

MATHS

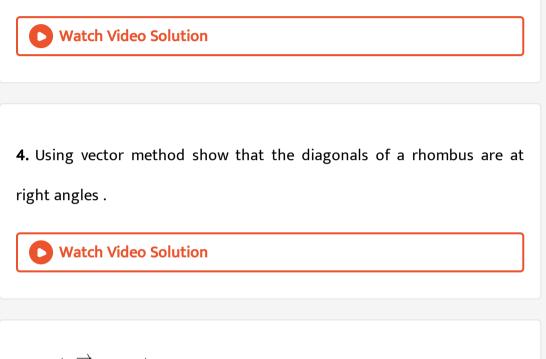
BOOKS - CHHAYA PUBLICATION MATHS (BENGALI ENGLISH)

PRODUCTS OF TWO VECTORS

Example

1. Find the cosine of the angle between the vectors

$$\stackrel{
ightarrow}{a}=3\hat{i}+2\hat{k}\, ext{ and }\stackrel{
ightarrow}{b}=2\hat{i}-2\hat{j}+4\hat{k}$$


Watch Video Solution

2. If the vectors $3\hat{i}-2\hat{j}+m\hat{k}~~{
m and}~~-2\hat{i}+\hat{j}+4\hat{k}$ are perpendicular to

each other , find the value of m

3. Find the scalar and vector projections of $3\hat{i}-\hat{j}+4\hat{k}$ on $2\hat{i}+3\hat{j}-6\hat{k}$

5. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three mutually perpendicular vectors of equal magnitude , show that , vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} make an equal angle with $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$

6. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three vectors of magnitude 3,4 and 5 respectively such that each vector is perpendicular to the sum of the other two vectors, prove that $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right| = 5\sqrt{2}$

7. If the sum of two unit vectors is a unit vector then show that the magnitude of their difference is $\sqrt{3}$

Watch Video Solution

8. Find λ where projection of $\overrightarrow{a} = \lambda \hat{i} + \hat{j} + 4\hat{k}$ on $\overrightarrow{b} = 2\hat{i} + 6\hat{i} + 3\hat{k}$ is

4 unit

9. Let $\overrightarrow{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\overrightarrow{b} = 3\hat{i} - 2\hat{j} - 7\hat{k}$ and $\overrightarrow{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector \overrightarrow{d} which is perpendicular to both \overrightarrow{a} and \overrightarrow{b} and $\overrightarrow{c} \cdot \overrightarrow{d} = 18$

Watch Video Solution

10. Show that the perpendicular from the vertices of a triangle to the opposites sides are concurrent .

Watch Video Solution

11. If
$$\overrightarrow{a} = 3\hat{i} - 2\hat{j} + \hat{k}$$
 and $\overrightarrow{b} = \hat{i} - 3\hat{j} + 4\hat{k}$, find $\overrightarrow{a} \times \overrightarrow{b}$ and the area of the parallelogram whose adjacent sides are \overrightarrow{a} and \overrightarrow{b}

12. Find a unit vector perpendicular to both the vectors $2\hat{i} - 3\hat{j} + 6\hat{k}$ and $3\hat{j} - 4\hat{k}$. Also find the sine of the angle between the given vectors .

Watch Video Solution

13. For what values of p and q the vectors $2\hat{i}+p\hat{j}-3\hat{k}$ and $q\hat{i}-4\hat{j}+2\hat{k}$

are parallel ?

Watch Video Solution

14. By vector method find the area of the triangle whose vertices are (1,1,1)

,(2,0,1) and (3, -2, 0)

15. If
$$\overrightarrow{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, \ \overrightarrow{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$$
 and
 $\overrightarrow{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ prove that
 $\overrightarrow{a} \times \left(\overrightarrow{b} + \overrightarrow{c}\right) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}$
Watch Video Solution

16. Find the vector α which is perpendicular to both $4\hat{i} + 5\hat{j} - \hat{k}$ and $\hat{i} - 4\hat{j} + 5\hat{k}$ and which satisfies the relation α . $\beta = 21$ where $\beta = 3\hat{i} + 5\hat{j} - \hat{k}$

Watch Video Solution

17. If $\overrightarrow{\alpha}, \overrightarrow{\beta}, \overrightarrow{\gamma}$ be unit vectors satisfying the condition $\overrightarrow{a} + \overrightarrow{\beta} + \overrightarrow{\gamma} = \overrightarrow{0}$ show that $\overrightarrow{\alpha}, \overrightarrow{\beta} + \overrightarrow{\beta}, \overrightarrow{\gamma} + \overrightarrow{\gamma}, \overrightarrow{\alpha} = -\frac{3}{2}$

18. If $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$ and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$, show that $\overrightarrow{a} - \overrightarrow{d}$ is parallel $\overrightarrow{b} - \overrightarrow{c}$, where to $\overrightarrow{a} \neq \overrightarrow{d}$ and $\overrightarrow{b} \neq \overrightarrow{c}$

Watch Video Solution

19. If $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ and $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 5$ and $|\overrightarrow{c}| = 7$, find the angle between the vectors \overrightarrow{a} and \overrightarrow{b}

Watch Video Solution

20. If
$$\overrightarrow{a} = 4\hat{i} - 3\hat{k}$$
 and $\overrightarrow{b} = -2\hat{i} + \hat{j} + 2\hat{k}$ be two diagonals of

parallelogram, then find its area.

Watch Video Solution

21. The dot products of a vector with the vectors $\hat{i} - 3\hat{k}, \, \hat{i} - 2\hat{k}$ and $\hat{i} + \hat{j} + 4\hat{j}$ are 0,5,8 respectively . Find the vector .

22. If
$$\overrightarrow{p}$$
 is a unit vector and $\left(\overrightarrow{x}-\overrightarrow{p}\right)$. $\left(\overrightarrow{x}+\overrightarrow{p}\right)=8$, then find $\left|\overrightarrow{x}\right|$

Watch Video Solution

23. If
$$\overrightarrow{p}$$
 is a unit and $\left(\overrightarrow{x}-\overrightarrow{p}\right)$. $\left(\overrightarrow{x}+\overrightarrow{p}\right)=80$ then find $\left|\overrightarrow{x}\right|$

Watch Video Solution

24. Let
$$\overrightarrow{a} = 2\hat{i} + \hat{k}$$
, $\overrightarrow{b} = \hat{i} + \hat{j} + \hat{k}$ and $\overrightarrow{c} = 4\hat{i} - 3\hat{j} + 7\hat{k}$ be three
given vectors . Find a vector \overrightarrow{c} which satisfies the relations
 $\overrightarrow{r} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{b}$ and $\overrightarrow{r} \cdot \overrightarrow{a} = 0$

25. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three unit vectors such that \overrightarrow{a} . $\overrightarrow{b} = \overrightarrow{a}$. $\overrightarrow{c} = 0$ and angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{\pi}{6}$, prove that, $\overrightarrow{a} = \pm 2\left(\overrightarrow{b} \times \overrightarrow{c}\right)$

Watch Video Solution

26. Using vectors , prove that in a triangle ABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
where a,b,c are lengths of the ideas opposite to the angles A,B,C of triangle ABC respectively .

Watch Video Solution

27. Using vectors , prove that in a triangle ABC

$$a^2=b^2+c^2-2bc\cos A$$

where a,b,c are lengths of the ideas opposite to the angles A,B,C of triangle ABC respectively.

28. Using vectors , prove that in a triangle ABC

 $a = b \cos C + c \cos B$

where a,b,c are lengths of the ideas opposite to the angles A,B,C of triangle ABC respectively.

Watch Video Solution

Exercise 2 A Choose The Correct Question

1. If
$$\overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}$$
 and $\overrightarrow{b} = -\hat{i} + 3\hat{j} + 4\hat{k}$, then value of \overrightarrow{a} . \overrightarrow{b} is -
A. 1
B. 3
C. -3
D. -1

Answer: d

2. If
$$\overrightarrow{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$$
 and $\overrightarrow{b} = -6\hat{i} + 9\hat{j} - 12\hat{k}$, then

A.
$$\overrightarrow{a} \perp \overrightarrow{b}$$

 $\mathbf{B}.\overrightarrow{a}||\overrightarrow{b}$

C. angle between the vectors is \cos^{-1} . $\frac{3}{4}$

D. angle between the vectors is $\frac{\pi}{3}$

Answer: b

3. The scalar projection of
$$\overrightarrow{a}=2\hat{i}-3\hat{j}+\hat{k}$$
 on $\overrightarrow{b}=3\hat{i}-6\hat{j}-2\hat{k}$

A.
$$\frac{22}{7}$$

B. $\frac{26}{7}$
C. $\frac{22}{\sqrt{14}}$

D.
$$\frac{26}{\sqrt{14}}$$

Answer: a

Watch Video Solution

4. If the vectors $\overrightarrow{a} = 3\hat{j} + 6\hat{k}$ and $\overrightarrow{b} = -2\hat{i} + m\hat{j} - 3\hat{k}$ are perpendicular to each other, then the value of m is -

- A. 12
- B.-6
- C. 12
- D. 6

Answer: d

5. If $\overrightarrow{a} = 2\hat{i} - \hat{j}$ and $\overrightarrow{b} = 3\hat{i} - 2\hat{j} + 4\hat{k}$, then the value of $\overrightarrow{a} \times \overrightarrow{b}$ is -

A. $4\hat{i} - 8\hat{i} - \hat{k}$ B. $-4\hat{j} - \hat{j} + \hat{k}$ C. $4\hat{i} - 8\hat{j} + \hat{k}$ D. $-4\hat{i} - 8\hat{j} - \hat{k}$

Answer: d

Watch Video Solution

6. If
$$\overrightarrow{a} = 2\hat{i} - 2\hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{i} + \hat{j} - \hat{k} \ ext{and} \ \left| \overrightarrow{a} \times \overrightarrow{b} \right| = \sqrt{13m}$$
 then

the value of m is -

A. 3

B.4

C. 2

D. 1

Answer: c

7. If
$$\left|\overrightarrow{a}\right| = 4$$
, $\left|\overrightarrow{b}\right| = 2\sqrt{3}$ and $\left|\overrightarrow{a} \times \overrightarrow{b}\right| = 12$, then the angle between the vectors \overrightarrow{a} and \overrightarrow{b} is -

A.
$$\frac{\pi}{3}$$

B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: a

8. If
$$\overrightarrow{a}=2\hat{i}+4\hat{j}-3\hat{k},$$
 $\overrightarrow{b}=\hat{i}+m\hat{k}$ and $\left|\overrightarrow{a}\times\overrightarrow{b}\right|=0$, then the

values of m is -

A.
$$\frac{3}{2}$$

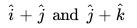
B. -3
C. $-\frac{3}{2}$

D. 3

Answer: c

View Text Solution

Exercise 2 A Very Short Aanswer Type Questions


1. Define scalar product of two vectors . Show of two vectors . Show that

scalar product of vectors satisfies the commutative and distributive laws.

2. Find the scalar product of the following pair of vectors and the angle

between them :

3. Find the scalar product of the following pair of vectors and the angle

between them :

$$\stackrel{
ightarrow}{a}=2\hat{i}+3\hat{j}-4\hat{k}\, ext{ and }\stackrel{
ightarrow}{b}=\hat{i}+2\hat{j}+\hat{k}$$

Watch Video Solution

4. Find the scalar product of the following pair of vectors and the angle

between them :

$$\stackrel{
ightarrow}{a}=2\hat{i}-5\hat{j}+3\hat{k}\, ext{ and }\stackrel{
ightarrow}{b}=\hat{i}-2\hat{j}-4\hat{k}$$

Watch Video Solution

5. Show that the vectors

$$\left| \overrightarrow{a} imes \overrightarrow{b}
ight|^2 = \left| egin{matrix} \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{b} \ \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{b} \ \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{b} & \overrightarrow{b} \ \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{b} & \overrightarrow{b} \end{matrix}
ight|$$

6. If
$$\overrightarrow{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$$
 and $\overrightarrow{b} = -6\hat{i} + 9\hat{j} - 12\hat{k}$, then

7. Show that the vectors are mutually perpendicular

$$\hat{i} + 2\hat{j} + \hat{k},\, \hat{i} + \hat{j} - 3\hat{k} \, ext{ and } \, 7\hat{i} - 4\hat{j} + \hat{k}$$

Watch Video Solution

8. Show that the vectors

$$a=2\hat{i}+3\hat{j}+6\hat{k},b=3\hat{i}-6\hat{j}+2\hat{k}$$
 and $c=6\hat{i}+2\hat{j}-3\hat{k}$ are mutually

perpendicular

9. In each of the following cases two vectors are perpendicular to each

other, find m

 $\hat{mi}-2\hat{j}+\hat{k} \,\, ext{and}\,\,3\hat{i}-2\hat{j}-7\hat{k}$

10. In each of the following cases two vectors are perpendicular to each

other, find m

$$\stackrel{
ightarrow}{a} = m \hat{i} - 2 \hat{j} - 5 \hat{k} \, ext{ and } \stackrel{
ightarrow}{b} = \, - \, 3 \hat{i} - \hat{j} + 4 \hat{k}$$

Watch Video Solution

11. In the following cases two vectors are perpendicular to each other, find

$$a(1,1,m) \, ext{ and } \stackrel{
ightarrow}{b} = 3 \hat{i} - \hat{j} + 2 \hat{k}$$

12. If $\overrightarrow{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\overrightarrow{b} = \hat{i} + \lambda\hat{j} + 3\hat{k}$, then find the value of λ so that the vectors $\left(\overrightarrow{a} + \overrightarrow{b}\right)$ and $\left(\overrightarrow{a} - \overrightarrow{b}\right)$ are perpendicular to each other.

Watch Video Solution

13. If
$$\overrightarrow{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$$
 and $\overrightarrow{b} = -6\hat{i} + 9\hat{j} - 12\hat{k}$, then

Watch Video Solution

14. Find the scalar and vector components of \overrightarrow{a} in the direction of \overrightarrow{b}

where

$$\overrightarrow{a} = \hat{i} + \hat{j} \, ext{ and } \, \overrightarrow{b} = \hat{j} + \hat{k}$$

Watch Video Solution

15. Find the scalar and vector components of \overrightarrow{a} in the direction of \overrightarrow{b}

where

$$\overrightarrow{a}=3\hat{i}+\overrightarrow{j}+3\hat{k} ext{ and } \overrightarrow{b}=\hat{i}-\hat{j}-\hat{k}$$

Watch Video Solution

16. Find the scalar and vector projection of
$$\overrightarrow{b}$$
 on a \overrightarrow{a} where
 $\overrightarrow{a} = \hat{i} + 2\hat{j} + 2\hat{k}$ and $\overrightarrow{b} = \hat{j} + 2\hat{k}$

Watch Video Solution

17. Find the projection of vector $\left(\overrightarrow{b} + \overrightarrow{a}\right)$ on vector \overrightarrow{a} where $\overrightarrow{a} = 2\hat{i} - \hat{j} + 2\hat{k}$ and $\overrightarrow{b} = \hat{j} + 2\hat{k}$

Watch Video Solution

18. Find the projection of vector $(\overrightarrow{b} + \overrightarrow{c})$ on vector \overrightarrow{a} where $\overrightarrow{a} = \hat{i} + 2\hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{i} + 3\hat{j} + \hat{k}$ and $\overrightarrow{c} = \hat{i} + \hat{k}$

19. If $\overrightarrow{|a|} = \sqrt{3}$, $\left|\overrightarrow{b}\right| = 2$ and $\overrightarrow{a} \cdot \overrightarrow{b} = \sqrt{6}$, then find angle between the vectors \overrightarrow{a} and \overrightarrow{b}

20. Find the angle made by the vector $\sqrt{2}\hat{i}+\hat{j}+\hat{k}$ with the y - axis

21. Find
$$\left|\overrightarrow{a} - \overrightarrow{b}\right|$$
, if two vectors \overrightarrow{a} and \overrightarrow{b} are such that $\left|\overrightarrow{a}\right| = 2$, $\left|\overrightarrow{b}\right| = 3$ and \overrightarrow{a} . $\overrightarrow{b} = 4$

Watch Video Solution

22. Define the vector product of two vectors \overrightarrow{a} and \overrightarrow{b} . Give geometrical interpretation of $\overrightarrow{a} \times \overrightarrow{b}$. Show that the satisfies the distributive law.

23. If
$$\left|\overrightarrow{a}\right| = 3$$
, $\left|\overrightarrow{b}\right| = 4$ and $\left|\overrightarrow{a} \times \overrightarrow{b}\right| = 6$, then find the angle between the vectors \overrightarrow{a} and \overrightarrow{b}

Watch Video Solution

24. If \overrightarrow{a} , \overrightarrow{b} and $\overrightarrow{a} \times \overrightarrow{b}$ are three unit vectors , find the angles beween the vectors \overrightarrow{a} and \overrightarrow{b}

Watch Video Solution

25. If two vectors \overrightarrow{a} and \overrightarrow{b} are such that $\left|\overrightarrow{a}, \overrightarrow{b}\right| = \left|\overrightarrow{a} \times \overrightarrow{b}\right|$, then find the angle the vectors \overrightarrow{a} and \overrightarrow{b}

26. If two vectors \overrightarrow{a} and \overrightarrow{b} are such that $\left|\overrightarrow{a}, \overrightarrow{b}\right| = \left|\overrightarrow{a} \times \overrightarrow{b}\right|$, then find the angle the vectors \overrightarrow{a} and \overrightarrow{b}

Watch Video Solution

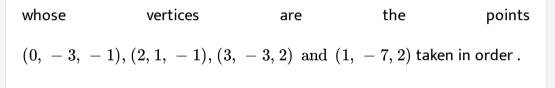
27. If vectors $\overrightarrow{a}=p\hat{i}+8\hat{j}+6\hat{k}~~{
m and}~~\overrightarrow{b}=~-3\hat{i}+4\hat{j}+q\hat{k}$ are parallel ,

find p and q

Watch Video Solution

28. If
$$\left(2\hat{i}+6\hat{j}+27\hat{k}
ight) imes\left(\hat{i}+3\hat{j}+p\hat{k}
ight)=\stackrel{
ightarrow}{0}$$
 , find p

Watch Video Solution

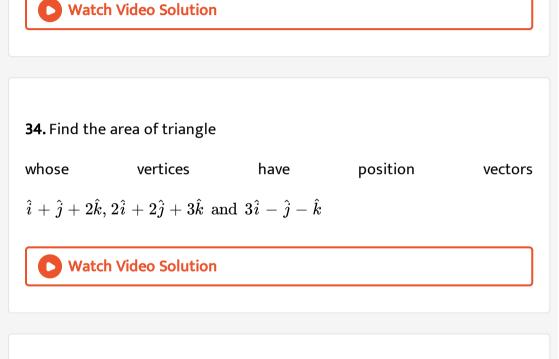

29. If
$$\left(2\hat{i}+6\hat{j}+14\hat{k}
ight) imes\left(\hat{i}-\lambda\hat{j}+7\hat{k}
ight)=\stackrel{
ightarrow}{0}$$
 find λ

30. Find the area of the parallelogram whose

adjacent sides are
$$\overrightarrow{a}=3\hat{i}-\hat{j}+4\hat{k}\,\, ext{and}\,\,\overrightarrow{b}=\hat{i}-\hat{j}+\hat{k}$$

Watch Video Solution

31. Find the area of the parallelogram whose


Watch Video Solution

32. Find the area of the parallelogram whose

Whose diagonals are the vectors $3\hat{i}+\hat{j}-2\hat{k}$ and $\hat{i}-3\hat{j}+4\hat{k}$

33. Find the area of triangle

(i) drawn on the vectors
$$\overrightarrow{a}=6\hat{i}+2\hat{j}-3\hat{k}$$
 and $\overrightarrow{b}=4\hat{i}-\hat{j}-2\hat{k}$

35. Find the area of the triangle

whose vertices are the points (1,2,3) (2,3,1) and (1,1,1)

Exercise 2 A Short Answer Type Questions

1. Two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} are such that $\left|\overrightarrow{a}\right| = 2$, $\left|\overrightarrow{b}\right| = 1$ and \overrightarrow{a} . $\overrightarrow{b} = 1$, then find the value of $\left(3\overrightarrow{a} - 5\overrightarrow{b}\right)$. $\left(2\overrightarrow{a} + 7\overrightarrow{b}\right)$

Watch Video Solution

2. If
$$|\overrightarrow{a}| = 2$$
, $|\overrightarrow{b}| = 3$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 3$, then find the projection of \overrightarrow{b} on \overrightarrow{a}

Watch Video Solution

3. If projection of vector $\lambda \, \hat{i} \, - \, \hat{j}$ on vector $\, \hat{i} \, + \, \hat{j}$ is zero , find λ

Watch Video Solution

4. If $|\overrightarrow{a}| = 4$ and $|\overrightarrow{b}| = 3$ find the value of λ for which the vectors $\overrightarrow{a} + \lambda \overrightarrow{b}$ and $\overrightarrow{a} - \lambda \overrightarrow{b}$ are perependicular to each other.

5. The vectors
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$. If $\left|\overrightarrow{a}\right| = 3, \left|\overrightarrow{b}\right| = 4$ and $\left|\overrightarrow{c}\right| = 5$, show that $\overrightarrow{a}, \overrightarrow{b} + \overrightarrow{b}, \overrightarrow{c} + \overrightarrow{c}, \overrightarrow{a} = -25$

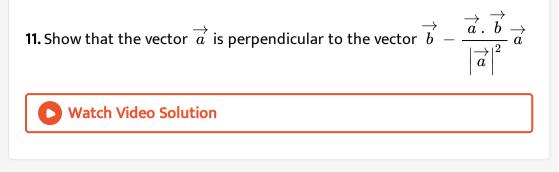
Watch Video Solution

6. If
$$\overrightarrow{a} = \hat{i} - \hat{j} + 2\hat{k}$$
, $\overrightarrow{b} = \hat{i} + \hat{j} + \hat{k}$ and $\overrightarrow{c} = 2\hat{i} - \hat{j} + \hat{k}$ find the
vector \overrightarrow{r} satisfying the relations ,
 $\overrightarrow{a} \cdot \overrightarrow{r} = 1$, $\overrightarrow{b} \cdot \overrightarrow{r} = 2$ and $\overrightarrow{c} \cdot \overrightarrow{r} = 5$

Watch Video Solution

7. If $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}$ are perpendicular to each other, show that $\left|\overrightarrow{\alpha} + \overrightarrow{\beta}\right|^2 = \left|\overrightarrow{a}\right|^2 + \left|\overrightarrow{\beta}\right|^2$

8. If $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}$ are perpendicular to each other , show that


$$\left| \overrightarrow{lpha} + \overrightarrow{eta} \right|^2 = \left| \overrightarrow{lpha} - \overrightarrow{eta} \right|^2$$

Watch Video Solution

9. A(p, 1, -1), B(2p, 0, 2) and C(2 + 2p, p, p) are three points . Find the value of p so that the vectors \overrightarrow{AB} and \overrightarrow{BC} are perpendicular to each other .

Watch Video Solution

10. If $\overrightarrow{a} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\overrightarrow{\beta} = 3\hat{i} - \hat{j} + 2\hat{k}$, find the cosine of the angle between the vectors $\left(2\overrightarrow{\alpha} + \overrightarrow{\beta}\right)$ and $\left(\overrightarrow{\alpha} + 2\overrightarrow{\beta}\right)$

12. For any two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} , show that $\left|\overrightarrow{a}, \overrightarrow{b}\right| \leq \left|\overrightarrow{a}\right| \left|\overrightarrow{b}\right|$

Watch Video Solution

13. If
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} are non - coplanar vectors \overrightarrow{r} . $\overrightarrow{a} = \overrightarrow{r}$. $\overrightarrow{b} = \overrightarrow{r}$. $\overrightarrow{c} = 0$, show that \overrightarrow{r} is a zero vector.

Watch Video Solution

14. For the vector \overrightarrow{a} and \overrightarrow{b} if $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \left|\overrightarrow{a} - \overrightarrow{b}\right|$, show that \overrightarrow{a} and \overrightarrow{b} are perpendicular

15. Prove that
$$(\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} + \overrightarrow{b}) = |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2$$
, if and only if $\overrightarrow{a}, \overrightarrow{b}$ are perpendicular, given $\overrightarrow{a}1 = \overrightarrow{0}, \overrightarrow{b} \neq \overrightarrow{0}$

16. If $\hat{i},\,\hat{j}\,\,\mathrm{and}\,\,\hat{k}$ are unit vectors along three mutuaaly perpendicular axes and

$$\overrightarrow{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}, \ \overrightarrow{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \ ext{ and } \ \overrightarrow{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$$

prove that

$$\overrightarrow{a}.\left(\overrightarrow{b}+\overrightarrow{c}
ight)=\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{a}.\overrightarrow{c}$$

Watch Video Solution

17. If \hat{i}, \hat{j} and \hat{k} are unit vectors along three mutuaaly perpendicular axes and

$$\overrightarrow{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}, \ \overrightarrow{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \ ext{ and } \ \overrightarrow{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$$

prove that

$$\left(\overrightarrow{b} + \overrightarrow{c}
ight) imes \overrightarrow{a} = \overrightarrow{b} imes \overrightarrow{a} + \overrightarrow{c} imes \overrightarrow{a}$$

Watch Video Solution

18. Let
$$\overrightarrow{a} = 2\hat{i} - 2\hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{j} - \hat{k} \ \text{and} \ \overrightarrow{c} = -\hat{i} + 3\hat{j} + 2\hat{k}$$
 be

three given vectors .Find

 $\overrightarrow{a} imes \overrightarrow{b}$

Watch Video Solution

19. Let
$$\overrightarrow{a} = 2\hat{i} - 2\hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{j} - \hat{k} \ \text{and} \ \overrightarrow{c} = -\hat{i} + 3\hat{j} + 2\hat{k}$$
 be

three given vectors .Find

$$\overrightarrow{c} imes \left(- \overrightarrow{a}
ight)$$

20. Let
$$\overrightarrow{a} = 2\hat{i} - 2\hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{j} - \hat{k} \ \text{and} \ \overrightarrow{c} = -\hat{i} + 3\hat{j} + 2\hat{k}$$
 be

three given vectors .Find

$$\left(\overrightarrow{a} - 2\overrightarrow{b}
ight) imes \overrightarrow{c}$$

Watch Video Solution

21. Let
$$\overrightarrow{a} = 2\hat{i} - 2\hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{j} - \hat{k} \ \text{and} \ \overrightarrow{c} = -\hat{i} + 3\hat{j} + 2\hat{k}$$
 be

three given vectors .Find

$$\left(\overrightarrow{a}+\overrightarrow{b}
ight) imes\left(\overrightarrow{b}-\overrightarrow{c}
ight)$$

Watch Video Solution

22. Let
$$\overrightarrow{a} = 2\hat{i} - 2\hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{j} - \hat{k} \ \text{and} \ \overrightarrow{c} = -\hat{i} + 3\hat{j} + 2\hat{k}$$
 be

three given vectors .Find

angle between $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$

23. Let
$$\overrightarrow{a} = 2\hat{i} - 2\hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{j} - \hat{k} \ ext{and} \ \overrightarrow{c} = -\hat{i} + 3\hat{j} + 2\hat{k}$$
 be

three given vectors .Find

sine of the angle \overrightarrow{a} and \overrightarrow{c}

24. In each of the following find a unit a vector perpendicular to both \overrightarrow{a} and \overrightarrow{b} $\overrightarrow{A} = \hat{i} + \hat{j}$ and $\overrightarrow{b} = -\hat{i} + \hat{k}$

Watch Video Solution

25. In each of the following find a unit a vector perpendicular to both \overrightarrow{a} and \overrightarrow{b} $\overrightarrow{a} = 2\hat{i} + \hat{j}$ and $\overrightarrow{b} = -\hat{i} + \hat{k}$

26. In each of the following find a unit a vector perpendicular to both \overrightarrow{a} and \overrightarrow{b} $\overrightarrow{a} = 2\hat{i} - 2\hat{j} + \hat{k}$ and $\overrightarrow{b} = \hat{i} + 2\hat{j} - 2\hat{k}$ Watch Video Solution

27. In each of the following find a unit a vector perpendicular to both \overrightarrow{a} and \overrightarrow{b}

$$\overrightarrow{a} = (2,1,1) ~~ ext{and}~~\overrightarrow{b} = (1,~-1,2)$$

Watch Video Solution

28. If
$$\overrightarrow{a} = \hat{i} + \hat{j} - \hat{k}$$
, $\overrightarrow{b} = 2\hat{i} - 2\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + 2\hat{j} - 2\hat{k}$ show

that,

$$\overrightarrow{a}.\left(\overrightarrow{b}+\overrightarrow{c}
ight)=\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{a}.\overrightarrow{c}$$

29. If
$$\overrightarrow{a} = \hat{i} + \hat{j} - \hat{k}$$
, $\overrightarrow{b} = 2\hat{i} - 2\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + 2\hat{j} - 2\hat{k}$ show that,
 $\overrightarrow{a} \times \left(\overrightarrow{b} + \overrightarrow{c}\right) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}$
30. Be vector method show that the points $(2, -3, 4), (-2, 1, 0)$ and $(1, -2, 3)$ are collinear
Watch Video Solution

31. If
$$\overrightarrow{\alpha} = 2\hat{i} + \hat{j} - 3\hat{k}$$
 and $\overrightarrow{\beta} = \hat{i} - 2\hat{j} + \hat{k}$, find a vector of magnitude 5 perpendicular to both $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}$

32. If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$$
 and $|\overrightarrow{a}| = 6$, $|\overrightarrow{b}| = 4$ and $|\overrightarrow{c}| = 3$ find the cosine of the angle between the vectors \overrightarrow{b} and \overrightarrow{c}

33. Prove that,

$$\left(\overrightarrow{a} - \overrightarrow{b}
ight) imes \left(\overrightarrow{a} + \overrightarrow{b}
ight) = 2 \left(\overrightarrow{a} imes \overrightarrow{b}
ight)$$

Watch Video Solution

34. Prove that,

$$\left(\overrightarrow{a} imes \overrightarrow{b}
ight)^2 + \left(\overrightarrow{a} imes \overrightarrow{b}
ight)^2 = \left|\overrightarrow{a}
ight|^2 \left|\overrightarrow{b}
ight|^2$$

Natch Video Solution

35. Prove that,

$$\overrightarrow{a} \times \left(\overrightarrow{b} + \overrightarrow{c}\right) + \overrightarrow{b} \times \left(\overrightarrow{c} + \overrightarrow{a}\right) + \overrightarrow{c} \times \left(\overrightarrow{a} + \overrightarrow{b}\right) = \overrightarrow{0}$$

36. Given that \overrightarrow{a} . $\overrightarrow{b} = 0$ and $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$. What can you conclude abut the vector \overrightarrow{a} and \overrightarrow{b} ?

37. If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$$
, show that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$

Watch Video Solution

38. Find the value of
$$\left[\left(\hat{k} imes\hat{j}
ight)\!.\,\hat{i}+\hat{j}\!.\,\hat{k}
ight]$$

Watch Video Solution

39. The three vertices of the triangle ABC are A(2,3,5) B(3,5,8) and C(2,7,8) :

using vector method find the area of the triangle ABC.

40. Find a unit vector perpendicular to both the vector $\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{b} = 3\hat{i} - \hat{j} + \hat{k}$

Watch Video Solution

41. Find a unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$.

Watch Video Solution

Exercise 2 A Long Answer Type Questions

1. Applying vectors , show that

$$\left(a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}
ight)^{2}\leq\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}
ight)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}
ight)$$

2. By vector method show that,

an angle inscribed in a semi - circle is a right angle ,

	Watch Video Solution			
--	----------------------	--	--	--

3. By vector method show that ,

the parallelogram whose diagonals are equal is a rectangle ,

Watch Video Solution

4. By vector method show that ,

the perpendicular bsectors of the sides of a triangle are concurrent .

5. By vector method show that ,

median to the base of an isocales triangle is perpendicular to the base .

6. A(3, -1, 2), B(2, -3, 3) and C(1, -2, 1) are three given points. Find the angle between the vectors \overrightarrow{BA} and \overrightarrow{BC} .

Watch Video Solution

7. Three vectors
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, if $|\overrightarrow{a}| = 1|\overrightarrow{b}| = 4$ and $|\overrightarrow{c}| = 2$, then find the value of $\mu = (\overrightarrow{a}, \overrightarrow{b} + \overrightarrow{b}, \overrightarrow{c} + \overrightarrow{c}, \overrightarrow{a})$

8. The scaler product of the vector $\hat{i} + \hat{j} + \hat{k}$ with the unit vector along the sum of vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one . Find the value of λ

Watch Video Solution

9. Let $\overrightarrow{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\overrightarrow{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j}$ be three given vectors, if $\overrightarrow{a} + \lambda \overrightarrow{b}$ and \overrightarrow{c} are perpendicular to each other, find λ

Watch Video Solution

10. Let
$$\overrightarrow{a} = 2\hat{i} + 2\hat{j} + 2\hat{k}$$
, $\overrightarrow{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j}$ be three given vectors, if $\overrightarrow{a} + \lambda \overrightarrow{b}$ and \overrightarrow{c} are perpendicular to each other, find lambda.

Watch Video Solution

11. If $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 5\hat{j}$, $3\hat{i} + 2\hat{j} - 3\hat{k}$ and $\overrightarrow{i} - 6\hat{j} - \hat{k}$ are the position vectors find the angle between \overrightarrow{AB} and \overrightarrow{CD} . Deduce that \overrightarrow{AB} and \overrightarrow{CD} are collinear.

12. Express the vector $\overrightarrow{a} = 5\hat{i} - 2\hat{j} + 5\hat{k}$ as sum of two vectors such that one is parallel to the vector $\overrightarrow{b} = 3\hat{i} + \hat{k}$ and the other is perpendicular to \overrightarrow{b}

Watch Video Solution

13. If $\overrightarrow{a} = \overrightarrow{0}$ or $\overrightarrow{b} = \overrightarrow{0}$ then \overrightarrow{a} . $\overrightarrow{b} = 0$, show by an example that the converse of this statement is not always true.

Watch Video Solution

14. If $\overrightarrow{a} = 3\hat{i} + 4\hat{j} - \hat{k}$, $\overrightarrow{b} = \hat{i} - 3\hat{j} + 4\hat{k}$ and $\overrightarrow{c} = 5\hat{i} - 6\hat{j} + 4\hat{k}$, find the vector \overrightarrow{r} which is perpendicular to both \overrightarrow{a} and \overrightarrow{b} and which satisfies the relation $\overrightarrow{r} \cdot \overrightarrow{c} = 91$

15. Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be the positions vectors of the vertices of a triangle, prove that the area of the triangle is $\frac{1}{2} \left| \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} \right|$

Watch Video Solution

16. Given
$$\overrightarrow{a} = 4\hat{i} + 5\hat{j} - \hat{k}$$
, $\overrightarrow{b} = \hat{i} - 4\hat{j} + 5\hat{k}$ If $|\overrightarrow{c}| = 21$ and \overrightarrow{c} is perpendicular to \overrightarrow{a} and \overrightarrow{b} , find in component form the vector \overrightarrow{c}

Watch Video Solution

Exercise 2 B Short Answer Type Questions

1. If
$$\overrightarrow{a} = \hat{i} + \hat{j}$$
, $\overrightarrow{b} = \hat{i} - \hat{j}$ and $\overrightarrow{c} = 5\hat{i} + 2\hat{j} + 3\hat{k}$, find the value of $\left[\overrightarrow{b}\overrightarrow{c}\overrightarrow{a}\right]$

2. If
$$\overrightarrow{\alpha} = \hat{i} - 2\hat{j} + 3\hat{k}, \overrightarrow{\beta} = 2\hat{i} - 3\hat{j} + \hat{k} \text{ and } \overrightarrow{\gamma} = 3\hat{i} + \hat{j} - 2\hat{k}, \text{ find}$$

 $\overrightarrow{\alpha}. \left(\overrightarrow{\beta} \times \overrightarrow{\gamma}\right).$

Watch Video Solution

3. If
$$\overrightarrow{\alpha} = -\hat{i} + 2\hat{j} + \hat{k}$$
, $\overrightarrow{b} = 3\hat{i} + \hat{j} + 2\hat{k}$ and $\overrightarrow{c} = 2\hat{i} + \hat{j} + 3\hat{k}$,
find $\begin{bmatrix}\overrightarrow{c} \overrightarrow{a} \overrightarrow{b}\end{bmatrix}$

Watch Video Solution

4. The vectors which determine the sides of the parallelopiped are given

below :

 $\hat{i}+\hat{j}+\hat{k},\hat{k},3\hat{i}-\hat{j}+2\hat{k}$

5. The vectors which determine the sides of the parallelopiped are given

below :

$$\hat{i}+\hat{j}+\hat{k},\,\hat{i}+2\hat{j}+2\hat{k},\,\hat{i}-2\hat{j}+4\hat{k}$$

6. In each of the following show that the given vectors are coplanar:

$$\hat{4i}+\hat{2j}+\hat{k}, \hat{2i}-\hat{j}+\hat{k}, \hat{8i}+\hat{k}$$

Watch Video Solution

7. In each of the following show that the given vectors are coplanar:

$$\overrightarrow{a}=\hat{i}+\hat{j}-6\hat{k}, \overrightarrow{b}=\hat{i}+3\hat{j}+4\hat{k}, \overrightarrow{c}=2\hat{i}+5\hat{j}+3\hat{k}$$

$$\overrightarrow{a} = -2\hat{i} - 2\hat{j} + 4\hat{k}, \ \overrightarrow{b} = -2\hat{i} + 4\hat{j} - 2\hat{k} \ ext{and} \ \overrightarrow{c} = 4\hat{i} - 2\hat{j} - 2\hat{k},$$
find $\overrightarrow{a}. \left(\overrightarrow{b} imes \overrightarrow{c}\right)$ and interpret the result

If

Watch Video Solution

9. If the vectors
$$x\,\hat{i}\,-4\hat{j}+5\hat{k},\,\hat{i}\,+2\hat{j}+\hat{k}\, ext{ and }\,2\hat{i}\,-\hat{j}+\hat{k}$$
 are coplanar ,

find the value x

8.

Watch Video Solution

10. If the vectors

$$\overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{i} + 2\hat{j} - 3\hat{k} \ ext{and} \ \overrightarrow{c} = 3\hat{i} + \lambda\hat{j} + 5\hat{k}$$
 are

coplanar , find the value of λ

11. The position vectors of four points A,B,C and D are given below . In each case , using vector method prove that the four points A,B,C and D are coplanar .

$$6\hat{i}-4\hat{j}+10\hat{k},\ -5\hat{i}+3\hat{j}-10\hat{k},4\hat{i}-6\hat{j}-10\hat{k},2\hat{j}+10\hat{k}$$

Watch Video Solution

12. The position vectors of four points A,B,C and D are given below . In each case , using vector method prove that the four points A,B,C and D are coplanar .

$$4\hat{i}+8\hat{j}+12\hat{k},2\hat{i}+4\hat{j}+6\hat{k},3\hat{i}+5\hat{j}+4\hat{k},5\hat{i}+8\hat{j}+5\hat{k}$$

Watch Video Solution

13. If the vectors $-4\hat{i}-6\hat{j}-2\hat{k},\ -\hat{i}+4\hat{j}+3\hat{k}$ and $-8\hat{i}-\hat{j}+\lambda\hat{k}$

are coplanar , then find the value of λ

14. If the vectors $\overrightarrow{a} = 2\hat{i} - \lambda\hat{j} + 3\hat{k}, \ \overrightarrow{b} = 3\hat{i} + 2\hat{k} - \mu\hat{k}$ and $\overrightarrow{c} = \hat{i} + \hat{j} + \hat{k}$ are coplanar , find μ in terms of λ

Watch Video Solution

15. Prove that :

$$\left(\overrightarrow{a}+\overrightarrow{b}
ight).\left\{\left(\overrightarrow{b}+\overrightarrow{c}
ight) imes\left(\overrightarrow{c}+\overrightarrow{a}
ight)
ight\}=2\overrightarrow{a}.\left(\overrightarrow{b} imes\overrightarrow{c}
ight)$$

Watch Video Solution

16. Prove that :

$$\overrightarrow{a}$$
. $\left\{\overrightarrow{b} \times \left(\overrightarrow{c} + \overrightarrow{d}\right)\right\} = \overrightarrow{a}$. $\left(\overrightarrow{b} \times \overrightarrow{c}\right) + \overrightarrow{a}$. $\left(\overrightarrow{b} \times \overrightarrow{d}\right)$

Watch Video Solution

17.

$$\overrightarrow{lpha}=\lambda\hat{i}+\hat{j}+3\hat{k}, \hspace{1em} \overrightarrow{eta}=-\hat{i}+2\hat{j}+\hat{k}, \hspace{1em} \overrightarrow{\gamma}=3\hat{i}+\hat{j}+2\hat{k} \hspace{1em} ext{and} \hspace{1em} \left[\overrightarrow{lpha}\overrightarrow{eta}
ight.$$

then find the value of λ

18. If the vectors $a\hat{i}+a\hat{j}+c\hat{k},\,\hat{i}+\hat{k}$ and $c\hat{i}+c\hat{j}+b\hat{k}$ be coplanar, show that $c^2=ab$

Watch Video Solution

19. Let
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\overrightarrow{b} = \hat{i}$ and $\overrightarrow{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ then , if $c_1 = 1$ and $c_2 = 2$, find c_3 which makes \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} coplanar.

Watch Video Solution

20. Find x such that the four points A(3, 2, 1), B(4, x, 5), C(4, 2, -2) and D(6, 5, -1) are coplanar.

1. f \overrightarrow{a} is any vector , then -

$$\begin{aligned} \mathsf{A}. \left(\overrightarrow{a}.\,\hat{i}\right)\hat{i} &+ \left(\overrightarrow{a}.\,\hat{j}\right)\hat{j} + \left(\overrightarrow{a}.\,\hat{k}\right)\hat{k} = \overrightarrow{a} \\ \mathsf{B}. \left(\overrightarrow{a}.\,\hat{i}\right)^2 &+ \left(\overrightarrow{a}.\,\hat{j}\right)^2 + \left(\overrightarrow{a}.\,\hat{k}\right)^2 = \left|\overrightarrow{a}\right|^2 \\ \mathsf{C}.\,\hat{i} \times \left(\overrightarrow{a} \times \hat{j}\right) + \hat{j} \times \left(\overrightarrow{a} \times \hat{j}\right) + \hat{k} \times \left(\overrightarrow{a} \times \overrightarrow{k}\right) = 2\overrightarrow{a} \end{aligned}$$

D. all of the above

Answer: A,B,C,D

Watch Video Solution

2. The vector a
$$=\lambda\hat{i}+\hat{j}+2\hat{k}, \overrightarrow{b}=\hat{i}+\lambda\hat{j}-\hat{k} ext{ and } \overrightarrow{c}=2\hat{i}-\hat{i}-\hat{j}+\lambda\hat{k}$$
 are coplanar if -

A. $\lambda=-2$

B. $\lambda = \sqrt{3} + 1$ C. $\lambda = 1 - \sqrt{3}$

Answer: A,B,C

 $\mathsf{D}.\,\lambda=2$

View Text Solution

3. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are any vectors, then which the following is equal to $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}$? A. $\left(\overrightarrow{a} - \overrightarrow{b}\right) \times \left(\overrightarrow{b} - \overrightarrow{c}\right)$ B. $\left(\overrightarrow{c} - \overrightarrow{b}\right) \times \left(\overrightarrow{a} - \overrightarrow{c}\right)$ C. $\left(\overrightarrow{a} - \overrightarrow{b}\right) \times \left(\overrightarrow{a} - \overrightarrow{c}\right)$ D. $\frac{1}{2} \left\{ \overrightarrow{a} \times \left(\overrightarrow{b} - \overrightarrow{c}\right) + \overrightarrow{b} \times \left(\overrightarrow{c} - \overrightarrow{a}\right) + \overrightarrow{c} \times \left(\overrightarrow{a} - \overrightarrow{b}\right) \right\}$

Answer: A,B,C,D

4. If
$$\alpha = 2\vec{i} + 3\vec{j} - 5\vec{k}$$
 and $\beta = \vec{i} - \vec{j}$, then find the value of $\alpha \times \beta$

Watch Video Solution

5. The vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are of same magnitude and taken pariwise , they contain equal angles. If $\overrightarrow{a} = \hat{i} + \hat{j}$, $\overrightarrow{b} = \hat{j} + \hat{k}$ then the vector \overrightarrow{c} =

A.
$$\hat{i} + \hat{k}$$

B. $\hat{i} + 2\hat{j} + 3\hat{k}$
C. $-\hat{i} + \hat{j} + 2\hat{k}$
D. $-\frac{1}{3}i + \frac{4}{3}\hat{j} - \frac{1}{3}\hat{k}$

Answer: A,D

1. Let
$$\vec{a} = -\hat{i} - \hat{k}$$
, $\vec{b} = -\hat{i} + \hat{j}$ and $\vec{c} = \hat{i} + 2\hat{j} + 3\hat{k}$ be three
given vectors . If \vec{r} is a vector such that
 $\vec{r} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a} = 0$ then the value of $\vec{r} \cdot \vec{b}$ is -
Watch Video Solution
2. If \vec{a} and \vec{b} are two vectors in space given by
 $\vec{a} = \frac{\hat{i} - 2\hat{j}}{\sqrt{5}}$ and $\vec{b} = \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}}$ then the value of
View Text Solution

3. If a vector
$$\overrightarrow{v}$$
 is such that $2\overrightarrow{v} + \overrightarrow{v} \times \left[\hat{i} + 2\hat{j}\right] = 2\hat{i} + \hat{k}$ and $\left|\overrightarrow{v}\right| = \frac{1}{3}\sqrt{m}$, then m is equal to -

4. If
$$\overrightarrow{a} = 3\alpha \hat{i} + 2\hat{j} - 3\hat{k}$$
, $\overrightarrow{b} = \hat{i} + 6\alpha \hat{j} - 2\hat{k}$ and $\hat{c} = 2\hat{i} - 3\alpha \hat{j} + \hat{k}$
be such that $\left\{ \left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) \right\} \times \left(\overrightarrow{c} \times \overrightarrow{a}\right) = \overrightarrow{O}$, then the

value of 9α is -

5. A median drawn from the vertex from the A of a triangle ABC is bisected at E.BE meets AC in F such that AF:AC = 1 : n where n is-

Watch Video Solution

Sample Questions For Competitive Examination Matrix Match Type

1. Match the following Column I and Column II

1.	Column I	and the	Column II
	For any vector \vec{a} , $\vec{a} \times \vec{a}$ is equal to	(p)	$(\vec{a})^2$
₿	For any vector \vec{a} , $\vec{a} \cdot \vec{a}$ is equal to	(q)	, 0
C	For any vector \vec{a} , $(\vec{a}\cdot\hat{i})\hat{i} + (\vec{a}\cdot\hat{j})\hat{j} + (\vec{a}\cdot\hat{k})\hat{k} =$	(r)	$-2\overrightarrow{a}$
D	For any vector \vec{a} , $(\vec{a} \times \hat{i}) \times \hat{i} + (\vec{a} \times \hat{j}) \times \hat{j}$ + $(\vec{a} \times \hat{k}) \times \hat{k} =$	(s)	→ a
		(t)	$\begin{vmatrix} \Rightarrow \\ a \end{vmatrix}^2$

Watch Video Solution

2. If
$$\alpha = 2\overrightarrow{i} + 3\overrightarrow{j} - 5\overrightarrow{k}$$
 and $\beta = \overrightarrow{i} - \overrightarrow{j}$, then find the value of α . β

Watch Video Solution

Sample Questions For Competitive Examination Comprehension Type

1. Let
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 be unit such that $\widehat{a} + \widehat{b} + \widehat{c} = \overrightarrow{\alpha}$ and $\widehat{a}. \widehat{b} = \widehat{b}. \widehat{c} = \widehat{c}. \widehat{a} = \frac{1}{2}$

Magnitude of vector $\overrightarrow{\alpha}$ is equal to -

A. 3

B. $\sqrt{3}$

 $C.\sqrt{6}$

D. 6

Answer: c

Watch Video Solution

2. Let
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 be unit such that $\widehat{a} + \widehat{b} + \widehat{c} = \overrightarrow{\alpha}$ and $\widehat{a}. \ \widehat{b} = \widehat{b}. \ \widehat{c} = \widehat{c}. \ \widehat{a} = \frac{1}{2}$

Which of the following is not a unit vector ?

A. $\overrightarrow{a} - \overrightarrow{b}$ B. $\overrightarrow{b} - \overrightarrow{c}$ C. $\overrightarrow{c} - \overrightarrow{a}$

D. none of these

Answer: d

3. Let
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 be unit such that $\widehat{a} + \widehat{b} + \widehat{c} = \overrightarrow{\alpha}$ and
 $\widehat{a}. \widehat{b} = \widehat{b}. \widehat{c}. \widehat{a} = \frac{1}{2}$
 $\left| (\widehat{a} \times \widehat{b}) \times \widehat{c} \right|$ is equal to -
A. 0
B. $\frac{1}{2}$
C. 1
D. 2

Answer: b

View Text Solution

4. If
$$\alpha = 9\overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k}$$
 and $\beta = \overrightarrow{i} + 2\overrightarrow{k}$, then find the value of α . β

5. If
$$\alpha = 9\overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k}$$
 and $\beta = \overrightarrow{i} + 2\overrightarrow{k}$, then find the value of $\alpha \times \beta$

> Watch Video Solution

6. If
$$\alpha = 5 \overrightarrow{i} - 3 \overrightarrow{k}$$
 and $\beta = 2 \overrightarrow{i} - \overrightarrow{j} + 2 \overrightarrow{k}$, then find the value of $\alpha \times \beta$

Watch Video Solution

Sample Questions For Competitive Examination Assertion Reason Type

1. Let
$$\overrightarrow{a} = \hat{i} + \hat{j} - 3\hat{k}$$
 and $\overrightarrow{b} = 2\hat{i} + \hat{j} + \hat{k}$

Statement - I: Vectors $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$ are perpendicular to each other

Statement - II: \overrightarrow{a} . $\overrightarrow{b} = 0$

2. If
$$\alpha = 5\overrightarrow{i} - 3\overrightarrow{k}$$
 and $\beta = 2\overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k}$, then find the value of α . β