

MATHS

BOOKS - CHHAYA PUBLICATION MATHS (BENGALI ENGLISH)

QUADRATIC EQUATIONS

1. IF lpha and eta be the roots of the equation $ax^2+bx+c=0$, find the values of

 $\alpha^2 + \beta^2$

2. IF α and β be the roots of the equation $ax^2 + bx + c = 0$, find the values of $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$

Watch Video Solution

3. IF the roots of the equation
$$k^2 + x^2 + (kx+1)(x+k) + 1 = 0 (k \neq 0, k \neq -1)$$

are α and β , find the value of $\alpha^2 + \beta^2 + (\alpha\beta + 1)(\alpha + \beta) + 1.$

4. IF α, β be the roots of the equation $ax^2 + bx + c = 0$ find the value of $\frac{a\alpha^2}{b\alpha + c} - \frac{a\beta^2}{b\beta + c}$

Watch Video Solution

5. IF
$$\alpha, \beta$$
 be the roots of the equation
 $px^2 + qx + r = 0$, find the value of
 $\frac{1}{(p\alpha + q)^3} + \frac{1}{(p\beta + q)^3}$.

6. IF α, β and γ, δ be the roots of the equation $x^2 + px - r = 0$ and $x^2 + px + r = 0$ respectively, prove that $(\alpha - \gamma)(\alpha - \delta) = (\beta - \gamma)(\beta - \delta)$

Watch Video Solution

7. IF the ratio of the roots of equation $x^2 + px + q = 0$ be a:b prove that, $p^2ab = q(a + b)^2$ Hence, find the condition of equal roots of the given equation.

8. IF one root of the equation $x^2 - rx - s = 0$ is square of the other, prove that , $r^3 - s^2 + 3sr + s = 0.$

Watch Video Solution

9. IF $b^3 + a^2c + ac^2 = 3abc$,find the relation between

the roots of the equation $ax^2 + bx + c = 0$.

Watch Video Solution

10. Let a,b,c be real numbers with a
eq 0 and let lpha, eta be the roots of the equation $ax^2 + bx + c = 0.$

of

Watch Video Solution

11. IF lpha and eta be the roots of the equation $x^2+3x+4=0$, find the equation whose roots are $(lpha+eta)^2$ and $(lpha+eta)^2$

Watch Video Solution

12. $-\frac{lpha^2}{eta}$ and $-\frac{eta^2}{lpha}$ are the roots of the equation $3x^2 - 18x + 2 = 0$. Find the equation whose roots

are α and β (α , β real).

Watch Video Solution

13. IF α and β be the roots of $x^2 + x + 1 = 0$, form the equation whose roots are α^2 and β^2 . Account for the identify of the equation thus obtained with the original equation.

Watch Video Solution

14. IF $a^2 = 5a - 3$ and $b^2 = 5b - 3$, $(a \neq b)$, find the quadratic equation whose roots are $\frac{a}{b}$ and $\frac{b}{a}$.

coefficients whose one root is $3-\sqrt{5}$.

17. IF one root of the quadratic equation $x^2-x-1=0$ is lpha, prove that its other root is $lpha^3-3lpha.$

Watch Video Solution

18. If the ratio of the roots of equation $ax^2 + bx + c = 0$ be equal to that of the roots of $px^2 + qx + r = 0$, Prove that $rpb^2 = caq^2$.

19. In the equation $x^2 + px + q = 0$, if the coeffficient of x be taken as 17 instead of 13, the roots are obtained as (-2) and (-15). Find the roots of the original equation.

D Watch Video Solution

20. IF lpha be a root of the equation $3x^2-4x+5=0$,

prove that $2lpha^2$ is a root of the equation $9x^2+28x+100=0.$

21. Dicuss the nature of the roots of the following equations:

 $3x^2 - 7x + 3 = 0$

Watch Video Solution

22. Dicuss the nature of the roots of the following equations:

 $x^2 - 18x + 81 = 0$

23. Find the nature of the roots of the equation $2x^2 - \sqrt{3}x + 2 = 0.$

24. Dicuss the nature of the roots of the following equations:

$$x^2 - 2\sqrt{7}x - 2 = 0$$

25. Dicuss the nature of the roots of the following

equations:

$$2x^2 - 3x + 5 = 0$$
Watch Video Solution

26. For what value of m the roots of the equation $x^2 - 2(5+2m)x + 3(7+10m) = 0$ are equal

Watch Video Solution

27. For what value of m the roots of the equation $x^2 - 2(5+2m)x + 3(7+10m) = 0$ are

reciprocal to one another

فبالالمم الاقتباد بنبد

28. For what value of m the roots of the equation

 $x^2-2(5+2m)x+3(7+10m)=0$ are

equal in magnitude and opposite in signs?

29. IF a,b,c are rational and a+b+c=0, show that the

roots of the equation $ax^2 + bx + c = 0$ are rational.

30. IF the roots of the equation $px^2 - 2qx + p = 0$ are real and unequal, show that the roots of the equation $qx^2 - 2px + q = 0$ are imaginary (both p and q are real).

Watch Video Solution

31. Show that the roots of the equation $a(b-c)x^2 + b(c-a)x + c(a-b) = 0$ are equal if a,b,c are in H.P.

32. IF a,b,c are real, prove that the roots of the equation $\frac{1}{x-a} + \frac{1}{x-b} + \frac{1}{x-c} = 0$ are always real and cannot be equal unless a=b=c.

Watch Video Solution

33. Find the condition for which the roots of the quadratic equation $ax^2 + bx + c = 0 (a \neq 0)$ are

both positive

34. Find the condition for which the roots of the quadratic equation $ax^2 + bx + c = 0 (a \neq 0)$ are both negative

Watch Video Solution

35. Find the condition for which the roots of the quadratic equation $ax^2 + bx + c = 0 (a
eq 0)$ are

one positive and the other negative

36. Find the condition for which the roots of the quadratic equation $ax^2 + bx + c = 0 (a \neq 0)$ are equal in magnitude and opposite in signs

Watch Video Solution

37. Find the condition for which the roots of the quadratic equation $ax^2 + bx + c = 0 (a
eq 0)$ are

reciprocal to one another

38. Find the condition for which the roots of the quadratic equation $ax^2 + bx + c = 0 (a \neq 0)$ are one root is zero

Watch Video Solution

39. Find the condition for which the roots of the quadratic equation $ax^2 + bx + c = 0 (a
eq 0)$ are

both roots are zero.

40. IF a,b,c are real determine the nature of the roots of the equation $ax^2 + bx + c = 0$ under following conditions:

 $b^2>4ac,ab<0,ac>0$

Watch Video Solution

41. IF a,b,c are real determine the nature of the roots of the equation $ax^2 + bx + c = 0$ under following conditions:

$$b^2>4ac, ab>0, ac>0$$

42. Find the condition so that the two equations $a_1x^2 + b_1x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ will have a common root.

Watch Video Solution

43. Find the value of the common root.

Watch Video Solution

44. Find the values of the other roots of the two equations.

45. Also find the condition of having two common

roots.

46. Find those values of k for which the equations $x^2 - kx - 21 = 0$ and $x^2 - 3kx - 35 = 0$ have a

common root.

47. Prove that, if the equations $x^2 + px + qr = 0$ and $x^2 + qx + pr = 0 [p
eq q, r
eq 0]$ have a common root , then p+q+r=0.

Watch Video Solution

48. Prove that , if the equations $x^2 + bx + ca = 0$ and $x^2 + cx + ab = 0$ have only non-zero common root then their other roots satisfy the equation $t^2 + at + bc = 0.$

49. If the roots of the equation $x^2 - 2px + q = 0$ are equal and y < 0 and $p \neq 1$, show that the roots of the equation $(1+y)x^2 - 2(p+y)x + q + y = 0$ are real and unequal.

50. If b > a, then prove that the equation (x-a)(x-b) - 1 = 0 has one root in $(-\infty, a)$

and the other in $(b, +\infty)$.

51. Given that a,c are the roots of the equation $px^2 - 3x + 2 = 0$ and b,d are the roots of the equation $qx^2 - 4x + 2 = 0$, find the values of p and q such that $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ and $\frac{1}{d}$ are in A.P.

Watch Video Solution

52. IF one root of the equation $px^2 + qx + r = 0$ is

the cube of the other, prove that , $rp(r+p)^2 = \left(q^2-2rp
ight)^2.$

53. Let α, β be the roots of the equation $x^2 - 4x + A = 0$ and γ, δ be the roots of the equation $x^2 - 36x + B = 0$. If α, β, γ and δ are In G.P. having positive common ratio, find the value of A and B.

Watch Video Solution

54. If x be real then prove that (x-1)(x-2)+1 is always

positive.

55. IF x is real, find the least value of $2x^2 - 3x + 5$ and the value of x for which the expression is minimum.

Watch Video Solution

56. Find for what value/values of x the value of $8x - x^2 - 15$ is

the greatest

57. Find for what value/values of x the value of $8x - x^2 - 15$ is

negative.

Watch Video Solution

58. For what real values of k, $3x^2 + kx + 39 - k^2$

cannot be negative for any real values of x?

59. IF x,a,b be real , show that

$$4(a-x)\Big(x-a+\sqrt{a^2+b^2}\Big) {
ightarrow} a^2+b^2.$$

61. IF x is real, find the greatest and the least value of

 $rac{6x^2-22x-21}{5x^2-18x+17}$, also find the corresponding values of x.

62. IF x is real and 0 < m < 1, show that the

expression
$$\displaystyle rac{x^2+2x+m}{x^2+4x+3m}$$
 is capable of assuming all

real values.

Watch Video Solution

63. IF x is real, find the real values of a which make

 $x^2 - ax + 1 - 2a^2$ always positive.

Watch Video Solution

64. Find the value of m for which the expressions $6x^2 - 7xy + 2y^2 - 9x + 7y + m$ can be resolved

into two linear factors .

65. IF $ax^2 + by^2 + cz^2 + 2ayz + 2bzx + 2cxy$ is resolvable into two linear factors, prove that either a+b+c=0 or, a=b=c.

Watch Video Solution

66. Solve by expressing the quadratic as the difference of two squares:

 $9x^2 + 25 = 0$

68. Solve by expressing the quadratic as the difference of two squares:

$$16x^2 + 24x + 13 = 0$$

69. Show that the roots of the equation $9x^2 - 24x + 25 = 0$ are complex numbers, solving the equation show that the complex roots are conjugate complex numbers.

70. Solve the following quadratic equations using Sridhar Acharya's formula:

 $2x^2+3=0$

71. Solve the following quadratic equations using Sridhar Acharya's formula:

 $4x^2 + 4x + 7 = 0$

Watch Video Solution

72. Solve the following quadratic equations using Sridhar Acharya's formula:

$$\sqrt{3}x^2-4x+2\sqrt{3}=0$$

73. Solve by factorization:

$$x^2 - ix + 12 = 0$$

Watch Video Solution

$$4x^2 + 4xi - 1 = 0$$

Watch Video Solution

75. Solve by factorization:

$$x^2+2\sqrt{2}xi+6=0$$

Match Video Colution

76. Solve each of the following quadratic equations by comparing its roots with the roots of the general quadratic equation:

$$x^2-ig(3i-2\sqrt{3}ig)x-6\sqrt{3}i=0$$

Watch Video Solution

77. Solve each of the following quadratic quadratic equations by comparing its roots with the roots of the general quadratic equation:

 $2x^2 - 7ix + 4 = 0$
78. Solve each of the following quadratic quadratic equations by comparing its roots with the roots of the general quadratic equation:

$$3x^2 - (2-i)x + 10 - 4i = 0$$

Watch Video Solution

79. Solve each of the following quadratic quadratic equations by comparing its roots with the roots of the general quadratic equation:

$$x^{2} + (2+i)x - 2(1+7i) = 0$$

80. Solve the following equation in the complex plane C:

 $6x^2 - (18 - 5i)x + 18 + i = 0$

Watch Video Solution

81. One root of the equation $(2+3i)x^2-bx+(3+i)=0$ is 2-i. Find the other

root and the value of b.

2. The roots of the equation $ax^2 + bx + c = 0$ are

reciprocal to one another when-

A. a=c

B. a=b

C. b=c

D. a=0

Answer: A

3. IF the signs of a and c are opposite to that of b then both roots of the equation $ax^2 + bx + c = 0$ are-

A. zero

B. positive

C. negative

D. fraction

Answer: B

4. The roots of the equation $ax^2 + bx + c = 0 (a \neq 0)$ are equal in magnitude and opposite in signs when-

A. a=0

B. b=0

C. c=0

D. a=c

Answer: B

5. IF b=c=0 then both roots of the equation $ax^2+bx+c=0 (a
eq 0)$ are-

A. zero

B. positive

C. negative

D. imaginary

Answer: A

6. The maximum number of distinct roots in a quadratic equation is -

A. 1

B. 2

C. 3

D. infinite

Answer: B

7. IF a=0,b
eq 0 and c is real and rational then one root of the equation $ax^2 + bx + c = 0$ is real and rational and the other root is -

A. zero

B. real and rational

C. imaginary

D. not defined

Answer: D

8. IF a=0 and b=0 then both roots of the equation

 $ax^2 + bx + c = 0$ are-

A. zero

B. real and rational

C. imaginary

D. not defined

Answer: D

9. The roots of the equation $ax^2 + bx + c = 0$ are equal when-

A.
$$b^2-4ac < 0$$

B.
$$b^2-4ac>0$$

C.
$$b^2 - 4ac \geq 0$$

D.
$$b^2-4ac=0$$

Answer: D

10. IF a,b,c are rational numbers and $b^2 - 4ac$ is positive but not a perfect square then both roots of the equation $ax^2 + bx + c = 0$ are-

A. real

B. rational

C. irrational

D. imaginary

Answer: C

11. The minimum value of $9x^2 - 6x + 1$ is-

A. 0

B. 1

C. 2

D. 3

Answer: A

12. The maximum value of $4x - x^2 - 2$ is-

A. 0

B. 1

C. 2

D. 3

Answer: C

13. If 4 is a root of the equation $x^2+ax-12=0$,

then which of the following is its other root?

B. -2

C. 3

D. -3

Answer: D

14. State which of the following is the sum of the roots of the equation $3x^2 - 5x + 7 = 0$?

$$\mathsf{B.}-rac{5}{3}$$

C. -5

D.
$$\frac{5}{3}$$

Answer: D

15. State which of the following is the product of the roots of the equation $2x^2 - 3x + 7 = 0$?

A.
$$\frac{3}{2}$$

B. $\frac{7}{2}$
C. $-\frac{7}{2}$

D. 7

Answer: B

Watch Video Solution

16. State which of the following equation has the roots 2 and (-3)?

A.
$$x^2 - x - 6 = 0$$

B.
$$x^2+x-6=0$$

$$\mathsf{C.}\,x^2-x+6=0$$

D.
$$x^2-x-6=0$$

Answer: B

17. If the roots of the equation $5x^2 - 7x - k = 0$ are reciprocal to one another, then which of the following is the value of k?

A. -5 B. $-\frac{1}{5}$ C. 5

D.
$$\frac{-}{5}$$

Answer: A

18. If the sum of the roots of the equation $2x^2 + ax + 6 = 0$ be 5, then which of the following is the value of a ?

A. -10

B. 10

C.
$$\frac{5}{2}$$

D. $-\frac{5}{2}$

Answer: A

19. If the product of the roots of the equation $2x^2 - 7x + b = 0$ be (-3), then which of the following is the value of b?

A.
$$-\frac{3}{2}$$

B. $\frac{3}{2}$
C. -6

D. 6

20. The roots of the equation $3x^2 - 5x + p = 0$ are equal, state which of the following is the value of p?

A.
$$\frac{25}{6}$$

B. $\frac{25}{12}$
C. $-\frac{25}{6}$
D. $-\frac{25}{12}$

Answer: B

Exercise 5 A Very Short Answer Type Question

1. Find the condition for which the roots of the equation $ax^2 - (a+1)x + 1 = 0$ are always real.

Watch Video Solution

2. One root of the equation $3x^2 - 5x + c = 0$ is 2,

find its other root.

3. The product of the roots of the equationn $3x^2 + mx - (2m+3) = 0$ is 5, find m.

> Watch Video Solution

4. If one root of the equation $2x^2 - 5x + k = 0$ be

twice the other, find the value of k.

5. Find the condition so that the roots of the equation $lx^2 + mx + n = 0$ are equal is magnitude and opposite in signs

6. Find the condition so that the roots of the equation $lx^2 + mx + n = 0$ are

reciprocal to one another

Watch Video Solution

7. If the ratio of the roots of the equation $x^2 - px + q = 0$ be 1:2, find the relation between p and q.

8. If the roots of the equation $qx^2 + px + q = 0$ be imaginary, where p,q > 0, then show that , 0 .

Watch Video Solution

9. Find the condition for which the quadratic equation $ax^2 + bx + c = 0$ has exactly one zero root.

10. IF the equation $4x^2 + 2bx + c = 0, b = 0$, find

the relation between the roots of the equation.

11. IF lpha be a root of the equation $ax^2 + bx + c = 0$,

show that klpha (k
eq 0) is a root of the equation $ax^2+bkx+ck^2=0.$

Watch Video Solution

12. Find the quadratic equation with real coefficients

which has 2±3i as a root $(i=\sqrt{-1})$

14. IF α and β are the roots of the equation x(x-3)=4,

find the value of $\alpha^2 + \beta^2$.

15. IF a,b,c are in G.P prove that the roots of the equation $ax^2 + 2bx + c = 0$ are equal.

16. Find m, given that the difference of the roots of

the equation $2x^2 - 12x + m + 2 = 0$ is 2.

Watch Video Solution

17. If α and β be the roots of the equation (x-a)(x-b)=c $(c \neq 0)$,prove that a and b are the roots of the equation $(x - \alpha)(x - \beta) + c = 0$.

18. IF $2 + \sqrt{3}i$ is a root of the equation $x^2 + px + q = 0$ where p and q are real, find p and q. **Vatch Video Solution**

19. Find the value of p so that the roots of the equation $3x^2 - 2(7 + 9p)x + (8 - 5p) = 0$ are reciprocal to one another.

20. IF x is real , find the signs of the each of the following expressions:

 $3x^2 - 2x + 1$

Watch Video Solution

21. IF x is real , find the signs of the each of the following expressions:

 $3x-2x^2-2$

22. IF x is real , find the signs of the each of the following expressions:

 $5x^2 - 14x + 10$

Watch Video Solution

23. IF x is real , find the signs of the each of the following expressions:

 $10x - 3x^2 - 9$

24. If x be real , find the maximum value of each of the following expressions and the corresponding values of x:

 $1 - 2x - x^2$

25. If x be real , find the maximum value of each of the following expressions and the corresponding values of x:

 $3 - 20x - 25x^2$

26. If x be real , find the maximum value of each of the following expressions and the corresponding values of x:

 $3+2x-x^2$

27. If x be real , find the least values of each of the

following expressions and the corresponding values

of x:

$$4x^2 - 4x + 1$$

28. If x be real , find the least values of each of the following expressions and the corresponding values of x:

 $3x^2 - 6x + 8$

29. If x be real , find the least values of each of the

following expressions and the corresponding values

of x:

 $3x^2 + 6x + 7$

30. For what real values of x the expressions $x^2 - 2x + 3$ is negative? Watch Video Solution

1. IF α and β are the roots of the equation x(2x-1)=1,

find the value of $lpha^2-eta^2$ and form the equation

whose roots are 2lpha-1 and 2eta-1

2. IF α and β be the roots of the equation $5x^2 + 7x + 3 = 0$, find the value of $\frac{\alpha^3 + \beta^3}{\alpha^{-1} + \beta^{-1}}$.

Watch Video Solution

3. IF p and q are the roots of the equation

$$ax^2 + bx + c = 0$$
 find the value of
 $\frac{1}{(ap^2 + c)^2} + \frac{1}{(aq^2 + c)^2}$.
Watch Video Solution

4. IF lpha,eta and γ,δ are the roots of the equations $x^2-bx+c=0$ and $x^2-px+q=0$ respectively,
$$(lpha-\gamma)(eta-\delta)-lpha.\ \gamma-eta.\ \delta=(c+q)-bp.$$

Watch Video Solution

5. If the roots of the equation $ax^2 - bx + a = 0$ be lpha and eta, show that the equation with roots $lpha^2 + 1$ and $eta^2 + 1$ will be $a^2x^2 - b^2x + b^2 = 0$

Watch Video Solution

6. IF α and β be the roots of the equation $2x^2 + x + 1 = 0$ find the equation whose roots are

7. IF α and β are the roots of the equation $x^2 + \alpha x + \beta = 0$ then find the numerical values of α and β . [Here , $\alpha \neq \beta, \alpha \neq 0, \beta \neq 0$]

Watch Video Solution

8. If the roots of the equation $ax^2 + bx + c = 0$ be α and β , find the equation whose roots are $\alpha + \frac{\alpha^2}{\beta}$ and $\beta + \frac{\beta^2}{\alpha}$

9. IF α, β be the roots of the equation $x^2 + px + q = 0$, show that $\frac{1}{\alpha + \beta}$ and $\frac{1}{\alpha} + \frac{1}{\beta}$ are the roots of $pqx^2 + (p^2 + q)x + p = 0$

Watch Video Solution

10. IF the roots of the equation $ax^2 + bx + c = 0$ be lpha and eta, find the equation whose equals are $rac{1}{lpha}+1$ and $rac{1}{eta}+1$.

11. Form the quadratic equation whose roots lpha and eta

satisfy the relations lphaeta=768and $lpha^2+eta^2=1600.$

12. Form the quadratic equation whose roots are the

squares of the roots of $x^2 + 3x + 2 = 0$.

Watch Video Solution

13. Form the quadratic equation whose roots are reciprocals of the roots of $x^2 + 3x + 4 = 0$.

14. IF $3a^2 = 4a - 5$ and $3b^2 = 4b - 5$ where a eq b,

find the value of $a^2 + b^2$.

Watch Video Solution

15. IF $3p^2 = 5p + 2$ and $3q^2 = 5q + 2$ where p $eq \,$ q , obtain the equation whose roots are (3p-2q)and (3q-2p).

16. IF α and β be the roots of the equation $x^2 - 4x + 10 = 0$, find the equation whose roots are $\frac{\alpha}{1+\beta}$ and $\frac{\beta}{1+\alpha}$. **Watch Video Solution**

17. If p and q are the roots of the equation $3x^2 + 6x + 2 = 0$, show that the equation whose roots are $\left(-\frac{p^2}{q}\right)$ and $\left(-\frac{q^2}{p}\right)$ is $3x^2 - 18x + 2 = 0$.

18. If the sum of the roots of a quadratic equation is

2 and the sum of their cubes is 27, find the equation.

19. If the sum of the roots of the equation $x^2-px+q=0$ be three times their difference show that, $2p^2=9q$.

Watch Video Solution

20. If the roots of the equation $ax^2 + bx + c = 0$ are in the ratio 3:4 show that $12b^2 = 49ac$.

21. If one root of the equation $x^2 + (5a+2)x + 5a + 2 = 0$ is five times the other

root, then find the numerical value of a.

Watch Video Solution

22. Find the quadratic equation whose roots are the

cubes of the roots of $x^2 - 4x + 3 = 0$.

23. The ratio of the roots of the equation $ax^2 + bx + c = 0$ is r:1 Prove that, $b^2r = ac(r+1)^2$ and hence find the condition so that the two roots may be equal to each other.

24. If the roots of the equation $px^2 + rx + r = 0$

are in the ratio a:b, prove that , $p(a+b)^2 = rab$.

25. In a quadratic equation of the form $x^2 + mx + n = 0$ the constant term is misprinted 56 to 54 and the roots are, therefore, obtained as 7 and 8. Find the roots of the equation correctly printed.

Watch Video Solution

26. For what value of m the roots of the equation

 $(m+1)x^2 + 2(m+3)x + m + 8 = 0$ are equal?

27. If one root of the equation $x^2 + bx + 8 = 0$ be 4 and the roots of the equation $x^2 + bx + c = 0$ are equal , find the value of c.

Watch Video Solution

28. For what value of m the roots of the equation $\frac{3}{x+3+m} + \frac{5}{x+5+m} = 1$ are equal in a magnitude and opposite in signs?

29. Find the condition so that the roots of the equation $\frac{a}{x-a} + \frac{b}{x-b} = 5$ may be equal in magnitude but oppsite in signs.

Watch Video Solution

30. Show that the roots of each of the following equations are rational(a,b,c are rational):

$$(b+c)x^2-(a+b+c)x+a=0$$

31. Show that the roots of each of the following equations are rational(a,b,c are rational):

$$(a-b+c)x^2+2cx+(b+c-a)=0$$

Watch Video Solution

32. Show that the roots of the equation $(a^2-bc)x^2+2(b^2-ca)x+c^2-ab=0$ are equal if either b=0 or , $a^3+b^3+c^3-3abc=0$

33. If one root of the equation $qx^2 + px + q = 0$ (p,q are real) be imaginary, show that the roots of the equation $x^2 - 4qx + p^2 = 0$ are real and unequal.

Watch Video Solution

34. If the roots of the equation $qx^2 + 2px + 2q = 0$ are real and unequal, prove that the roots of the equation $(p+q)x^2 + 2qx + (p-q) = 0$ are

imaginary.

35. If the roots of the equation $x^2 - 2(a+b)x + a(a+2b+c) = 0$ be equal , prove that a,b, c are in G.P,

Watch Video Solution

36. If the equation $x^2 + px + q = 0$ and $x^2 + p'x + q' = 0$ have a common root , prove that , it is either $\frac{pq' - p'q}{q' - q}$ or $\frac{q' - q}{p' - p}$. Watch Video Solution **37.** Prove that if the equations $x^2 + px + r = 0$ and $x^2 + rx + p = 0$ have a common root then either p=r or , 1+p+r=0.

Watch Video Solution

38. IF x is real and the expressions $3x^2 - 17x + 20$ is always positive, show that, x cannot lie between $\frac{5}{3}$ and 4.

39. Find the limits of real value of x so that the expressions $5x^2 + 6x - 8$ is non-negative.

41. If x is real can the value of $3 + 2x - x^2$ be greater

than 4,

42. If x is real can that of $x^2 + 3x + 1$ less than $\left(-\frac{5}{4}\right)$?

43. Show that if x is real and $x^2 + 5 < 6x$, then x

must lie between 1 and 5.

44. If x is real, find the real values of p which make $4x^2 + px + 1$ always positive.

45. IF x is real, find the real values of m which make

the expressions $mx - x^2 - 1$ always negative.

Watch Video Solution

46. If
$$rac{(x-5)\left(x^2-2x+1
ight)}{(x-7)(x^2+2x+3)}$$
 is positive for all real

values of x, show that x has no value between 5 and

47. If the equation $y^2 + x^2 - 10x + 21 = 0$ is satisfied by real values of x and y, prove that x lies between 3 and 7 and y lies between (-2) and 2.

Watch Video Solution

48. If x is real , show that (x-2)(x-3)(x-4)(x-5)+2 is

always positive.

Exercise 5 A Long Answer Type Question

1. IF
$$\alpha \pm \sqrt{\beta}$$
 be the roots of the equation $x^2 + px + q = 0$, prove that $\frac{1}{\alpha} \pm \frac{1}{\sqrt{\beta}}$ will be the roots of the equation $(p^2 - 4q)(p^2x^2 + 4px) - 16q = 0.$
(Vatch Video Solution

2. IF lpha, eta and γ, δ be the roots of the equation $x^2 - bx + c = 0$ and $x^2 - cx + b = 0$ respectively,

the given one.

4. IF α , β be the roots of the quadratic equation $x^2 - px + q = 0$, find the equation whose roots are $\frac{q}{p-\alpha}$ and $\frac{q}{p-\beta}$. Accound for the identity of the equation obtained with the given equation.

5. IF
$$\frac{p^2}{q}$$
 and $\frac{q^2}{p}$ are the roots of the equation $2x^2+7x-4=0$, find the equation whose roots

are p and q (p+q real).

6. IF α, β be the roots of the equation $x^2 + 2px + 2q^2 = 0$ where p,q are rational $p^2 + q^2$ is not a perfect square, form the quadratic equation whose one root is $\alpha + \beta + \sqrt{\alpha^2 + \beta^2}$.

Watch Video Solution

7. IF α, β be the roots of the equation $cx^2 + 2bx + 2c = 0$ where b,c are real and $c^2 > b^2$, find the quadratic equation whose one root is $\alpha + \beta + \sqrt{\alpha^2 + \beta^2}$.

8. Express the roots of the equation $q^2x^2 - \left(p^2 - 2q\right)x + 1 = 0$ in terms of those of $x^2 + px + q = 0.$

Watch Video Solution

9. If the roots of the quadratics $x^2 + 2px + q = 0$ and $x^2 + 2qx + p = 0 (p \neq q)$ differ by a constant, show that p+q+1=0.

10. If one root of the equation $ax^2 + bx + c = 0$ is the square of the other, prove that , $b^3 + ac^2 + a^2c = 3abc.$

Watch Video Solution

11. If one root of the equation $ax^2+bx+c=0$ is the cube of the other, prove that , $\left(b^2-2ca
ight)^2=ca(c+a)^2$

12. If the roots of the equation $ax^2 + bx + c = 0$ are two consecutive integers then prove that, $b^2 - a^2 = 4ac.$

Watch Video Solution

13. IF α and β be the roots of $ax^2 + 2bx + c = 0$ and $\alpha + \delta, \beta + \delta$ be those of $Ax^2 + 2Bx + C = 0$, prove that , $\frac{b^2 - ac}{a^2} = \frac{B^2 - AC}{A^2}$

14. If the ratio of the roots of the equation $x^2-2px+q^2=0$ be equal to the ratio of the roots of the equation $x^2-2rx+s^2=0$, Prove that, $p^2s^2=q^2r^2.$

Watch Video Solution

15. IF α and β be the roots of the equation $x^2 + px + q = 0$ show that $\frac{\alpha}{\beta}$ is a root of the equation $qx^2 - (p^2 - 2q)x + q = 0$.

16. IF $p^3 - q(3p - 1) + q^2 = 0$, find the relation between the roots of the equation $x^2 + px + q = 0$. Watch Video Solution 17. Let a,b,c be real numbers with a
eq 0 and let lpha, etabe the roots of the equation $ax^2 + bx + c = 0$. Express the roots of $a^3x^2 + abcx + c^3 = 0$ in terms

of α, β .

18. IF α be a root of the quadratic equation $4x^2+2x-1=0$, Let prove that $4\alpha^3-3\alpha$ is the other root.

Watch Video Solution

19. Let α , β be the roots of the equation $x^2 - 3x + a = 0$ and γ , δ the roots of the equation $x^2 - 12x + b = 0$. If α , β , γ and δ are in G.P. having positive common ratio, then find the values of a and b.

20. IF a,b,c are real, show that the roots of each of

the following equations are real:

$$(x-a)(x-b) = b^2$$

Watch Video Solution

21. IF a,b,c are real, show that the roots of each of the

following equations are real:

$$(b-c)x^2+2(c-a)x+a-b=0$$

22. IF a,b, are real, show that the roots of each of the

following equations are real:

$$\frac{1}{x-a}+\frac{1}{x-b}=\frac{1}{a^2}$$

Watch Video Solution

23. IF a,b,c are real, show that the roots of each of

the following equations are real:

$$rac{1}{x-a}+rac{1}{x-b}+rac{1}{x-c}=0$$

24. If the roots of the equation
$$p(q-r)x^2 + q(r-p)x + r(p-q) = 0$$
 be equal, show that $\frac{1}{p} + \frac{1}{r} = \frac{2}{q}$.

Watch Video Solution

25. Find the condition that the roots of the quadratic equation $x^2 + px + q = 0$ should be both postitive

Watch Video Solution

26. Find the condition that the roots of the quadratic equation $x^2 + px + q = 0$ should be both negative

27. Find the condition that the roots of the quadratic equation $x^2 + px + q = 0$ should be one is positive and the other negative

Watch Video Solution

28. Find the condition that the roots of the quadratic equation $x^2 + px + q = 0$ should be equal in magnitude and opposite in signs

29. Find the condition that the roots of the quadratic equation $x^2 + px + q = 0$ should be reciprocal to one another.

Watch Video Solution

30. If the roots of the equation $x^2 + x + a = 0$ be real and unequal, then prove that the roots of the equation $2x^2 - 4(1+a)x + 2a^2 + 3 = 0$ are

imaginary (a is real).

31. Prove that, if the roots of the equation $(a^2+b^2)x^2+2(bc+ad)x+(c^2+d^2)=0$ be

real, then they are equal.

Watch Video Solution

32. Show that the roots of the equation $(a^4+b^4)x^2+4abcdx+(c^4+d^4)=0$ cannot be different, if real.
33. For what values of m the equations $3x^2 + 4mx + 2 = 0$ and $2x^2 + 3x - 2 = 0$ will have a common root?

Watch Video Solution

34. Show that the equations $px^2 + qx + r = 0$ and $qx^2 + px + r = 0$ will have a common root if p+q+r=0 or, p=q=r.

35. If the two equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ ($a \neq b$) have a common root, show that the other roots are the roots of the equation $x^2 + x + ab = 0.$

36. IF c is real, show that the roots of the quadratic equation $cx^2 + (c-1)x + 1 - 2c = 0$ are real. If the sum of the roots of the equation be equal to three times their difference, then find c.

37. IF lpha is a root of the equation $ax^2+bx+c=0$ then show that $mlpha^2(m
eq 0)$ is a root of the equation $a^2x^2+ig(2ac-b^2ig)mx+m^2c^2=0.$

Watch Video Solution

38. If the quadratic equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0 (a
eq b)$ have a common root , find the numerical value of (a+b).

39. If the roots of the equation $x^2 - px + q = 0$ be lpha, eta and the roots of the equation $x^2 - ax + b = 0$ be $lpha, \frac{1}{eta}$ then prove that, $bq(a-p)^2 = (q-b)^2$.

Watch Video Solution

40. If lpha and eta be the roots of the equation $5x^2+bx+c=0$ Show that $5x^2+bx+c=5(x-lpha)(x-eta)$

Show also that for all real values of x the expression $5x^2+bx+c$ cannot be negative if lpha and eta are real and equal

41. If α and β be the roots of the equation $5x^2 + bx + c = 0$ Show that $5x^2 + bx + c = 5(x - \alpha)(x - \beta)$ Show also that for all real values of x the expression $5x^2 + bx + c$ cannot be negative if α and β are conjugate complex.

Watch Video Solution

42. IF x is real , find the greatest and the least value

of:

 $x^2 + 14x + 9$

 $x^2 + 2x + 3$

43. IF x is real , find the greatest and the least value

of:

 $\frac{x^2 - 2x + 2}{x^2 + 3x + 9}$

Watch Video Solution

44. Show that for all real values of x the value of $\frac{x^2 - 3x + 4}{x^2 + 3x + 4}$ always lie between $\frac{1}{7}$ and 7.

Watch Video Solution

47. If x is real show that the expressions
$$\frac{(x-1)(x+3)}{(x-2)(x+4)}$$
 has no value between $\frac{4}{9}$ and 1.

48. If x is real then the expressions $\frac{x^2 + 2x - 11}{x - 3}$ assumes those values which do not lie between a and b , find a and b.

49. If x is real , show that the expressions $\frac{x^2 - ab}{2x - a - b}$ has no real value between a and b.

50. If x is real show that the expressions $\frac{3x-5}{x^2-1}$ has no value between $\frac{1}{2}$ and $\frac{9}{2}$.

51. IF x is real , find the maximum and minimum values of
$$\frac{x^2 - x + 1}{x^2 + x + 1}$$
 also find the corresponding values of x.

52. If x be real , find the greatest value of $\frac{x+2}{2x^2+3x+6}$.

53. If x is real, show that each of the following expressions is capable of assuming all real values: $2x^2 + 4x + 1$ $x^2 + 4x + 2$ Watch Video Solution

54. If x is real, show that each of the following expressions is capable of assuming all real values: $2x^2 + 5x + 2$ $x^2 + 6x + 7$

55. If x is real, show that each of the following

expressions is capable of assuming all real values:

 $\frac{p^2}{1-x}-\frac{q^2}{1+x}$

Watch Video Solution

56. IF $3x^2 + 2(p+q+r)x + pq + qr + rp$ be a

perfect square , prove that p=q=r.

Watch Video Solution

Exercise 5 B Multiple Choice Type Question

1. The least value of m which makes the roots of the equation $x^2 + 5x + m = 0$ imginary is-

A. 4

B. 5

C. 6

D. 7

Answer: C

2. The equation of the smallest degree with real coefficients having 1+i as one of the roots is-

A.
$$x^2 + x + 1 = 0$$

B. $x^2 - 2x + 2 = 0$
C. $x^2 + 2x + 2 = 0$
D. $x^2 + 2x - 2 = 0$

Answer: B

3. If the discriminant of a quadratic equation is less

than zero then the roots of this equation are-

A. both real

B. both imaginary

C. one real and another imaginary

D. none of these

Answer: B

4. If 2+3i be a root of a quadratic equation , then the equation will be-

A.
$$x^2 + 4x + 13 = 0$$

B.
$$x^2 - 4x + 13 = 0$$

$$\mathsf{C.}\,x^2 + 4x - 13 = 0$$

D.
$$x^2 - 4x - 13 = 0$$

Answer: B

5. IF -iy-x be a root of the equation $ap^2 + bp + c = 0$ then its another root will be-

A. iy+x

B.-it+x

 $\mathsf{C}.\,iy-x$

D. none of these

Answer: C

Exercise 5 B Very Short Answer Type Question

1. Express each of the following quadratic equations

as the difference of two squares and solve

 $x^2 + 1 = 0$

as the difference of two squares and solve

$$9x^2 + 16 = 0$$

Watch Video Solution

3. Express each of the following quadratic equations

as the difference of two squares and solve

 $x^2 + x + 1 = 0$

as the difference of two squares and solve

 $2x^2 + 2x + 5 = 0$

Watch Video Solution

5. Express each of the following quadratic equations as the difference of two squares and solve $3x^2 - 2x + 2 = 0$

as the difference of two squares and solve

 $8x^2 + 4x + 13 = 0$

Watch Video Solution

7. Express each of the following quadratic equations as the difference of two squares and solve $9x^2 + 12x + 10 = 0$ Watch Video Solution

as the difference of two squares and solve

$$5x^2 - 6x + 5 = 0$$

Watch Video Solution

9. Express each of the following quadratic equation

as two squares and solve

$$a^2x^2 - 2ax + 10 = 0 (a
eq 0)$$

as two squares and solve

 $4x^2 - 12xp + 25p^2 = 0$

Watch Video Solution

11. State the fundamental theorem of algebra.

Watch Video Solution

Exercise 5 B Short Answer Type Question

1. Show that the roots of each of the following quadratic equations are complex numbers. Find the solutions in each case.

 $x^2+2x+2=0$

2. Show that the roots of each of the following quadratic equations are complex numbers. Find the solutions in each case.

$$x^2 + 4x + 8 = 0$$

3. Show that the roots of each of the following quadratic equations are complex numbers. Find the solutions in each case.

 $2x^2 - 3x + 4 = 0$

4. Show that the roots of each of the following quadratic equations are complex numbers. Find the solutions in each case.

$$3x^2 - 7x + 5 = 0$$

5. Show that the roots of each of the following quadratic equations are complex numbers. Find the solutions in each case.

$$\frac{2x-1}{x-2} = \frac{x}{x-1}$$

6. Show that the roots of each of the following quadratic equations are complex numbers. Find the solutions in each case.

$$\sqrt{3}x^2+x+\sqrt{3}=0$$

7. Show that the roots of each of the following equations are conjugate complex numbers:

 $3x^2 - 4x + 3 = 0$

Watch Video Solution

8. Show that the roots of each of the following equations are conjugate complex numbers:

$$rac{1}{x-3}+rac{x}{5}=0$$

9. Show that the roots of each of the following

equations are conjugate complex numbers:

$$rac{1}{x-1} + rac{1}{x-2} = rac{2}{2x-3}$$

Watch Video Solution

10. Solve by factorization:

$$3x^2 + 8ix + 3 = 0$$

11. Solve by factorization:

$$ix^2 + x + 6i = 0$$

13. Solve by factorization:

$$2x^2 - ix + 6 = 0$$

14. Solve by factorization:

$$x^2 + 3\sqrt{2}xi + 8 = 0$$

Watch Video Solution
15. Solve by factorization:
 $12ix^2 - x + 6i = 0$
Watch Video Solution
16. Solving the equation
 $x^2 + (i - 7)x - (i - 18) = 0$, prove that the roots

of the equation are not complex conjugate numbers.

17. Solve the following quadratic equations using Sridhar Acharya's formula:

$$2x^2 + (4i - 5)x + 8 + i = 0$$

Watch Video Solution

18. Solve the following quadratic equations using Sridhar Acharya's formula:

$$y^2 - (1-2i)y + 1 + 5i = 0$$

19. Solve the following quadratic equations using

Sridhar Acharya's formula:

 $2y^2 + 3y + 8 - 6i = 0$

Watch Video Solution

20. Solve the following quadratic equations using Sridhar Acharya's formula:

$$6x^2 - (5+3i)x + 11i - 3 = 0$$

21. Solve the following quadratic equations using Sridhar Acharya's formula:

 $ix^2 - 6x - 9i = 0$

Watch Video Solution

22. Solve the following quadratic equations using Sridhar Acharya's formula:

 $3x^2 + (11i - 2)x + 4 - 8i = 0$

$$(2+i)x^2 + (i+5)x - 2(i-1) = 0$$

Watch Video Solution

24. Solve:

$$2x^2 - (3+7i)x - 3 + 9i = 0$$

Watch Video Solution

Sample Question For Competitive Exams Multiple Correct Answer Type 1. If $x^2 - kx + k + 2 = 0$ has equal roots, then the

value of k will be -

A. $2+\sqrt{20}$ B. $2-\sqrt{20}$ C. $2+\sqrt{12}$

D. $2-\sqrt{12}$

Answer: C::D

2. Let the quadratic equation $ax^2 + bx + c = 0$ has two purely complex roots. IF ap=b and aq=c, then-

A. p is purely imaginary and q is purely real

B.
$$\left|rac{1-p}{1+p}
ight|=1$$

C. $\left|q+\sqrt{q^2+1}
ight|=\left|q-\sqrt{q^2+1}
ight|$
D. $\left|q+ar{p}
ight|=\left|ar{q}+p
ight|$

Answer: B::C

3. The roots of $2(1+i)x^2 - 4(2-i)x - 5 - 3i = 0$

are-

Answer: A::D

4. The values of x satisfying the equation $|x-2|^2+|x-2|-6=0$, are-A. 4 B. 2 C. 3 D. 0 Answer: A::D **Watch Video Solution**
5. If the equaiton $ax^2+bx+c=0$ where a,b,c $\,\in\,$ R

have non-real roots then-

A.
$$c(a-b+c)>0$$

B.
$$c(a+b+c)>0$$

C.
$$c(4a-2b+c)>0$$

$$\mathsf{D}.\,b^2-4ac=0$$

Answer: A::B::C

Sample Question For Competitive Exams Integer Answer Type

1. If the equation
$$ig(K^2-5K+6ig)x^2+ig(K^2-3k+2ig)x+ig(K^2-4ig)=0$$

has more than two roots, then the value of K is-

a perfect square, then the value of K will be-

Watch Video Solution

3. If the roots of $x^2 - bx + c = 0$ be two consecutive integers, then the value of $b^2 - 4c$ will be-Watch Video Solution

4. IF x be real, then the maximum value of $5+4x-4x^2$ will be-

Watch Video Solution

5. IF $-2+i\sqrt{3}$ be a root of $x^2+px+q=0$, then

the value of p+q will be-

SampleQuestionForCompetitiveExamsComprehension Type

1. Let $f(x) = x^2 + b_1x + c_1$ and $g(x) = x^2 + b_2x + c_2$. When f(x)=0 then the real roots of f(x) are α , β and when g(x)=0 then the real roots of g(x) are $\alpha + h$, $\beta + h$. Minimum value of f(x) is $-\frac{1}{4}$ and when $x=\frac{7}{2}$ then value of g(x) will be minimum.

Minimum value of g(x) is-

A.
$$-\frac{1}{4}$$

B. -1

C.
$$-\frac{1}{3}$$

D. $-\frac{1}{2}$

Answer: A

2. Let
$$f(x) = x^2 + b_1 x + c_1$$
 and
 $g(x) = x^2 + b_2 x + c_2$. When $f(x)=0$ then the real
roots of $f(x)$ are α , β and when $g(x)=0$ then the real
roots of $g(x)$ are $\alpha + h$, $\beta + h$. Minimum value of $f(x)$
is $\frac{1}{4}$ and when $x=\frac{7}{2}$ then value of $g(x)$ will be

minimum.

Value of b_2 is-

A. -5

B. 9

C. -8

D. -7

Answer: D

Watch Video Solution

3. Let
$$f(x) = x^2 + b_1 x + c_1$$
 and $q(x) = x^2 + b_2 x + c_2$. When $f(x)=0$ then the real

roots of f(x) are α , β and when g(x)=0 then the real roots of g(x) are $\alpha + h$, $\beta + h$. Minimum value of f(x) is $-\frac{1}{4}$ and when $x=\frac{7}{2}$ then value of g(x) will be minimum.

Roots of g(x)=0 are-

A. 3,-4

B. -3, 4

C. 3,4

D. -3, -4

Answer: C

4. Consider an unknown polynomial which when divided by (x-3) and (x-4) leaves 2 and 1 as remainders, respectively, Let R(x) be the remainder when the polynomial is divided by (x-3) (x-4).

If the equation R(x)= $x^2 + ax + 1$ has two distinct real roots then values of 'a' are-

A. (-2,2)
$$B. \ (-\infty,\ -2) \cup (2,\infty)$$
C. $(-2,\infty)$

D. all real numbers

Answer: D

5. Consider an unknown polynomial which when divided by (x-3) and (x-4) leaves 2 and 1 as remainders, respectively, Let R(x) be the remainder when the polynomial is divided by (x-3) (x-4). If $R(x)=px^2 + (q-1)x + 6$ has no distinct real roots and p > 0, then least value of 3p+q is-

A. -2
B.
$$\frac{2}{3}$$

C. $-\frac{1}{3}$
D. $-\frac{4}{3}$

Answer: C

6. Consider an unknown polynomial which when divided by (x-3) and (x-4) leaves 2 and 1 as remainders, respectively, Let R(x) be the remainder when the polynomial is divided by (x-3) (x-4).

Range of f(x) =
$$=rac{\lfloor R(x)
floor}{x^2-3x+2}$$
 is-

A. [-2,2] B. $\left[-\infty - 2\sqrt{3}\right] \cup \left[-2 + \sqrt{3}, \infty\right]$ C. $\left[-\infty - 7 - 4\sqrt{3}\right] \cup \left[-7 + 4\sqrt{3}, \infty\right]$ D. none of these

Answer: C

Watch Video Solution

Sample Question For Competitive Exams Assertion Reason Type

1. Let $ax^2+bx+c=0, a
eq 0$ (a,b,c \in R) has no

real roots and a+b+2c=2

Statement-I: $ax^2+bx+c>0\,orall\,x\in R$

Statement II: a+b is positive.

A. Statement-I is true, Statement-II is true and Statement -II is a correct explanation for Statement -I.

B. Statement-I is true, Statement -II is true but

Statement-li is not a correct explanation of

Statement-I.

C. Statement-I is true, Statement-II is false

D. Statement-I is false, Statement-II Is true.

Answer: C

2. Statement I: If a > 0 and $b^2 - ac < 0$, then domain of the function f(x)= $\sqrt{ax^2 + 2bx + c}$ is R. Statement II: If $b^2 - ac < 0$ then $ax^2 + 2bx + c = 0$ has imaginary roots.

A. Statement-I is true, Statement-II is true and Statement -II is a correct explanation for Statement -I.

B. Statement-I is true, Statement -II is true but

Statement-li is not a correct explanation of

Statement-I.

C. Statement-I is true, Statement-II is false

D. Statement-I is false, Statement-II Is true.

Answer: B

