© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - CHHAYA PUBLICATION MATHS (BENGALI
 ENGLISH)

ORDER AND DEGREE OF DIFFERENTIAL EQUATION

Example

1. Find the differential equation of the family of circles
$x^{2}+y^{2}=2 a x$, where a is a parameter.

- Watch Video Solution

2. Find the differential equation of the family of circles
$x^{2}+y^{2}=2 a y$, where a is a parameter.
3. Find the differential equation of $y=A x+\frac{B}{x}$, where A and B are arbitrary constants .

- Watch Video Solution

4. From the differential equation representing the family of curves $\mathrm{y}=\mathrm{A} \cos (\mathrm{x}+\mathrm{b})$, where A and B are parameters.

- Watch Video Solution

5. Eliminate A and B from $y=A \cos 2 x+B \sin 2 x+\frac{1}{2} e^{2 x}$.

- Watch Video Solution

6. From the relation $a x+b y+c=0[b \neq 0]$, from a differential equation elimenting $\mathrm{a}, \mathrm{b}, \mathrm{c}$.
7. From the differential equation corresponding to
$y^{2} a(b-x)(b+x)$ by eliminating the parameters a and b .

- Watch Video Solution

8. Find the differential equation of all circles touching the x-axis at the origin .

- Watch Video Solution

9. Prove that , $(x-\alpha)^{2}+(y-\beta)^{2}=a^{2}$. for all α and β
satisfiles the differential equation $\left(1+y_{1}^{2}\right)^{3}=\left(a y_{2}\right)^{2}$.

- Watch Video Solution

10. From the differential equation corresponding to
$y^{2}-2 a y+x^{2}=a^{2}$ by eliminating a.

Watch Video Solution

11. From the differential equation of the family of ellipses $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ by eliminating arbitrary constants a and b .

- Watch Video Solution

Exercise Mcq

1. Let x be the number of indepandent constants in the general solution of a differential of order y then -
A. $x=y$
B. $x>y$
C. $x<y$
D. $x \geq y$

Answer: A

- Watch Video Solution

2. The degree of the differential equation $\left(\frac{d y}{d x}\right)^{2}-2 \frac{d y}{d x}=3 x$ is -
A. 1
B. 2
C. 3
D. 4

Answer: B

3. The order of the differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{3}-\left(\frac{d y}{d x}\right)^{4}+5 y=x$ is
A. 1
B. 3
C. 2
D. 4

Answer: C

- Watch Video Solution

4. $\frac{d^{3} y}{d x^{3}}+y=\sqrt[3]{1+\frac{d y}{d x}}$ is a differential equation of degree-
A. 1
B. 2
C. 4

D. 3

Answer: D

- Watch Video Solution

5. The order of the differential equation obtained by the elimination of arbitrary constants $\mathrm{a}, \mathrm{b}, \mathrm{c}$ from the equation $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ is -
A. 2
B. 3
C. 1
D. none of these

Answer: A

6. The degree of the differential equation

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\frac{d^{2} y}{d x^{2}}-\left(\frac{d y}{d x}\right)^{4}+\frac{d y}{d x}+y=6 x^{3} \text { is - }
$$

A. 4
B. 3
C. 2
D. 1

Answer: C

- Watch Video Solution

7. The order of differential equation $\left(\frac{d^{4} y}{d x^{4}}\right)^{3}-\frac{d^{3} y}{d x^{3}}=\sqrt{1+\frac{d y}{d x}}$ is -
A. 6
B. 4
C. 3

D. 7

Answer: B

- Watch Video Solution

Exercise Very Short Answer Type Questions

1. $y^{2}=4 a x$

- Watch Video Solution

2. $y=m x+5$

Watch Video Solution
3. $x^{2}+y^{2}=c^{2}$
4. $y=a \cos 2 x$

Watch Video Solution

5. $y=c \log x-2$

- Watch Video Solution

6. Eliminate $\mathrm{m}, y=e^{m x}$

D Watch Video Solution

7. Show that , $v=\frac{A}{r}+B$ satisfies the differential equation
$\frac{d^{2} v}{d r^{2}}+\frac{2}{r} \cdot \frac{d v}{d r}=0$
8. Show that the differential equation $\frac{d y}{d x}=y$ is formed by eliminating a and b from the relation $y=a e^{b+x}$.

- Watch Video Solution

9. Prove that , $x=A \cos \sqrt{\mu t}$ is a solution of the differential equation $\frac{d^{2} x}{d t^{2}}+\mu x=0$

- Watch Video Solution

Exercise Short Answer Type Questions

1. Eliminate A and $\mathrm{B}, y=A e^{x}+B e^{-x}$

- Watch Video Solution

2. $y=a x+b x^{2}$
3. Eliminate A and $\mathrm{B}, y=A e^{x}+B e^{-x}+x^{2}$

- Watch Video Solution

4. $a x^{2}+b y^{2}=1$

Watch Video Solution
5. $y=a \tan ^{-1} x+b$

- Watch Video Solution

6. $y=(a x+b) e^{-2 x}$

- Watch Video Solution

7. Eliminate A and $\mathrm{B}, y=A \sin m x+B \cos m x$

Watch Video Solution
8. $y=a x+b x^{3}$

- Watch Video Solution

9. $x=e^{-t}(a \cos t+b \sin t)$

- Watch Video Solution

10. $(y-b)^{2}=4 k(x-a)$

- Watch Video Solution

11. Eliminate a and b, $y=a \sec x+b \tan x$
12. $x y=A e^{x}+B e^{-x}$

- Watch Video Solution

13. Show that the differential equation $x\left(y y_{2}+y_{1}^{2}\right)=y y_{1}$ is formed by eliminating a, b and c from the relation $a x^{2}+b y^{2}+c=0$. Justify why the eliminate is of the second order although the given relation involves three constants a, b and c .

- Watch Video Solution

14. Show that, the solution $x=A \cos (n t+B)+\frac{k}{n^{2}-p^{2}} \cdot \sin p t$, for all A and B satisfies the differential equation
$\frac{d^{2} x}{d t^{2}}+n^{2} x=k \sin p t$.

- Watch Video Solution

15. Show that, the solution $x=e^{-k t}(\mathrm{a} \cos \mathrm{nt}+\mathrm{b} \sin \mathrm{nt})$, for all a and b , always satisfies the differenital equation
$\frac{d^{2} x}{d t^{2}}+2 k \frac{d x}{d t}+\left(k^{2}+n^{2}\right) x=0$

- Watch Video Solution

16. Show that the solution $y=a \sin x+b \cos x+x \sin x$ satisfies , $\frac{d^{2} y}{d x^{2}}+y=2 \cos x$

- Watch Video Solution

17. Show that , the equation of all circles touching the y-axis at the origin is ,
$2 x y \frac{d y}{d x}=y^{2}-x^{2}$

- Watch Video Solution

18. Find a differential equation which is satisfied by all curves $y=A e^{2 x}+B e^{-\frac{x}{2}}$, where A and B are non-zero constants.

- Watch Video Solution

19. Form the differential equation of the family of hyperbolas $b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$ by eliminating constants a and b .

- Watch Video Solution

20. Determine the differential equation of the family of parabolas whose axis are coincident with the axis of x .

- Watch Video Solution

21. From the differential equation of family of parabolas having vertex at the origin and axis along positive y-axis .
22. From the differential equation of the family of circles
$(x-a)^{2}+(y-a)^{2}-a^{2}$, where a is an arbitrary constant.

- Watch Video Solution

23. Show that the function $\mathrm{y}=\mathrm{A} \cos 2 \mathrm{x}-\mathrm{B} \sin 2 \mathrm{x}$ is a solution of
the differential equation $\frac{d^{2} y}{d x^{2}}+4 y=0$

- Watch Video Solution

24. Form the differential equation of the family of circles having centre on the x-axis and passing through the origin .

- Watch Video Solution

25. From the differential representing the family of ellipses having centre at the origin and foci on y-axis .

- Watch Video Solution

26. From the differential equation of the family of circles in the second quadrant and touching the coordinate axes.

- Watch Video Solution

27. From the differential equation that represents all parabolas each of which has a latus rectum 4 a , and whose axes are parallel to the x -axis .

- Watch Video Solution

28. If a is a prameter, show that the differential equation
of the family of curves $y=\frac{a-x}{a x+1}$ is $\left(x^{2}+1\right) \frac{d y}{d x}+y^{2}+1=0$.

Sample Questions For Competitive Examination A Multiple Correct Answers Type

1. The differential equation whose solution is
$(x-\alpha)^{2}+(y-\beta)^{2}=a^{2}[$ for all α and β where a is constant] of is -
A. order 2
B. order 3
C. degree 2
D. degree 3

Answer:

2. The differential equation whose solution is $V=\frac{A}{r}+B$ (where A, B are constants) is of -
A. order 1
B. degre 2
C. order 2
D. degree 1

Answer:

- Watch Video Solution

3. The differential equation whose solution is $a x^{2}+b y^{2}+c=0$ (where a, b, c are constants $)$ is of -
A. order 2
B. degree 1
C. order 1
D. degree 2

Answer:

- Watch Video Solution

4. The differential equation whose solution is
$(y-b)^{2}=4 k(x-a)($ where b,a,k are constants $)$ is of
A. degree 1
B. order 2
C. degree 3
D. order 3

Answer:

5. The differential equation whose solution is $x=A \cos \sqrt{\mu t}$ (where A is constant) is of -
A. order 1
B. degree 1
C. order 2
D. degree 2

Answer:

- Watch Video Solution

Sample Questions For Competitive Examination B Integer Answer Type

1. if $\frac{d^{3} y}{d x^{3}}+y=\sqrt[3]{1+\frac{d y}{d x}}$ be a differential equation whose degree is n , then the value of n is -
2. $\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}^{\frac{3}{2}}=a \frac{d^{2} y}{d x^{2}}$ be a differential equation whose degree is n, then the value of n is -

- Watch Video Solution

3. If order of $3 k y_{2}+y_{1}^{3}=0$ be n , then the value of n is -

- Watch Video Solution

4. If $e^{\frac{d^{3} y}{d x^{3}}}-4 x \frac{d y}{d x}=0$ be a differential equation whose order is k, find the value of k.

- Watch Video Solution

5. If order of $1+\left(\frac{d y}{d x}\right)^{5}=\frac{d^{3} y}{d x^{3}}$ be n , then n will be -

Sample Questions For Competitive Examination C Matrix Match Type

1. Find the order and degree of the equation
$x \frac{d y}{d x}+y^{2}+3 y\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=0$

- Watch Video Solution

2. Find the order and degree of the equation $y^{2}+x^{2} \frac{d y}{d x}-2 x y \frac{d^{3} y}{d x^{3}}=0$

- Watch Video Solution

Sample Questions For Competitive Examination D Comprehension Type

1. Consider the family of curves represented by the equation $(x-h)^{2}+(y-k)^{2}=r^{2}$ where h and k are arbitrary constants.

The differential equation of the above family is of order-
A. 1
B. 2
C. 3
D. 4

Answer:

- Watch Video Solution

2. Consider the family of curves represented by the equation $(x-h)^{2}+(y-k)^{2}=r^{2}$ where h and k are arbitrary constants.

The differential equation of the above family is of curves -
A. $\left(1+y_{1}^{2}\right)^{3}=r y_{2}$
B. $y_{1}\left(1+y_{1}^{2}\right)^{3}=r^{2} y_{2}^{2}$
C. $\left(1+y_{1}^{2}\right)^{3}=r^{2} y_{2}^{2 \square}$
D. none of these

Answer:

D Watch Video Solution

3. Consider the family of curves represented by the equation $(x-h)^{2}+(y-k)^{2}=r^{2}$ where h and k are arbitrary constants. Degree of $\frac{d y}{d x}$ is -
A. 3
B. 4
C. 5
D. 6

Answer:
4. The differential equation of all parabolas whose axis are parallel to the y-axis is
$(b)(c)(d) \frac{(e)(f) d^{(g) 3(h)}(i) y}{j}\left((k) d(l) x^{(m) 3(n)}(o)\right)(p)(q)=0(r)$ (s)
$(t)(u)(v) \frac{(w)(x) d^{(y) 2(z)}(a a) x}{b b}\left((c c) d(d d) y^{(e e) 2(f f)}(g g)\right)(h h)(i i)=C(j)$
(kk) (c) [Math Processing Error] (ii) (d) [Math Processing Error] (ggg)
A. $\frac{d^{3} y}{d x^{3}}=0$
B. $\frac{d^{2} y}{d x^{2}}=c$
C. $\frac{d^{3} y}{d x^{2}}+\frac{d^{2} y}{d x^{2}}=0$
D. $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=c$

Answer:

- Watch Video Solution

5. Find the order and degree of the equation $5 x^{2}=y+x y\left(\frac{d y}{d x}\right)^{3}$

- Watch Video Solution

6. Differential equation of the family of circles touching the line $y=2$ at
$(0,2)$ is
(a)
$(b)(c)(d) x^{(e) 2(f)}(g)+(h)(i)((j)(k) y-2(l))^{(m) 2(n)}(o)+(p) \frac{(q) d y}{r}((s)$ ،
(z) (aa) [Math Processing Error] (uu) (vv)
$(w w)(\times)(y y) x^{(z z) 2(a a a)}(b b b)+(c c c)(d d d)((e e e)(f f f) y-2(g g g))^{(h h h) 2}$
$-2(v v v))=0(w w w)$
(xxx) (yyy) None of these
A. $x^{2}+(y-2)^{2}+\frac{d y}{d x}(y-2)=0$
B. $x^{2}+(y-2)\left(2-2 x \frac{d x}{d y}-y\right)=0$
C. $x^{2}+(y-2)^{2}+\left(\frac{d x}{d y}+y-2\right)(y-2)=0$
D. none of these

Answer:

- Watch Video Solution

Sample Questions For Competitive Examination E Assertion Reasion Type

1. Statement -I : The differential equation of curves
represented by $y=A e^{x}$ is given by $\frac{d y}{d x}=y$
Statement-II: $\frac{d y}{d x}=y$ is valid for every member of the given family
A. Statement-I is True, Statement-II is True, Statement-II is a correct
explanation for statement-I
B. Statement-I is True, Statements-II is True, Statement-II is not a correct explanation for statement-I
C. Statement-I True , Statement-II is False.
D. Statement-I is False , Statement-II is True .

Answer:

- Watch Video Solution

2. Find the order and degree of the equation
$x^{2} \frac{d y}{d x}=y^{2}+3 x y\left(\frac{d^{2} y}{d x^{2}}\right)^{3}$

- Watch Video Solution

