©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CHHAYA PUBLICATION MATHS (BENGALI ENGLISH)

PRODUCTS OF TWO VECTORS

Example

1. Find the cosine of the angle between the vectors
$\vec{a}=3 \hat{i}+2 \hat{k}$ and $\vec{b}=2 \hat{i}-2 \hat{j}+4 \hat{k}$

- Watch Video Solution

2. If the vectors $3 \hat{i}-2 \hat{j}+m \hat{k}$ and $-2 \hat{i}+\hat{j}+4 \hat{k}$ are perpendicular to each other, find the value of m
3. Find the scalar and vector projections of $3 \hat{i}-\hat{j}+4 \hat{k}$ on $2 \hat{i}+3 \hat{j}-6 \hat{k}$

- Watch Video Solution

4. Using vector method show that the diagonals of a rhombus are at right angles .

- Watch Video Solution

5. If \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular vectors of equal magnitude, show that, vectors $\vec{a}, \vec{b}, \vec{c}$ make an equal angle with $\vec{a}+\vec{b}+\vec{c}$

- Watch Video Solution

6. If \vec{a}, \vec{b} and \vec{c} are three vectors of magnitude 3,4 and 5 respectively such that each vector is perpendicular to the sum of the other two vectors, prove that $|\vec{a}+\vec{b}+\vec{c}|=5 \sqrt{2}$

- Watch Video Solution

7. If the sum of two unit vectors is a unit vector then show that the magnitude of their difference is $\sqrt{3}$

- Watch Video Solution

8. Find λ where projection of $\vec{a}=\lambda \hat{i}+\hat{j}+4 \hat{k}$ on $\vec{b}=2 \hat{i}+6 \hat{i}+3 \hat{k}$ is 4 unit

- Watch Video Solution

9. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}-7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d}=18$

- Watch Video Solution

10. Show that the perpendicular from the vertices of a triangle to the opposites sides are concurrent.

- Watch Video Solution

11. If $\vec{a}=3 \hat{i}-2 \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-3 \hat{j}+4 \hat{k}$, find $\vec{a} \times \vec{b}$ and the area of the parallelogram whose adjacent sides are \vec{a} and \vec{b}

- Watch Video Solution

12. Find a unit vector perpendicular to both the vectors $2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $3 \hat{j}-4 \hat{k}$. Also find the sine of the angle between the given vectors .

- Watch Video Solution

13. For what values of p and q the vectors $2 \hat{i}+p \hat{j}-3 \hat{k}$ and $q \hat{i}-4 \hat{j}+2 \hat{k}$ are parallel ?

- Watch Video Solution

14. By vector method find the area of the triangle whose vertices are $(1,1,1)$, $2,0,1$) and ($3,-2,0$)

- Watch Video Solution

15. If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} \quad$ and
$\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ prove that
$\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$

- Watch Video Solution

16. Find the vector α which is perpendicular to both $4 \hat{i}+5 \hat{j}-\hat{k}$ and $\hat{i}-4 \hat{j}+5 \hat{k}$ and which satisfies the relation $\alpha . \beta=21$ where $\beta=3 \hat{i}+5 \hat{j}-\hat{k}$

- Watch Video Solution

17. If $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ be unit vectors satisfying the condition $\vec{a}+\vec{\beta}+\vec{\gamma}=\overrightarrow{0}$ show that $\vec{\alpha} \cdot \vec{\beta}+\vec{\beta} \cdot \vec{\gamma}+\vec{\gamma} \cdot \vec{\alpha}=-\frac{3}{2}$

- Watch Video Solution

18. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$, show that $\vec{a}-\vec{d}$ is parallel $\vec{b}-\vec{c}$, where to $\vec{a} \neq \vec{d}$ and $\vec{b} \neq \vec{c}$

- Watch Video Solution

19. If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=3,|\vec{b}|=5$ and $|\vec{c}|=7$, find the angle between the vectors \vec{a} and \vec{b}

- Watch Video Solution

20. If $\vec{a}=4 \hat{i}-3 \hat{k}$ and $\vec{b}=-2 \hat{i}+\hat{j}+2 \hat{k}$ be two diagonals of parallelogram, then find its area.

- Watch Video Solution

21. The dot products of a vector with the vectors $\hat{i}-3 \hat{k}, \hat{i}-2 \hat{k}$ and $\hat{i}+\hat{j}+4 \hat{j}$ are $0,5,8$ respectively. Find the vector .
22. If \vec{p} is a unit vector and $(\vec{x}-\vec{p}) \cdot(\vec{x}+\vec{p})=8$, then find $|\vec{x}|$

- Watch Video Solution

23. If \vec{p} is a unit and $(\vec{x}-\vec{p}) \cdot(\vec{x}+\vec{p})=80$ then find $|\vec{x}|$

- Watch Video Solution

24. Let $\vec{a}=2 \hat{i}+\hat{k}, \vec{b}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{c}=4 \hat{i}-3 \hat{j}+7 \hat{k}$ be three given vectors . Find a vector \vec{c} which satisfies the relations $\vec{r} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a}=0$

- Watch Video Solution

25. If \vec{a}, \vec{b} and \vec{c} are three unit vectors such that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}=0$ and angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$, prove that, $\vec{a}= \pm 2(\vec{b} \times \vec{c})$

- Watch Video Solution

26. Using vectors, prove that in a triangle $A B C$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
where a,b,c are lengths of the ideas opposite to the angles A, B, C of triangle ABC respectively .

(D) Watch Video Solution

27. Using vectors, prove that in a triangle $A B C$
$a^{2}=b^{2}+c^{2}-2 b c \cos A$
where a, b, c are lengths of the ideas opposite to the angles A, B, C of triangle $A B C$ respectively .

- Watch Video Solution

28. Using vectors, prove that in a triangle $A B C$
$a=b \cos C+c \cos B$
where a,b,c are lengths of the ideas opposite to the angles A, B, C of triangle $A B C$ respectively .

- Watch Video Solution

Exercise 2 A Choose The Correct Question

1. If $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=-\hat{i}+3 \hat{j}+4 \hat{k}$, then value of $\vec{a} \cdot \vec{b}$ is -
A. 1
B. 3
C. -3
D. -1
2. If $\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $\vec{b}=-6 \hat{i}+9 \hat{j}-12 \hat{k}$, then
A. $\vec{a} \perp \vec{b}$
B. $\vec{a}|\mid \vec{b}$
C. angle between the vectors is $\cos ^{-1} \cdot \frac{3}{4}$
D. angle between the vectors is $\frac{\pi}{3}$

Answer: b

- Watch Video Solution

3. The scalar projection of $\vec{a}=2 \hat{i}-3 \hat{j}+\hat{k}$ on $\vec{b}=3 \hat{i}-6 \hat{j}-2 \hat{k}$
A. $\frac{22}{7}$
B. $\frac{26}{7}$
C. $\frac{22}{\sqrt{14}}$
D. $\frac{26}{\sqrt{14}}$

Answer: a

- Watch Video Solution

4. If the vectors $\vec{a}=3 \hat{j}+6 \hat{k}$ and $\vec{b}=-2 \hat{i}+m \hat{j}-3 \hat{k}$ are perpendicular to each other, then the value of m is -
A. 12
B. -6
C. -12
D. 6

Answer: d

- Watch Video Solution

5. If $\vec{a}=2 \hat{i}-\hat{j}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+4 \hat{k}$, then the value of $\vec{a} \times \vec{b}$ is -
A. $4 \hat{i}-8 \hat{i}-\hat{k}$
B. $-4 \hat{j}-\hat{j}+\hat{k}$
C. $4 \hat{i}-8 \hat{j}+\hat{k}$
D. $-4 \hat{i}-8 \hat{j}-\hat{k}$

Answer: d

- Watch Video Solution

6. If $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}-\hat{k}$ and $|\vec{a} \times \vec{b}|=\sqrt{13 m}$ then the value of m is -
A. 3
B. 4
C. 2
D. 1

- Watch Video Solution

7. If $|\vec{a}|=4,|\vec{b}|=2 \sqrt{3}$ and $|\vec{a} \times \vec{b}|=12$, then the angle between the vectors \vec{a} and \vec{b} is -
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: a

D Watch Video Solution

8. If $\vec{a}=2 \hat{i}+4 \hat{j}-3 \hat{k}, \vec{b}=\hat{i}+m \hat{k}$ and $|\vec{a} \times \vec{b}|=0$, then the values of m is -
A. $\frac{3}{2}$
B. -3
C. $-\frac{3}{2}$
D. 3

Answer: c

- View Text Solution

Exercise 2 A Very Short Aanswer Type Questions

1. Define scalar product of two vectors. Show of two vectors. Show that scalar product of vectors satisfies the commutative and distributive laws.

- Watch Video Solution

2. Find the scalar product of the following pair of vectors and the angle between them :
$\hat{i}+\hat{j}$ and $\hat{j}+\hat{k}$

- Watch Video Solution

3. Find the scalar product of the following pair of vectors and the angle between them :

$$
\vec{a}=2 \hat{i}+3 \hat{j}-4 \hat{k} \text { and } \vec{b}=\hat{i}+2 \hat{j}+\hat{k}
$$

- Watch Video Solution

4. Find the scalar product of the following pair of vectors and the angle between them :

$$
\vec{a}=2 \hat{i}-5 \hat{j}+3 \hat{k} \text { and } \vec{b}=\hat{i}-2 \hat{j}-4 \hat{k}
$$

- Watch Video Solution

5. Show that the vectors

$$
|\vec{a} \times \vec{b}|^{2}=\left|\begin{array}{cc}
\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\
\vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b}
\end{array}\right|
$$

Watch Video Solution

6. If $\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $\vec{b}=-6 \hat{i}+9 \hat{j}-12 \hat{k}$, then

- Watch Video Solution

7. Show that the vectors are mutually perpendicular
$\hat{i}+2 \hat{j}+\hat{k}, \hat{i}+\hat{j}-3 \hat{k}$ and $7 \hat{i}-4 \hat{j}+\hat{k}$

- Watch Video Solution

8. Show that the vectors
$a=2 \hat{i}+3 \hat{j}+6 \hat{k}, b=3 \hat{i}-6 \hat{j}+2 \hat{k}$ and $c=6 \hat{i}+2 \hat{j}-3 \hat{k}$ are mutually perpendicular
9. In each of the following cases two vectors are perpendicular to each other, find m $m \hat{i}-2 \hat{j}+\hat{k}$ and $3 \hat{i}-2 \hat{j}-7 \hat{k}$

- Watch Video Solution

10. In each of the following cases two vectors are perpendicular to each other, find m

$$
\vec{a}=m \hat{i}-2 \hat{j}-5 \hat{k} \text { and } \vec{b}=-3 \hat{i}-\hat{j}+4 \hat{k}
$$

- Watch Video Solution

11. In the following cases two vectors are perpendicular to each other, find m
$a(1,1, m)$ and $\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$

- Watch Video Solution

12. If $\vec{a}=3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\vec{b}=\hat{i}+\lambda \hat{j}+3 \hat{k}$, then find the value of λ so that the vectors $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ are perpendicular to each other.

- Watch Video Solution

13. If $\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $\vec{b}=-6 \hat{i}+9 \hat{j}-12 \hat{k}$, then

- Watch Video Solution

14. Find the scalar and vector components of \vec{a} in the direction of \vec{b} where
$\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=\hat{j}+\hat{k}$

- Watch Video Solution

15. Find the scalar and vector components of \vec{a} in the direction of \vec{b} where
$\vec{a}=3 \hat{i}+\vec{j}+3 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}-\hat{k}$

- Watch Video Solution

16. Find the scalar and vector projection of \vec{b} on a \vec{a} where $\vec{a}=\hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=\hat{j}+2 \hat{k}$

- Watch Video Solution

17. Find the projection of vector $(\vec{b}+\vec{a})$ on vector \vec{a} where $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=\hat{j}+2 \hat{k}$

- Watch Video Solution

18. Find the projection of vector $(\vec{b}+\vec{c})$ on vector \vec{a} where $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=\hat{i}+3 \hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{k}$
19. If $|\vec{a}|=\sqrt{3},|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=\sqrt{6}$, then find angle between the vectors \vec{a} and \vec{b}

- Watch Video Solution

20. Find the angle made by the vector $\sqrt{2} \hat{i}+\hat{j}+\hat{k}$ with the y -axis

- Watch Video Solution

21. Find $|\vec{a}-\vec{b}|$, if two vectors \vec{a} and \vec{b} are such that $|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=4$

- Watch Video Solution

22. Define the vector product of two vectors \vec{a} and \vec{b}. Give geometrical interpretation of $\vec{a} \times \vec{b}$. Show that the satisfies the distributive law.

- Watch Video Solution

23. If $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{a} \times \vec{b}|=6$, then find the angle between the vectors \vec{a} and \vec{b}

- Watch Video Solution

24. If \vec{a}, \vec{b} and $\vec{a} \times \vec{b}$ are three unit vectors, find the angles beween the vectors \vec{a} and \vec{b}

- Watch Video Solution

25. If two vectors \vec{a} and \vec{b} are such that $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$, then find the angle the vectors \vec{a} and \vec{b}

- Watch Video Solution

26. If two vectors \vec{a} and \vec{b} are such that $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$, then find the angle the vectors \vec{a} and \vec{b}

- Watch Video Solution

27. If vectors $\vec{a}=p \hat{i}+8 \hat{j}+6 \hat{k}$ and $\vec{b}=-3 \hat{i}+4 \hat{j}+q \hat{k}$ are parallel, find p and q

- Watch Video Solution

28. If $(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+3 \hat{j}+p \hat{k})=\overrightarrow{0}$, find p

- Watch Video Solution

29. If $(2 \hat{i}+6 \hat{j}+14 \hat{k}) \times(\hat{i}-\lambda \hat{j}+7 \hat{k})=\overrightarrow{0}$ find λ

- Watch Video Solution

30. Find the area of the parallelogram whose adjacent sides are $\vec{a}=3 \hat{i}-\hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$

- Watch Video Solution

31. Find the area of the parallelogram whose
whose vertices are the points $(0,-3,-1),(2,1,-1),(3,-3,2)$ and $(1,-7,2)$ taken in order.

- Watch Video Solution

32. Find the area of the parallelogram whose

Whose diagonals are the vectors $3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+4 \hat{k}$

- Watch Video Solution

33. Find the area of triangle
(i) drawn on the vectors $\vec{a}=6 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}=4 \hat{i}-\hat{j}-2 \hat{k}$

- Watch Video Solution

34. Find the area of triangle
whose vertices
have
position
vectors
$\hat{i}+\hat{j}+2 \hat{k}, 2 \hat{i}+2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-\hat{j}-\hat{k}$

- Watch Video Solution

35. Find the area of the triangle
whose vertices are the points $(1,2,3)(2,3,1)$ and $(1,1,1)$

- Watch Video Solution

1. Two vectors \vec{a} and \vec{b} are such that $|\vec{a}|=2,|\vec{b}|=1$ and $\vec{a} \cdot \vec{b}=1$, then find the value of $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$

- Watch Video Solution

2. If $|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=3$, then find the projection of \vec{b} on \vec{a}

- Watch Video Solution

3. If projection of vector $\lambda \hat{i}-\hat{j}$ on vector $\hat{i}+\hat{j}$ is zero, find λ

- Watch Video Solution

4. If $|\vec{a}|=4$ and $|\vec{b}|=3$ find the value of λ for which the vectors $\vec{a}+\lambda \vec{b}$ and $\vec{a}-\lambda \vec{b}$ are perependicular to each other.

- Watch Video Solution

5. The vectors $\vec{a}, \vec{b}, \vec{c}$ are such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$. If $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{c}|=5$, show
$\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=-25$

- Watch Video Solution

6. If $\vec{a}=\hat{i}-\hat{j}+2 \hat{k}, \vec{b}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+\hat{k}$ find the vector \vec{r} satisfying the relations
$\vec{a} \cdot \vec{r}=1, \vec{b} \cdot \vec{r}=2$ and $\vec{c} \cdot \vec{r}=5$

- Watch Video Solution

7. If $\vec{\alpha}$ and $\vec{\beta}$ are perpendicular to each other, show that $|\vec{\alpha}+\vec{\beta}|^{2}=|\vec{a}|^{2}+|\vec{\beta}|^{2}$

- Watch Video Solution

8. If $\vec{\alpha}$ and $\vec{\beta}$ are perpendicular to each other, show that
$|\vec{\alpha}+\vec{\beta}|^{2}=|\vec{\alpha}-\vec{\beta}|^{2}$

- Watch Video Solution

9. $A(p, 1,-1), B(2 p, 0,2)$ and $C(2+2 p, p, p)$ are three points. Find the value of p so that the vectors $\overrightarrow{A B}$ and $\overrightarrow{B C}$ are perpendicular to each other .

- Watch Video Solution

10. If $\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{\beta}=3 \hat{i}-\hat{j}+2 \hat{k}$, find the cosine of the angle between the vectors $(2 \vec{\alpha}+\vec{\beta})$ and $(\vec{\alpha}+2 \vec{\beta})$

- Watch Video Solution

11. Show that the vector \vec{a} is perpendicular to the vector $\vec{b}-\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \vec{a}$

- Watch Video Solution

12. For any two vectors \vec{a} and \vec{b}, show that $|\vec{a} \cdot \vec{b}| \leq|\vec{a}||\vec{b}|$

- Watch Video Solution

13. If $\vec{a}, \vec{b}, \vec{c}$ are non - coplanar vectors $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=0$, show that \vec{r} is a zero vector.

- Watch Video Solution

14. For the vector \vec{a} and \vec{b} if $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, show that \vec{a} and \vec{b} are perpendicular

- Watch Video Solution

15. Prove that $(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=|\vec{a}|^{2}+|\vec{b}|^{2}$, if and only if \vec{a}, \vec{b} are perpendicular, given $\vec{a} 1=\overrightarrow{0}, \vec{b} \neq \overrightarrow{0}$

- Watch Video Solution

16. If \hat{i}, \hat{j} and \hat{k} are unit vectors along three mutuaaly perpendicular axes and

$$
\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} \text { and } \vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}
$$ prove that

$$
\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}
$$

- Watch Video Solution

17. If \hat{i}, \hat{j} and \hat{k} are unit vectors along three mutuaaly perpendicular axes and

$$
\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} \text { and } \vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}
$$

prove that
$(\vec{b}+\vec{c}) \times \vec{a}=\vec{b} \times \vec{a}+\vec{c} \times \vec{a}$

- Watch Video Solution

18. Let $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{j}-\hat{k}$ and $\vec{c}=-\hat{i}+3 \hat{j}+2 \hat{k}$ be three given vectors .Find
$\vec{a} \times \vec{b}$

- Watch Video Solution

19. Let $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{j}-\hat{k}$ and $\vec{c}=-\hat{i}+3 \hat{j}+2 \hat{k}$ be three given vectors .Find
$\vec{c} \times(-\vec{a})$

- Watch Video Solution

20. Let $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{j}-\hat{k}$ and $\vec{c}=-\hat{i}+3 \hat{j}+2 \hat{k}$ be three given vectors .Find
$(\vec{a}-2 \vec{b}) \times \vec{c}$

- Watch Video Solution

21. Let $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{j}-\hat{k}$ and $\vec{c}=-\hat{i}+3 \hat{j}+2 \hat{k}$ be three given vectors .Find
$(\vec{a}+\vec{b}) \times(\vec{b}-\vec{c})$

- Watch Video Solution

22. Let $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{j}-\hat{k}$ and $\vec{c}=-\hat{i}+3 \hat{j}+2 \hat{k}$ be three given vectors .Find angle between \vec{a} and \vec{b}

- Watch Video Solution

23. Let $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{j}-\hat{k}$ and $\vec{c}=-\hat{i}+3 \hat{j}+2 \hat{k}$ be three given vectors .Find sine of the angle \vec{a} and \vec{c}

- Watch Video Solution

24. In each of the following find a unit a vector perpendicular to both
\vec{a} and \vec{b}
$\vec{A}=\hat{i}+\hat{j}$ and $\vec{b}=-\hat{i}+\hat{k}$

- Watch Video Solution

25. In each of the following find a unit a vector perpendicular to both
\vec{a} and \vec{b}
$\vec{a}=2 \hat{i}+\hat{j}$ and $\vec{b}=-\hat{i}+\hat{k}$

- Watch Video Solution

26. In each of the following find a unit a vector perpendicular to both \vec{a} and \vec{b}
$\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$

- Watch Video Solution

27. In each of the following find a unit a vector perpendicular to both \vec{a} and \vec{b}
$\vec{a}=(2,1,1)$ and $\vec{b}=(1,-1,2)$

- Watch Video Solution

28. If $\vec{a}=\hat{i}+\hat{j}-\hat{k}, \vec{b}=2 \hat{i}-2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+2 \hat{j}-2 \hat{k}$ show that,
$\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$
29. If $\vec{a}=\hat{i}+\hat{j}-\hat{k}, \vec{b}=2 \hat{i}-2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+2 \hat{j}-2 \hat{k}$ show that ,
$\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$

- Watch Video Solution

30. Be vector method show that the points
$(2,-3,4),(-2,1,0)$ and $(1,-2,3)$ are collinear

- Watch Video Solution

31. If $\vec{\alpha}=2 \hat{i}+\hat{j}-3 \hat{k}$ and $\vec{\beta}=\hat{i}-2 \hat{j}+\hat{k}$, find a vector of magnitude 5 perpendicular to both $\vec{\alpha}$ and $\vec{\beta}$

- Watch Video Solution

32. If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=6,|\vec{b}|=4$ and $|\vec{c}|=3$ find the cosine of the angle between the vectors \vec{b} and \vec{c}

(Watch Video Solution

33. Prove that,
$(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$

- Watch Video Solution

34. Prove that,
$(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}=|\vec{a}|^{2}|\vec{b}|^{2}$

D Watch Video Solution

35. Prove that,
$\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})=\overrightarrow{0}$

- Watch Video Solution

36. Given that $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$. What can you conclude abut the vector \vec{a} and \vec{b} ?

- Watch Video Solution

37. If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, show that $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$

- Watch Video Solution

38. Find the value of $[(\hat{k} \times \hat{j}) \cdot \hat{i}+\hat{j} \cdot \hat{k}]$

- Watch Video Solution

39. The three vertices of the triangle $A B C$ are $A(2,3,5) B(3,5,8)$ and $C(2,7,8)$: using vector method find the area of the triangle ABC.

- Watch Video Solution

40. Find a unit vector perpendicular to both the vector $\vec{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}+\hat{k}$

- Watch Video Solution

41. Find a unit vector perpendicular to each of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ where $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$.

- Watch Video Solution

Exercise 2 A Long Answer Type Questions

1. Applying vectors , show that
$\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2} \leq\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)$

- Watch Video Solution

2. By vector method show that, an angle inscribed in a semi-circle is a right angle ,

- Watch Video Solution

3. By vector method show that,
the parallelogram whose diagonals are equal is a rectangle,

- Watch Video Solution

4. By vector method show that, the perpendicular bsectors of the sides of a triangle are concurrent.

D Watch Video Solution

5. By vector method show that,
median to the base of an isocales triangle is perpendicular to the base .
6. $A(3,-1,2), B(2,-3,3)$ and $C(1,-2,1)$ are three given points.

Find the angle between the vectors $\overrightarrow{B A}$ and $\overrightarrow{B C}$.

- Watch Video Solution

7. Three vectors $\vec{a}, \vec{b}, \vec{c}$ are such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, if $|\vec{a}|=1|\vec{b}|=4$ and $|\vec{c}|=2 \quad$, then find the value of
$\mu=(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})$

- Watch Video Solution

8. The scaler product of the vector $\hat{i}+\hat{j}+\hat{k}$ with the unit vector along the sum of vectors $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of λ
9. Let $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ be three given vectors, if $\vec{a}+\lambda \vec{b}$ and \vec{c} are perpendicular to each other, find λ

- Watch Video Solution

10. Let $\vec{a}=2 \hat{i}+2 \hat{j}+2 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ be three given vectors, if $\vec{a}+\lambda \vec{b}$ and \vec{c} are perpendicular to each other , find lambda .

- Watch Video Solution

11. If $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{i}-6 \hat{j}-\hat{k}$ are the position vectors find the angle between $\overrightarrow{A B}$ and $\overrightarrow{C D}$. Deduce that $\overrightarrow{A B}$ and $\overrightarrow{C D}$ are collinear .

- Watch Video Solution

12. Express the vector $\vec{a}=5 \hat{i}-2 \hat{j}+5 \hat{k}$ as sum of two vectors such that one is parallel to vector $\vec{b}=3 \hat{i}+\hat{k}$ and the other is perpendicular to \vec{b}

- Watch Video Solution

13. If $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$ then $\vec{a} \cdot \vec{b}=0$, show by an example that the converse of this statement is not always true.

- Watch Video Solution

14. If $\vec{a}=3 \hat{i}+4 \hat{j}-\hat{k}, \vec{b}=\hat{i}-3 \hat{j}+4 \hat{k}$ and $\vec{c}=5 \hat{i}-6 \hat{j}+4 \hat{k}$, find the vector \vec{r} which is perpendicular to both \vec{a} and \vec{b} and which satisfies the relation $\vec{r} \cdot \vec{c}=91$

- Watch Video Solution

15. Let $\vec{a}, \vec{b}, \vec{c}$ be the positions vectors of the vertices of a triangle, prove that the area of the triangle is $\frac{1}{2}|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|$

- Watch Video Solution

16. Given $\vec{a}=4 \hat{i}+5 \hat{j}-\hat{k}, \vec{b}=\hat{i}-4 \hat{j}+5 \hat{k}$ If $|\vec{c}|=21$ and \vec{c} is perpendicular to \vec{a} and \vec{b}, find in component form the vector \vec{c}

- Watch Video Solution

Exercise 2 B Short Answer Type Questions

1. If $\vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{i}-\hat{j}$ and $\vec{c}=5 \hat{i}+2 \hat{j}+3 \hat{k}$, find the value of $\left[\begin{array}{lll}\vec{b} & \vec{c} & \vec{a}\end{array}\right]$

- Watch Video Solution

2. If $\vec{\alpha}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{\beta}=2 \hat{i}-3 \hat{j}+\hat{k}$ and $\vec{\gamma}=3 \hat{i}+\hat{j}-2 \hat{k}$, find $\vec{\alpha} \cdot(\vec{\beta} \times \vec{\gamma})$.

- Watch Video Solution

3. If $\vec{\alpha}=-\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=3 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{c}=2 \hat{i}+\hat{j}+3 \hat{k}$, find $\left[\begin{array}{llll}\vec{c} & \vec{a} & \vec{b}\end{array}\right]$

- Watch Video Solution

4. The vectors which determine the sides of the parallelopiped are given below :
$\hat{i}+\hat{j}+\hat{k}, \hat{k}, 3 \hat{i}-\hat{j}+2 \hat{k}$

- Watch Video Solution

5. The vectors which determine the sides of the parallelopiped are given below :
$\hat{i}+\hat{j}+\hat{k}, \hat{i}+2 \hat{j}+2 \hat{k}, \hat{i}-2 \hat{j}+4 \hat{k}$

- Watch Video Solution

6. In each of the following show that the given vectors are coplanar:
$4 \hat{i}+2 \hat{j}+\hat{k}, 2 \hat{i}-\hat{j}+3 \hat{k}, 8 \hat{i}+7 \hat{k}$

- Watch Video Solution

7. In each of the following show that the given vectors are coplanar:
$\vec{a}=\hat{i}+\hat{j}-6 \hat{k}, \vec{b}=\hat{i}+3 \hat{j}+4 \hat{k}, \vec{c}=2 \hat{i}+5 \hat{j}+3 \hat{k}$

- Watch Video Solution

8.

$\vec{a}=-2 \hat{i}-2 \hat{j}+4 \hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}-2 \hat{k}$ and $\vec{c}=4 \hat{i}-2 \hat{j}-2 \hat{k}$, find $\vec{a} \cdot(\vec{b} \times \vec{c})$ and interpret the result

- Watch Video Solution

9. If the vectors $x \hat{i}-4 \hat{j}+5 \hat{k}, \hat{i}+2 \hat{j}+\hat{k}$ and $2 \hat{i}-\hat{j}+\hat{k}$ are coplanar, find the value x

Watch Video Solution

10.

> If
the
vectors
$\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{c}=3 \hat{i}+\lambda \hat{j}+5 \hat{k} \quad$ are coplanar, find the value of λ

- Watch Video Solution

11. The position vectors of four points A, B, C and D are given below. In each case, using vector method prove that the four points A, B, C and D are coplanar .
$6 \hat{i}-4 \hat{j}+10 \hat{k},-5 \hat{i}+3 \hat{j}-10 \hat{k}, 4 \hat{i}-6 \hat{j}-10 \hat{k}, 2 \hat{j}+10 \hat{k}$

- Watch Video Solution

12. The position vectors of four points A, B, C and D are given below. In each case, using vector method prove that the four points A, B, C and D are coplanar .
$4 \hat{i}+8 \hat{j}+12 \hat{k}, 2 \hat{i}+4 \hat{j}+6 \hat{k}, 3 \hat{i}+5 \hat{j}+4 \hat{k}, 5 \hat{i}+8 \hat{j}+5 \hat{k}$

- Watch Video Solution

13. If the vectors $-4 \hat{i}-6 \hat{j}-2 \hat{k},-\hat{i}+4 \hat{j}+3 \hat{k}$ and $-8 \hat{i}-\hat{j}+\lambda \hat{k}$ are coplanar , then find the value of λ
14. If the vectors $\vec{a}=2 \hat{i}-\lambda \hat{j}+3 \hat{k}, \vec{b}=3 \hat{i}+2 \hat{k}-\mu \hat{k} \quad$ and $\vec{c}=\hat{i}+\hat{j}+\hat{k}$ are coplanar, find μ in terms of λ

Watch Video Solution

15. Prove that:
$(\vec{a}+\vec{b}) \cdot\{(\vec{b}+\vec{c}) \times(\vec{c}+\vec{a})\}=2 \vec{a} \cdot(\vec{b} \times \vec{c})$

- Watch Video Solution

16. Prove that :
$\vec{a} \cdot\{\vec{b} \times(\vec{c}+\vec{d})\}=\vec{a} \cdot(\vec{b} \times \vec{c})+\vec{a} \cdot(\vec{b} \times \vec{d})$

- Watch Video Solution

17.

$\vec{\alpha}=\lambda \hat{i}+\hat{j}+3 \hat{k}, \quad \vec{\beta}=-\hat{i}+2 \hat{j}+\hat{k}, \quad \vec{\gamma}=3 \hat{i}+\hat{j}+2 \hat{k}$ and $[\vec{\alpha} \bar{\beta}$
then find the value of λ

- Watch Video Solution

18. If the vectors $a \hat{i}+a \hat{j}+c \hat{k}, \hat{i}+\hat{k}$ and $c \hat{i}+c \hat{j}+b \hat{k}$ be coplanar, show that $c^{2}=a b$

- Watch Video Solution

19. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ then, if $c_{1}=1$ and $c_{2}=2$, find c_{3} which makes \vec{a}, \vec{b} and \vec{c} coplanar.

- Watch Video Solution

20. Find x such that the four points $A(3,2,1), B(4, x, 5), C(4,2,-2)$ and $D(6,5,-1)$ are coplanar .

Sample Questions For Competitive Examination Multiple Correct Answers Type

1. $f \vec{a}$ is any vector, then -
A. $(\vec{a} \cdot \hat{i}) \hat{i}+(\vec{a} \cdot \hat{j}) \hat{j}+(\vec{a} \cdot \hat{k}) \hat{k}=\vec{a}$
B. $(\vec{a} \cdot \hat{i})^{2}+(\vec{a} \cdot \hat{j})^{2}+(\vec{a} \cdot \hat{k})^{2}=|\vec{a}|^{2}$
C. $\hat{i} \times(\vec{a} \times \hat{j})+\hat{j} \times(\vec{a} \times \hat{j})+\hat{k} \times(\vec{a} \times \vec{k})=2 \vec{a}$
D. all of the above

Answer: A,B,C,D

- Watch Video Solution

2.

The
vector
a
$=\lambda \hat{i}+\hat{j}+2 \hat{k}, \vec{b}=\hat{i}+\lambda \hat{j}-\hat{k}$ and $\vec{c}=2 \hat{i}-\hat{i}-\hat{j}+\lambda \hat{k}$
are coplanar if -

$$
\text { A. } \lambda=-2
$$

B. $\lambda=\sqrt{3}+1$
C. $\lambda=1-\sqrt{3}$
D. $\lambda=2$

Answer: A,B,C

- View Text Solution

3. If $\vec{a}, \vec{b}, \vec{c}$ are any vectors, then which the following is equal to $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a} ?$
A. $(\vec{a}-\vec{b}) \times(\vec{b}-\vec{c})$
B. $(\vec{c}-\vec{b}) \times(\vec{a}-\vec{c})$
c. $(\vec{a}-\vec{b}) \times(\vec{a}-\vec{c})$
D. $\frac{1}{2}\{\vec{a} \times(\vec{b}-\vec{c})+\vec{b} \times(\vec{c}-\vec{a})+\vec{c} \times(\vec{a}-\vec{b})\}$

Answer: A,B,C,D

4. If $\alpha=2 \vec{i}+3 \vec{j}-5 \vec{k}$ and $\beta=\vec{i}-\vec{j}$, then find the value of $\alpha \times \beta$

- Watch Video Solution

5. The vectors $\vec{a}, \vec{b}, \vec{c}$ are of same magnitude and taken pariwise, they contain equal angles. If $\vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{j}+\hat{k}$ then the vector $\vec{c}=$
A. $\hat{i}+\hat{k}$
B. $\hat{i}+2 \hat{j}+3 \hat{k}$
C. $-\hat{i}+\hat{j}+2 \hat{k}$
D. $-\frac{1}{3} i+\frac{4}{3} \hat{j}-\frac{1}{3} \hat{k}$

Answer: A,D

- Watch Video Solution

1. Let $\vec{a}=-\hat{i}-\hat{k}, \vec{b}=-\hat{i}+\hat{j}$ and $\vec{c}=\hat{i}+2 \hat{j}+3 \hat{k}$ be three given vectors . If \vec{r} is a vector such that $\vec{r} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a}=0$ then the value of $\vec{r} \cdot \vec{b}$ is -

- Watch Video Solution

2. If \vec{a} and \vec{b} are two vectors in space given by $\vec{a}=\frac{\hat{i}-2 \hat{j}}{\sqrt{5}}$ and $\vec{b}=\frac{2 \hat{i}+\hat{j}+3 \hat{k}}{\sqrt{14}}$ then the value of

D View Text Solution

3. If a vector \vec{v} is such that $2 \vec{v}+\vec{v} \times[\hat{i}+2 \hat{j}]=2 \hat{i}+\hat{k}$ and $|\vec{v}|=\frac{1}{3} \sqrt{m}$, then m is equal to -

- Watch Video Solution

4. If $\vec{a}=3 \alpha \hat{i}+2 \hat{j}-3 \hat{k}, \vec{b}=\hat{i}+6 \alpha \hat{j}-2 \hat{k}$ and $\hat{c}=2 \hat{i}-3 \alpha \hat{j}+\hat{k}$ be such that $\{(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})\} \times(\vec{c} \times \vec{a})=\vec{O}$, then the value of 9α is -

- Watch Video Solution

5. A median drawn from the vertex from the A of a triangle $A B C$ is bisected at E. $B E$ meets $A C$ in F such that $A F: A C=1: n$ where n is-

- Watch Video Solution

Sample Questions For Competitive Examination Matrix Match Type

1. Match the following Column I and Column II

1.	Column I		Column II
(A)	For any vector $\vec{a}, \vec{a} \times \vec{a}$ is equal to	(p)	$(\vec{a})^{2}$ (B)
For any vector $\vec{a}, \vec{a} \cdot \vec{a}$ is equal to	(q)	$\overrightarrow{0}$	
(C)	For any vector \vec{a}, $(\vec{a} \cdot \hat{i}) \hat{i}+(\vec{a} \cdot \hat{j}) \hat{j}+(\vec{a} \cdot \hat{k}) \hat{k}=$	(r)	$-2 \vec{a}$
(D)	For any vector $\vec{a},(\vec{a} \times \hat{i}) \times \hat{i}+(\vec{a} \times \hat{j}) \times \hat{j}$ $+(\vec{a} \times \hat{k}) \times \hat{k}=$	(s)	\vec{a}
		(t)	$\|\vec{a}\|^{2}$

- Watch Video Solution

2. If $\alpha=2 \vec{i}+3 \vec{j}-5 \vec{k}$ and $\beta=\vec{i}-\vec{j}$, then find the value of α. β

- Watch Video Solution

Sample Questions For Competitive Examination Comprehension Type

1. Let $\vec{a}, \vec{b}, \vec{c}$ be unit such that $\hat{a}+\hat{b}+\hat{c}=\vec{\alpha}$ and
$\widehat{a} . \hat{b}=\hat{b} . \hat{c}=\hat{c} \cdot \widehat{a}=\frac{1}{2}$

Magnitude of vector $\vec{\alpha}$ is equal to -
A. 3
B. $\sqrt{3}$
C. $\sqrt{6}$
D. 6

Answer: c

- Watch Video Solution

2. Let $\vec{a}, \vec{b}, \vec{c}$ be unit such that $\hat{a}+\hat{b}+\hat{c}=\vec{\alpha}$ and $\widehat{a} . \hat{b}=\hat{b} . \hat{c}=\hat{c} . \widehat{a}=\frac{1}{2}$

Which of the following is not a unit vector?
A. $\vec{a}-\vec{b}$
B. $\vec{b}-\vec{c}$
C. $\vec{c}-\vec{a}$
D. none of these

Answer: d

- Watch Video Solution

3. Let $\vec{a}, \vec{b}, \vec{c}$ be unit such that $\hat{a}+\hat{b}+\hat{c}=\vec{\alpha}$ and $\widehat{a} . \hat{b}=\hat{b} . \hat{c} . \widehat{a}=\frac{1}{2}$
$|(\widehat{a} \times \hat{b}) \times \hat{c}|$ is equal to -
A. 0
B. $\frac{1}{2}$
C. 1
D. 2

Answer: b
4. If $\alpha=9 \vec{i}-\vec{j}+2 \vec{k}$ and $\beta=\vec{i}+2 \vec{k}$, then find the value of α. β

- Watch Video Solution

5. If $\alpha=9 \vec{i}-\vec{j}+2 \vec{k}$ and $\beta=\vec{i}+2 \vec{k}$, then find the value of $\alpha \times \beta$

- Watch Video Solution

6. If $\alpha=5 \vec{i}-3 \vec{k}$ and $\beta=2 \vec{i}-\vec{j}+2 \vec{k}$, then find the value of $\alpha \times \beta$

- Watch Video Solution

Sample Questions For Competitive Examination Assertion Reason Type

1. Let $\vec{a}=\hat{i}+\hat{j}-3 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}+\hat{k}$

Statement-I: Vectors \vec{a} and \vec{b} are perpendicular to each other

Statement -II: $\vec{a} \cdot \vec{b}=0$

- Watch Video Solution

2. If $\alpha=5 \vec{i}-3 \vec{k}$ and $\beta=2 \vec{i}-\vec{j}+2 \vec{k}$, then find the value of $\alpha . \beta$
