \sin 2 \alpha, 2 p \sin \alpha-h s i n 2 \alpha-k \cos 2 \alpha)$.

- Watch Video Solution

47. A point moves so that sum of the squares of its distances from the vertices of a triangle is always constant. Prove that the locus of the moving point is a circle whose centre is the centroid of the given triangle.

- Watch Video Solution

48. Find the locus of mid points of chords of the cirlce. $x^{2}+y^{2}=a^{2}$ which subtend angle 90° at the point (c,o).

- Watch Video Solution

49. A straight line is such that its segment between lines $5 x-y-4=0$ and $3 x+4 y-4=0$ is bisectedat the point (1,5). Find its equation.

- Watch Video Solution

50. A rod of length a unit slides on the x-axis and another rod of length b unit slides on the y-axis in such a way that the four extremities of the rod are concylic. Show that the locus of the centre of the circle is $4\left(x^{2}-y^{2}\right)=a^{2}-b^{2}$.

- Watch Video Solution

51. A circle cuts intercepts of length $2 a$ unit and $2 b$ unit from the x-axis and y-axis respectively. Show that the locus of the centre of the circle is $x^{2}-y^{2}=a^{2}-b^{2}$.

- Watch Video Solution

52. Let $x^{2}+y^{2}-4 x-2 y-11=0$ be a fixex circle.A pair of tangents to the circle from the point $(4,5)$ with a pair of its radii form quadrilaterla. Find the area of the quadrilaterla.
53. The circle $x^{2}+y^{2}-4 x-4 y+4=0$ is inscribed in a triangle which has two of its sides along the coordinate axes. The locus of the circumcentre of the triangle is $x+y-x y+k\left(x^{2}+y^{2}\right)^{1 / 2}=0$. Find k.

- Watch Video Solution

54. Find the equation of the circle passing through the point $(2,0)$ and touching two given lines $3 x-4 y=11$ and $4 x+3 y=13$ and it's center lies on y axis.

- Watch Video Solution

55. Tangents PQ and PR are drawn from the point (α, β) to the circle
$x^{2}+y^{2}=a^{2}$. Show that the area of $\triangle P Q R$ is $\frac{a\left(\alpha^{2}+\beta^{2}-a^{2}\right)^{3 / 2}}{\alpha^{2}+\beta^{2}}$.

- Watch Video Solution

56. Let $S \equiv x^{2}+y^{2}+2 g x+2 f y+c=0$ be a given circle. Find the of the foot of perpendicular drawn from the origin upon any chord of S , which subtends a right angle at the origin.

- Watch Video Solution

57. The line $2 x+3 y=12$ meets the x-axis at A and the y-axis at B. the line through $(5,5)$ perpendicular to $A B$ meets the axes andtheline $A B$ at C, D, E respectively. If O is the origin of coordinates, find the ara of the figure OCEB.

- Watch Video Solution

58. Find the equation of the line passing through the point $(2,3)$ and making intercept of length 2 units bewteen the lines $y+2 x=3$ and $y+2 x=5$.

- Watch Video Solution

59. Let $A B C$ be a triangle with $A B=A C$. If D is the mid point of $B C, E$, foot of the perpendicular drawn from D to $A C$ and F, the mid point of $D E$: prove that $A F$ is perpendicular to $B E$.

- Watch Video Solution

60. Lines $L_{1}=a x+b y+c=0$ and $L_{2} \equiv l x+\mu+n=0$ intersect at the point P and makes an angle θ with each other. Find the eqauation of a line L different from L_{2} which passes through P and makes the same angle θ with L_{1}.

- Watch Video Solution

61. Detemine all values of α for which the point $\left(\alpha, \alpha^{2}\right)$ lines inside the triangle formed by the lines $2 x+3 y-1=0, x+2 y-3=0$ and $5 x-6 y \equiv 1$

- Watch Video Solution

62. A line through $A(-5-4)$ meets of lines $x+3 y+2=0,2 x+y+4$ and $x-y-5=0$ at the point B, C and D respectively. If $\left(\frac{15}{A B}\right)^{2}+\left(\frac{10}{A C}\right)^{2}=\left(\frac{6}{A D}\right)^{2}$, find the equation of the line.

- Watch Video Solution

63. Find the radius of the smallest circle which touches the straight line $3 x-y=6$ at $(1-3)$ and also touches the line $y=x$. compute upto one place of decimal only.

- Watch Video Solution

64. If a circle passes through the points of intersection of the coordinates axes with the lines $\lambda x-y+1=0$ and $x-2 y+3=0$, then find the value of λ.
65. Let a circle be given by $2 x(x-a)+y(2 y-b)=0(a \neq 0, b \neq 0)$. Find the condition on a and b if two chords, each bisected by the x-axis, can be drawn to the circle from $\left(a, \frac{b}{2}\right)$.

- Watch Video Solution

66. The equation of two side of a triangle are $y=m_{1} x$ and $y=m_{2} x$, where m_{1} and m_{2} are two roots of the equation $b x^{2}+2 h x+a=0$. If the orthocentre of the triangle be (a, b), then show that the equation of the third side of the triangle is $(a+b)(a x+b y)=a b(a+b-2 h)$.

- Watch Video Solution

67. In a triangle $A B C$, coordinates of A are $(1,2)$ and the equations of the medians through B and C are $x+y=5$ and $x=4$ respectively. Find the coordinates of B and C.
68. One diagonal of a square is the portion of the line $\frac{x}{a}+\frac{y}{b}=1$. Intercepte by the coordinate axe. Find the coordinates of the ends of its other diagonal.

- Watch Video Solution

69. A circle of radius r passes through the origin and intersects the x-axis and y-axis at P and Q respectively. Show that the equation to the locus of the foot of the perpendicular drawn form the origin upon the line
segment $P Q$ is $\left(x^{2}+y^{2}\right)^{3}=4 r^{2} x^{2} y^{2}$.

- Watch Video Solution

70. The coordinates of A, B, C are $(2,1)(6,-2)$ and $(8,9)$ respectively. Find the equation of the internal bisector of the triangle $A B C$ that bisects the angle at A.
71. Find the equations to the straight lines passing through the foot of the perpendicular from the point (α, β) upon the striaght line $l x+m y+n=0$ and bisecting the angles between the perpendicular and the given striaght line.

- Watch Video Solution

72. By parallel transformation of coordinate axes to a properly chosen point (h, k), prove that the equation $12 x^{2}-10 x y+2 y^{2}+11 x-5 y+2=0$ can be reduced to one containing only terms of the second degree.

- Watch Video Solution

73. Show thathte coefficients of $x^{2}, x y$ and y^{2} ina $x^{2}+2 h x y+b y^{2}$ are invariants under the translatio of axes.
74. Prove that the area of the triangle with vertices $(p, q),\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ where p, x_{1}, x_{2} are in G.P. with common ratio r_{1} and q, y_{1}, y_{2} and in G.P with common ratio r_{2} is $\frac{1}{2} p q\left(r_{1}-1\right)\left(r_{2}-1\right)\left(r_{2}-r_{1}\right)$ sq unit.'

- Watch Video Solution

75. The base of triangle passes through a fixed point (f, g) and its other side sare bisected at right angles by the lines $y^{2}-8 x y-9 x^{2}=0$. Detrmine the locus of its vertex.

- Watch Video Solution

76. The straight line $a x+b y=1$ intersect the circle $x^{2}+y^{2}=c^{2}$ at P and Q , if the chord $\bar{P} Q$ substends and angle 45° at the centre of the circle, show that $c^{2}\left(a^{2}+b^{2}\right)=2(2-\sqrt{2})$.
77. The equations of two equal sides $A B$ and $A C$ of an isosceles triangle ABC are $x+y=5$ and $7 x-y=3 I$ respectively. Find the equations of the side $B C$ if the area of the triangle $A B C$ is 5 sq unit.

- Watch Video Solution

78. One diagonal of a square is the portion of the straight line $7 x+5 y=35$ intercepted by the axes. Obtain the coordinates of the extremities of other diagonal.

- Watch Video Solution

79. If
the
straight
lines
$a^{2} x+a y+k=0, b^{2} x+b y+k=0$ and $c^{2} x+c y+k=0(k \neq 0) \quad$ are concurrent, show that at least two of the three constant a,b,c are equal.
80. Show that the circle $x^{2}+y^{2}-2 y-15=0$ lies completely within the circle $x^{2}+y^{2}-x-30=0$

- Watch Video Solution

81. Two sides of a rhombus $A B C D$ are parallel to the lines $x-y=5$ and $6 x-y=3$. If the diagonals of the rhombus intersects at the point $(2,1)$, find the equation of the diagonals. Further, find the possible coordinates of the vertex A if it lies on the x-axis.

- Watch Video Solution

82. Two sides of a rhombus lyin in the first quadrant are given by $3 x-4 y=0$ and $12 x-5 y=0$. If the length of the longer diagonal is 12 units, find the equationsof the other two sides of the rhombus.
83. A line joining two points $A(2,0)$ and $B(3,1)$ is rotated about A in the anit-clockwise direction through an angle 15°. Find the equation of the line in the new position. If B goes to C in th new position, what are coordinates of C ?

- Watch Video Solution

84. $A(3,0)$ and $B(6,0)$ are two fixed points and $P\left(x_{1}, y_{1}\right)$ is a variable point of the plane. AP and BP meet the y-axis at the points C and D respectively. AD intersects $O P$ at Q. Prove that line CQ always passes through the point (2,0).

- Watch Video Solution

85. Find the coordinates of the centroid of the triangle, formed by the lines $x+2 y-5=0, y+2 x-7=0$ and $x-y+1=0$.
86. The points (1,3) and (5,1) are two oppsite vertices of a rectangle. The other two vertices lie on the line $y=2 x+c$, find c and the coordinates of the remains vertices.

- Watch Video Solution

87.

Show
that
the
lines
$a x+b y+c=0, a x-b y+c=0, a x-b y=c a x+b y-c=0(a \neq b)$ enclose a rhombus whose area is $\frac{2 c^{2}}{a b}$ sq unit.

- Watch Video Solution

88. Let $A\left(c t_{1}, \frac{c}{t_{1}}\right), B\left(c t_{2}, \frac{c}{t_{2}}\right)$ and $C\left(c t_{3}, \frac{c}{t_{3}}\right)$ be the vertices of the triangle $A B C$. Show that the ortocentre of the triangle lies on $x y=c^{2}$.

- Watch Video Solution

89. The circle A and B of a line segment of constant length c unit slides upon the fixex rectangular axes $O X$ and $O Y$. If P be a point on the plane such that OAPB is a rectangle, then show that locus of the foot of the perpendicular drawn from P to AB is $x^{2 / 3}+y^{2 / 3}=c^{2 / 3}$.

(Watch Video Solution

90. A variable striaght line of slope 4 intresects the hyprbola $x y=1$ at two points. Find the locus of the point which divides the line segment between theses two points in the ration 1:2.

- Watch Video Solution

91. If $x \cos \alpha+y \sin \alpha=p$, where $p=\frac{-\sin ^{2} \alpha}{\cos \alpha}$ be a straight, line, prove that the perpendicular p_{1}, p_{2} and p_{3} on this line drawn from the point $\left(m^{2}, 2 m\right),\left(m m^{\prime}, m+m^{\prime}\right.$ and $)\left(\left(m^{\prime}\right)^{2}, 2 m^{\prime}\right)$ respectively, are in geometric progression. $\left(m>0, m>0,0<\alpha<90^{\circ}\right)$.
92. A tangent drawn from the point $(4,0)$ to the circle $x^{2}+y^{2}=8$ touches it at a point A in the first quadrant. Find the coordinates of another point Bon the circle such that $A B=4$.

- Watch Video Solution

93. $A\left(x_{1} y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are two given points on a circle. If the chord $A B$ substends an angle θ at a point p on its circumferene, show that the equation of the circle is
$\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)= \pm \cos \theta\left[\left(x-x_{1}\right)\left(y-y_{2}\right)-\left(x-x_{2}\right)\left(y-y_{1}\right)\right.$

- Watch Video Solution

94. If $4 a^{2}-5 b^{2}+6 a+1=0$ find the equation of the circle for which the straight line $a x+b y+1=0$ is a tangent.
95. Find the point of the circle $x^{2}+y^{2}-6 x+4 y=0$ which is (i) nearest (ii) farthest to the line $2 x-3 y+14=0$.

- Watch Video Solution

96. Find the locus of mid points of chords of the cirlce. $x^{2}+y^{2}=a^{2}$ which subtend angle 90° at the centre of the circle.

- Watch Video Solution

97. Vertices $A(1,1), B(4,-2)$ and $(5,5)$ of a triangle are given, find the equation of the perpendicular dropped from C to the internal bisectorof the angle A .

- Watch Video Solution

98. Prove that the locus of middle points of chords of constant length 2d unit of the hyperbola $x y=c^{2}$ is $\left(x^{2}+y^{2}\right)\left(x y-c^{2}\right)=d^{2} x y$.

- Watch Video Solution

99. Find the integer values of m for which x-coordinate of the point of intersection of the striaght lines $3 x+4 y=9$ and $y=m x+1$ is also integer.

- Watch Video Solution

100. A chord AB of the circle $x^{2}+y^{2}=a^{2}$ subtends a right angle at its centre. Show that the locus of the centroid of the angle PAB as P moves on the circle is another circle.

- Watch Video Solution

101. The corodinates of the three vertices of a triangle are $(a, a \tan \alpha),(b, b \tan \beta)$ and $(c, c \tan \gamma)$. If the circumcentre and orthocentre of the triangle are at $(0,0)$ and (h, k) respectively, prove that $\frac{h}{k}=\frac{\cos \alpha+\cos \beta+\cos \gamma}{\sin \alpha+\sin \beta+\sin \gamma}$.

- Watch Video Solution

102. The triangle PQR is inscribed in the circle $x^{2}+y^{2}=25$. If Q and R have coordinates (3,4) and $(-4,3)$ respectively. Then find $\angle Q P R$.

- Watch Video Solution

103. Let L_{1} be a striaght line passing through the origin and L_{2} be the straight $x+y=1$. If the intercepts made by the circle $x^{2}+y^{2}-x+3 y=0$ on L_{1} and L_{2} are equal, find the equation of the line L_{1}.

- Watch Video Solution

104. A rectangle PQRS has its side PQ paralle to the line $y=m x$ and vertices P, Q and S are on the straight lines $y=a, x=b$ and $x=-b$ respectively. Find the locus of the vertex R.

- Watch Video Solution

105. If two distinct chords, drawn from the point (p, q) on the circle $x^{2}+y^{2}=p x+q y($ where $p q \neq 0)$ are bisected by the x-axis then show that, $p^{2}>8 q^{2}$

- Watch Video Solution

106. A variable line L passing through the point $B(2,5)$ intesects the lines $2 x^{2}-5 x y+2 y^{2}=0$ at P and Q. Find the locus of the point Ron L such that distances $B P, B R$ and $B Q$ are in harmonic progression.

- Watch Video Solution

107. For all values of a and, b show that the circle $(x-2)(x-2+a)+(y+3)(y+3+b)=0$ bisects the circumference of the circle $(x-2)^{2}+(y+3)^{2}=36$.

- Watch Video Solution

108. A circle C_{1} of diameter 6 units, is in the first quadrant and it touches the striaght lines $5 x+12 y-10=0$ and $5 x-12 y-40=0$. Another circle C_{2} concentric with C_{1} intercepts chords of length 8 units. Form the two given straight lines. Find the equation of the cirlce C_{2}.

- Watch Video Solution

109. Find he point on the straight line $y=2 x+11$ which is nearest to the circle $16\left(x^{2}+y^{2}\right)+32 x-8 y-50=0$.

- Watch Video Solution

110. On the parabola $y^{2}=4 a x, P$ is the point with parameter t, Q is the opposite xtremity of the focal chord through P and R is the point for which $Q R$ is paralle to $P K$ where K is the point ($2 a, 0$). Show that R has parameter $\frac{t^{2}-1}{t}$.

- Watch Video Solution

111. Through the vertex A of a parabola the chords $A P$ and $A Q$ are drawn at right angles. Show that the striaght line PQ intersets the axis at a fixed point.

- Watch Video Solution

112. Show that the sum of the ordinate of end of any chord of a system of paralel chords of the parabola $y^{2}=4 a \times 1$ is constant.

- Watch Video Solution

113. An equilateral triangle is inscribed within the parabola $y^{2}=4 a x$ with one vertex at the chords of the parabola. Find the lenghtof side of triangle .

- Watch Video Solution

114. P, Q and R three points on the parabola $y^{2}=4 a x$. If Pq passes through the focus and PR is perpendicular to the axis of the parabola, show that the locus of the mid point of QR is $y^{2}=2 a(x+a)$.

- Watch Video Solution

115. A line of length $(a+b)$ unit moves in such a way that its ends are always on two fixed perpendicular striaght lines. Prove that the locus of a point on this line which divides it into of lenghts a unit and b unit is an ellipse.
116. show that the length of the focal chord of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ which makes an angle θ with the major axis is $\frac{2 a b^{2}}{a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta}$ unit.

- Watch Video Solution

117. A rod of given length $(a+b)$ unit moves so that its ends are always on coordinates. Prove that the locus of a point, which divides the line into two portions of lenghts a unit and b units, is an ellipse. State the situation when the locus will be a circle.

- Watch Video Solution

118. If θ and ϕ be the eccentric angles of the extremities of a focal chord passing passing through the focus (ae,0) of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, shos that $\tan \frac{\theta}{2} \tan \frac{\phi}{2}=\frac{e-1}{e+1}$ (e is the eccentricity of the ellipse).
119. θ and ϕ are the eccentric angles of two points on an ellipse whose length of major axis is 2 a unit. If theline joinin theses points intersects the major axis at a distance c unit from the origin, then show that, $\tan \frac{\theta}{2} \tan \frac{\phi}{2}=\frac{c-a}{a+b}$.

- Watch Video Solution

120. $P Q$ and $P R$ are two focal chords of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, if $2 \alpha, 2 \beta$ and 2γ are the eccentric angles of the point P, Q and R respectively, prove that, $\cot \alpha \cot \beta=\tan \gamma \tan \beta$.

- Watch Video Solution

121. Find the locus of middle points of chords of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ which subtend right angle at its center.

- Watch Video Solution

122. Find the length of chord of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$, whose middle point is $\left(\frac{1}{2}, \frac{2}{5}\right)$.

D Watch Video Solution

123. An ellipse has $O B$ as a semi-minor axis, F and F^{\prime} are its two foci and the angle FBF' is a right angle. Find the eccentricity of the ellipse.

- Watch Video Solution

124. Let Pb any point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ whose ordinate is PN . $A A^{\prime}$ is its transverse axis. If the point Q divides AP in the ratio $a^{2}: b^{2}$, then NQ is?

D Watch Video Solution

1. Determine the perpendicular distances of the points $(-4,3,4)$ from the coordinates axes.

- Watch Video Solution

2. C is a point on the line-semgment joining the points $A(4,-2,6)$ and $B(2,-3,4)$, if y -coordinates of C is 0 , find its z-coordinate.

- Watch Video Solution

3. The coordinates of the vetex A of the triangle $A B C$ are $(2,5,-3)$, if centroid of the triangle is at $(-2,1,3)$, find the coordinates of the mid points on the side $B C$.

- Watch Video Solution

4. Show that the points $(0,7,10),(-1,6,6)$ and $(-4,9,6)$ are the vertices of a right angled isosceles triangle.

Watch Video Solution

5. The cordinates of the mid points of the sides $B C, C A$ and $A B$ of the triangle ABC are $(5,2,8),(2,-2,-3)$ and $(2,-3,4)$, find the coordinates of the centroid of the triangle.

- Watch Video Solution

6. Find the ratios in which the $y z$ - plane, $z x$-plane and $x y$-plane divide the line segment joining the points $(-2,4,7)$ and $(3,-5,8)$

- Watch Video Solution

7. The points A and B trisect the line -segment joining the points $P(2,1-3)$ and $Q(5,-8,3)$, find the coordinates of the points A and B.

Watch Video Solution

8. The coordinates of the vertices A, B and C of the triangle $A B C$ are $(-1,4,2),(3,-2,0)$ and $(1,2,4)$ respectively find the length of the median through the vertex A .

- Watch Video Solution

9. The point P is equidistant from the points $(-1,4,2),(2,1,2),(3,2,2)$ and $(0,5,6)$, find the coordinates of the point P.

- Watch Video Solution

10. $P(-2,-3,6)$ is a given point and O is the origin. Find the coordinates of seven other points in three dimensional space such that the distance of each point from the origin O is equal to $O P$.

- Watch Video Solution

CALCULUS

1. Without using graph paper, draw the graph of the function $f(x)=\sin \frac{1}{x}$ and determine from the graph whether $\lim x \rightarrow 0 f(x)$ exsits or not.

- Watch Video Solution

2. What is the domain and range of the function $f(x)=\frac{x^{2}-3 x+2}{x^{2}+x-6}$. Find the limit of $f(x)$ as x approaches 2 .

- Watch Video Solution

3. Show that :
$\lim _{x \rightarrow \pi} \frac{1+\cos ^{3} x}{\tan ^{2} x}=\frac{3}{2}$

- Watch Video Solution

4. Evaluate:
$\lim _{x \rightarrow \frac{\pi}{2}} \underline{\cos 3 x+3 \cos x}$

$$
\left(\frac{\pi}{2}-x\right)^{3}
$$

- Watch Video Solution

5. Show that :
$\lim _{x \rightarrow a} \frac{\sin x-\sin a}{\sqrt{x}-\sqrt{a}}=2 \sqrt{a} \cos a$

Watch Video Solution
6. Show that :
$\lim _{x \rightarrow a} \frac{\sin x-\sin a}{\sqrt{x}-\sqrt{a}}=2 \sqrt{a} \cos a$

Watch Video Solution

7. Show that:
$\lim _{x \rightarrow 0} \frac{\sin \log (1+x)}{\log (1+\sin x)}=1$

D Watch Video Solution

8. Show that:
$\lim _{x \rightarrow 0} \frac{5 x \cos x-2 \sin x}{3 x+\tan x}=\frac{3}{4}$

- Watch Video Solution

9. Show that:
$\lim _{x \rightarrow 0} \frac{10^{x}-2^{x}-5^{x}+1}{x^{2}}=\log _{e^{2}} 2 \log _{e^{5}}$
10. Show that :
$\lim _{x \rightarrow 4} \frac{(\cos \alpha)^{x}-(\sin \alpha)^{x}-\cos 2 \alpha}{x-4}=\cos ^{4} \alpha \log _{e}(\cos \alpha)-\sin ^{4} \alpha \log _{e}(\sin \alpha)$

- Watch Video Solution

11. Show that:
$\lim _{x \rightarrow 2} \frac{\sin \left(e^{x-2}-1\right)}{\log (x-1)}=1$

Watch Video Solution

12. Show that :
$\lim _{x \rightarrow \pi} \frac{\sqrt{2+\cos x}-1}{(\pi-x)^{2}}=\frac{1}{4}$
13. Show that:
$\lim _{x \rightarrow 0}\left[\frac{1}{x}-\frac{\log (1+x)}{x^{2}}\right]=\frac{1}{2}$

- Watch Video Solution

14. Show that:
$\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sqrt{2}-(\sin x+\cos x)}{(4 x-\pi)^{2}}=\frac{1}{16 \sqrt{2}}$

- Watch Video Solution

15. If $f(x)=\lim _{n \rightarrow \infty} \frac{x^{n} g(x)+h(x)}{x^{n}+1}$ show that
$\mathrm{f}(\mathrm{x})=\mathrm{h}(\mathrm{x})$, when $0<\mathrm{x}<1$
$=\frac{1}{2}[h(x)+g(x)]$, when $\mathrm{x}=1$
$=\mathrm{g}(\mathrm{x})$, when $\mathrm{x}>1$

- Watch Video Solution

16. If $\lim x \rightarrow 0 \frac{\sin 2 x+a \sin x}{x^{3}}$ is finite, find a and the limit.

Watch Video Solution

17. Evaluate the following limits:
$\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}-1}+\sqrt{x-1}}{\sqrt{x^{2}-1}}$

D Watch Video Solution

18. Evaluate the following limits:
$\lim _{x \rightarrow 2 a} \frac{\sqrt{x-2 a}+\sqrt{x}-\sqrt{2} a}{\sqrt{x^{2}-4 a^{2}}}$

- Watch Video Solution

19. Evaluate the following limits:

$$
\sin x^{2}\left(1-\cos x^{2}\right)
$$

$\lim _{x \rightarrow 0} x^{6}$

D Watch Video Solution

20. Evaluate the following limits:
$\lim _{x \rightarrow 0} \frac{x e^{x}-\log (1+x)}{x^{2}}$

- Watch Video Solution

21. Evaluate the following limits:
$\lim _{h \rightarrow 0} \frac{(a+h)^{2} \sin (a+h)-a^{2} \sin a}{h}$

D Watch Video Solution

22. Evaluate the following limits:
$\lim _{n \rightarrow \infty}\left[\frac{n}{n^{2}}+\frac{n+1}{n^{2}}+\frac{n+2}{n^{2}}+\ldots \ldots . .+\frac{2 n}{n^{2}}\right]$

Watch Video Solution

23. Evaluate the following limits:
$\lim _{x \rightarrow 3} \frac{3-\sqrt{6+x}}{3 \sqrt{3}-\sqrt{6-x}}$

Watch Video Solution

24. Evaluate the following limits:
$\lim _{x \rightarrow 0} \frac{\sqrt{\cos x}-\sqrt[3]{\cos x}}{\sin ^{2} x}$

- Watch Video Solution

25. Evaluate the following limits:
$\lim x \rightarrow 0\left[\operatorname{coec}^{3} x \cot x-2 \cot ^{3} x \operatorname{cosec} x+\frac{\cot ^{4} x}{\sec x}\right]$

Watch Video Solution

26. Evaluate the following limits:
$\lim _{x \rightarrow \frac{\pi}{2}}\left(x \tan x-\frac{\pi}{2} \sec x\right)$

- Watch Video Solution

27. Show that $\lim _{x \rightarrow 1} \frac{\sqrt{1-\cos (x-1)}}{x-1}$ does not exist.
28. Evaluate:
$\lim _{x \rightarrow 2} \frac{2^{x}+2^{3-x}-6}{\sqrt{2^{-x}-2^{1-x}}}$

- Watch Video Solution

29. Evaluate:
$\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{2 x \sec x}{\pi}-\tan x\right)$

- Watch Video Solution

30. Evaluate:
$\lim x \rightarrow 0(\cos x)^{\cot ^{2} x}$

- Watch Video Solution

31. Evaluate:
$\lim _{x \rightarrow \frac{1}{2}} \frac{\cos ^{2} \pi x}{e^{2 x}-2 e x}$

- Watch Video Solution

32. Evaluate:
$\lim _{x \rightarrow \frac{\pi}{3}} \xrightarrow{\tan ^{3} x-3 \tan x}$

$$
\cos \left(x+\frac{\pi}{6}\right)
$$

D Watch Video Solution

33. Evaluate:
$\lim _{x \rightarrow a} \frac{a e^{x}-x e^{a}}{x-a}$

D Watch Video Solution

34. Evaluate:
$\lim _{x \rightarrow 0} \frac{e^{x}-\log (e+e x)}{x}$

- Watch Video Solution

35. Evaluate:
$\lim _{x \rightarrow \frac{\pi}{2}(1+\cos x)^{3 \sec x}}$

Watch Video Solution
36. Evaluate:
$\lim _{x \rightarrow \frac{1}{2}} \frac{\sin \left(\frac{\pi x}{2}\right)-\cos \left(\frac{\pi x}{2}\right)}{\frac{1}{2}-x}$

- Watch Video Solution

37. Evaluate:
$\lim _{x \rightarrow 0}\left(\frac{x-1+\cos x}{x}\right)^{1 / x}$

D Watch Video Solution

38. Evaluate:
$\lim _{x \rightarrow 2} \frac{\sqrt{1+\sqrt{2+x}}-\sqrt{3}}{x-2}$

D Watch Video Solution

39. Evaluate:
$\lim _{x \rightarrow 0(\sin x+\cos x)^{1 / x}}$

- Watch Video Solution

40. Evaluate:
$\lim _{x \rightarrow 0}\left[\tan \left(x+\frac{\pi}{4}\right)\right]^{1 / x}$

D Watch Video Solution

41. Evaluate:
$\lim _{x \rightarrow 0} \frac{1}{x^{3}}[\sin (3 x+a)-3 \sin (2 x+a)+3 \sin (x+a)-\sin a]$

- Watch Video Solution

42. Evaluate:
$\lim _{x \rightarrow 2} \frac{\sqrt{2 x+5}-3(\sqrt{2 x-3})}{\sqrt[3]{2 x-3}}$

D Watch Video Solution

43. Evaluate:
$\lim _{x \rightarrow 0}(1+\sin 2 x)^{\operatorname{cosec} x}$

Watch Video Solution

44. Evaluate:
$\lim _{x \rightarrow 1} \frac{x^{x}-1}{x \log x}$
Watch Video Solution
45. Evaluate:
$\lim _{x \rightarrow 0} \frac{\log \left(1+x+x^{2}\right)+\log \left(1-x+x^{2}\right)}{\sec x-\cos x}$

Watch Video Solution

$$
x \sqrt{2 a x-x^{2}}
$$

46. Prove that $\lim _{x \rightarrow 0} \frac{1}{\left(\sqrt{8 a x-4 x^{2}}+\sqrt{8 a x}\right)^{3}}=\frac{1}{128 a}$

- Watch Video Solution

47. Evaluate [without using L' Hospital's rule]:

$$
2-\sqrt{2+x}
$$

$$
\lim _{x \rightarrow 2} \frac{\sqrt[3]{2}-\sqrt[3]{4-x}}{\sqrt{2}}
$$

- Watch Video Solution

48. Evaluate [without using L' Hospital's rule]:
$\lim _{x \rightarrow \frac{\pi}{4}} \frac{4 \sqrt{2}-(\cos x+\sin x)^{5}}{1-\sin 2 x}$

- Watch Video Solution

49. Find the differential coefficient of:
$\cos \left(a x^{2}+b x+c\right)$

- Watch Video Solution

50. Find the differential coefficient of:
$\tan ^{2}(a x)$

- Watch Video Solution

51. Find the differential coefficient of:
x^{X}

- Watch Video Solution

52. Find from first principle the differential coefficient of:
$x^{-1 a n}{ }^{-1}$ xatx $=1$
53. Examine the differentiability of $f(x)=|\sin x-\cos x|$ at $x=\frac{\pi}{4}$

- Watch Video Solution

54. Prove that the function $f(x)=|x|$ is not differentiable there at $\mathrm{x}=0$.

- Watch Video Solution

55. Let $f(x)=2 x+3$ for $x \leq 1$
$=a x^{2}+b x \quad$ for $x>1$
If $f(x)$ is everywhere differentiable, then prove that $f(2)=-4$.

- Watch Video Solution

56. If $f(2)=4, g(2)=9$ and $f(2)=2 g^{\prime}(2)$ then evaluate $\lim _{x \rightarrow 2} \frac{\sqrt{f(x)}-2}{\sqrt{g(x)}-3}$

(Watch Video Solution

57. If $f(9)=9, f(9)=4$, then evaluate $\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}$.

- Watch Video Solution

58. Let $f\left(\frac{x+y}{2}\right)=\frac{1}{2}[f(x)+f(y)]$ for all real x and y. If $f^{\prime}(0)$ exists and equals
(-1), find $f^{\prime}(2)^{\prime}$.

- Watch Video Solution

59. If $f(x)$ is differentiable at $x=a$, find the value of $\lim _{x \rightarrow a} \frac{(x+a) f(x)-2 a f(a)}{x-a}$

Watch Video Solution

60. The value of $\lim x \rightarrow 0 f(x)$ where $f(x)=\frac{x^{3}+x^{2}}{2 x^{3}-27 x^{2}}$

- Watch Video Solution

61. If $f(x+y)=f(x) f(y)$ for all x, y and $f(x)=1+x g(x)$, where $\lim x \rightarrow 0 g(x)=1$. Show that $f^{\prime}(x)=f(x)$.

- Watch Video Solution

62. If $f(x+y+z)=f(x) f(y) f(z) \neq 0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and $f(2)=4, f^{\prime}(0)=3$, find $f(2)$.

- Watch Video Solution

63. If $f(3)=6$ and $f(3)=2$, find the value of $\lim x \rightarrow 3 \frac{x f(3)-3 f(x)}{x-3}$.

Watch Video Solution

64. If $y=f\{f(x)\}, f(0)=0$ and $f^{\prime}(0)=5$, find $\left[\frac{d y}{d x}\right]_{x=0}$

- Watch Video Solution

65. Find the derivative of $|f(x)|$ with respect to x , hence, write down the derivative of $|\cos x|$.

- Watch Video Solution

66. Prove that,
$\lim _{n \rightarrow \infty} e^{\frac{2}{n}+1}=e$

- Watch Video Solution

67. Prove that,
$\lim _{n \rightarrow \infty}\left[\frac{n}{n^{2}}+\frac{n+1}{n^{2}}+\frac{n+2}{n^{2}}+\ldots \ldots . .+\frac{2 n}{n^{2}}\right]=\frac{3}{2}$

Watch Video Solution

68. Prove that,
$\lim _{n \rightarrow \infty} \frac{3 n^{3}-5 n^{2}+4}{5+3 n^{2}-4 n^{3}}=-\frac{3}{4}$

- Watch Video Solution

69. Prove that,
$\lim _{x \rightarrow \infty} \frac{4 x^{3}-5 x^{2}+6 x+9}{3 x^{4}+4 x^{2}-11}=0$

- Watch Video Solution

70. Prove that,
$\lim _{n \rightarrow \infty} \frac{1^{2}+2^{2}+3^{2}+\ldots \ldots+(n+2)^{2}}{n^{3}}=\frac{1}{3}$

- Watch Video Solution

71. Prove that,
$\lim _{x \rightarrow \infty}\left(\frac{1}{4}+\frac{1}{4^{2}}+\frac{1}{4^{3}}+\ldots \ldots .+\frac{1}{4^{x}}\right)=\frac{1}{3}$

Watch Video Solution

72. Prove that,
$\lim _{x \rightarrow \infty} \frac{1+2+3+\ldots . . \operatorname{to}(4 x+1) \text { terms }}{(x+1)^{2}}=8$

Watch Video Solution
73. Prove that,
$\lim _{n \rightarrow \infty} \frac{3.5+5.7+7.9+\ldots \ldots+(2 n+1)(2 n+3)}{n^{3}}=\frac{4}{3}$

Watch Video Solution

74. Prove that,
$\lim _{x \rightarrow \infty} \sqrt{x}(\sqrt{x+3}-\sqrt{x})=\frac{3}{2}$

D Watch Video Solution

75. Prove that,
$\lim _{n \rightarrow \infty}\left(\sqrt{1+n+n^{2}}-n\right)=\frac{1}{2}$

D Watch Video Solution

76. Evaluate :
$\lim _{x \rightarrow \infty} \frac{p e^{x}+q e^{-x}}{r e^{x}+s e^{-x}}(r \neq 0)$
77. Evaluate :
$\lim _{x \rightarrow-\infty} \frac{a e^{x}+b e^{-x}}{c e^{x}+d e^{-x}}(d \neq 0)$

- Watch Video Solution

78. Find from first principle the differential coefficients of the following functions : $\cos (\log x)$

- Watch Video Solution

79. Find from first principle the differential coefficients of the following functions :
$\log (\sin x)$
80. Find from first principle the differential coefficients of the following functions:
$\sqrt{\cot x}$

- Watch Video Solution

81. Find from first principle the differential coefficients of the following functions:
$e^{\sqrt{x}}$

- Watch Video Solution

82. Find the differential coefficients of the following functions:
$\sin (\log x)$

- Watch Video Solution

83. Find from first principle the differential coefficients of the following functions :

$$
\sin \left(x^{2}+1\right)
$$

- Watch Video Solution

84. Find from first principle the differential coefficients of the following functions:
x^{x}

- Watch Video Solution

WBHS ARCHIVE 2017 (UNIT-1)

1. If $B \subseteq A$, then the set B - A will be
A. B
B. A
C. ϕ
D. A^{\prime}

- Watch Video Solution

2. A relation R is defined from $A=\{1,2,4,5\}$ to $B=\{1,2,3,4\}$ in such a way that, $(x, y) \in R \Rightarrow x>y$ Express R as a set of ordered pairs.

- Watch Video Solution

3. If $y=f(x)=\frac{p x+q}{r x-p}$, then show that $\mathrm{x}=\mathrm{f}(\mathrm{y})$.

- Watch Video Solution

4. For any three sets A, B and C, prove that
$A-(B \cup C)=(A-B) \cap(A-C)$.

WBHS ARCHIVE 2017 (UNIT-2)

1. Show that, $\frac{1}{\sin 10^{\circ}}-\frac{\sqrt{3}}{\cos 10^{\circ}}=4$.

- Watch Video Solution

2. Find the value of $2 a c \sin \left(\frac{A-B+C}{2}\right)$ for $\triangle A B C$.

- Watch Video Solution

3. If $\frac{\sin ^{4} \alpha}{a}+\frac{\cos ^{4} \alpha}{b}=\frac{1}{a+b}$, then show that $\frac{\sin ^{8} \alpha}{a^{3}}+\frac{\cos ^{8} \alpha}{b^{3}}=\frac{1}{(a+b)^{3}}$

- Watch Video Solution

4. If for a trianlge $A B C, \cot A+\cot B+\cot C=\sqrt{3}$, then show that the triangle is equilateral.

Watch Video Solution

5. Solve: $4 \sin x \sin 2 x \sin 4 x=\sin 3 x$.

- Watch Video Solution

6. If $\tan \frac{\theta}{2}=\sqrt{\frac{1-e}{1+e}} \tan \frac{\phi}{2}$. Then prove that $\cos \phi=\frac{\cos \theta-e}{1-e \cos \theta}$.

- Watch Video Solution

WBHS ARCHIVE 2017 (UNIT-3)

1. If ω be the imaginary cube root of 1 , then the value of $\left(3+\omega+3 \omega^{2}\right)^{4}$ will be
A. 16
B. 16ω
C. $16 \omega^{2}$
D. none of these

Answer: (B)

D Watch Video Solution

2. If the difference between the roots of the quadratic equation
$x^{2}+p x+8=0$ be 2 , then the value of p will be
A. ± 2
B. ± 4
C. ± 6
D. ± 8
3. If ${ }^{16} C_{r}={ }^{16} C_{2 r+1}$, then the value of r will be
A. 6
B. 5
C. 4
D. 3

Answer: (B)

- Watch Video Solution

4. If z be a complex number and $|z+5| \leq 6$, then find the maximum and minimum values of $|z+2|$.
5. If ${ }^{n} P_{r}=504$ and ${ }^{n} C_{r}=84$, then find the value of n and r.

- Watch Video Solution

6. Find the coefficients of
x^{-2} in the expansion of $\left(2 x^{3}-\frac{1}{x^{2}}\right)^{6}$

- Watch Video Solution

7. If P-th term of an arithmetic progression be Q and Q-th term be P, then show that $(\mathrm{P}+\mathrm{Q})$-th term is 0 .

- Watch Video Solution

8. If $n \neq \mathbb{N}$, then prove by mathematical induction that $7^{2 n}+2^{3(n-1)} 3 \cdot{ }^{n-1}$ is always a multiple of 25 .
9. If $z=x+i y$ and $\frac{z-i}{z+1}$ is purely imaginary, then show that the point z always lies on a circle.

- Watch Video Solution

10. How many odd numbers of five digits can be formed with the digits 3 ,
$6,7,2,0$ when no digit is repeated?

- Watch Video Solution

11. Show that the mid-term in the expansion of $(1+x)^{2 n}$ is 1.3.5....... . $2 n-1$) n !

(Watch Video Solution

12. If the ratio of the sum of 1st n terms of two arithmetic series is $(4 n-13):(3 n+10)$, then find the ratio of their ninth terms.

- Watch Video Solution

13. Solve the following inequation: $\frac{|x+2|+2 x}{x+2}>2$.

- Watch Video Solution

14. Solve applying formula: $3 x^{2}-(2-2 i) x+10-4 i=0$.

- View Text Solution

15. Out of 14 marbles 10 are red in colour and remaining 4 are of different colours. How many ways can you select 10 marbles out of these 14 marbles?
16. Find the sum to n terms: $\frac{1}{2}+\frac{3}{2^{2}}+\frac{5}{2^{3}}+\ldots \ldots . .+\frac{2 n-1}{2^{n}}$.

- Watch Video Solution

WBHS ARCHIVE 2017 (UNIT-4)

1. The equation of the directirix of the parabola $x^{2}-4 x-8 y+12=0$ is-
A. $\mathrm{y}=1$
B. $x=1$
C. $x=-1$
D. $y=-1$

Answer: (A)

2. The coordinates of B and C of the triangle $A B C$ are $(5,2,8)$ and $(2,-3,4)$ respectively. If the centroid of the triangle is $(3,-1,3)$, then the coordinates of A are
A. $(2,-2,2)$
B. $(2,-2,-3)$
C. $(2,2,-3)$
D. $(-2,-2,-3)$

Answer: (B)

- Watch Video Solution

3. The perimeter of the triangle formed by the straight line $4 x+3 y-k=0$ with the coordinate axes is 24 unit , find the value of k.
4. Find the coordinates of the point lies on the plane YOZ which is equidistant from the points $A(1,-1,0), B(2,1,2)$ and $C(3,2,-1)$.

Watch Video Solution

5. Find the equations of the lines passing through the point $(4,5)$ making equal angles with the lines $3 x=4 y+7$ and $5 y=12 x+6$.

- Watch Video Solution

6. If the equation of the side BC of an equilateral triangle ABC is $x+y=2$ and the coordinate of the vertex A is $(2,3)$ then find the equation of the other two sides.

- Watch Video Solution

7. A circle in the first quadrant touches both the axes and its centre lies on the straight line $l x+m y+n=0$. find the equation of that circle

- Watch Video Solution

8. Prove that the locus of the mid-points of chords of length $2 d$ unit of the hyperbola $x y=c^{2}$ is $\left(x^{2}+y^{2}\right)\left(x y-c^{2}\right)=d^{2} x y$.

- Watch Video Solution

9. The coordinates of end points of a focal chord of an ellipse are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, x_{2}\right)$ Prove that $y_{1} y_{2}+4 x_{1} x_{2}=0$.

- Watch Video Solution

10. The ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through the point of intersection of the lines $7 x+13 y-87=0$ and $5 x-8 y+7=0$ and its length of latus rectum
is $\frac{5}{5}$, find a and b.

- Watch Video Solution

WBHS ARCHIVE 2017 (UNIT-5)

1. The value of $\lim x \rightarrow 0 \frac{e^{x}-e^{-x}}{x}$ is
A. 0
B. 1
C. 2
D. 3

Answer: (C)

Watch Video Solution
2. If $y=\cos ^{2} \frac{x}{2}$, the value of $\frac{d y}{d x}$ is
A. $\cos x$
B. $\frac{1}{2} \cos x$
C. $-\frac{1}{2} \sin x$
D. $-\sin x$

Answer: (C)

- Watch Video Solution

3. Evaluate : $\lim x \rightarrow 0 \frac{\cos 5 x-\cos 7 x}{\cos x-\cos 5 x}$.

- Watch Video Solution

4. If $(x+4) y=x$, then show that $x \frac{d y}{d x}+y(y-1)=0$.
5. Evaluate: $\lim x \rightarrow 0 \frac{\left(e^{x}-1\right) \log (1+x)}{\sin ^{2} x}$.

- Watch Video Solution

6. Find from the first principle, the derivative of $f(x)=\sec 2 x$ at $x=\frac{\pi}{8}$

- Watch Video Solution

WBHS ARCHIVE 2017 (UNIT-6)

1. Prove by method of contradiction that $\sqrt{5}$ is an irrational number.

- Watch Video Solution

2. Prove by Truth Table: $\sim(p \vee q)=\sim p \wedge \sim q$.

WBHS ARCHIVE 2017 (UNIT-7)

1. If $P(A \cap B)=\frac{7}{13}$, then the value of $P\left(A^{c} \cup B^{c}\right)$ is
A. $\frac{4}{13}$
B. $\frac{6}{13}$
C. $\frac{8}{13}$
D. $\frac{12}{13}$

Answer: (B)

- Watch Video Solution

2. If the variance of a distribution is 4 and coefficient of variation is 5%, then mean of the distribution is
B. 40
C. 60
D. 80

Answer: (B)

- Watch Video Solution

3. If a coin is tossed 3 times in succession, then find the prbabillity of obtaining tail at least once.

- Watch Video Solution

4. The standard deviation of 32 numbers is 5 . If the sum of the numbers is 80 , then find the sum of the squares of the numbers.

- Watch Video Solution

5. If 30 dates are named at random, find the probability that 5 of them will be Sundays.

Watch Video Solution

6. If $4^{x}=8^{y}$ then calculate the value of $\frac{x}{y}-1$

Watch Video Solution

WBJEE ARCHIVE 2017 (UNIT-2)

1. The equation $\sin x(\sin x+\cos x)=k$ has real solutions, where k is a real number, Then
A. $0 \leq k \leq \frac{1+\sqrt{2}}{2}$
B. $2-\sqrt{3} \leq k \leq 2+\sqrt{3}$
C. $0 \leq k \leq 2-\sqrt{3}$
D. $\frac{1-\sqrt{2}}{2} \leq k \leq \frac{1+\sqrt{2}}{2}$

Answer: D

- Watch Video Solution

WBJEE ARCHIVE 2017 (UNIT-3)

1. In a GP series consisting of positive terms, each term is equal to the sum of next two terms. Then the common ratio of this GP series is
A. $\sqrt{5}$
$\sqrt{5}-1$
B. 2
C. $\frac{\sqrt{5}}{2}$
$\sqrt{5}+1$
D. $\frac{}{2}$

Answer: B

2. If $\left(\log _{5} x\right)\left(\log _{x} 3 x\right)\left(\log _{3 x} y\right)=\log _{x} x^{3}$, then y equals
A. 125
B. 25
C. $\frac{5}{3}$
D. 243

Answer: A

Watch Video Solution
3. The expression $\frac{(1+i)^{n}}{(1-i)^{n-2}}$ equals
A. $-i^{n+1}$
B. i^{n+1}
C. $-2 i^{n+1}$
D. 1

Answer: C

- Watch Video Solution

4. Let $z=x+i y$, where x and y are real. The points (x, y) in the xy -plane of which $\frac{z+1}{z-1}$ is purely imaginary, lie on
A. a straight line
B. an ellipse
C. a hyperbola
D. a circle

Answer: D

5. If p, q are odd integers, then the roots of the equation $2 p x^{2}+(2 p+q) x+q=0$ are
A. rational
B. irrational
C. non-real
D. equal

Answer: A

- Watch Video Solution

6. Out of 7 consonants and 4 vowels, words are formed each having 3 consonants and 2 vowels. The number of such words that can be formed is
A. 210
B. 25200
C. 2520
D. 302400

Answer: B

- Watch Video Solution

7. The number of all numbers having 5 digits, with distinct digits is
A. 99999
B. $9 \times{ }^{9} P_{4}$
C. ${ }^{10} P_{5}$
D. ${ }^{9} P_{4}$

Answer: B

- Watch Video Solution

8. The greatest integer which divides $(p+1)(p+2)(p+3) \ldots . . .(p+q)$ for all $p \in \mathbb{N}$ and fixed $q \in \mathbb{N}$ is
A. p !
B. q !
C. p
D. q

Answer: A

- Watch Video Solution

9. Let $\left(1+x+x^{2}\right)^{9}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots . . .+a_{18} x^{18}$. Then
A. $a_{0}+a_{2}+\ldots \ldots . .+a_{18}=a_{1}+a_{3}+\ldots \ldots+a_{17}$
B. $a_{0}+a_{2}+\ldots \ldots+a_{18}$ is even
C. $a_{0}+a_{2}+\ldots \ldots+a_{18}$ is divisible by 9
D. $a_{0}+a_{2}+\ldots \ldots+a_{18}$ is divisible by 3 but not by 9

Answer: B

- Watch Video Solution

10. The probability that a non-leap year selected at random will have 53

Sundays is
A. 0
B. $\frac{1}{7}$
C. $\frac{2}{7}$
D. $\frac{3}{7}$

Answer: B

- Watch Video Solution

11. Let α and β be the roots of $x^{2}+x+1=0$. If \boldsymbol{n} be positive integer, then $\alpha^{n}+\beta^{n}$ is
A. $2 \cos \frac{2 n \pi}{3}$
B. $2 \sin \frac{2 n \pi}{3}$
C. $2 \cos \frac{2 n \pi}{3}$
D. $2 \sin \frac{n \pi}{3}$

Answer: A

- Watch Video Solution

12. The complex number z satisfying the equation $|z-i|=|z+1|=1$ is
A. 0
B. $1+\mathrm{i}$
C. $-1+i$
D. 1-i

- Watch Video Solution

13. If $a, b \in\{1,2,3\}$ and the equation $a x^{2}+b x+1=0$ has real roots, then
A. $a \geq b$
B. $a \leq b$
C. number of possible ordered pairs (a, b) is 3
D. $a<b$

Answer: C::D

- Watch Video Solution

1. Transforming to parallel axes through a point (p, q) the equation $2 x^{2}+3 x y+4 y^{2}+x+18 y+25=0$ becomes $2 x^{2}+3 x y+4 y^{2}=1$. Then
A. $p=-2, q=3$
B. $p=2, q=-3$
C. $p=2, q=-4$
D. $p=-4, q=3$

Answer: B

- Watch Video Solution

2. Let $A(2,-3)$ and $B(-2,1)$ be two angular points of $\triangle A B C$. If the centroid of the triangle moves on the line $2 x+3 y=1$, then the locus of the angular point C is given by
A. $2 x+3 y=9$
B. $2 x-3 y=9$
C. $3 x+2 y=5$
D. $3 x-2 y=3$

Answer: A

- Watch Video Solution

3. The point $P(3,6)$ is first reflected on the line $y=x$ and then the image point Q is again reflected on the line $y=-x$ to get the image point Q '. Then the circumcentre of the $\triangle P Q Q^{\prime}$ is
A. $(6,3)$
B. $(6,-3)$
C. (3,-6)
D. $(0,0)$

Answer: D

4. Let d_{1} and d_{2} be the lengths of the perpendiculars drawn from any point of the line $7 x-9 y+10=0$ upon the lines $3 x+4 y=5$ and $12 x+5 y=7$ respectively. Then
A. $d_{1}>d_{2}$
B. $d_{1}=d_{2}$
C. $d_{1}<d_{2}$
D. $d_{1}=2 d_{2}$

Answer: B

- Watch Video Solution

5. The
common
chord
of
the
circles
$x^{2}+y^{2}-4 x-4 y=0$ and $2 x^{2}+2 y^{2}=32$ subtends at the origin an angle equal to
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

6. The locus of the mid-points of the chords of the circle $x^{2}+y^{2}+2 x-2 y-2=0$ which make an angle of 90° at the centre is
A. $x^{2}+y^{2}+2 x-2 y-2=0$
B. $x^{2}+y^{2}-2 x+2 y=0$
C. $x^{2}+y^{2}+2 x-2 y=0$
D. $x^{2}+y^{2}+2 x-2 y-1=0$

Answer: C

7. Let P be the foot of the perpendicular from focus S of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ on the line $b x-a y=0$ and let C be the centre of the hyperbola. Then the area of the rectangle whose sides are equal to that of SP and CP is
A. 2 ab
B. $a b$
C. $\frac{\left(a^{2}+b^{2}\right)}{2}$
D. $\frac{a}{b}$

Answer: B

- Watch Video Solution

8. B is extremity of the minor axis of an ellipse whose foci are S and S^{\prime}. If $\angle S B S^{\prime}$ is a right angle, then the eccentricity of the ellipse is
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{2}{3}$
D. $\frac{1}{3}$

Answer: B

- Watch Video Solution

9. The axis of the parabola $x^{2}+2 x y+y^{2}-5 x+5 y-5=0$ is
A. $x+y=0$
B. $x+y-1=0$
C. $x-y+1=0$
D. $x-y=\frac{1}{\sqrt{2}}$
10. The line segment joining the foci of the hyperbola $x^{2}-y^{2}+1=0$ is one of the diameters of a circle. The equation of the circle is
A. $x^{2}+y^{2}=4$
B. $x^{2}+y^{2}=\sqrt{2}$
C. $x^{2}+y^{2}=2$
D. $x^{2}+y^{2}=2 \sqrt{2}$

Answer: C

- Watch Video Solution

11. If one of the diameters of the curve $x^{2}+y^{2}-4 x-6 y+9=0$ is a chord of a circle with centre $(1,1)$, the radius of this circle is
A. 3
B. 2
C. $\sqrt{2}$

Answer: A

- Watch Video Solution

12. Let $A(-1,0)$ and $B(2,0)$ be two points. A point M moves in the plane in such a way that $\angle M B A=2 \angle M A B$. Then the point M moves along
A. a straight line
B. a parabola
C. an ellipse
D. a hyperbola

Answer: D

- Watch Video Solution

13. The fouce of the parabola $x^{2}-6 x+4 y+1=0$ is
A. $(2,3)$
B. $(3,2)$
C. $(3,1)$
D. $(1,4)$

Answer: C

(Watch Video Solution

WBJEE ARCHIVE 2017 (UNIT-7)

1. Mean of n observations $x_{1}, x_{2}, \ldots \ldots . ., x_{n}$ is \bar{x}. If an observation x_{q} ' then the new mean is
A. $\bar{x}-x_{q}+x_{q}{ }^{\prime}$
B. $\frac{(n-1) \bar{x}+x_{q}{ }^{\prime}}{n}$
C. $\frac{(n-1) \bar{x}-x_{q}{ }^{\prime}}{n}$
D. $\frac{\bar{n} x-x_{q}+x_{q}{ }^{\prime}}{n}$

Answer: D

- Watch Video Solution

HS (XI) AND WBJEE 2018 (GROUP - A)

1. All possible subsets of set ϕ is
A. 0
B. 1
C. 2
D. None of these
2. Value of $\omega^{n}+\omega^{2 n}$, where $\omega=\frac{-1+i \sqrt{3}}{2}$ and $n=3 k+1$, is
A. 0
B. -1
C. 1
D. None of these

Answer: A: B

- Watch Video Solution

3. If ${ }^{n} C_{p}={ }^{n} C_{q}$, then
A. $n \neq p$ or $p+q=n$
B. $p=q$ or $p-q=n$
C. $n=p=q$ or $p+q \neq n$
D. $p=q$ or $p+q=n$

- Watch Video Solution

4. Value of $\sin 36^{\circ}$ is
A. $\frac{1}{4} \sqrt{10-2 \sqrt{5}}$
B. $\frac{1}{4} \sqrt{10+2 \sqrt{5}}$
C. $\frac{1}{4} \sqrt{10+\sqrt{5}}$
D. $\frac{1}{4} \sqrt{10-\sqrt{5}}$

- Watch Video Solution

5. The value of $\lim x \rightarrow 4\left(\frac{e^{x}-e^{4}}{x-4}\right)$ is
A. e^{-4}
B. e^{4}
C. 1
D. None of these

Answer: A::D

- Watch Video Solution

6. Find the point of z -axis which is equidistant from the points
$(1,5,7)$ and $(5,1,-4)$
A. $\left(0,0 \frac{3}{2}\right)$
B. $(0,0,5)$
C. $(0,5,0)$
D. $(4,2,3)$

Answer: B::C

7. The angle made by the straight line $x \cos \alpha+y \sin \alpha=p$ with the negative direction of x-axis is
A. $\frac{\pi}{2}+\alpha$
B. α
C. $-\alpha$
D. $\frac{\pi}{2}-\alpha$

Answer: A::B

- Watch Video Solution

8. If $f(x)=|x|$, then $f^{\prime}(0)$ is
A. 0
B. 1
C. -1
D. None of these

Answer: D

- Watch Video Solution

9. In single throw of two dice, the probability of obtaining a total of 8^{\prime} is
A. $\frac{8}{36}$
B. $\frac{3}{36}$
C. $\frac{9}{36}$
D. $\frac{5}{36}$

Answer: A::C

- Watch Video Solution

10. If $y=2 x+5$ and variance of y is 16 , then the standard deviation of x is
B. 4
C. 1
D. 2

Watch Video Solution

HS (XI) AND WBJEE 2018 (GROUP - B)

1. If $A \cap B^{\prime}=\phi$, then show that $A=A \cap B$ and hence show that $A \subseteq B$.

- Watch Video Solution

2. Find the domain and range of the real function $f(x)=\frac{1}{\left(1-x^{2}\right)}$.
3. Prove that $\cos ^{2} 48^{\circ}-\sin ^{2} 12^{\circ}=\frac{(\sqrt{5}+1)}{8}$.

- Watch Video Solution

4. Show that, $\cot 2 x \cot x-\cot 3 x \cot 2 x-\cot 3 x \cot x=1$

- Watch Video Solution

5. Find the value of n , so that $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ may be the geometric mean between a and b .

- Watch Video Solution

6. Find the value of r, if the coefficients of $(2 r+4)$-th and $(r-2)$-th terms in the expansion of $(1+x)^{18}$ are equal.

- Watch Video Solution

7. Find the principal amplitude of (-1-i).

- Watch Video Solution

8. Find the number of squares in Chesboard.

- Watch Video Solution

9. Find the focus of the parabola $y=x^{2}+x+1$.

- Watch Video Solution

10. Find the equation of a circle with centre (h, k) and touching both the axes.
11. Evaluate : $\lim _{x \rightarrow \frac{\pi}{6}} \xrightarrow{\sqrt{3} \sin x-\cos x}$

$$
\left(x-\frac{\pi}{6}\right)
$$

- Watch Video Solution

12. Prove that the derivative of and odd function is an even function.

(Watch Video Solution

13. Find the variance of first n natural numbers.

- Watch Video Solution

14. If $P(A)=\frac{2}{3}, P(B)=\frac{1}{2}, P(A \cap B)=\frac{1}{6}$, then find the value of $P\left(A \cap B^{\prime}\right)$ and $P(A \cup B)$.
$A=\left\{x \in \mathbb{N}: x^{2}-5 x+6=0\right\}, B=\{x \in W: 0 \leq x<2\}$ and $C=\{x \in \mathbb{N}: x<3$
,then verify that $A \times(B \cup C)=(A \times B) \cup(A \times C)$

- Watch Video Solution

2. Prove that in any $\triangle A B C,(b-c) \cot \frac{A}{2}+(c-a) \cot \frac{B}{2} \cot \frac{C}{2}=0$.

- Watch Video Solution

3. Solve : $\sec x-\tan x=\sqrt{3}$.

- Watch Video Solution

4. If p-th, q-th and r-th terms of and AP as well as those of a GP are a, b, c respectively, then prove that $a^{b-c} \cdot b^{c-a} \cdot c^{a-b}=1$

Watch Video Solution

5. Prove that $x^{n}-y^{n}$ is divisible by $(x-y)$ for all $n \in \mathbb{N}$

- Watch Video Solution

6. If $z=x+i y$ and $w=\frac{1-i z}{z-i}$ such that $|w|=1$, then show that z is purely real.

- Watch Video Solution

7. Find the rank of the word 'MOTHER' in dictionary format.
8. If the coefficients of $2 \mathrm{nd}, 3 \mathrm{rd}$ and 4 th terms in the expansion of $(1+x)^{2 n}$ are in AP, Show that $2 n^{2}-9 n+7=0$.

(Watch Video Solution

9. $(2 a, 0)$ and $(0, a)$ are the extremities of the base of an isosceles triangle, and the equation of one of the equal sides $x=2 a$. Find the equations of other two sides and the area of triangle.

D Watch Video Solution

10. A variable straight line passes through the point of intersection of the straight lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ and intersects the axes at P and Q . Find the locus of midpoint of PQ .

- Watch Video Solution

11. The abscissae of the two points A and B are the roots of the equation $x^{2}+2 a x-b^{2}=0$ and their ordinates are the roots of the equation $x^{2}+2 p x-q^{2}=0$. Find the equation and the radius of the circle with AB as diameter.

- Watch Video Solution

12. If $2 f(x)+f(-x)=1+x$ find $f^{\prime}(10)$ where $f^{\prime}(x)$ denote derivative of $f(x)$.

- Watch Video Solution

13. Evaluate : $\lim x \rightarrow \frac{\pi}{4} \frac{4 \sqrt{2}-(\cos x+\sin x)^{5}}{1-\sin 2 x}$

- Watch Video Solution

14. Write the negation of each of the following statements: p : For every number $x, x^{2}>x$
q : For every real number x , either $x>1$ or $x<1$.
(b) "Mathematics is fun" check whether this sentence is a statement.

- Watch Video Solution

15. Consider the statement:
p : If x is real number such that $x^{3}+4 x=0$, then $\mathrm{x}=0$, prove that p is true statement, using
(a) method of contradication and
(b) method of contrapositive

(Watch Video Solution

16. A bag contains 5 white and 4 black balls. If 3 balls are drawn at random, find the probability that at least two of them are white.

(Watch Video Solution

17. The arithmetic mean and standard deviation of 7 observations are respectively 8 and 16 . If five of the observations are $2,4,10,12$ and 14 then find the values of the remaining two.

- Watch Video Solution

HS (XI) AND WBJEE 2018 (GROUP - D)

1. If $x=a(\cos \theta+\sin \theta \sin 2 \theta)$ and $y=a(\sin \theta+\cos \theta \sin 2 \theta)$, then show that $(x+y)^{\frac{2}{3}}+(x-y)^{\frac{2}{3}}=2 a^{\frac{2}{3}}$.

- Watch Video Solution

2.

Show
that,
$3\left[\sin ^{4}\left(3 \frac{\pi}{2}-\alpha\right)+\sin ^{4}(3 \pi+\alpha)\right]-2\left[\sin ^{6}\left(\frac{\pi}{2}+\alpha\right)+\sin ^{6}(5 \pi-\alpha)\right]=1$.

- Watch Video Solution

3. Draw the graph of the solution set of the inequations $2 x+y \geq 2, x-y \leq 1, x+2 y \leq 8, x \geq 0$ and $y \geq 0$, also shade the solution region. (Graph paper not necessary)

- Watch Video Solution

4. Find the number of permutations and the number of combinations in the letters of the word 'EXPRESSION' taken four at a time.

- Watch Video Solution

5. Find the sum of the integers between 90 and 890 which are perfect squares.

- Watch Video Solution

6. If z_{1} and z_{2} be two non-zero complex numbers such that $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$, then prove that $\arg _{1}-\arg _{2}=0$.

- Watch Video Solution

7. The directrix of a parabola is $x+y+4=0$ and vertex is at $(-1,-1)$.

Find the position of the focus and the equation of parabola.

- Watch Video Solution

8. Prove that the major axis of an ellipse is greater than its minor aixs.

- Watch Video Solution

9. Find the eccentricity of a hyperbola whose conjugate axis and latus rectum are equal.

WBJEE 2018

1. The domain of definition of $f(x)=\sqrt{\frac{1-|x|}{2-|x|}}$ is
A. $(-\infty,-1) \cup(2, \infty)$
B. $[-1,1] \cup(2, \infty) \cup(-\infty,-2)$
C. $(-\infty, 1) \cup(2, \infty)$
D. $[-1,1) \cup(2, \infty)$

Answer: A::B::C

- Watch Video Solution

2. Given that n numbers of $A M$ s are inserted between two sets of numbers $\mathrm{a}, 2 \mathrm{~b}$ and 2 a , b where $a, b \in R$. Suppose further that the m th means between these sets of numbers are same, then the ratio a:b equals
A. $n-m+1: m$
B. $n-m+1: n$
C. $n: n-m+1$
D. $m: n-m+1$

Answer: A::B

- Watch Video Solution

3. If $x+\log _{10}\left(1+2^{x}\right)=x \log _{10} 5+\log _{10} 6$ then the value of x is
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. 1
D. 2

Answer: A

4. If $Z_{r}=\sin \frac{2 \pi r}{11}-i \cos \frac{2 \pi r}{11}$ then $\sum_{r=0}^{10} Z_{r}=$
A. -1
B. 0
C. $-i$
D. i

- Watch Video Solution

5. If z_{1} and z_{2} be two non-zero complex numbers such that $\frac{z_{1}}{z_{2}}+\frac{z_{2}}{z_{1}}=1$, then the origin and the points represented by z_{1} and z_{2}
A. lie on a straight line
B. form a right angled triangle
C. form and equilateral triangle
D. form an isosceles triangle

Answer: B

- Watch Video Solution

6. If $b_{1} b_{2}=2\left(c_{1}+c_{2}\right)$ and $b_{1}, b_{2}, c_{1}, c_{2}$ are all real numbers, then at least one of the equations $x^{2}+b_{1} x+c_{1}=0$ and $x^{2}+b_{2} x+c_{2}=0$ has
A. real roots
B. purely imaginary roots
C. roots of the form $\mathrm{a}+\mathrm{ib}(a, b \in R, a b \neq 0)$
D. rational roots

Answer: A

- Watch Video Solution

7. The number of selection of n objects from $2 n$ objects of which n are identical and the rest are different is
A. 2^{n}
B. 2^{n-1}
C. $2^{n}-1$
D. $2^{n-1}+1$

Answer: A::B::C

- Watch Video Solution

8. If $(2 \leq r \leq n)$, then ${ }^{n} C_{r}+2 .{ }^{n} C_{r+1}+{ }^{n} C_{r+2}$ is equal to
A. 2. ${ }^{n} C_{r+2}$
B. ${ }^{n+1} C_{r+1}$
C. ${ }^{n+2} C_{r+2}$
D. ${ }^{n+1} C_{r}$

- Watch Video Solution

9. The number $(101)^{100}-1$ is divisible by
A. 10^{4}
B. 10^{6}
C. 10^{8}
D. 10^{12}

Answer: A::B::C

- Watch Video Solution

10. If n even positive integer, then the condition that the greatest term in the expansion of $(1+x)^{n}$ may also have the greatest coefficient is
A. $\frac{n}{n+2}<x<\frac{n+2}{n}$
B. $\frac{n}{n+1}<x<\frac{n+1}{n}$
C. $\frac{n+1}{n+2}<x<\frac{n+2}{n+1}$
D. $\frac{n+2}{n+3}<x<\frac{n+3}{n+2}$

Answer: A

D Watch Video Solution

11. If $\sin 6 \theta+\sin 4 \theta+\sin 2 \theta=0$, then general value of θ is
A. $\frac{n \pi}{4}, n \pi \pm \frac{\pi}{3}$
B. $\frac{n \pi}{4}, n \pi \pm \frac{\pi}{6}$
C. $\frac{n \pi}{4}, 2 n \pi \pm \frac{\pi}{3}$
D. $\frac{n \pi}{4}, 2 n \pi \pm \frac{\pi}{6}$

Answer: A::C::D

12. Without changing the direction of the axes, the origin is transferred to the point $(2,3)$. Then the equation $x^{2}+y^{2}-4 x-6 y+9=0$ changes to
A. $x^{2}+y^{2}+4=0$
B. $x^{2}+y^{2}=4$
C. $x^{2}+y^{2}-8 x-12 y+48=0$
D. $x^{2}+y^{2}=9$

Answer: B::D

- Watch Video Solution

13. The point Q is the image of the point $P(1,5)$ about the line $y=x$ and R is the image of the point Q about the line $y=-x$. The circumcentre is the $\triangle P Q R$ is

$$
\text { A. }(5,1)
$$

B. (-5,1)
C. $(1,-5)$
D. $(0,0)$

Answer: A::C

- Watch Video Solution

14. The angular points of a triangle are $A(-1,-7), B(5,1)$ and $C(1,4)$. The equation of the bisector of the angle $\angle A B C$ is
A. $x=7 y+2$
B. $7 y=x+2$
C. $y=7 x+2$
D. $7 x=y+2$

Answer: A::C

15. If one of the diameters of the circle, given by the equation $x^{2}+y^{2}+4 x+6 y-12=0$, is a chord of a circle S , whose centre is $(2,-3)$, the radius of S is
A. $\sqrt{41}$ unit
B. $3 \sqrt{5}$ unit
C. $5 \sqrt{2}$ unit
D. $2 \sqrt{5}$ unit

Answer: A::B::C::D

- Watch Video Solution

16. A chord $A B$ is drawn from the point $A(0,3)$ on the circle $x^{2}+4 x+(y-3)^{2}=0$, and is extended to M such that $A M=2 A B$. The locus of M is
A. $x^{2}+y^{2}-8 x-6 y+9=0$
B. $x^{2}+y^{2}+8 x+6 y+9=0$
C. $x^{2}+y^{2}+8 x-6 y+9=0$
D. $x^{2}+y^{2}-8 x+6 y+9=0$

Answer: B::C

- Watch Video Solution

17. Let the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ be reciprocal to that of the ellipse $x^{2}+9 y^{2}=9$, then the ratio $a^{2}: b^{2}$ equals
A. $8: 1$
B. 1:8
C. 9:1
D. 1:9

Answer: A::B

Watch Video Solution

18. Let A, B be two distinct points on the parabola $y^{2}=4 x$. If the axis of the parabola touches a circle of radius r having $A B$ as diameter, the slope of the line $A B$ is
A. $-\frac{1}{r}$
B. $\frac{1}{r}$
C. $\frac{2}{r}$
D. $-\frac{2}{r}$

Answer: B

- Watch Video Solution

19. Let $P\left(a t^{2}, 2 a t\right), Q, R\left(a r^{2}, 2 a r\right)$ be three points on a parabola $y^{2}=4 a x$. If $P Q$ is the focal chord and $P K, Q R$ are parallel where the coordinates of k is $(2 a, 0)$, then the value of r is
A. $\frac{t}{1-t^{2}}$
B. $\frac{1-t^{2}}{t}$
C. $\frac{t^{2}+1}{t}$
D. $\frac{t^{2}-1}{t}$

Answer: A::B

- Watch Video Solution

20. Let P be a point on the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line through P parallel to the y-axis meets the circle $x^{2}+y^{2}=9$ at Q, where P, Q are on the same side of the x-axis. If R is a point on PQ such that $\frac{P R}{R Q}=\frac{1}{2}$, then the locus of R is
A. $\frac{x^{2}}{9}+\frac{9 y^{2}}{49}=1$
B. $\frac{x^{2}}{49}+\frac{y^{2}}{9}=1$
C. $\frac{x^{2}}{9}+\frac{y^{2}}{49}=1$
D. $\frac{9 x^{2}}{49}+\frac{y^{2}}{9}=1$

Answer: A::B::D

- Watch Video Solution

21. Let z_{1} and z_{2} be complex numbers such that $z_{1} \neq z_{2}$ and $\left|z_{1}\right|=\left|z_{2}\right|$. If
$\operatorname{Re}\left(z_{1}\right)>0$ and $\operatorname{Im}\left(z_{2}\right)<0$, then $\frac{z_{1}+z_{2}}{z_{1}-z_{2}}$ is
A. one
B. real and positive
C. real and negative
D. purely imaginary

Answer: A::B

22. From a collection of 20 consecutive natural numbers, four are selected such that they are not consecutive. The number of such selections is
A. 284×17
B. 285×17
C. 284×16
D. 285×16

Answer: A::B::D

- Watch Video Solution

23. A line cuts the x-axis at $A(5,0)$ and the y-axis at $B(0,-3)$. A variable line $P Q$ is drawn perpendicular to $A B$ cutting the x-axis at P and the y-axis at Q. If $A Q$ and $B P$ meet at R, then the locus of R is
A. $x^{2}+y^{2}-5 x+3 y=0$
B. $x^{2}+y^{2}+5 x+3 y=0$
C. $x^{2}+y^{2}+5 x-3 y=0$
D. $x^{2}+y^{2}-5 x-3 y=0$

Answer: B::C

- Watch Video Solution

24. Let A be the centre of the circle $x^{2}+y^{2}-2 x-4 y-20=0$. Let $\mathrm{B}(1,7)$ and $(4,-2)$ be two points on the circle such that tangents at B and D meet at C. The area of the quadrilateral ABCD is
A. 150 sq units
B. 50 sq units
C. 75 sq units
D. 70 sq units

Answer: A

25. Consider the parabola $y^{2}=4 x$. Let P and Q be points on the parabola wher $P(4,-4)$ and $Q(9,6)$. Let R be a point on the area of the parabola between P and Q . Then the area of $\triangle P Q R$ is largest when
A. $\angle P Q R=90^{\circ}$
B. $R(4,4)$
C. $R\left(\frac{1}{4}, 1\right)$
D. $\left(1, \frac{1}{4}\right)$

Answer: A: D

- Watch Video Solution

26. If the equation $x^{2}-c x+d=0$ has roots equal to the fourth powers of the roots of $x^{2}+a x+b=0$, where $a^{2}>4 b$, then the roots of $x^{2}-4 b x+2 b^{2}-c=0$ will be
A. both real
B. both negative
C. both positive
D. one positive and one negative

Answer: A::D

- Watch Video Solution

27. On the occasion of Dipawali festival each student of a class sends greeting cards to others. If there are 20 students in the class, the number of cards sends by students is
A. ${ }^{20} C_{2}$
B. ${ }^{20} P_{2}$
C. $2 \times{ }^{20} C_{2}$
D. $2 \times{ }^{20} P_{2}$

D Watch Video Solution

28. The area of the triangle formed by the intersectionf of a line parallal to x-axis and passing through $P(h, k)$, with the lines $y=x$ and $x+y=2$ is h^{2}. The locus of the point P is
A. $x=y-1$
B. $x=-(y-1)$
C. $x=1+y$
D. $x=-(1+y)$

Answer: A::C

29. A hyperbola, having the transverse axis of length $2 \sin \theta$ is confocal with the ellipse $3 x^{2}+4 y^{2}=12$. Its equation is
A. $x^{2} \sin ^{2} \theta-y^{2} \cos ^{2} \theta=1$
B. $x^{2} \operatorname{cosec}^{2} \theta-y^{2} \sec ^{2} \theta=1$
C. $\left(x^{2}+y^{2}\right) \sin ^{3} \theta=1+y^{2}$
D. $x^{2} \operatorname{cosec}^{2} \theta=x^{2}+y^{2}+\sin ^{2} \theta$

Answer: A::B::C

- Watch Video Solution

30. Consider the function $y=\log _{a}\left(x+\sqrt{x^{2}+1}\right), a>0, a \neq 1$. The inverse of the function
A. does not exist
B. is $x=\log _{\frac{1}{a}}\left(y+\sqrt{y^{2}+1}\right)$
C. is $x=\sinh (y \ln a)$
D. is $x=\cosh \left(-y\right.$ In $\left.\frac{1}{a}\right)$

Answer: A

- Watch Video Solution

HS (XI) AND WBJEE 2019 (HS (XI) 2019) (GROUP -A)

1. If $A=\{a, b, c\}$ and $B=\{1,2\}$, then the number of relations from A to B is
A. 2^{6}
B. 2^{5}
C. 2^{9}
D. 2^{8}
2. If $z^{2}+z+1=0$, then the value of
$\left(z+\frac{1}{z}\right)^{2}+\left(z^{2}+\frac{1}{z^{2}}\right)^{2}+\ldots \ldots . .+\left(z^{7}+\frac{1}{z^{7}}\right)^{2}$ will be
A. 27
B. 45
C. 13
D. 7

Answer: A::B::C

- Watch Video Solution

3. The sum of the coeficients in the expansion of $(2 x-3 y)^{15}$ will be
A. 0
B. -1
C. 5^{15}
D. 1

Answer: A::B::C

- Watch Video Solution

4. If $\cos \alpha=\frac{1}{\sqrt{5}}\left(0^{\circ}<\alpha<90^{\circ}\right)$ and $\cos \beta=\frac{1}{\sqrt{10}},\left(270^{\circ}<\beta<360^{\circ}\right)$ then the value of $\sin (\alpha+\beta)$ is
A. $\frac{1}{\sqrt{2}}$
B. $\frac{1}{5 \sqrt{2}}$
C. $-\frac{3}{5 \sqrt{2}}$
D. $-\frac{1}{5 \sqrt{2}}$

Answer: A: B

5. The equation $\frac{x^{2}}{10-\lambda}+\frac{y^{2}}{4-\lambda}=1$ represents an ellipse if
A. $\lambda<4$
B. $\lambda>4$
C. $\lambda<4<10$
D. $\lambda>10$

- Watch Video Solution

6. The value of $\lim x \rightarrow \frac{\pi}{4} \frac{\sin x-\cos x}{x-\frac{\pi}{4}}$ is
A. $\sqrt{2}$
B. 2
C. $\frac{1}{\sqrt{2}}$
D. $\frac{1}{2}$

(Watch Video Solution

7. The ratio in which YOZ plane divides the line segment joining the points (3, $-2,-4$) and $(2,4,-3)$ is
A. 1:2
B. $-4: 3$
C. $-2: 3$
D. $-3: 2$

(D) Watch Video Solution

8. If $f(x)=\frac{e^{x}}{g(x)}, g(0)=6, g^{\prime}(0)=2$, then $f^{\prime}(0)$ is
A. 1
B. $\frac{2}{3}$
C. $\frac{1}{9}$
D. $\frac{2}{9}$

- Watch Video Solution

9. If $P(A \cup B)=\frac{3}{4}, P(A \cap B)=\frac{1}{4}, P(A)=\frac{2}{3}$, so the value of $P\left(A^{C} \cap B\right)$ equals to
A. $\frac{3}{8}$
B. $\frac{5}{12}$
C. $\frac{7}{12}$
D. $\frac{1}{12}$

Answer: A::B

10. If the values of variable X are $x_{1}, x_{2}, \ldots \ldots . x_{n}$, then the variance of $a x_{1}, a x_{2}, \ldots \ldots . a x_{n}(a$ is any non-zero real number) is
A. a $\operatorname{var}(X)$
B. $a^{2} \operatorname{var}(\mathrm{X})$
C. $a^{3} \operatorname{var}(\mathrm{X})$
D. $a^{n} \operatorname{var}(\mathrm{X})$

Answer: A:B

- Watch Video Solution

HS (XI) AND WBJEE 2019 (HS (XI) 2019) (GROUP -B)

1. If $A=\{x:-1<x \leq 5\}$ and $B=\{x:-3 \leq x<4\}$, then find $A \cap B$.
2. Find the range of the function $f(x)=\frac{1}{2+\sin 3 x}$

- Watch Video Solution

3. Find the value of $\cos ^{2} \frac{\pi}{8}+\cos ^{2} \frac{3 \pi}{8}+\cos ^{2} \frac{5 \pi}{8}+\cos ^{2} \frac{7 \pi}{8}$

- Watch Video Solution

4. Show that the value of $\cos ^{2} \theta+\cos ^{2}(\theta+\alpha)-2 \cos \alpha \cos \theta \cos (\theta+\alpha)$ is independents of θ.

- Watch Video Solution

5. If A be the arithmetic mean (A.M.) and p, q be two geometric means (G .
M.) between two given numbers then prove that $\frac{p^{2}}{q}+\frac{q^{2}}{p}=2 A$.

- Watch Video Solution

6. Find the value of $\sqrt{i}+\sqrt{-i}$.

- Watch Video Solution

7. Prove that ${ }^{2 n} P_{n}=\{1.3 .5 . \ldots . .(2 n-1)\} 2^{n}$

- Watch Video Solution

8. Find the coefficient of x^{-11} in the expansion of $\left(x^{2}-\frac{1}{x^{3}}\right)^{12}$

- Watch Video Solution

9. The coordinaters of one end of a diameter of a circle $x^{2}+y^{2}-8 x-4 y+15=0$ is (2,1). Find the coordinates of the other end of the diameter.
10. Find the eccentricity of the hyperbola whose latusrectum and transverse axis are of same length.

- Watch Video Solution

11. If $f(x)=\frac{|x|}{x}$ then discuss with justification whether $\lim x \rightarrow 0 f(x)$ exists or not.

- Watch Video Solution

12. Find the value of $\frac{d}{d x}\left(x \frac{e^{x}+e^{4 x}}{e^{x}+e^{-2 x}}\right)$.

- Watch Video Solution

13. Two dice are thrown simultaneously. What is the probability that the sum of the points on the two dice is 5 ?
14. Show the "difference between the arithmetic mean and median can never be greater then the standard deviation".

- Watch Video Solution

HS (XI) AND WBJEE 2019 (HS (XI) 2019) (GROUP -C)

1. For any three sets A, B and C prove that $A-(B \cup C)=(A-B) \cap(A-C)$

- Watch Video Solution

$\sqrt{5}-1$
2. Show that the value of $\sin 18^{\circ}$ is 4
3. For a triangle, if $\frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}$, then show that $\angle C=60^{\circ}$.

- Watch Video Solution

4. Using the principle of mathematical induction, prove that $1^{2}+3^{2}+5^{2}+\ldots \ldots .+(2 n-1)^{2},=\frac{n}{3}\left(4 n^{2}-1\right)$, where $n \in N$.

- Watch Video Solution

5. Show that if $n \geq 1$ is an integer, then $9^{n+1}-8 n-9$ is divisible by 64 .

- Watch Video Solution

6. How many different numbers of 5 significant digits can be formed with the digits $0,2,5,6,7$ if repetition is (a) allowed, (b) not allowed?

- Watch Video Solution

7. Solve : $z+|z|=1+2 i$, where $z=x+i y, x, y \in \mathbb{R}$.

- Watch Video Solution

8. There numbers are in G.P. whose product and sum are respectively 216 and 21 . Find the numbers.

- Watch Video Solution

9. Find the distance from the point $P(4,1)$ to the line $4 x-y=0$ measured along the line making and angle 135° with the positive direction of x axis.

- Watch Video Solution

10. Find the equations of the circle which touches y-aixs at $(0,5)$ and whose centre lies on the line $2 x+y=13$.
11. Find the locus of the foot of the perpendicular drawn from the origin to the straight line which passes through the fixed point (a,b).

- Watch Video Solution

12. If $\lim x \rightarrow 3 \frac{p x^{2}-q}{x-3}=6$, then find the values of p and q.

- Watch Video Solution

13. If $y=\sqrt{x}+\frac{1}{2 \sqrt{x}}$ and $2 x \frac{d y}{d x}+y=f(x)$, then find $\mathrm{f}(\mathrm{x})$.

- Watch Video Solution

14. Prove that for any two statements p and q the statements
$\sim(p \leftrightarrow \sim q)$ and $p \leftrightarrow q$ are equivalent.
15. Using contrapositive method, prove that -"If x is an interger and x^{2} is an odd number then x will be an odd number".

- Watch Video Solution

16. A number is selected at random among the first 50 positvie integers.

Find the probability that the selected number is divisible by 4 or 5.

- Watch Video Solution

17. Calculate the value of : $(i)^{61}$

- Watch Video Solution

1. Find the general solution of the equation $\sec \theta+1=(2+\sqrt{3}) \tan \theta$.

- Watch Video Solution

2. Prove that $\cos \frac{\pi}{11} \cos \frac{2 \pi}{11} \cos \frac{3 \pi}{11} \cos \frac{4 \pi}{11} \cos \frac{5 \pi}{11}=\frac{1}{32}$

- Watch Video Solution

3. Solve : $\frac{|x+3|+2 x+1}{x+1}>5, \forall x \in \mathbb{R}, x \neq-1$.

- Watch Video Solution

4. One root of the quadratic equation $(2+3 i) x^{2}-b x+(3-i)=0$ is $(2-i)$.

Find its other root and the value of b.

- Watch Video Solution

5. If a_{1}, a_{2}, a_{3} and a_{4} be the coefficients of four consecutive terms in the expansion of $(1+x)^{n}$, then prove that $\frac{a_{1}}{a_{1}+a_{2}}, \frac{a_{2}}{a_{2}+a_{3}}$ and $\frac{a_{3}}{a_{3}+a_{4}}$ are in A.P.

- Watch Video Solution

6. A committee of members is to be formed among 6 men and 4 women.

Find the number of ways this can be done in such a way that each committee has at least one woman and two men.

- Watch Video Solution

7. The focal chord of the parabola $y^{2}=4 a x$ makes an angle θ with its aixs. Show that the length of the chord will be $4 a \operatorname{cosec}^{2} \theta$.

- Watch Video Solution

8. Find the equation of hyperbola and length of its latus rectum, whose vertices are $(9,2),(1,2)$ and the ecentricity is $\frac{5}{4}$.

- Watch Video Solution

WBJEE 2019

1. The three sides of a right-triangle are in GP (geometric progression). If the two actue angles be α and β, then $\tan \beta$ are
$\begin{array}{ll}\sqrt{5}+1 & \sqrt{5}-1\end{array}$
A. $\frac{2}{2}$ and $\frac{}{2}$
B. $\sqrt{\frac{5+1}{2}}$ and $\sqrt{\frac{5-1}{2}}$
C. $\sqrt{5}$ and $\frac{1}{\sqrt{5}}$
D. $\frac{\sqrt{5}}{2}$ and $\frac{2}{\sqrt{5}}$
2. If $\log _{2} 6+\frac{1}{2 x}=\log _{2}\left(2^{\frac{1}{x}}+8\right)$, that the values of x are
A. $\frac{1}{4}, \frac{1}{3}$
B. $\frac{1}{4}, \frac{1}{2}$
C. $-\frac{1}{4}, \frac{1}{2}$
D. $\frac{1}{3}, \frac{1}{-2}$

- Watch Video Solution

WBJEE 2021

1. Let z be a complex number such that the principal value of argument, $\operatorname{argz}>0$. Then $\operatorname{argz}-\arg (-z)$ is
A. $\frac{\pi}{2}$
B. $\pm \pi$
C. π
D. $-\pi$

WBJEE 2023

1. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be real numbers such that $a+b+c<0$ and the quadratic equation $a x^{2}+b x+c=0$ has imaginary roots. Then
A. $a>0, c>0$
B. $a>0, c<0$
C. $a<0, c>0$
D. $a<0, c<0$

- Watch Video Solution

WBJEE 2024

1. A candidate is required to answer 6 out of 12 questions which are divided into two parts A and B, each containing 6 questions and he/she is not permitted to attempt more that 4 questions from any part. In how many different ways can he/she make up his/her choice of 6 questions?
A. 850
B. 800
C. 750
D. 700
2. There are greetings cards, each of a different colour and 7 envelopes of same 7 colours as that of the cards. The number of ways in which the cards can be put in envelopes, so that exactly 4 of the cards go into envelopes of respective colour is,
A. ${ }^{7} C_{3}$
B. $2 .{ }^{7} C_{3}$
C. $3!{ }^{4} C_{4}$
D. $3!^{7} C_{3}{ }^{4} C_{3}$

- Watch Video Solution

WBJEE 2026

1. $7^{2 n}+16 n-1(n \in \mathbb{N})$ is divisble by
A. 65
B. 63
C. 61
D. 64
2. The number of irrational terms in the expansion of $\left(3^{\frac{1}{6}}+5^{\frac{1}{4}}\right)^{84}$ is
A. 73
B. 78
C. 75
D. 76
3. Let P and T be the subsets of $X-Y$ plane defined by
$p=\left\{(x, y): x>0, y>0\right.$ and $\left.x^{2}+y^{2}=1\right\}$
$T=\left\{(x, y): x>0, y>0\right.$ and $\left.x^{2}+y^{8}<1\right\}$ The $P \cap T$ is
A. the vaid set ϕ
B. P
C. T
D. $P-T^{C}$

- Watch Video Solution

4. If $e^{\sin x}-e^{-\sin x}-4=0$, then the number of real values of x is
A. 0
B. 1
C. 2

D. 3

- Watch Video Solution

5. The angles of a triangle are in the ratio $2: 3: 7$ and the raidus of the circumscirbed circle is 10 cm . The length of the smallest side is
A. 2 cm
B. 5 cm
C. 7 cm
D. 10 cm

- Watch Video Solution

6. A variable line passes through a fixed point $\left(x_{1}, y_{1}\right)$ and meets the axes at A and B. If the rectangle OAPB be completed, the locus of P is, (O being
the origin of the system of axes)
A. $\left(y-y_{1}\right)^{2}=4\left(x-x_{1}\right)$
B. $\frac{x_{1}}{x}+\frac{y_{1}}{y}=1$
C. $x^{2}+y^{2}=x_{1}^{2}+y_{1}^{2}$
D. $\frac{x^{2}}{2 x_{1}^{2}}+\frac{y^{2}}{y_{1}^{2}}=1$

- Watch Video Solution

7. A straight line through the point $(3,-2)$ is inclined at an angle 60° to the line $\sqrt{3} x+y=1$. If it intersects the X -axis, then its equation will be
A. $y+x \sqrt{3}+2+3 \sqrt{3}=0$
B. $y-x \sqrt{3}+2+3 \sqrt{3}=0$
C. $y-x \sqrt{3}-2-2 \sqrt{3}=0$
D. $y-x \sqrt{3}+2-3 \sqrt{3}=0$

- Watch Video Solution

8. A variable line passes through the fixed point (α, β). The locus of the foot of the perpendicular from the origin on the line is,
A. $x^{2}+y^{2}-\alpha x-\beta y=0$
B. $x^{2}-y^{2}-2 \alpha x-2 \beta y=0$
C. $\alpha x+\beta y \pm \sqrt{\left(\alpha^{2}+\beta^{2}\right)}=0$
D. $\frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\beta^{2}}=1$

(D) Watch Video Solution

9. If the point of intersection of the lines $2 a x+4 a y+c=0$ and $7 b x+3 b y-d=0$ lies in the 4th quadrant and is equidistant from the two axes, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are non-zero numbers, then $a d$: $b c$ equals to
B. 2:1
C. 1:1
D. $3: 2$
10. A variable circle passes through the fixed point $A(p, q)$ and touches x axis. The locus of the other end of the diameter through A is
A. $(x-p)^{2}=4 q y$
B. $(x-q)^{2}=4 p y$
C. $(y-p)^{2}=4 q x$
D. $(y-q)^{2}=4 p x$
11. If $P(0,0) Q,(1,0)$ and $R\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ are three given points, then the centre of the circle for which the lines $P Q, Q R$ and RP are the tangents is
A. $\left(\frac{1}{2}, \frac{1}{4}\right)$
B. $\left(\frac{1}{2}, \frac{\sqrt{3}}{4}\right)$
C. $\left(\frac{1}{2}, \frac{1}{2 \sqrt{3}}\right)$
D. $\left(\frac{1}{2}, \frac{-1}{\sqrt{3}}\right)$

- Watch Video Solution

12. For the hyperbola $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$, which of the following remains fixed when α varies?
A. directrix
B. vertices
C. foci
D. eccentricity

- Watch Video Solution

13. S and T are the foci of an ellipse and B is the end point of the minor axis. If STB is equilateral triangle, the eccentricity of the ellipse is
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{2}{3}$
14. The equation of the directrices of the hyperbola $3 x^{2}-3 y^{2}-18 x+12 y+2=0$ is
A. $x=3 \pm \sqrt{\frac{13}{6}}$
B. $x=3 \pm \sqrt{\frac{6}{13}}$
C. $x=6 \pm \sqrt{\frac{13}{3}}$
D. $x=6 \pm \sqrt{\frac{3}{13}}$

- Watch Video Solution

15. P is the extremity of the latusrectum of ellipse $3 x^{2}+4 y^{2}=48$ in the first quadrant. The eccentric angle of P is
A. $\frac{\pi}{8}$
B. $\frac{3 \pi}{4}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

- Watch Video Solution

16. For any non-zero complex number z, the minimum value of $|z|+|z-1|$ is
A. 1
B. $\frac{1}{2}$
C. 0
D. $\frac{3}{2}$
17. The polar coordinate of point P is $\left(2, \frac{\pi}{4}\right)$. The polar coordinate of the point Q , which is such that the line joining PQ is bisected perpendicularly
by the initial line, is
A. $\left(2, \frac{\pi}{4}\right)$
B. $\left(2, \frac{\pi}{6}\right)$
C. $\left(-2, \frac{\pi}{4}\right)$
D. $\left(-2, \frac{\pi}{6}\right)$

- Watch Video Solution

18. The length of conjugate axis of a hyperbola is greater than the length of transverse axis. Then the eccentricity e is,
A. $=\sqrt{2}$
B. $>\sqrt{2}$
C. $<\sqrt{2}$
D. $<\frac{1}{\sqrt{2}}$
19. The value of $\lim x \rightarrow 0+\frac{x}{p}\left[\frac{q}{x}\right]$ is
A. $\frac{[q]}{p}$
B. 0
C. 1
D. ∞
20. Let x_{1}, x_{2} be the roots of $x^{2}-3 x+a=0$ and x_{3}, x_{4} be the roots of $x^{2}-12 x+b=0$. If $x_{1}<x_{2}<x_{3}<x_{4}$ and $x_{1}, x_{2}, x_{3}, x_{4}$ are in GP then ab equals
21. If $\theta \in \mathbb{R}$ and $\frac{1-i \cos \theta}{1+2 i \cos \theta}$ is real number, then θ will be (when I: set of integers)
A. $(2 n+1) \frac{\pi}{2}, n \in I$
B. $\frac{3 n \pi}{2}, n \in I$
C. $n \pi, n \in I$
D. $2 n \pi, n \in I$
22. Straight lines $x-y=7$ and $x+4 y=2$ intersect at B. Points A and C are so chosen on these two lines such that $A B=A C$. The equation of line $A C$ passing through $(2,7)$ is

$$
\text { A. } x-y-9=0
$$

B. $23 x+7 y+3=0$
C. $2 x-y-11=0$
D. $7 x-6 y-56=0$
23. Equation of a tangent to the hpyerbola $5 x^{2}-y^{2}=5$ and which passes through an external point $(2,8)$ is
A. $3 x-y+2=0$
B. $3 x+y-14=0$
C. $23 x-3 y-22=0$
D. $3 x-23 y+178=0$

1. A relation R is defined on the set of natural numbers \mathbb{N} as follows :
$(x, y) \in R \Rightarrow y$ is divisible by x , for all $\mathrm{x}, y \in \mathbb{N}$.
Show that, R is reflexive and transitive but not symmetric on \mathbb{N}.

- Watch Video Solution

2. Let \mathbb{N} be the set of all natural numbers and R be the relation on $\mathbb{N} \times \mathbb{N}$ defined by :
$(a, b) R(c, d) \Rightarrow a d(b+c)=b c(a+d)$
Check wheather R is an equivalance relation on $\mathbb{N} \times \mathbb{N}$.

- Watch Video Solution

3. Let Z be the set of all integers and Z_{0} be the set of all non-zero integers. Let a relation R on $\mathbb{Z} \times \mathbb{Z}_{0}$ be defined as follows :
$(a, b) R(c, d) r \Rightarrow a d=b c, \quad$ for \quad all
$(a, d),(c, d) \in \mathbb{Z} \times \mathbb{Z}_{0}$

- Watch Video Solution

4. Find the number of equivalence relations on the set $A=\{a, b, c\}$ containing elements (b,c) and (c,b).

- Watch Video Solution

5. Show that the relation R on the set $A=\{1,2,3,4,5\}$ given by $R=\{(a, b):|a-b|$ is even\} is an equivalence relation.

- Watch Video Solution

6. Prove that the relation R on the set $A=\{a$ in $Z Z: 1|x-y|$ is a multiple of 4$\}$ is an equivalence relation.

Find also the elements of set A which are related to 2 .
7. Let $P(A)$ be the power set of a non-empty set A. A relation R on $P(A)$ is defined as follows :
$R=\{(X, Y): X \subseteq Y\}$
Example (i) reflexivity, (ii)symmetry and (iii) transitivity of R on $\mathrm{P}(\mathrm{A})$.

- Watch Video Solution

8. Let \mathbb{R} be the set of real numbers and $A=\{x \in \mathbb{R}$: $-1<x<1\}=B$. Is the mapping $f: A \rightarrow B$ defined by $f(x)=\frac{x}{1+|x|}$ bijective ? Justify your answer.

- Watch Video Solution

9. Let \mathbb{R} be the set of all real numbers and $A=\{x \in \mathbb{R}: 0<x<1\}$. Is the mapping $f: A \rightarrow \mathbb{R}$ defined by $f(x)=\frac{2 x-1}{1-|2 x-1|}$ bijective ?
10. If \mathbb{R} is the set of real numbers, then functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are defined respectively by
$f(x)=\cos ^{2} x+\cos ^{2}\left(\frac{2 \pi}{3}+x\right)+\cos ^{2}\left(\frac{2 \pi}{3}-x\right)$ and $g(x)=2$ for all x in \mathbb{R}. Show that $(g \circ f): \mathbb{R} \rightarrow \mathbb{R}$ is a constantfunction.

- Watch Video Solution

11. For all $x \in \mathbb{Z}$, the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by $f(x)=3 x+4$. Find function $g: \mathbb{Z} \rightarrow \mathbb{Z}$ such that $(\mathrm{g} \circ \mathrm{f})=I_{Z}$.

- Watch Video Solution

12. Determine the value of the constant $k(\neq 0)$ for which the function $f(x)=1+k x$ is the inverse of itself.
13. If $f(x)=\sin x, g(x)=x^{2}$ and $h(x)=\log x$, find the composite function $[h \circ(g$ of f](x).

Watch Video Solution

14. Find the domain of definitions of each of the following functions:
$f(x)=\cos ^{-1} 2 x$

- Watch Video Solution

15. Find the domain of definitions of each of the following functions:
$y=\sin ^{-1} 3 x$

- Watch Video Solution

16. Find the domain of definitions of each of the following functions:
$y=\sin ^{-1}\left[\log _{2}\left(\frac{1}{2^{2}} x^{2}\right)\right]$
17. Find the domain of definitions of each of the following functions:
$f(x)=\frac{\sqrt{4-x^{2}}}{\sin ^{-1}(2-x)}$

(Watch Video Solution

18. Find the domain of definitions of each of the following functions:
$y=\sqrt{ } \sin ^{-1}\left(\log _{2} x\right)$

- Watch Video Solution

19. Find the domain of definitions of each of the following functions :
$f(x)=\sin ^{-1}\left(\frac{2 x-3}{3}\right)$

- Watch Video Solution

20. Find the domain of definitions of each of the following functions :
$\phi(x)=\cos ^{-1} \frac{x-4}{3}+\log (5-x)$

- Watch Video Solution

21. Prove that
$2 \tan ^{-1}\left[\tan \left(\frac{\alpha}{2}\right) \tan \left(\frac{\pi}{4}-\frac{\beta}{2}\right)\right]=\tan ^{-1}\left(\frac{\sin \alpha \cos \beta}{\cos \alpha+\sin \beta}\right)$

- Watch Video Solution

22. Prove that
$\tan ^{-1} \sqrt{\frac{a(a+b+c)}{b c}}+\tan ^{-1} \sqrt{\frac{b(a+b+c)}{c a}}+\tan ^{-1} \sqrt{\frac{c(a+b+c)}{a b}}=\pi(a, b, c>0)$

- Watch Video Solution

23. Prove that
$\tan ^{-1} \frac{a p-q}{a q+p}+\tan ^{-1} \frac{b-a}{a b+1}+\tan ^{-1} \frac{c-b}{b c+1}=\tan ^{-1} \frac{p}{q}-\tan ^{-1} \frac{1}{c}$

(D) Watch Video Solution

24. If $\frac{n \tan \theta}{\cos ^{2}(\alpha-\theta)}=\frac{m \tan (\alpha-\theta)}{\cos ^{2} \theta}$, then show that,
$2 \theta=\alpha-\tan ^{-1}\left(\frac{n-m}{n+m} \tan \alpha\right)$

- Watch Video Solution

25. If $\phi=\tan ^{-1} \frac{x \sqrt{3}}{2 k-x}$ and $\theta=\tan ^{-1} \frac{2 x-k}{k \sqrt{3}}$, then show that one value of $(\phi-\theta)$ is 30°.

- Watch Video Solution

26. If $\phi=\tan ^{-1} \frac{x \sqrt{3}}{2 k-x}$ and $\theta=\tan ^{-1} \frac{2 x-k}{k \sqrt{3}}$, then show that one value of $(\phi-\theta)$ is 30°.
27. Prove that,
$\tan ^{-1} \frac{1}{2 \times 1^{2}}+\tan ^{-1} \frac{1}{2 \times 2^{2}}+\tan ^{-1} \frac{1}{2 \times 3^{2}}+\ldots \infty=\frac{\pi}{4}$

- Watch Video Solution

28. If $\phi=\cot ^{-1} \sqrt{\cos 2 \theta}-\tan ^{-1} \sqrt{\cos 2 \theta}$, then show that, $\sin \phi=\tan ^{2} \theta$.

(Watch Video Solution

29. Prove that,
$\sum_{n=1 \cot ^{-1}}^{\infty}\left(2 n^{2}\right)=\frac{\pi}{4}$

D Watch Video Solution

30. Prove that

$\sum_{n=1 \tan ^{-1}}^{\infty} \frac{1}{1+n+n^{2}}=\frac{\pi}{4}$

- Watch Video Solution

31. Prove that
$\sum_{r=1 \tan ^{-1}} \frac{2 r}{r^{4}+r^{2}+2}=\tan ^{-1}\left(n^{2}+n+1\right)-\frac{\pi}{4}$

- Watch Video Solution

32. Solve :
$\sin ^{-1} x-\cos ^{-1} x=\sin ^{-1}(3 x-2)$

Watch Video Solution
33. Solve :
$\cos ^{-1} x-\sin ^{-1} x=\cos ^{-1}(x \sqrt{3})$
34. Solve that
$2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$

- Watch Video Solution

35. Evaluate : $\cos ^{-1} x+\cos ^{-1}\left[\frac{x}{2}+\frac{\sqrt{3-3 x^{2}}}{2}\right]\left(\frac{1}{2} \leq x \leq 1\right)$

- Watch Video Solution

36. Prove that $\left(\sin ^{-1} \frac{2 a b}{a^{2}+b^{2}}+\sin ^{-1} \frac{2 c d}{c^{2}+d^{2}}\right)$ can be expressed in the form $\sin ^{-1} \frac{2 x y}{x^{2}+y^{2}}$ where x and y are rational functions of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d .

(Watch Video Solution

37. Prove that :
$\cos ^{-1} \sqrt{\frac{2}{3}}-\cos ^{-1} \frac{\sqrt{6}+1}{2 \sqrt{3}}=\frac{\pi}{6}$

D Watch Video Solution

38. Prove that :
$\cos ^{-1} b-\sin ^{-1} a=\cos ^{-1}\left(b \sqrt{1-a^{2}}+a \sqrt{1-b^{2}}\right)$

- Watch Video Solution

39. Using principal values, express the following as a single angle :
$2 \tan ^{-1} \frac{1}{\sqrt{3}}+2 \tan ^{-1} \sqrt{3}$

- Watch Video Solution

40. If $\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z=\pi$ and $x+y+z=\frac{3}{2}$, then show that, $x=y=z$.

- Watch Video Solution

41. If $\theta=\tan ^{-1}\left(2 \tan ^{2} \theta\right)-\frac{1}{2} \sin ^{-1}\left(\frac{3 \sin 2 \theta}{5+4 \cos 2 \theta}\right)$, then find the general values of θ.

- Watch Video Solution

42. If $\tan ^{-1} \sqrt{\frac{a^{2}-x^{2}}{a^{2}+x^{2}}}+\tan ^{-1} \sqrt{\frac{b^{2}-y^{2}}{b^{2}+y^{2}}}=\frac{\alpha}{2}$, then show that,
$\frac{x^{4}}{a^{4}}-2 \frac{x^{2} y^{2}}{a^{2} b^{2}} \cos \alpha+\frac{y^{4}}{b^{4}}=\sin ^{2} \alpha$

- Watch Video Solution

43. If $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}\right)=\theta$, then prove that, $\sin 2 \theta=x^{2}$.

- Watch Video Solution

44. Prove that, $\tan ^{-1} a+\tan ^{-1} b+\tan ^{-1}\left(\frac{1-a-b-a b}{1+a+b-a b}\right)=\frac{\pi}{4}$.

- Watch Video Solution

45. Prove that, $\tan ^{-1}\left(\frac{3 \sin 2 x}{5+3 \cos 2 x}\right)+\tan ^{-1}\left(\frac{1}{4} \tan x\right)=x$.

- Watch Video Solution

46. Prove that, $\tan ^{-1} \frac{a}{b}-\tan ^{-1}\left(\frac{a-b}{a+b}\right)=\frac{\pi}{4}$.

- Watch Video Solution

47. Prove that, $\tan ^{-1}\left(\frac{2 \sin 2 x}{1+2 \cos 2 x}\right)-\frac{1}{2} \sin ^{-1}\left(\frac{3 \sin 2 x}{5+4 \cos 2 x}\right)=x$.

- Watch Video Solution

48. If $\sin ^{-1} \frac{x}{a}+\sin ^{-1} \frac{y}{b}=\sin ^{-1} \frac{c^{2}}{a b}$, prove that,
$b^{2} x^{2}+2 x y \sqrt{a^{2} b^{2}-c^{4}}+a^{2} y^{2}=c^{4}$

- Watch Video Solution

49. Prove that, $2 \sin ^{-1} \frac{2}{\sqrt{13}}+\frac{1}{2} \cos ^{-1} \frac{7}{25}+\tan ^{-1} \frac{63}{16}=\pi$

- Watch Video Solution

50. If $g(x)$ is the inverse of $f(x)$ an $d f^{\prime}(x)=\frac{1}{1+x^{3}}$, show that $g^{\prime}(x)$ $=1+[g(x)]^{3}$.

- Watch Video Solution

51. If $\mathrm{f}(\mathrm{x}+\mathrm{h})=f(x)+h f^{\prime}(x+\theta h)$, find θ, given $x=-a$, $\mathrm{h}=2 \mathrm{a}$ and $\mathrm{f}(\mathrm{x})=\sqrt[3]{\mathrm{x}}$.

- Watch Video Solution

Limit, Continuity and Differentiability

1. Evaluate the following limits :
$\lim _{x \rightarrow 0} \frac{\sin \log (1+x)}{\log (1+\sin x)}$

- Watch Video Solution

2. Evaluate the following limits :
$\lim _{x \rightarrow 0} \frac{12^{x}-2^{2 x}-3^{x}+1}{x^{2}}$

- Watch Video Solution

3. Evaluate the following limits :
$\lim _{x \rightarrow a} \frac{a e^{x}-x e^{a}}{x-a}$

- Watch Video Solution

4. Evaluate the following limits :
$\lim _{x \rightarrow 0} \frac{e^{x}-\log (e+e x)}{x}$

- Watch Video Solution

5. Evaluate the following limits :
$\lim _{x \rightarrow 0} \frac{e^{p x}-e^{-q x}}{x}$

- Watch Video Solution

6. Evaluate the following limits :
$\lim _{x \rightarrow 0} \frac{e^{-\frac{x}{2}}-1}{\log (1-3 x)}$

- Watch Video Solution

7. Evaluate the following limits :
$\lim _{x \rightarrow \frac{1}{2}} \frac{e^{\log 2 x}-1}{e^{2 x-1}-1}$

- Watch Video Solution

8. Show that,
$\lim x \rightarrow 0(\cos x)^{\cot ^{2} x}=\frac{1}{\sqrt{e}}$

Watch Video Solution
9. Show that,

$$
\lim _{x \rightarrow \frac{\pi}{2}}(1+\cos x)^{3 \sec x}=e^{3}
$$

Watch Video Solution

10. Show that,
$\lim _{x \rightarrow 0}\left(\frac{x-1+\cos x}{x}\right)^{\frac{1}{x}}=\frac{1}{\sqrt{e}}$

- Watch Video Solution

11. Show that,
$\lim _{x \rightarrow 0(\sin x+\cos x)^{\frac{1}{x}}=e}$

D Watch Video Solution

12. Show that,
$\lim _{x \rightarrow 0}\left[\tan \left(x+\frac{\pi}{4}\right)\right]^{\frac{1}{x}}=e^{2}$

- Watch Video Solution

13. Show that,
$\lim x \rightarrow 0(1+\sin 2 x)^{\operatorname{cosec} x}=e^{2}$

- Watch Video Solution

14. Show that,
$\lim _{x \rightarrow 1} \frac{x^{x}-1}{x \log x}=1$

- Watch Video Solution

15. Show that,
$\lim _{x \rightarrow 0} \frac{\log \left(1+x+x^{2}\right)+\log \left(1-x+x^{2}\right)}{\sec x-\cos x}=1$

Watch Video Solution
16. Find the value of:
$\lim _{x \rightarrow 0}(1+3 x)^{\frac{1}{x}}$

- Watch Video Solution

17. Find the value of :
$\lim _{x \rightarrow 0}(1-2 x)^{\frac{2}{x}}$

- Watch Video Solution

18. Find the value of:
$\lim x \rightarrow 0(1+k x)^{\frac{k}{x}}$

- Watch Video Solution

19. Find the value of:
$\lim _{x \rightarrow 0}[1+3 x]^{\frac{x+3}{x}}$

- Watch Video Solution

20. Prove that, $\lim x \rightarrow 0\left(\frac{1+6 x^{2}}{1+2 x^{2}}\right)^{\frac{1}{x^{2}}}=e^{4}$
21. Let $f(x)= \begin{cases}\frac{1-\cos 4 x}{x^{2}}, & \text { when } x<0 \\ a, & \text { when } x=0 \\ \frac{x}{\sqrt{16+\sqrt{x}}-4}, & \text { when } x>0\end{cases}$

Determine the value of a, if possible, so that $f(x)$ is continuous at $x=0$.

- Watch Video Solution

$\log \left(1+x^{2} \tan x\right)$
22. Given, $f(x)=\frac{}{\sin x^{3}}$, when $x \neq 0$. Find the assigned value of $f(0)$, if $f(x)$ is to be continuous at $x=0$.

- Watch Video Solution

23. The function $f(x)=\frac{1-\sin x}{(\pi-2 x)^{2}}$ is underfined at $x=\frac{\pi}{2}$.Redefine the function $\mathrm{f}(\mathrm{x})$ so as to make it continuous at $x=\frac{\pi}{2}$.
24. A function ϕx is defined as follows :
$\phi x= \begin{cases}-2 \sin x, & \text { when }-\pi \leq x \leq \frac{\pi}{2} \\ p \sin x+q, & \text { when- } \frac{\pi}{2}<x<\frac{\pi}{2} \\ \cos x, & \text { when } \frac{\pi}{2} \leq x \leq \pi\end{cases}$

If $\theta(\mathrm{x})$ is continous in the interval $-\pi \leq x \leq \pi$, find the values of p and q .

- Watch Video Solution

25. Prove that the function $\mathrm{f}(\mathrm{x})=|\mathrm{x}+1|+|\mathrm{x}-1|$ is not differetiable at $x=-1$ and at $\mathrm{x}=1$.

- Watch Video Solution

26. Find the from first principle the differential coefficients of the following functions :

- Watch Video Solution

27. Find the from first principle the differential coefficients of the following functions :
$\sin ^{-1} X$

- Watch Video Solution

28. Find from the first principle the differential coefficients of the following functions :
$x \tan ^{-1} x$ at $\mathrm{x}=1$

- Watch Video Solution

29. Examine the differentiability of the function $\mathrm{f}(\mathrm{x})=|\sin \mathrm{x}-\cos \mathrm{x}|$ at $x=\frac{\pi}{4}$.
30. Examine the differentiability of the function $\mathrm{f}(\mathrm{x})=|\cos \mathrm{x}|$ at $x=\frac{\pi}{2}$.

- Watch Video Solution

31. A function $f(x)$ is defined as follows :
$f(x)= \begin{cases}x^{2}-2 x+3, & \text { for } x<1 \\ 2, & \text { for } x=1 \\ 2 x^{2}-5 x+5, & \text { for } x>1\end{cases}$
Examine the continuity of $f(x)$ at $x=1$.

- Watch Video Solution

32. If $\mathrm{f}(\mathrm{x})=\lim _{n \rightarrow \infty} \frac{x^{n} g(x)+h(x)}{x^{n}+1}$, show that,
$f(x)= \begin{cases}h(x), & \text { when } 0<x<1 \\ \frac{1}{2}[h(x)+g(x)], & \text { when } x=1 \\ g(x), & \text { when } x>1\end{cases}$

Differentiation

1. If $\mathrm{y}=\mathrm{f}\{\mathrm{f}(\mathrm{x})\}, \mathrm{f}(0)=0$ and $\mathrm{f}^{\prime}(0)=5$, find $\left[\frac{d y}{d x}\right]_{x=0}$

- Watch Video Solution

2. Find the derivative of $|f(x)|$ with respect to x, hence, write down the derivartive of $|\cos x|$.

- Watch Video Solution

3. Find the differential coefficients of the following functions w.r.t. x: $\log _{3}\left(\log _{3} x\right)$

- Watch Video Solution

4. Find the differential coefficients of the following functions w.r.t. x : $x^{\log x}+(\sin x)^{x}+5 x$

- Watch Video Solution

5. Find the differential coefficients of the following functions w.r.t. x:
$\sin ^{-1}\left(x^{2} \sqrt{1-x}-\sqrt{x} \sqrt{1-x^{4}}\right)$

- Watch Video Solution

6. Find the differential coefficients of the following functions w.r.t. x:

$$
\log (1+\sin 2 x)+2 \log \sec \left(\frac{\pi}{4}-x\right)
$$

- Watch Video Solution

7. Find the differential coefficients of the following functions w.r.t. x:
$(\sqrt{x})^{x}+(x)^{\sqrt{x}}$
8. Find the differential coefficients of the following functions w.r.t. x:
$\sin ^{-1}\left[\frac{1}{13}\left(5 x+12 \sqrt{1-x^{2}}\right)\right]$

- Watch Video Solution

9. Find $\frac{d y}{d x}$, when
$y=e^{x \sin x^{3}}+(\tan x)^{x}$

- Watch Video Solution

10. Find $\frac{d y}{d x}$, when
$y=\log |x|$
11. Find $\frac{d y}{d x}$, when
$y=(x \log x)^{\log (\log x)}$

- Watch Video Solution

12. Find $\frac{d y}{d x}$, when
$y=\tan ^{-1} \frac{\sqrt{x}-4 \sqrt{x}}{1+4 \sqrt{x^{3}}}$

- Watch Video Solution

13. Find $\frac{d y}{d x}$, when
$y=\tan ^{-1} \frac{x}{1+\sqrt{1-x^{2}}}+\sin \left(2 \tan ^{-1} \sqrt{\frac{1-x}{1+x}}\right)$
14. If $y=\log \left(\tan \frac{x}{2}\right)+\sin ^{-1}(\cos x)$ show that, $\frac{d y}{d x}=\operatorname{cosec}-1$

- Watch Video Solution

15. If $x^{\log y}=\log x$, prove that, $\frac{x}{y} \cdot \frac{d y}{d x}=\frac{1-\log x \log y}{(\log x)^{2}}$

D Watch Video Solution

16. If $\sqrt{1-x^{4}}+\sqrt{1-y^{4}}=k\left(x^{2}-y^{2}\right)$, prove that,
$\frac{d y}{d x}=\frac{x \sqrt{1-y^{4}}}{y \sqrt{1-x^{4}}}$

- Watch Video Solution

17. If $\sqrt{1-x^{2 n}}+\sqrt{1-y^{2 n}}=a^{n}\left(x^{n}-y^{n}\right)$, prove that,
$\frac{d y}{d x}=\left(\frac{x}{y}\right)^{n-1} \cdot \sqrt{\frac{1-y^{2 n}}{1-x^{2 n}}}$

- Watch Video Solution

$$
a-\sqrt{a^{2}-y^{2}}
$$

18. If $x-\sqrt{a^{2}-y^{2}}=a \log \frac{\sqrt{a}}{y}$, show that, $\frac{d y}{d x}=\frac{y}{\sqrt{a^{2}-y^{2}}}$

- Watch Video Solution

19. If $x y=a\left[y+\sqrt{y^{2}-x^{2}}\right]$, prove that,
$x^{3} \frac{d y}{d x}=y^{2}\left(y+\sqrt{y^{2}-x^{2}}\right)$

- Watch Video Solution

20. If $y=\frac{1}{3} \log \frac{x+1}{\sqrt{x^{2}-x+1}}+\frac{1}{\sqrt{3}} \tan ^{-1} \frac{2 x-1}{\sqrt{3}}$, show that,
$\frac{d y}{d x}=\frac{1}{x^{3}+1}$

D Watch Video Solution

21. If $x=\tan \frac{y}{2}+\log \tan \frac{y}{2}-2 \log \left(1+\tan \frac{y}{2}\right)$, show that, $\frac{d y}{d x}=\frac{1}{2} \sin (1+\sin y+\cos y)$

- Watch Video Solution

22. If $y=\frac{1}{3} \cdot \frac{a^{2}-b^{2}}{a^{2}+b^{2}} \cdot x\left[\frac{p}{p+1} \cdot p \sqrt{x}+\frac{q}{q+1} \cdot q \sqrt{x}\right]$, prove that,
$\frac{d y}{d x}=\left(\frac{a+b}{a-b}\right)^{\frac{q+p}{q-p}}$ at $x=\left(\frac{a+b}{a-b}\right)^{\frac{2 p q}{q-p}}$

- Watch Video Solution

23. If $3 a x^{2}=y^{2}\left(a-x^{6}\right), \frac{d y}{d x}=$?.

- Watch Video Solution

24. If $f(x)=\log _{x}(\log x)$, then find $f^{\prime}(x) a t x=e$

- Watch Video Solution

25. IF $y^{2}\left(1-x^{2}\right)=x^{2}+1$, show that, $\left(1-x^{4}\right)\left(\frac{d y}{d x}\right)^{2}=y^{4}-1$.

- Watch Video Solution

26. If $\cos y=\sqrt{\frac{\cos 3 x}{\cos ^{3} x}}$, prove that, $\frac{d y}{d x}=\sqrt{3 \sec x \sec 3 x}$.

- Watch Video Solution

27. Find the value of $\frac{d y}{d x}$ in the simplest form when
$y=\frac{1}{4 \sqrt{2}} \log \frac{1+x \sqrt{2}+x^{2}}{1-x \sqrt{2}+x^{2}}+\frac{1}{2 \sqrt{2}} \tan ^{-1} \frac{x \sqrt{2}}{1-x^{2}}$

- Watch Video Solution

28. If $y=2 \frac{\sin ^{-1}(x-2)}{\sqrt{6}}-\sqrt{2+4 x-x^{2}}$, show that, $\frac{d y}{d x}$ at $\mathrm{x}=2$ is $\frac{2}{\sqrt{6}}$.

- Watch Video Solution

29. If $f^{\prime}(x)=\sin (\log x)$ and $y=f\left(\frac{2 x+3}{3-2 x}\right)$, find $\frac{d y}{d x}$.

- Watch Video Solution

30. If $y=\log \frac{a+b \tan \frac{x}{2}}{a-b \tan \frac{x}{2}}$ and $z=\frac{1}{a^{2} \cos ^{2} \frac{x}{2}-b^{2} \tan \frac{x}{2}}$, then show that, $\frac{d y}{d z}=\frac{a b}{a^{2}+b^{2}}\left(a^{2} \cot \frac{x}{2}-b^{2} \tan \frac{x}{2}\right)$.

- Watch Video Solution

31. Ify $=\sqrt{x+\sqrt{x+\sqrt{x+\ldots \infty}}}$, show that, $\frac{d y}{d x}=\frac{1}{2 y-1}$.

- Watch Video Solution

32. If $y=(\log x)^{(\log x)^{(\log x) \cdots \infty}}$ prove that,
$x \log x \frac{d y}{d x}=\frac{y^{2}}{1-y \log (\log x)}$

- Watch Video Solution

33. If $y=(\sin x)^{(\sin x)^{(\sin x) \cdots \infty}}$ show that, $\frac{d y}{d x}=\frac{y^{2} \cot x}{1-y \log (\sin x)}$

- Watch Video Solution

34. If S_{n} be the sum of first n terms of a G.P. whose common ratio is r, then show that,
$(r-1) \frac{d S_{n}}{d r}=(n-1) S_{n}-n S_{n-1}$

- Watch Video Solution

35.

From
the
relation
$\sin x \sin \left(\frac{\pi}{n}+x\right) \sin \left(\frac{2 \pi}{n}+x\right) \ldots \sin \left(\frac{n-1}{n} \pi+x\right)=\frac{\sin x}{2^{n-1}}$ deduce that,
$\cot x+\cot \left(\frac{\pi}{n}+x\right)+\cot \left(\frac{2 \pi}{n}+x\right)+\ldots+\cot \left(\frac{n-1}{n} \pi+x\right)=n \cot n x$.

Watch Video Solution

36. Find the differential coefficient of:
$x^{n x}$
37. Find solution of
$\frac{d y}{d x}=\frac{b}{a(b+2 y)}$.

- Watch Video Solution

38. If $x=\sin t \sqrt{\cos 2 t}$ and $y=\cos t \sqrt{\sin 2 t}$, find $\frac{d y}{d x}$ at $t=\frac{\pi}{4}$.

- Watch Video Solution

39. If $y=e^{x^{e^{e^{x+\infty}}}}$,show that, $\frac{d y}{d x}=\frac{y^{2} \log y}{x(1-y \log x \log y)}$.

- Watch Video Solution

40. If $y \sqrt{x^{2}+1}=\log \left(\sqrt{x^{2}+1}-x\right)$, show that,
$\left(x^{2}+1\right) \frac{d y}{d x}+x y+1=0$

- Watch Video Solution

41. If $x=\operatorname{cosec} \theta-\sin \theta$ and $y=\operatorname{cosec}^{n} \theta-\sin ^{n} \theta$, prove that, $\left(x^{2}+4\right)\left(\frac{d y}{d x}\right)^{2}=n^{2}\left(y^{2}+4\right)$.

(D) Watch Video Solution

42. If $y=x^{y^{x}}$, prove that, $\frac{d y}{d x}=\frac{y \log y(1+x \log x \log y)}{x \log x(1-x \log y)}$.

- Watch Video Solution

43. If $y(>0)$ is a differentiable function of x, find $\frac{d}{d x}\left(y^{y}\right)$.

- Watch Video Solution

44. If $f(x)=\tan ^{-1}\left(\frac{x}{1+20 x^{2}}\right)$, show that,
$f(x)=\frac{5}{1+25 x^{2}}-\frac{4}{1+16 x^{2}}$
45. Find the differential coefficient of:
$\left(x^{4}-1\right)\left(x^{4}+1\right)$

- Watch Video Solution

46. If $x^{2}+y^{2}=t-\frac{1}{t}$ and $x^{4}+y^{4}=t^{2}+\frac{1}{t^{2}}$, show that,
$x^{3} y \frac{d y}{d x}=1$

Watch Video Solution
47. Find the differential coefficient of:
$\frac{x^{4}-1}{x^{2}+1}$

- Watch Video Solution

48. Find the differential coefficient of:
$\frac{x^{6}-1}{x^{2}-1}$

- Watch Video Solution

49. If $y=\tan ^{-1} \frac{4 x}{1+5 x^{2}}+\tan ^{-1} \frac{2+3 x}{3-2 x}$, prove that,
$\frac{d y}{d x}=\frac{5}{1+25 x^{2}}$

- Watch Video Solution

50. Find the differential coefficient of:
$x^{5}-5 x^{2}$

- Watch Video Solution

51. Find the differential coefficient of:

- Watch Video Solution

52. If $2 y=x\left(1+\frac{d y}{d x}\right)$, prove that, $\frac{d^{2} y}{d x^{2}}=$ constant.

- Watch Video Solution

53. If $y=x \log \left(\frac{1}{a x}+\frac{1}{a}\right)$, prove that, $x(x+1) y_{2}+x y_{1}=y-1$.

- Watch Video Solution

54. If $p^{2}=a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta$, show that, $p+\frac{d^{2} p}{d \theta^{2}}=\frac{a^{2} b^{2}}{p^{3}}$.

- Watch Video Solution

55. If $(a+b x) e^{\frac{y}{x}}=x$, show that, $x^{3} \frac{d^{2} y}{d x^{2}}=\left(x \frac{d y}{d x}-y\right)^{2}$.
56. If $(x-a)^{2}+(y-b)^{2}=r^{2}$, show that, $\frac{\left(1+y_{1}^{2}\right)^{\frac{3}{2}}}{y_{2}}=-r$.

- Watch Video Solution

57. If $y=p x^{n}+q x^{-n}$, show that $x^{2} y_{2}+x y_{1}-n^{2} y=0$.

- Watch Video Solution

58. Find the differential coefficient of:
$x^{6}+6 x^{4}-4 x^{2}$

- Watch Video Solution

59. IF $x^{2}+x y+y^{2}=a^{2}$, show that, $(x+2 y)^{3} \frac{d^{2} y}{d x^{2}}+6 a^{2}=0$.
60. If $x=\sqrt{3}(3 \sin \theta+\sin 3 \theta), y=\sqrt{3}(3 \sin \theta+\cos 3 \theta)$, find $\frac{d^{2} y}{d x^{2}}$ at $\theta=\frac{\pi}{3}$.

- Watch Video Solution

61. IF $y=f\left(x^{2}\right)$ and $f(x)=\sqrt{3 x^{2}+1}$, find $\left[\frac{d y}{d x}\right]_{x=2}$.

- Watch Video Solution

62. If $y=x e^{-\frac{1}{x}}$, prove that, $x^{3} y_{2}-x y_{1}+y=0$.

- Watch Video Solution

63. If $y=\frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}+\log \sqrt{1-x^{2}}$, show that,
$\left.\left(1-x^{2}\right)^{2} \frac{D^{2} y}{d x^{2}}-3 x\left(1-x^{2}\right)\right) \frac{d y}{d x}=1$
64. If $x^{3}+y^{3}=3 a x^{2}$, show that, $\frac{d^{2} y}{d x^{2}}+\frac{2 a^{2} x^{2}}{y^{5}}=0$.

- Watch Video Solution

65. If $x=\tan t$ and $y=\tan p t$, prove that,
$\left(1+x^{2}\right) y_{2}+2(x-p y) y_{1}=0$

- Watch Video Solution

66. If $e^{x}+x=e^{y}$, Find, $\frac{d^{2} y}{d x^{2}}$.

- Watch Video Solution

67. If $y=e^{a x} \cos b x$, Then find $\left[\frac{d^{2} y}{d x^{2}}\right]_{x=0}$
68. Find the differential coefficient of:
$x^{3}-9 x-6$

- Watch Video Solution

69. If $x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}=k$, find $\left[\frac{d^{2} y}{d x^{2}}\right]_{x=0}$

Watch Video Solution
70. Find the differential coefficient of:
$x^{n}-n x$

- Watch Video Solution

71. If $\cos ^{-1}\left(\frac{y}{b}\right)=\log \left(\frac{x}{n}\right)^{n}$, prove that, $x^{2} y_{2}+x y_{1}+n^{2} y=0$.

- Watch Video Solution

72. If $x+y=e^{x-y}$, prove that, $\frac{d^{2} y}{d x^{2}}=\frac{4(x+y)}{(x+y+1)^{3}}$.

- Watch Video Solution

73. If $u \sin t+v \cos t=5$ and $u \operatorname{cost}-v \sin t=7$, find the value of uvu v, where u, v denote the first and second derivatives of u with respect to t and v, u have sililar meanings.

- Watch Video Solution

74. If $y=x^{n}[a \cos (\log x)+b \sin (\log x)]$, show that,
$x^{2} \frac{d^{2} y}{d x^{2}}+(1-2 n) x \frac{d y}{d x}+\left(n^{2}+1\right) y=0$
75. If $y=\frac{1}{3} \log \frac{x+1}{\sqrt{x^{2}-x+1}}+\frac{1}{3} \tan ^{-1} \frac{2 x-1}{\sqrt{3}}$, show that, $\frac{d^{2} y}{d x^{2}}=-\frac{3 x^{2}}{\left(1+x^{3}\right)^{2}}$

- Watch Video Solution

76. If $f(x+y+z)=f(x) f(y) f(z) \neq 0$ for all x, y, z and $f(2)=5, f^{\prime}(0)=2$, find $f^{\prime}(2)$.

- Watch Video Solution

77. If $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})$ for all x, y and $\mathrm{f}(\mathrm{x})=1+\mathrm{xg}(\mathrm{x})$, where $\lim x \rightarrow 0 g(x)=1$, show that, $\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x})$.

- Watch Video Solution

78. If $f(x)$ is differentiable at $x=a$, find the value of
$\lim _{x \rightarrow a} \frac{(x+a) f(x)-2 a f(a)}{x-a}$.

(D) Watch Video Solution

79. If $f(x)$ is differentiable and $f(4)=5$, then the vlaue of $f(4)-f\left(x^{2}\right)$
$\lim _{x \rightarrow 2} \frac{-2}{x-2}$ is equal to-

- Watch Video Solution

80. If $h(x)=[f(x)]^{2}+[g(x)]^{2}$ and $f^{\prime}(x)=g(x)$,
$f^{\prime}(x)=-f(x), h(5)=10$ find $h(10)$.

- Watch Video Solution

81. If $f(x+y)=f(x) f(y)$ for all real x and y and $f(5)=2, f^{\prime}(0)=3$, find $f^{\prime}(5)$.
82. Let $f\left(\frac{x+y}{2}\right)=\frac{1}{2}[f(x)+f(y)]$ for all real x and y. If $f^{\prime}(0)$ exists and equals $(-1), f(0)=1$, find $f(2)$.

Watch Video Solution

83. If $y=\left(\sin ^{-1} x\right)^{2}+\left(\cos ^{-1} x\right)^{2}$, then show that, $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=4$

D Watch Video Solution

84. If $y=t^{2}+t^{3}$ and $x=t-t^{4}$, then find $\frac{d^{2} y}{d x^{2}}$.

- Watch Video Solution

1. $\int \frac{e^{4 x}-2 e^{3 x}+5 e^{x}-2}{e^{x}+1} d x$

- Watch Video Solution

2. $\int \frac{d x}{\left(e^{x}-1\right)^{2}}$

- Watch Video Solution

3. $\int \frac{x^{2}-1}{x^{4}+1} d x$

Watch Video Solution
4. $\int \frac{x^{2}+1}{x^{4}+1} d x$

Watch Video Solution
5. $\int \frac{\sqrt{x} d x}{1+4 \sqrt{x^{3}}}$

- Watch Video Solution

$\sqrt{1+x^{2}}$
6. $\int \frac{}{x^{4}} d x$

- Watch Video Solution

7. $\int \sqrt{a^{\frac{1}{3}}+x^{\frac{1}{3}}} d x$

- Watch Video Solution

8. $\int \frac{d x}{x \sqrt{x^{4}-1}}$
9. $\int \frac{x^{2}+1}{x^{4}+x^{2}+1} d x$

- Watch Video Solution

10. $\int \frac{\left(x^{2}-1\right) d x}{x^{4}+x^{2}+1}$

D Watch Video Solution

$\int\left(x^{2}-1\right) d x$
11. $\int \frac{}{x \sqrt{x^{4}+1}}$

- Watch Video Solution

12. $\int \frac{d x}{x^{2}-4 x+13}$
13. $\int e^{x}\left(\frac{1-x}{1+x^{2}}\right)^{2} d x$

- Watch Video Solution

14. $\int \frac{1-x^{2}}{1+x^{2}} \cdot \frac{d x}{\sqrt{1+x^{4}}}$

Watch Video Solution
15. Evaluate: $\int \frac{d x}{2 \sin x+\sec x}$

Watch Video Solution
16. $\int \frac{d x}{\sin ^{4} x+\cos ^{4} x}$
$\int\left(x^{4}+1\right) d x$
17.

$$
\left(1-x^{4}\right)^{\frac{3}{2}}
$$

- Watch Video Solution

18. $\int \frac{d x}{1+\sin x-\cos x}$

- Watch Video Solution

19. $\int \frac{d x}{\cos x(5+3 \cos x)}$

Watch Video Solution
20. $\int \frac{d x}{\sin x(a+b \cos x)}$

- Watch Video Solution

21. $\int \frac{x^{7} d x}{x^{12}-1}$

- Watch Video Solution

22. $\int \frac{d x}{\sqrt{x}+\sqrt{x-2}}$

- Watch Video Solution

23. $\int \frac{e^{2 x}}{e^{2 x}+4} d x$

Watch Video Solution
24. $\int \frac{d x}{x^{4}+4}$

- Watch Video Solution

25. $\int \frac{(\sin \theta-\cos \theta) d \theta}{(\sin \theta+\cos \theta) \sqrt{\sin ^{2} \theta \cos ^{2} \theta+\sin \theta \cos \theta}}$

- Watch Video Solution

$\int \sqrt{\tan x}-\sqrt{\cot x}$
26. $\int \frac{}{1+3 \sin 2 x} d x$

- Watch Video Solution

27. $\int \sqrt{\cot x} d x$

- Watch Video Solution

28. $\int x \sin ^{-1} \sqrt{\frac{2 a-x}{2 a}} d x$

- Watch Video Solution

29. $\int \frac{d x}{\sin x+\sec x}$

- Watch Video Solution

30. $\int \frac{(x+1) d x}{x\left(1+x e^{x}\right)^{2}}$

- Watch Video Solution

31. $\int \frac{d x}{\cos ^{3} x \sqrt{\sin 2 x}}$

- Watch Video Solution

32. $\int \frac{\left(x^{2}-1\right) d x}{x \sqrt{x^{4}+3 x^{2}+1}}$
33. $\int \cos 2 \theta \log \left(\frac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}\right) d \theta$

- Watch Video Solution

$$
x 3 \sqrt{x^{2}}+26 \sqrt{x}
$$

34. \int

$$
x(1+3 \sqrt{x})
$$

- View Text Solution

35. $\int\left(\frac{\log (1+6 \sqrt{x})}{3 \sqrt{x}+\sqrt{x}}+\frac{1}{3 \sqrt{x}+4 \sqrt{x}}\right) d x$

- Watch Video Solution

36. $\int \frac{d x}{1+n \sqrt{x+1}}, \mathrm{n}$ is a positive integer.
37. $\int \frac{\sin x+\cos x}{\sin ^{4} x+\cos ^{4} x} d x$

- Watch Video Solution

38. Evaluate: $\int \frac{d x}{\sqrt{\sin ^{3} x \sin (x+\alpha)}}$

- Watch Video Solution

39. $\int \frac{d x}{\sqrt{2 e^{x}-1}}=2 \sec ^{-1}\left(\sqrt{2} e^{\frac{x}{2}}\right)+c$

- Watch Video Solution

40. $\int \frac{1+\sqrt{x}}{1+4 \sqrt{x}} d x=\frac{4}{5} x^{\frac{5}{4}}-x+\frac{8}{3} x^{\frac{3}{4}}-4 x^{\frac{1}{2}}+8 x^{\frac{1}{4}}-8 \log \left|x^{\frac{1}{4}}+1\right|+c$
41. $\int\left[\sqrt{\frac{a+x}{a-x}}-\sqrt{\frac{a-x}{a+x}}\right] d x=-2 \sqrt{a^{2}-x^{2}}+c$

- Watch Video Solution

42. $\int \frac{d x}{(a+\sqrt{x})^{\frac{3}{2}}}=4 \sqrt{1+\sqrt{x}}+\frac{4}{\sqrt{1+\sqrt{x}}}+c$

- Watch Video Solution

43. $\int \frac{\sqrt{x} d x}{a+x}$

- Watch Video Solution

$\sqrt{x^{2}+4 x}$
44. $\int \frac{}{x^{2}} d x$

- Watch Video Solution

45. $\int \frac{\tan x d x}{1-\sin x}=\frac{1}{2}\left[\frac{1}{1-\sin x}+\log |\sec x-\tan x|\right]+c$

- Watch Video Solution

46. $\int \frac{d x}{\sqrt{1+\sqrt{x}}}=\frac{4}{3}(\sqrt{x}-2) \sqrt{1+\sqrt{x}}+c$

- Watch Video Solution

47. $\int \frac{x^{2} d x}{(x \sin x+\cos x)^{2}}$

- Watch Video Solution

48. $\int \frac{1+x^{2}}{1-x^{2}} \cdot \frac{d x}{\sqrt{1+x^{4}}}=\frac{1}{\sqrt{2}} \log \left|\frac{\sqrt{1+x^{4}}+x \sqrt{2}}{1-x^{2}}\right|+c$

- Watch Video Solution

49. $\int \frac{1+x^{2}}{1-x^{2}} \cdot \frac{d x}{\sqrt{1+x^{2}+x^{4}}}$

- Watch Video Solution

50. $\int \frac{\sqrt{(1-\sqrt{x})}}{1+\sqrt{x}} \cdot \frac{d x}{x}$

- Watch Video Solution

51. $\int \sqrt{1+\operatorname{cosec} x} d x$

- Watch Video Solution

52. $\int \frac{\sqrt{x} d x}{\sqrt{a^{3}-x^{3}}}$

- Watch Video Solution

53. Evaluate:
$\int x^{\frac{13}{2}}\left(1+x^{5 / 2}\right)^{\frac{1}{2}} d x$

Watch Video Solution
54. $\int \frac{x^{24} d x}{x^{10}+1}$

- Watch Video Solution

55. $\int \frac{x^{2} d x}{x^{4}+1}$

D Watch Video Solution

56. $\int \frac{x d x}{x^{4}-x^{2}+1}$
57. $\int \frac{d x}{\left(1+x^{4}\right)^{\frac{1}{4}}}$

- Watch Video Solution

58. $\int \frac{x^{2} d x}{(x \cos x-\sin x)^{2}}$

- Watch Video Solution

59. $\int\left[\frac{1-\cos x}{\cos x(1+\cos x)(2+\cos x)}\right]^{\frac{1}{2}} d x$

- Watch Video Solution

60. $\int \frac{d x}{x^{4}+x^{2}+1}$
61. If $\mathrm{f}(\mathrm{x})=\int \frac{2 \sin x-\sin 2 x}{x^{3}}[x \neq 0]$, evaluate $\lim x \rightarrow 0 f(x)$.

D Watch Video Solution

62. If $I_{n}=\int \sin ^{n} x d x$, show that,
$I_{n}=-\frac{1}{n} \sin ^{n-1} x \cos x+\frac{n-1}{n} \cdot I_{n-2}$. Hence, evaluate,
$\int \sin ^{6} x d x$

- Watch Video Solution

63. If $I_{n}=\int \cos ^{n} x d x$, prove that,
$I_{n}=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} . I_{n-2}$. Hence, evaluate,
$\int \cos ^{5} x d x$.

Watch Video Solution
64. Putting $b \tan ^{2} x=a \tan ^{2} \theta$, prove that,
$\int \frac{d x}{\left(a \cos ^{2} x+b \sin ^{2} x\right)^{2}}=\frac{(a+b) \theta}{2(a b)^{\frac{3}{2}}}-\frac{a-b}{4(a b)^{\frac{3}{2}}} \cdot \sin 2 \theta+c$.

Watch Video Solution

65. If $\phi(x)=f(x)+x f(x)$, then the value of $\int \phi(x) d x$ is -

- Watch Video Solution

66. Using the definition of definite integral as the limit of a sum, evaluate :
$\int_{a}^{b}(2 x+3) d x$

- Watch Video Solution

67. Using the definition of definite integral as the limit of a sum, evaluate :
$\int_{a}^{b} 3 k-9 d x$
68. evaluate :
$\int_{a}^{b} \sqrt{x} d x$

Watch Video Solution
69. evaluate :
$\int_{a}^{b} \frac{d x}{\sqrt{x}}$

- Watch Video Solution

70. Using the definition of definite integral as the limit of a sum, evaluate
:
$\int_{a}^{b} 2^{x} d x$

- Watch Video Solution

71. $\int^{\frac{\pi}{4}} \frac{\sin x+\cos x}{9+16 \sin 2 x} d x$

- Watch Video Solution

72. $\int_{1}^{e} \frac{(x+1)^{3}}{x^{2}} \log x d x$

- Watch Video Solution

73. $\int \frac{\pi}{\overline{4}} \sec x \sqrt{\frac{1-\sin x}{1+\sin x}} d x$

- Watch Video Solution

74. $\int_{0}^{\pi} \sec x \sqrt{\frac{1-\sin x}{1+\sin x}} d x$

Watch Video Solution
75. $\int_{0}^{\frac{\pi}{4}} \frac{\sec x d x}{1+2 \sin ^{2} x}$

- Watch Video Solution

76. $\int_{0}^{1} \log [\sqrt{1-x}+\sqrt{1+x}] d x$

- Watch Video Solution

77. $\int^{\frac{\pi}{2}} \log (\cot x) d x$

- Watch Video Solution

78. $\int_{0}^{3} \frac{2 x^{5}+x^{4}-2 x^{3}+2 x^{2}+1}{\left(x^{2}+1\right)\left(x^{4}-1\right)} d x$

$$
\left(x^{2}+1\right)\left(x^{4}-1\right)
$$

D Watch Video Solution
79. $\int_{0}^{\pi} \frac{\sqrt{2} x d x}{\sqrt{2}+\sin x}$

- Watch Video Solution

80. $\int^{\frac{\pi}{2}}(\sqrt{\tan x}+\sqrt{\cot x}) d x$

- Watch Video Solution

81. Evaluate :
$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}|\sin x| d x$

- Watch Video Solution

82. Evaluate :
$\int_{-1}^{2}\left|1-x^{2}\right| d x$
83. Evaluate :
$\int_{-2}^{2}(|x|+|x-1|) d x$

Watch Video Solution
84. Evaluate :
$\int_{0}^{\pi}(\sin x+\cos x) d x$

- Watch Video Solution

85. Evaluate :
$\int_{0}^{\pi} \sqrt{\frac{1}{2}(1+\cos 2 x)} d x$
86. Evaluate :

3
$\int^{\overline{2}} 1|x \sin \pi x| d x$

D Watch Video Solution

87. Evaluate :
$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\cos x-\cos ^{3}} x d x$

Watch Video Solution

88. Evaluate :
$\int\left(\frac{1}{e}\right)^{e}|\log x| d x$

Watch Video Solution
89. Show that, $\int_{0}^{n \pi+v}|\sin x| d x=2 n+1-\cos v$, where n is a positive integer and $0 \leq v \leq \pi$.

Watch Video Solution

90. $\int_{0}^{1} \frac{d x}{(x+2)(x+1)}$

- Watch Video Solution

91. $\int \frac{\pi}{\frac{\pi}{2}} \frac{\cos ^{\frac{3}{2}} x d x}{\sin ^{\frac{3}{2} x}+\cos ^{\frac{3}{2}} x}$

- Watch Video Solution

92. $\int_{0}^{\pi} \frac{x d x}{1+\cos \alpha \sin x}$

- Watch Video Solution

93. $\int_{0}^{1} \frac{d x}{1-x+x^{2}}$
94. $\int \frac{\pi}{\frac{\pi}{2}} \frac{d x}{\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right)^{2}}=\frac{\pi}{4} \cdot \frac{a^{2}+b^{2}}{a^{3} b^{3}}$

- Watch Video Solution

95. $\int_{0}^{1} \frac{\log (1+x) d x}{1+X^{2}}=\frac{\pi}{8} \log 2$

- Watch Video Solution

96. $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$

Watch Video Solution

97. If m and n are integers and $m \neq n$, then show that,
$\int_{0}^{\pi} \sin m x \cos n x d x= \begin{cases}\frac{2 m}{m^{2}-n^{2}} & \text { when }(m-n) \text { is odd } \\ 0 & \text { when }(m-n) \text { is even }\end{cases}$
98. $\int_{0}^{1} x \log x d x$

- Watch Video Solution

99. $\int \frac{d x}{e^{x}-1}$

Watch Video Solution
100. $\int \frac{\pi}{2} \frac{\cos ^{2} x \sin x}{\sqrt{1+\cos ^{2} x}} d x$

- Watch Video Solution

101. $\int_{0}^{5} \frac{x^{3}}{x^{3}+(5-x)^{3}} d x$
102. $\int_{0}^{\infty} \frac{d x}{\left[x+\sqrt{1+x^{2}}\right]^{n}}$

- Watch Video Solution

103. $\int_{0}^{\frac{\pi}{6}} \frac{\sqrt{3 \cos 2 x-1}}{\cos x} d x$

- Watch Video Solution

104. $\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{d x}{1+\cos x}$

- Watch Video Solution

105. $\int_{-\pi}^{\pi} \frac{2 x(1+\sin x)}{1+\cos ^{2} x} d x$
106. $\int_{0}^{\pi} \frac{x \tan x d x}{\sec x+\tan x}$

- Watch Video Solution

107. $\int((x-a)(b-x)) d x$

D Watch Video Solution

108. $\int_{0}^{1} \tan ^{-1}\left(1-x+x^{2}\right) d x$

D Watch Video Solution

109. $\int_{0}^{1} \tan ^{-1} \frac{2 x-1}{1+x-x^{2}} d x$

Watch Video Solution
110. $\int^{\frac{\pi}{2}} \frac{\cos x d x}{1+\sin ^{2} x}$

- Watch Video Solution

111. $\int_{0}^{\pi} \frac{x d x}{1+\cos \alpha \sin x}[0<\alpha<\pi]$

- Watch Video Solution

112. $\int_{0}^{\infty} \log \left(x+\frac{1}{x}\right) \frac{d x}{1+x^{2}}$

- Watch Video Solution

113. $\int_{0}^{2} \frac{(x-1)^{2} \sin (x-1) d x}{(x-1)^{2}+\cos (x-1)}$

Watch Video Solution
114. $\int^{\frac{\pi}{2}} \frac{\sin x d x}{1-\cos ^{2}+\cos ^{4} x}$

- View Text Solution

115. Evaluate $\int_{0}^{1} x \log (1+x) d x$ and hence show that,
$\frac{1}{1 \times 3}-\frac{1}{2 \times 4}+\frac{1}{3 \times 5}-\frac{1}{4 \times 6}+\ldots=\frac{1}{4}$

- Watch Video Solution

116. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}$, show that,
$\frac{C_{0}}{1}+\frac{C_{1}}{2}+\frac{C_{2}}{3}+\ldots+\frac{C_{n}}{n+1}=\frac{2^{n+1}}{n+1}$

- Watch Video Solution

117. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}$, show that,
$\frac{2^{2} \cdot C_{0}}{1 \times 2}+\frac{2^{3} \cdot C_{1}}{2 \times 3}+\ldots+\frac{2^{n+2} \cdot C_{n}}{(n+1)(n+2)}=\frac{3^{n+2}-2 n-5}{(n+1)(n+2)}$
118. Evaluate : $\int \frac{2 x}{1+x^{2}} d x$

View Text Solution
119. Evaluate : $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}[f(x)+f(-x)][g(x)-g(-x)] d x$

- Watch Video Solution

120. Given $\frac{\sin 2 k x}{\sin x}=2[\cos x+\cos 3 x+\ldots+\cos (2 k-1) x]$, where k is a positive integer, show that,
$\int^{\frac{\pi}{2}} \sin 2 k x \cot x d x=\frac{\pi}{2}$.

- Watch Video Solution

121. Prove that, $\int_{0}^{\pi} \log (1+\cos x) d x=-\pi \log 2$, given
$\int^{\frac{\pi}{2}} \log ((\sin x)) d x=\frac{\pi}{2} \log \frac{1}{2}$.

- Watch Video Solution

$$
x^{2} \sin 2 x \sin \left(\frac{\pi}{2} \cos x\right)
$$

122. Evaluate : $\int_{0}^{\pi} \frac{(-\pi}{2 x-\pi} d x$

- Watch Video Solution

123. If $\mathrm{f}(\mathrm{z})$ is an odd function, prove that, $\int_{a}^{x} f(\mathrm{z}) d z$ is an even function.

- Watch Video Solution

124. Prove that, $\int^{\frac{\pi}{2}} \cos ^{n} x \cos n x d x=\frac{\pi}{2^{n+1}}$.
125. Evaluate $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin 2 x d x}{1+\cos x}$

- Watch Video Solution

126. Let $f(x)$ be a function satisfying $f^{\prime}(x)=f(x)$ with $f(0)=1$ and $g(x)$ be the function satisfying $f(x)+g(x)=x^{2}$. Prove that, $\int_{0}^{1} f(x) g(x) d x=\frac{1}{2}\left(2 e-e^{2}-3\right)$

- Watch Video Solution

127. Evaluate :
$\lim _{n \rightarrow \infty} \frac{1}{n}\left[\sin \left(\frac{\pi}{2 n}\right)+\sin \left(\frac{2 \pi}{2 n}\right)+\sin \left(\frac{3 \pi}{2 n}\right)+\ldots+\sin \left(\frac{n \pi}{2 n}\right)\right]$

- Watch Video Solution

128. Evaluate :
$\lim _{n \rightarrow \infty} \frac{1}{n}\left[\tan \frac{\pi}{4 n}+\tan \frac{2 \pi}{4 n}+\tan \frac{3 \pi}{4 n}+\ldots+\tan \frac{n \pi}{4 n}\right]$

D Watch Video Solution

129. Evaluate :
$\lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)\left(1+\frac{3}{n}\right) \ldots\left(1+\frac{n}{n}\right)\right]^{\frac{1}{n}}$

- Watch Video Solution

130. Evaluate :
$\lim _{n \rightarrow \infty}\left[\left(\left(1+\frac{1^{2}}{n^{2}}\right)\right)\left(1+\frac{2^{2}}{n^{2}}\right)\left(1+\frac{3^{2}}{n^{2}}\right) \ldots\left(1+\frac{n^{2}}{n^{2}}\right)\right]^{\frac{1}{n}}$

- Watch Video Solution

131. Evaluate :

$\lim _{n \rightarrow \infty}\left[\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{4 n}\right]$

D Watch Video Solution

132. Evaluate :
$\lim _{n \rightarrow \infty}\left[\frac{n!}{n^{n}}\right]^{\frac{1}{n}}$

- Watch Video Solution

133. Evaluate :
$\lim _{n \rightarrow \infty}\left[\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{3 n}\right]$

- Watch Video Solution

134. Evaluate :

$$
\lim _{n \rightarrow \infty} \frac{n}{(n!)^{\frac{1}{n}}}
$$

135. Evaluate :
$\lim _{n \rightarrow \infty}\left[\frac{(2 n)!}{n!n^{n}}\right]^{\frac{1}{n}}$

- Watch Video Solution

Differential Equation

1. Solve:
$(1+x y) y d x+(1-x y) x d y=0$
2. Solve:
$x^{2}(x d x+y d y)+2 y(x d y-y d x)=0$

- Watch Video Solution

3. Solve:
$x \frac{d y}{d x}+2 y=\sqrt{1+x^{2}}$, given $\mathrm{y}=1$, when $\mathrm{x}=1$

- Watch Video Solution

4. $\left(x+2 y^{3}\right) \frac{d y}{d x}=y$

Watch Video Solution

5. Solve:
$\left(x y^{2}-e^{\frac{1}{x^{3}}}\right) d x-x^{2} y d y=0$, given $\mathrm{y}=0$, when $\mathrm{x}=1$
6. Solve:

$$
\frac{d y}{d x}=\frac{1}{x \cot y+\sec y}
$$

- Watch Video Solution

7. Solve:
$\frac{d y}{d x}-\frac{\tan y}{1+x}=(1+x) e^{x} \sec y$

- Watch Video Solution

8. Determine the equation of the curve passing through the origin, in the form $\mathrm{y}=\mathrm{f}(\mathrm{x})$ which satisfies the differential equation $\frac{d y}{d x}=\sin (10 x+6 y)$.

- Watch Video Solution

9. Solve $: \frac{d y}{d x}=\frac{\cos \left(\log _{e^{x}}\right)}{\log _{e^{y}}}$

- Watch Video Solution

10. If $\int_{0}^{x} f(t) d t=x+\int_{x}^{1} f(t) d t$, find the value of $f(1)$.

- Watch Video Solution

11. The tangent at any point P to a curve C intersects the coordinate axes at A and B. If P be the mid-point of the line segment $A B$ and the curve passes through the point (1,1), find the equation of the curve C.

- Watch Video Solution

12. The differential equation $t^{2} \frac{d^{2 y}}{d t^{2}}+\alpha t . \frac{d y}{d t}+\beta y=0$ is known as Euler's equation. Show that $y=t^{r}$ is a solution of Euler's equation if
$r^{2}+(\alpha-1) r+\beta=0$.

- Watch Video Solution

13. Solve : $x \cos x \frac{d y}{d x}+y(x \sin x+\cos x)=1$

- Watch Video Solution

14. $y \frac{d y}{d x}=x e^{x^{2}+y^{2}}$

- Watch Video Solution

15. $e^{x-y} d x+e^{y-x} d y=0$

- Watch Video Solution

16. Find the differential equation of the family of circles which touch the coordinate axes in the third quadrant.

- Watch Video Solution

Application of Calculus

1. The adiabatic law for the expansion of a gas is given by the equation $p v^{1.4}=k$, where k is a constant. At a given time when p is 50 dynes per square cm and v is 20 cc , then v is decreasing at the rate of 2 cc , per second. Find the rate of change of p at that instant.

- View Text Solution

2. The pressure p and the volume v of a gas are connected by the equation $p v^{1.4}=k$, where k is a constant. Prove that a decrease of 0.5% in the volume of the gas corresponds to an increase of 0.7% in the pressure.
3. Prove that, the function $\frac{\sin \theta+2 \cos \theta}{3 \sin \theta+4 \cos \theta}$ decreases for all real values of θ.

- Watch Video Solution

4. Find the intervals of monotonicity of the function $y=2 x^{2}-\log |x|[x \neq 0]$.

- Watch Video Solution

5. Find the intervals in which the function

$$
\mathrm{f}(\mathrm{x})=3 \cos ^{4} x+10 \cos ^{3} x+6 \cos ^{2} x-3(0 \leq x \leq \pi)
$$

is monotonically increasing or decreasing.

- Watch Video Solution

6. Prove that, $2 \sin x+\tan x \geq 3 x$, where $0 \leq x \leq \frac{\pi}{2}$.
7. Prove that, $\mathrm{f}(\mathrm{x})=\frac{1-2 x-x^{2}}{1+x-2 x^{2}}$ continually diminishes as x continually increases.

- Watch Video Solution

8. If $a x+\frac{b}{x} \geq c$, for all positive values of x, then show that, $4 a b \geq c^{2}$, where a,b,c are positive constants.

D Watch Video Solution

9. For all positive values of x , if $a x^{2}+\frac{b}{x} \geq c$ (where $a \geq 0, b \geq 0$), prove that, $27 a b^{2} \geq 4 c^{3}$.

- Watch Video Solution

10. Show that, $\frac{\sin x}{x}$ decreases steadily and $\frac{\tan x}{x}$ increases monotonically in $0<x<\frac{\pi}{2}$ and also $\frac{\tan x}{x}>\frac{\sin x}{x}$.

- Watch Video Solution

11. For all x in $0 \leq x \leq \frac{\pi}{2}$, show that, $\cos (\sin x)>\sin (\cos x)$

- Watch Video Solution

12. The rate of decay of a radioactive substance at any time is proportional to its mass at that instant. If m_{0} be the mass of the substance at time $t=0$, find the law of variation of its mass as a function of time t .

- Watch Video Solution

13. Prove that the curve $x=1-3 t^{2}, y=t-3 t^{3}$ is symmetrical with respect to x-axis. If the tangent to the curve makes an angle ψ with the positive x axis, show that, $\tan \psi \pm \sec \psi=3 t$.

- Watch Video Solution

14. Tangents are drawn from the origin to the curve $y=\sin x$. Prove that their points of contact lie on $x^{2} y^{2}=x^{2}-2$.

- Watch Video Solution

15. Prove that all points on the curve $y^{2}=4 a\left[x+a \sin \left(\frac{x}{a}\right)\right]$ at which the tangent is parallel to the x-axis lie on a parabola.

- Watch Video Solution

16. The curve $y=a x^{3}+b x^{2}+c x+5$ touches the x-axis at $P(-2,0)$ and cuts the y-axis at a point Q where its gradient is 3 . Find a, b, c.

- Watch Video Solution

17. In the curve $x^{m} y^{n}=k^{m+n}(m, n, k>0)$ prove that the portion of the tangent intercepted between the coordinate axes is divided at its point of contact in a constant ratio,

- Watch Video Solution

18. Find the abscissa of the point on the curve $x y=(c+x)^{2}$, the normal at which cuts off numerically equal intercepts from the axes of coordinates.

- Watch Video Solution

19. If p, q be the portions of the intercepts upon the coordinate axes by the tangent to the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ at the point $\left(x_{1}, y_{1}\right)$ thenprove that (p, q) lies on the circle $x^{2}+y^{2}=a^{2}$.

- Watch Video Solution

20. If $\mathrm{c}=\mathrm{a}+\mathrm{b}$, then show that the curves $x^{\frac{2}{3}}+y^{\frac{2}{3}}=c^{\frac{2}{3}}$ and $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ touch each other.

- Watch Video Solution

21. Find the equation of the normal to the curve $x^{3}+y^{3}=8 x y$ at the point where it meets the curve $y^{2}=4 x$, other than origin.

- Watch Video Solution

22. Three normals are from the point $(c, 0)$ to the curve $y^{2}=x$. Show that c must be greater than $\frac{1}{2}$.One normal is always the x -axis. Find c for which the other two normals are perpendicular to each other.

- Watch Video Solution

23. If p_{1} and p_{2} be the lengths of the perpendiculars from the origin on the tangent and normal ot the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ at the point $\left(x_{1}, y_{1}\right)$, than show that, $4 p_{1}^{2}+p_{2}^{2}=a^{2}$.

- Watch Video Solution

24. A spherical ice-ball is melting the radius decreasing at a constant rate of 0.1 cm per second. Find the amount of water formed in one second when the radius of the sphere is 7 cm .[Given $\pi=\frac{22}{7}$, sp.gr ice $=0.9$].
25. Show that the straight line $x \cos \alpha+y \sin \alpha=p$ is a tangent to the curve $\frac{x^{m}}{a^{m}}+\frac{y^{m}}{b^{m}}=1$, if
$(a \cos \alpha)^{\frac{m}{m-1}}+(b \sin \alpha)^{\frac{m}{m-1}}=p^{\frac{m}{m-1}}$

- Watch Video Solution

26. If the line $a x+b y+c=0$ is a normal to the curve $x y=1$ at the point $(1,1)$, then prove that a and b are of opposite signs.

- Watch Video Solution

27. If $0<\alpha<\beta<\frac{\pi}{2}$, prove that, $\tan \alpha-\tan \beta<\alpha-\beta$.

- Watch Video Solution

28. Find the equation of the normal to the curve
$y=(1+x)^{y}+\sin ^{-1}\left(\sin ^{2} x\right)$ at $\mathrm{x}=0$.
29. Prove that the the middle points of the normal chords of the parabola $y^{2}=4 a x$ is on the curve $\frac{y^{2}}{2 a}+\frac{4 a^{3}}{y^{2}}=x-2 a$

- Watch Video Solution

30. Prove that the normal at $\left(a m^{2}, 2 a m\right)$ to the parabola $y^{2}=4 a x$ meets the curve again at an angle $\tan ^{-1}\left(\frac{1}{2} m\right)$.

- Watch Video Solution

31. Show that the tangents at the end of any focal chord of the ellipse $x^{2} b^{2}+y^{2} a^{2}=a^{2} b^{2}$ intersect on the directrix.

- Watch Video Solution

32. The tangent at the point θ on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, meets its auxiliary circle at two points whose join subtends a right angle at the centre, show that the eccentricity of the ellipse is given by,
$\frac{1}{e^{2}}=1+\sin ^{2} \theta$

- Watch Video Solution

33. Show that the tangent at any point on an ellipse and the tangent at the corresponding point on its auxiliary circle intersect on the major axis.

- Watch Video Solution

34. $\int \frac{d x}{x\left(x^{6}+1\right)}$

- Watch Video Solution

35. $\int \frac{d x}{a+b e^{x}}$

- Watch Video Solution

36. $\int \cos 2 x \sin x d x$

- Watch Video Solution

37. $P(\alpha, \alpha)$ is a point on the parabola $y^{2}=4 a x$. Show that the normal chord of the parabola at P subtends a right angle at its focus.

- Watch Video Solution

38. $\int \frac{d x}{e^{x}+e^{-x}+2}$
39. $\int \frac{1-x^{6}}{1-x} d x$

- Watch Video Solution

40. The normal to the parabola $y^{2}=4 a x$ at $P\left(a m_{1}^{2}, 2 a m_{1}\right)$ intersects it again at $Q\left(a m_{2}^{2}, 2 a m_{2}\right)$.If A be the vertex of the parabola then show that the area of the triangle
APQ is $\frac{2 a^{2}}{m_{1}}\left(1+m_{1}^{2}\right)\left(2+m_{1}^{2}\right)$.

- Watch Video Solution

41. If the normal at one end of lotus rectum of an ellipse passes through one end of minor axis then prove that,
$e^{4}+e^{2}-1=0$

- Watch Video Solution

42. If the normal at one end of lotus rectum of an ellipse passes through one end of minor axis then prove that,
$e^{2}=\frac{\sqrt{5}-1}{2}$, where e is the eccentricity of the ellipse.

- Watch Video Solution

43. Find for what values of x the following functions are maximum and minimum :
$y=x^{5}-5 x^{4}+5 x^{3}-1$

- Watch Video Solution

44. Find for what values of x the following functions are maximum and minimum :
$f(x)=x^{2}(x-1)^{3}$
45. Find for what values of x the following functions are maximum and minimum : $5 x^{6}-18 x^{5}+15 x^{4}-10$.

- Watch Video Solution

46. Prove that the maximum value of $\frac{(2 x-1)(x-8)}{(x-1)(x-4)}$ is less then its minimum value.

- Watch Video Solution

47. Show that, $\mathrm{f}(\mathrm{x})=\sin x-\frac{x^{3}}{3!}-\frac{x^{5}}{5!}$ is neither maximum nor minimum at $\mathrm{x}=0$.
48. If $f(x)=\frac{a x+b}{(x-1)(x-4)}$ has an extreme value at $(2,-1)$, find a and b and show that the extreme value is a maximum.

(Watch Video Solution

49. $\int \frac{1-x^{4}}{1-x} d x$

(Watch Video Solution

50. Prove that a conical tent of given capacity will required the least amount of canvas when the height is $\sqrt{2}$ times the radius of the base.

- Watch Video Solution

51. Prove that the function $f(x)=k x\left(x^{2}+a^{2}\right)^{-\frac{5}{2}}$ has a maximum value at $x=\frac{a}{2}$.
52. The total surface area of a right circular cone is given. Show that the volume of the cone is maximum when the semi-vertical angle is $\sin ^{-1}\left(\frac{1}{3}\right)$.

- Watch Video Solution

53. $\int \frac{d x}{\sin ^{4} x+\cos ^{4} x}$

- Watch Video Solution

54. Show that the radius of the right circular cylinder of greatest curved surface which can be inscribed in given cone is half that of the cone.

- Watch Video Solution

55. An open tank of volume 32 cu . Metre consists of a square base with vertical sides. Find the dimensions of the tank when the expense of lining it with lead is minimum.

- Watch Video Solution

56. The cost of fuel of an engine varies as the square of its velocity and the cost of fuel is ₹ 48 per hour when the velocity is 16 km per hour. If other expenses be ₹ 300 per hour, then show that the most economical velocity for a journey of a given distance is 40 km per hour.

- Watch Video Solution

57. A wire of length I is to be cut into to pieces, one being bent of form a square and the other to form a circle.How should the wire be cut if the sum of areas enclosed by the two pieces to be a minimum ?
58. Find the point of the hyperbola $\frac{x^{2}}{24}-\frac{y^{2}}{18}=1$ which is nearest to the line $3 x+2 y+1=0$ and compute the distance between the point and the line.

- Watch Video Solution

59. $\int \frac{(x+1) d x}{x\left(1+x e^{x}\right)}$

- Watch Video Solution

60. $\int \frac{x^{2} d x}{\left(x^{3}-1\right)\left(x^{3}+4\right)}$

- Watch Video Solution

61. Evaluate $\int \frac{x^{2}-1}{x^{4}+x^{2}+1}$

- Watch Video Solution

62. Evaluate $\int \frac{d x}{1+\sin x+\cos x}$

- Watch Video Solution

$$
\sqrt{1+\sqrt{2+\sqrt{x}}}-\sqrt{3}
$$

63. $\lim x \rightarrow 4$

$$
x-2
$$

Watch Video Solution
64. $\lim _{x \rightarrow \infty}(\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x})$

- Watch Video Solution

65. $\lim x \rightarrow \infty \frac{\sqrt{1+x^{4}}-\left(1+x^{2}\right)}{x^{2}}$
66. Divide 64 into two parts such that the sum of the cubes of the two parts is minimum.

- Watch Video Solution

67. What normal to the curve $y=x^{2}$ forms the shortest chord ?

- Watch Video Solution

68. Find the point on the curve $4 x^{2}+a^{2} y^{2}=4 a^{2}, 4<a^{2}<8$ that is farthest from the point ($0,-2$).

- Watch Video Solution

69. Determine the points of maxima and minima of the function
$\mathrm{f}(\mathrm{x})=\frac{1}{8} \log x-b x+x^{2}, x>0$, where $b \geq 0$ is a constant.
70. Investigate for maxima and minima of the function
$\mathrm{f}(\mathrm{x})=\int_{1}^{x}\left[2(t-1)(t-2)^{3}+3(t-1)^{2}(t-2)^{2}\right] d t$.

- Watch Video Solution

71. A cubic function $\mathrm{f}(\mathrm{x})$ vanishes at $x=-2$ and has relative maximum/minimum at $x=-1$ and $x=\frac{1}{3}$. If $\int_{-1}^{1} f(x) d x=\frac{14}{3}$, find the cubic function $f(x)$.

- Watch Video Solution

72. $\lim x \rightarrow \infty(\sqrt{x-\sqrt{x}}-\sqrt{x})$

- Watch Video Solution

73. Find the area bounded by the curves $y=\sin x$ and $y=\cos x$ between two consecutive points of their intersection.

- Watch Video Solution

74. Find the area bounded by the parabola $y=x^{2}-6 x+10$ and the straight lines $\mathrm{x}=6$ and $\mathrm{y}=2$.

- Watch Video Solution

75. Show that the common area between $y^{2}=a x$ and $x^{2}+y^{2}=4 a x$ is $\left(3 \sqrt{3}+\frac{4 \pi}{3}\right) a^{2}$ square units.

- Watch Video Solution

76. $\lim x \rightarrow 0 \frac{\sqrt{1-x^{2}}-\sqrt{1+x^{2}}}{x^{2}}$
77. If the area enclosed by the parabola $x^{2}=72 y$ and the line $y=k$ be $64 \sqrt{2}$ square units, then show that the given line touches the circle $x^{2}+y^{2}-4 y=0$.

- Watch Video Solution

78. $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+2 x+1}-x\right)$

- Watch Video Solution

79. Find the area of the region bounded by the curves $2 y^{2}=x, 3 y^{2}=x+1, y=0$.

- Watch Video Solution

80. If $\sec \theta-\tan \theta=\frac{a+1}{a-1}$, then $\cos \theta=$
A. $\frac{a^{2}+1}{a^{2}-1}$
B. $\frac{a^{2}-1}{a^{2}+1}$
C. $\frac{2 a^{2}}{a^{2}+1}$
D. $\frac{2 a^{2}}{a^{2}-1}$

D Watch Video Solution

81. Find the area bounded by the curve $y=x(x-1)^{2}$, the y-axis and the line $y=2$.

D Watch Video Solution

82. If $\tan \theta=\frac{p}{q}$ then find the value of $\frac{p \sin \theta-q \cos \theta}{p \sin \theta+q \cos \theta}$
83. Find the area bounded by the curve $y=4 x(x-1)(x-2)$ and the x-axis.

- Watch Video Solution

84. Find the area in the first quadrant between $y^{2}=4 x, y 6(2)=16 x$ and the straight line $x=9$.

- View Text Solution

85. Show that the function $f(x)=\sin ^{4} x+\cos ^{4} x$ is increasing in $\frac{\pi}{4}<x<\frac{3 \pi}{8}$

- Watch Video Solution

86. If $\mathrm{f}(\mathrm{x})=\sin x-a \sin 2 x-\frac{1}{3} \sin 3 x+2 a x$ is an increasing function for all real values of x , show that, $a>1$.
87. Find the greatest and least value of $a \sin \theta+b \cos \theta$

- Watch Video Solution

88. Find the cylinder of maximum volume which can be inscribed in a cone of height h and semivertical angle α.

- Watch Video Solution

89. Find the equation of the straight line which is tangent at one point and normal at another point of the curve $x=3 t^{2}, y=2 t^{3}$.

- Watch Video Solution

90. If the tangent at any point of the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ meets the coordinate axes in A and B, then show that the locus of mid-points of $A B$ is a circle.

- Watch Video Solution

91. If $\frac{2 \sin \alpha}{1+\cos \alpha+\sin \alpha}=x$ then find $\frac{1-\cos \alpha+\sin \alpha}{1+\sin \alpha}$

- Watch Video Solution

92. If $\mathrm{f}(\mathrm{x})=\int e^{x}(x-1)(x-2) d x$, then show that $\mathrm{f}(\mathrm{x})$ is a decreasing function $1<x<2$.

- Watch Video Solution

93. Prove that, $\mathrm{f}(\mathrm{x})=x+2+(x-2) e^{x}$ is positive for all positive values of x .
94. Show that the normal at the point $\left(3 t, \frac{4}{t}\right)$ to the curve $\mathrm{xy}=12$ cuts the curve again at the point whose parameter t_{1} is given by $t_{1}=-\frac{16}{9 t^{3}}$

- Watch Video Solution

95. The points $(-2,-5),(2,-2),(8, a)$ are collinear, then find the value of a

- Watch Video Solution

96. Show that of all isosceles triangles inscribed in a given circle, the equilateral triangle has the greatest area.

- Watch Video Solution

97. If $x>a \geq e$, then show that, $a^{x}>x^{a}$.
98. Find the values of x for which the function $\mathrm{f}(\mathrm{x})=x^{2}(x-2)^{2}$ will be an increasing function.

- Watch Video Solution

99. The locus of $z=x+i y$ satisfying $\left|\frac{z-i}{z+i}\right|=3$ then find the radious of the circle

- Watch Video Solution

100. Determine the constant c such that the straight line joining the points $(0,3)$ and $(5-2)$ is a tangent to the curve $y=\frac{c}{x+1}$.

- Watch Video Solution

101. Show that the minimum value of the length of a tangent to the ellipse $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$ intercepted between the axes is ($\mathrm{a}+\mathrm{b}$).

- Watch Video Solution

102. The parametric equations of a curve are given by $x-\sec ^{2} t, y=\operatorname{cott}$.If the tangent at $P\left(t=\frac{\pi}{4}\right)$ meets the curve again at Q , then show that, $P Q=\frac{3 \sqrt{5}}{2}$.

- Watch Video Solution

103. If the tangent to the curve $x^{3}+y^{3}=a^{3}$ at the point $\left(x_{1}, y_{1}\right)$ intersects the curve again at the point $\left(x_{2}, y_{2}\right)$, then show that, $\frac{x_{2}}{x_{1}}+\frac{y_{2}}{y_{1}}+1=0$.

- Watch Video Solution

104. Find all the tangents to the curve $y=\cos (x+y),-2 \pi \leq x \leq 2 \pi$ that are parallel to the line $x+2 y=0$.

Watch Video Solution

105. The locus of $z=x+i y$ satisfying $\left|\frac{z-i}{z+i}\right|=1$
A. $x=0$
B. $y=0$
C. $x=y$
D. $x+y=0$
106. find the area enclosed by the parabola $a y=3\left(a^{2}-x^{2}\right)$ and the x-axis.
107. find the area of the region bounded by the parabola $y=x^{2}$, the line $y=x+2$ and the x-axis.

- Watch Video Solution

108. Show that the minimum distance from the origin to a point of the
curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ is $\left(\frac{a}{\sqrt{8}}\right)$.

- Watch Video Solution

109. The normal at a point P on the hyperbola $b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$ of eccentricity e, intersects the coordinates axes at Q and R respectively. Prove that the locus of the mid-point of $Q R$ is a hyperbola of eccentricity $\frac{e}{\sqrt{e^{2}-1}}$.
110. Find the abscissa of the point on the curve $x^{3}=a y^{2}$, the normal at which cuts off equal intecepts from the coordinate axes.

D Watch Video Solution

111. The parametric equation of a curve is given by,
$x=a\left(\cos t+\log \tan \left(\frac{t}{2}\right)\right), \mathrm{y}=\mathrm{a} \sin \mathrm{t}$. Prove that the portion of its tangent between the point of contact and the x-axis is of constant length.

Watch Video Solution

112. The locus of $z=x+i y$ satisfying $\left|\frac{z-i}{z+i}\right|=2$
A. $3\left(x^{2}+y^{2}\right)+10 y-3=0$
B. $3\left(x^{2}+y^{2}\right)+10 y+3=0$
C. $3\left(x^{2}+y^{2}\right)-10 y-3=0$
D. $x^{2}+y^{2}-5 y+3=0$

- Watch Video Solution

113. The radius of a right circular cone is measured as 10 cm with a possible error of 0.02 cm and height as 16 cm with a possible error of 0.08 cm . Find the percentage error in computting the volume of the cone.

- Watch Video Solution

114. The effeciency of a machine is given by, $E=\frac{\tan \theta}{\tan (\theta+\alpha)}$ where α is constant. Prove that, E is maximum at $\theta=\frac{\pi}{4}-\frac{\alpha}{2}$ and its maximum value is $\frac{1-\sin \alpha}{1+\sin \alpha}$.

- Watch Video Solution

115. A normal is drwn at a point $P(x, y)$ of a curve. It meets the x-axis at Q. If PQ is of constant length k, then show that the differential equation describing such curves is $y \frac{d y}{d x}= \pm \sqrt{k^{2}-y^{2}}$. Find the equation of such a curve passing through ($0, k$).

- Watch Video Solution

116. Find the area enclosed between the parabolas $y^{2}=4 b(b-x)$ and $y^{2}=4 a(x+a)$.

- Watch Video Solution

117. Assuming the petrol burnt per hours in driving a motor boat varies as the cube of its velocity, show that the most economical speed when going against a current of ckm per hour is $\frac{3 c}{2} \mathrm{~km}$ per hour.

(Watch Video Solution

118. The volume of a right prism is 16 cu.m. The base of the prism is in equilateral triangle. What must be the length of the side of the base for the least total surface area of the prism ?

- Watch Video Solution

119. $\frac{1+\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!\ldots . . \infty}}{1+\frac{1}{3!}+\frac{1}{5!}+\frac{1}{7!}+\ldots . \infty}$ equals
A. $\frac{e^{2}+1}{e^{2}-1}$
B. $\frac{e^{2}-1}{e^{2}+1}$
C. $e^{2}+1$
D. $e^{2}-1$

Answer: A

- Watch Video Solution

120. Find the normal to the ellipse $4 x^{2}+9 y^{2}=36$ which is farthest from its centre.

Watch Video Solution

121. Find the dimensions of the rectangle of maximum area that can be inscribed in a semicircle of radius r.

- Watch Video Solution

122. $1+\frac{3^{2}}{2!}+\frac{3^{4}}{4!}+\frac{3^{6}}{6!}+\ldots \ldots \infty$ is equal to
A. $\frac{1}{2}\left(e^{3}-e^{-3}\right)$
B. $\frac{1}{2}\left(e^{3}+e^{-3}\right)$
C. e^{3}
D. e^{-3}

Answer: B

- Watch Video Solution

123. A box is constructed from a rectangular metal sheet 21 cm by 16 cm cutting equal squares of sides xcm from the corners of the sheet and then turning up the projected portions. For what value of x the volume of the box will be maximum ?

- Watch Video Solution

124. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius r is $\frac{2 r}{\sqrt{3}}$.

- Watch Video Solution

125. The total surface area of a right circular cone is given. Show that the volume of the cone is maximum when the semi-vertical angle is $\sin ^{-1}\left(\frac{1}{3}\right)$.

- Watch Video Solution

126. The area bounded by the parabola $y=x-x^{2}$ and the line $y=m x$ equals 9 - , find m.

- Watch Video Solution

127. Prove that the radius of the right circular cylinder of greatest curved surface which can be inscribed in a given cone is half that of the cone.

- Watch Video Solution

128. Let LL' be the latus rectum of the parabola $y^{2}=4 a x a n d \mathrm{P} \mathrm{P}^{\prime}$ be a double ordinate between the vertex and the latus rectum. Prove that the
area of the trapezium L L' P P' is maximum, when the distance of P'P from vertex is $\frac{a}{9}$.

- Watch Video Solution

129. $1+\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+\ldots \ldots \infty$ is equal to
A. $\frac{1}{2}\left(e+\frac{1}{e}\right)$
B. $\frac{1}{2}\left(e-\frac{1}{e}\right)$
C.e
D. e^{-1}

Answer: A

- Watch Video Solution

130. A point P is given on the circumference of a circle of radius r. The chord $Q R$ is parallel to the tangent line at P. Find the maximum area of
the triangle $P Q R$.

- Watch Video Solution

131. Let $\mathrm{f}(\mathrm{x})=\sin ^{3} \mathrm{x}+\mathrm{k} \sin ^{2} x,-\frac{\pi}{2}<x<\frac{\pi}{2}$. Find the interval in which k should lie in order that $f(x)$ has exactly one minimum and exactly one maximum.

- Watch Video Solution

132.1 $+\frac{1}{3!}+\frac{1}{5!}+\frac{1}{7!}+\ldots \ldots \infty$ is equal to
A. $\frac{1}{2}\left(e+\frac{1}{e}\right)$
B. $\frac{1}{2}\left(e-\frac{1}{e}\right)$
C.e
D. e^{-1}
133. Show that the semivertical angle of a cone of given slant height and maximum volume is $\tan ^{-1} \sqrt{2}$.

Watch Video Solution

134. $\frac{2}{1!}+\frac{3}{2!}+\frac{4}{3!}+$ ∞ is equal to
A. $e-1$
B. $2 e-1$
C. $2 e$
D. 1

Answer: B

135. A curve $y=f(x)$ passes through the point $P(1,1)$. The normal to the curve at P is $a(y-1)+(x-1)=0$. If the slope of the tangent at any point on the curve is proportional to the ordinate of the point, find the equation of the curve.

- Watch Video Solution

136. $\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\ldots \ldots \infty$ is equal to
A. e
B. $e-1$
C. $e+1$
D. 1

Answer: D

$1+\frac{1}{2!}+\frac{2}{3!}+\frac{2^{2}}{4!}+\frac{2^{3}}{5!}+\ldots . \infty$

137.

A. $\frac{e}{4}$
B. $8 e$
C. $\frac{e}{2}$
$e\left(e^{2}+1\right)$
D.
$2\left(e^{2}-1\right)$

Answer: C

D Watch Video Solution

138. The sum of the surface of a sphere and a cube is given. Prove that the sum of their volumes is least when the diameter of the sphere is equal to the edge of the cube.

- Watch Video Solution

139. Find the area bounded by the parabola $y^{2}=9 x$ and the straight line $x-y+2=0$

Watch Video Solution

140. In a certain culture, the number of bacteria at any instant increases at a rate proportional to the cube root of the number present at that instant. If the number becomes 8 times in 3 hours, when the number will be 64 times?

- Watch Video Solution

141. Show that the length of the tangent to the curve $x^{m} y^{n}=a^{m+n}$ at any point of it, intercepted between the coordinate axes is divided internally by the point of contact in the ratio m:n.

- Watch Video Solution

142. Area bounded by the parabola $2 y=x^{2}$ and the straight line $x=y$ - 4is

- Watch Video Solution

143. Show that the locus of the midpoints of the chords of the circle $x^{2}+y^{2}=a^{2}$ which are tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\left(x^{2}+y^{2}\right)^{2}=a^{2} x^{2}-b^{2} y^{2}$.

- Watch Video Solution

144. Find the equation of the curve whose length of the tangent at any point on ot, intercepted between the coordinate axes is bisected by the point of contact.

- Watch Video Solution

145. Find those values of a for which the function
$f(x)=\left(\frac{\sqrt{a+4}}{1-a}-1\right) x^{5}-3 x+\log 5$
is decreasing for all real values of x .

- Watch Video Solution

146. The function $y=a \log |x|+b x^{2}+x$ has two extreme values for $x=-1$ and $x=2$. Find the values of a and b.

- Watch Video Solution

Vector and Three Dimensional Coordinate Geometry

1. Find the angle between the vectors $\vec{a}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}-\hat{k}$.

- Watch Video Solution

2. Given $\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$ are two perpendicular vectors, find λ.

- Watch Video Solution

3. Vectors \vec{a}, \vec{b} and \vec{c} are such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}||=2,|\vec{b}|=4$ and $|\vec{c}|=6$, prove that, $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=-28$.

- Watch Video Solution

4. Find the cosine of the angle made by vector $(2 \hat{i}-3 \hat{j}+6 \hat{k})$ with the posititve z -axis.

- Watch Video Solution

5. For what value of a, the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $a \hat{i}-6 \hat{j}+8 \hat{k}$ are collinear
6. The vector \vec{a} is perpendicular to each of the vectors $\vec{b}=4 \hat{i}+5 \hat{j}-\hat{k}, \vec{c}=\hat{i}-4 \hat{j}+5 \hat{k}$ and $\vec{a} \cdot \vec{d}=21$, where $\vec{d}=3 \hat{i}+\hat{j}-\hat{k}$, find the vector \vec{a}.

- Watch Video Solution

7. The vectors $\frac{29}{3} \hat{i}-4 \hat{j}+5 \hat{k}, 2 \hat{i}+m \hat{j}+\hat{k}$ and $\vec{i}+2 \hat{j}+\hat{k}$ are coplanar, find m .

- Watch Video Solution

8. The position vectors of the vertices A, B, C of the triangle $A B C$ are $(\hat{i}+\hat{j}+\hat{k}),(\hat{i}+5 \hat{j}-\hat{k})$ and $(2 \hat{i}+3 \hat{j}+5 \hat{k})$ respectively. Find the greatest angle of the triangle.

- Watch Video Solution

9. Show, by vector method, that the angle in a semicircle is a right angle.

- Watch Video Solution

10. $\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}, \vec{b}=3 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$ are three edges of a rectangular parallelopiped, prove that the volume of the parallelopiped is 49 cu unit.

- Watch Video Solution

11. If the vectors $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+m \hat{j}-3 \hat{k}$ and $\vec{c}=3 \hat{i}-4 \hat{j}+5 \hat{k}$ are coplanar, then find m.

- Watch Video Solution

12. Find the equation of the plane which contains the line of intersection of the planes $\vec{r} .(\hat{i}+2 \hat{j}+3 \hat{k})-4=0$ and $\vec{r} .(2 \hat{i}+\hat{j}-\hat{k})+5=0$ and which
is perpendicular to the plane $\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$

- Watch Video Solution

13. Find the cartesian and vector equations of the planes through the line of intersection of the planes $\vec{r} \cdot(2 \hat{i}+6 \hat{j})+12=0$ and $\vec{r} \cdot(3 \hat{i}-\hat{j}+4 \hat{k})=0$ which are at a unit distance from the origin.

- Watch Video Solution

14. Find the equation of the plane passing through the line of intersection of the planes $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})+4=0$ and parallel to x-axis.

- Watch Video Solution

15. Find the coordinates of the foot of the perpendicular drawn from the point $A(1,2,1)$ on the line joining the points $B(1,4,6)$ and $C(5,4,4$,$) .$

- Watch Video Solution

16. Find the vector equation of the following plane in scalar product form :
$\vec{r}=(\hat{i}+\hat{j})+\lambda(\hat{i}+2 \hat{j}-\hat{k})+\mu(-\hat{i}+\hat{j}-2 \hat{k})$

- Watch Video Solution

17. Find the distance of the point ($-1,-5,-10$) from point of intersection of the line $\vec{r}=(2 \hat{i}-\hat{j}+2 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$.

- Watch Video Solution

18. Find the equation of the plane passing through the point $(1,2,1)$ and perpendicular to the line joining the points $(1,4,2)$ and $(2,3,5)$. Also find the
coordinates of the foot of the perpendicular and the perpendicular distance of the point $(4,0,3)$ from the above found plane.

- Watch Video Solution

19. Find the equation of the plane passing through the points ($3,4,1$) and
$(0,1,0)$ and parallel to the line $\frac{x+3}{2}=\frac{y-3}{7}=\frac{z-2}{5}$.

- Watch Video Solution

20. Find the equation of the plane passing through the points $(3,1,1)$, (1-2,3) and parallel to y-axis.

- Watch Video Solution

21. Find the vector equation of the line passing through the point (2,-3,1) and parallel to the planes $\vec{r} \cdot(2 \hat{i}-3 \hat{j}-\hat{k})=3$ and $\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=4$.

(D) Watch Video Solution

22. Show that the line whose vector equation is $\vec{r}=(2 \hat{i}-2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-\hat{i}+4 \hat{k})$ is parallel to the plane whose vector equation is $\vec{r} .(\vec{i}+5 \hat{j}+\hat{k})=5$. Also, find the distance between them.

- Watch Video Solution

23. Show that the line $\frac{x+3}{4}=\frac{y-5}{-1}=\frac{z+7}{2}$ lies in the plane $x-2 y-3 z-8=0$.

- Watch Video Solution

24. Find the angle between the line $\frac{x-2}{1}=\frac{y+1}{3}=\frac{z-4}{2}$ and the plane $3 x-2 y+4 z=6$.

- Watch Video Solution

25. Find the vector and cartesion equations of a plane containing the two lines $\vec{r}=2 \hat{j}+\hat{j}-3 \hat{k}+\lambda(\hat{i}+2 \hat{j}+5 \hat{k})$ and $\vec{r}=3 \hat{i}+3 \hat{j}+2 \hat{k}+\mu(3 \hat{i}-2 \hat{j}+5 \hat{k})$ Also show that the line $\vec{r}=2 \hat{i}+5 \hat{j}+2 \hat{k}+p(3 \hat{i}-2 \hat{j}+5 \hat{k})$ lies in the plane.

- Watch Video Solution

26. Find the vector equation of the plane that contains the lines $\vec{r}=(\hat{i}+\hat{j})+\lambda(\hat{i}+2 \hat{j}-\hat{k})$ and $\vec{r}=(\hat{i}+\hat{j})+\mu(-\hat{i}+\hat{j}-2 \hat{k})$.Also find the length of the perpendicular drawn from the point $(2,1,4)$ to the plane thus obtained.

- Watch Video Solution

27. The equation of a line are $\frac{4-x}{2}=\frac{y+3}{2}=\frac{z+2}{1}$. Find the direction cosines of a line parallel to the above line.

- Watch Video Solution

28. Find the equation of a line passing through the point $P(2,-1,3)$ and perpendicular to the lines $\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})$ and $\vec{r}=(2 \hat{i}-\hat{j}-3 \hat{k})+\mu(\hat{i}+2 \hat{j}+2 \hat{k})$.

- Watch Video Solution

29. If the lines $x=a_{1} y+b_{1}, z=c_{1} y+d_{1}$ and $x=a_{2} y+b_{2}, z=c_{2} y+d_{2}$ are perpendicular, prove that, $1+a_{1} a_{2}+c_{1} c_{2}=0$.

(Watch Video Solution

30. Computting the shortest between the following pair of lines determine whether they intersect or not:

$$
\vec{r}=-3 \hat{i}+6 \hat{j}+\lambda(-4 \hat{i}+3 \hat{i}+2 \hat{k}) \text { and } \vec{r}=-2 \hat{i}+7 \hat{k}+\mu(-4 \hat{i}+\hat{j}+\hat{k})
$$

- Watch Video Solution

31. Find whether the lines $\vec{r}=(\hat{i}-\hat{j}-\hat{k})+\lambda(2 \hat{i}+\hat{j})$ and $\vec{r}=(2 \hat{i}-\hat{j})+\mu(\hat{i}+\hat{j}-\hat{k})$ intersect or not. If intersecting find their point of intersection.

- Watch Video Solution

32. If the area bounded by the curves $y^{2}=4 a x$ and $x^{2}=4 a y$ is $\frac{16 a^{2}}{3}$ squnit then find the area bounded by $y^{2}=2 x$ and $x^{2}=2 y$

- Watch Video Solution

33. Find the equation of the line passing through the point ($1,2,-4$) and perpendicualr to two lines

$$
\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7} \text { and } \frac{x-15}{3}=\frac{y+29}{8}=\frac{z-5}{-5} .
$$

- Watch Video Solution

34. Find the coordinate of the foot of the perpendicular, the equation of the perpendicular and the perpendicular distance of the point $P(3,2,1)$ from the plane $2 x-y+z+1=0$. Find also the image of the point in the plane.

- Watch Video Solution

35. Find the equation of the plane passing through the point ($1,1,1$) and containing the line

$$
\vec{r}=(-3 \hat{i}+\hat{j}+5 \hat{k})+\lambda(3 \hat{i}-\hat{j}-5 \hat{k})
$$

Also show that the plane contains the line
$\vec{r}=(-\hat{i}+2 \hat{j}+5 \hat{k})+\lambda(\hat{i}-2 \hat{j}-5 \hat{k})$.

- Watch Video Solution

36. Find the shortest distance between the following the following lines whose vector equations are

$$
\vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k} \text { and } \vec{r}=(s-1) \hat{i}+(2 s-1) \hat{j}+(2 s+1) \hat{k} .
$$

- Watch Video Solution

37. Find the equation of a line passing throught the points $A(0,6,-9)$ and $B(-3,-63)$. If D is the foot of the perpendicular drawn from a point $C(7,4,-1)$ on the line $A B$, then find the coordinates of D and the equation of line $C D$.

- Watch Video Solution

Probability

1. In a school, there are 1000 students, out of which 430 are girls. It is known that out of $430,10 \%$ of the girls study in class XII. What is the probability that a student chosen randomly studies in class XII, given that the chosen student is a girl ?

- Watch Video Solution

2. On a multiple choice examination with three possible answers(out of which only one is correct) for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?

- Watch Video Solution

3. There are two bags, bag I and bagll. Bag I contains 4 white 3 red balls while bag II contains 3 white and 7 red balls. One ball is drawn at random from one of the bags and it is found to be white. Find the probability that it was drawn from bag I.

- Watch Video Solution

4. In a class, 5% of the boys and 10% of the girls have an IQ more than 150. In the class 60% of the students are boys and rest girls. If a student is selected at random and found to have an IQ of more that 150 , find the probability that the student is a boy.

- Watch Video Solution

5. A bag contains 4 red and 4 black balls. Another bag contains 2 red and 6 black balls. One of the bags is selected at random and a ball is drawn from the bag which is found to be red. Find the probability that the ball is drawn from the first bag.

- Watch Video Solution

6. Three cards are drawn seccessively with replacement from a well shuffled pack of 52 playing cards. If getting a card of spade is considered success, find the probability distribution of the number of successes.

- Watch Video Solution

7. Calculate the value of : (i) ${ }^{-22}$
8. Two groups are competing for the position on the Board of Directors of a corporation. The probabilities that the first and the second groups will win are 0.6 and 0.4 respectively. Further, if the first group wins, the probability of introducing a new product is 0.7 and the corresponding probability in 0.3 if the second group wins. Find the probability that the new product was introduced by the second group,

- Watch Video Solution

