©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - CHHAYA PUBLICATION MATHS

(BENGALI ENGLISH)

QUADRATIC EQUATIONS

Examples

1. IF α and β be the roots of the equation $a x^{2}+b x+c=0$, find the values of
$\alpha^{2}+\beta^{2}$
2. IF α and β be the roots of the equation $a x^{2}+b x+c=0$, find the values of
$\frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}$

- Watch Video Solution

3. IF the roots of the equation $k^{2}+x^{2}+(k x+1)(x+k)+1=0(k \neq 0, k \neq-1)$
are α and β, find the value of $\alpha^{2}+\beta^{2}+(\alpha \beta+1)(\alpha+\beta)+1$.
4. IF α, β be the roots of the equation $a x^{2}+b x+c=0 \quad$ find the value of $\frac{a \alpha^{2}}{b \alpha+c}-\frac{a \beta^{2}}{b \beta+c}$

D Watch Video Solution

5. IF α, β be the roots of the equation $p x^{2}+q x+r=0$, find the value of
$\frac{1}{(p \alpha+q)^{3}}+\frac{1}{(p \beta+q)^{3}}$.

- Watch Video Solution

6. IF α, β and γ, δ be the roots of the equation $x^{2}+p x-r=0$ and $x^{2}+p x+r=0$ respectively, prove that $(\alpha-\gamma)(\alpha-\delta)=(\beta-\gamma)(\beta-\delta)$

- Watch Video Solution

7. IF the ratio of the roots of equation $x^{2}+p x+q=0 \quad$ be $a: b$ prove that, $p^{2} a b=q(a+b)^{2}$ Hence, find the condition of equal roots of the given equation.
8. IF one root of the equation $x^{2}-r x-s=0$ is square of the other, prove that ,
$r^{3}-s^{2}+3 s r+s=0$

- Watch Video Solution

9. IF $b^{3}+a^{2} c+a c^{2}=3 a b c$,find the relation between the roots of the equation $a x^{2}+b x+c=0$.

- Watch Video Solution

10. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be real numbers with $a \neq 0$ and let α, β
be the roots of the equation $a x^{2}+b x+c=0$.
$a^{2} c x^{2}+\left(b^{3}-3 a b c\right) x+a c^{2}=0$ in terms of α, β.

- Watch Video Solution

11. IF α and β be the roots of the equation $x^{2}+3 x+4=0$, find the equation whose roots are $(\alpha+\beta)^{2}$ and $(\alpha+\beta)^{2}$

D Watch Video Solution

12. $-\frac{\alpha^{2}}{\beta}$ and $-\frac{\beta^{2}}{\alpha}$ are the roots of the equation $3 x^{2}-18 x+2=0$. Find the equation whose roots
are α and β (α, β real).

- Watch Video Solution

13. IF α and β be the roots of $x^{2}+x+1=0$, form the equation whose roots are α^{2} and β^{2}. Account for the identify of the equation thus obtained with the original equation.

D Watch Video Solution

14. IF $a^{2}=5 a-3$ and $b^{2}=5 b-3,(a \neq b)$, find the quadratic equation whose roots are $\frac{a}{b}$ and $\frac{b}{a}$.
15. Find the quadratic equation with real coefficients which has $2+\mathrm{i}$ as a root $(i=\sqrt{-1})$.

- Watch Video Solution

16. Form a quadratic equation with rational coefficients whose one root is $3-\sqrt{5}$.
17. IF one root of the quadratic equation $x^{2}-x-1=0$ is α, prove that its other root is $\alpha^{3}-3 \alpha$.

- Watch Video Solution

18. If the ratio of the roots of equation $a x^{2}+b x+c=0$ be equal to that of the roots of $p x^{2}+q x+r=0$, Prove that,$r p b^{2}=c a q^{2}$.
19. In the equation $x^{2}+p x+q=0$, if the coeffficient of x be taken as 17 instead of 13 , the roots are obtained as (-2) and (-15). Find the roots of the original equation.

- Watch Video Solution

20. IF α be a root of the equation $3 x^{2}-4 x+5=0$, prove that $2 \alpha^{2}$ is a root of the equation $9 x^{2}+28 x+100=0$.
21. Dicuss the nature of the roots of the following equations:
$3 x^{2}-7 x+3=0$

- Watch Video Solution

22. Dicuss the nature of the roots of the following
equations:
$x^{2}-18 x+81=0$

Watch Video Solution
23. Find the nature of the roots of the equation $2 x^{2}-\sqrt{3} x+2=0$.

- Watch Video Solution

24. Dicuss the nature of the roots of the following
equations:
$x^{2}-2 \sqrt{7} x-2=0$

D Watch Video Solution
25. Dicuss the nature of the roots of the following equations:

$2 x^{2}-3 x+5=0$

- Watch Video Solution

26. For what value of m the roots of the equation $x^{2}-2(5+2 m) x+3(7+10 m)=0$ are equal

- Watch Video Solution

27. For what value of m the roots of the equation $x^{2}-2(5+2 m) x+3(7+10 m)=0$ are reciprocal to one another
28. For what value of m the roots of the equation $x^{2}-2(5+2 m) x+3(7+10 m)=0$ are equal in magnitude and opposite in signs?

- Watch Video Solution

29. IF a, b, c are rational and $a+b+c=0$, show that the roots of the equation $a x^{2}+b x+c=0$ are rational.
30. IF the roots of the equation $p x^{2}-2 q x+p=0$ are real and unequal, show that the roots of the equation $q x^{2}-2 p x+q=0$ are imaginary (both p and q are real).

- Watch Video Solution

31. Show that the roots of the equation
$a(b-c) x^{2}+b(c-a) x+c(a-b)=0$ are equal if $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in H.P.

- Watch Video Solution

32. IF a, b, c are real, prove that the roots of the equation $\frac{1}{x-a}+\frac{1}{x-b}+\frac{1}{x-c}=0$ are always real and cannot be equal unless $\mathrm{a}=\mathrm{b}=\mathrm{c}$.

- Watch Video Solution

33. Find the condition for which the roots of the quadratic equation $a x^{2}+b x+c=0(a \neq 0)$ are both positive
34. Find the condition for which the roots of the quadratic equation $a x^{2}+b x+c=0(a \neq 0)$ are both negative

- Watch Video Solution

35. Find the condition for which the roots of the quadratic equation $a x^{2}+b x+c=0(a \neq 0)$ are one positive and the other negative

D Watch Video Solution

36. Find the condition for which the roots of the quadratic equation $a x^{2}+b x+c=0(a \neq 0)$ are equal in magnitude and opposite in signs

- Watch Video Solution

37. Find the condition for which the roots of the quadratic equation $a x^{2}+b x+c=0(a \neq 0)$ are reciprocal to one another
38. Find the condition for which the roots of the quadratic equation $a x^{2}+b x+c=0(a \neq 0)$ are one root is zero

D Watch Video Solution

39. Find the condition for which the roots of the quadratic equation $a x^{2}+b x+c=0(a \neq 0)$ are both roots are zero.
40. IF a,b,c are real determine the nature of the roots of the equation $a x^{2}+b x+c=0$ under following conditions:
$b^{2}>4 a c, a b<0, a c>0$

- Watch Video Solution

41. IF a,b,c are real determine the nature of the roots
of the equation $a x^{2}+b x+c=0$ under following conditions:
$b^{2}>4 a c, a b>0, a c>0$
42. Find the condition so that the two equations
$a_{1} x^{2}+b_{1} x+c_{1}=0$ and $a_{2} x^{2}+b_{2} x+c_{2}=0$ will have a common root.

- Watch Video Solution

43. Find the value of the common root.

- Watch Video Solution

44. Find the values of the other roots of the two equations.
45. Also find the condition of having two common roots.

D View Text Solution

46. Find those values of k for which the equations
$x^{2}-k x-21=0$ and $x^{2}-3 k x-35=0$ have a
common root.

- Watch Video Solution

47. Prove that, if the equations $x^{2}+p x+q r=0$
and $x^{2}+q x+p r=0[p \neq q, r \neq 0]$ have a common root, then $p+q+r=0$.

- Watch Video Solution

48. Prove that, if the equations $x^{2}+b x+c a=0$ and $x^{2}+c x+a b=0$ have only non-zero common
root then their other roots satisfy the equation $t^{2}+a t+b c=0$.
49. If the roots of the equation $x^{2}-2 p x+q=0$ are equal and $y<0$ and $p \neq 1$, show that the roots of the equation $(1+y) x^{2}-2(p+y) x+q+y=0$ are real and unequal.

- Watch Video Solution

50. If $b>a$, then prove that the equation $(x-a)(x-b)-1=0$ has one root in $(-\infty, a)$ and the other in $(b,+\infty)$.
51. Given that a,c are the roots of the equation $p x^{2}-3 x+2=0$ and b, d are the roots of the equation $q x^{2}-4 x+2=0$, find the values of p and
q such that $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ and $\frac{1}{d}$ are in A.P.

- Watch Video Solution

52. IF one root of the equation $p x^{2}+q x+r=0$ is the cube of the other, prove that , $r p(r+p)^{2}=\left(q^{2}-2 r p\right)^{2}$.
53. Let α, β be the roots of the equation $x^{2}-4 x+A=0$ and γ, δ be the roots of the equation $x^{2}-36 x+B=0$. If α, β, γ and δ are In G.P. having positive common ratio, find the value of A and B.

- Watch Video Solution

54. If x be real then prove that $(x-1)(x-2)+1$ is always positive.
55. IF x is real, find the least value of $2 x^{2}-3 x+5$ and the value of x for which the expression is minimum.

- Watch Video Solution

56. Find for what value / values of x the value of $8 x-x^{2}-15$ is
the greatest
57. Find for what value / values of x the value of $8 x-x^{2}-15$ is negative.

- Watch Video Solution

58. For what real values of $\mathrm{k}, 3 x^{2}+k x+39-k^{2}$ cannot be negative for any real values of x ?

- Watch Video Solution

59. IF x, a, b be real , show that

$$
4(a-x)\left(x-a+\sqrt{a^{2}+b^{2}}\right) \ngtr a^{2}+b^{2} .
$$

60. If x be real, show that the value of $\frac{2 x^{2}-2 x+4}{x^{2}-4 x+3}$ cannot lie between (-7) and 1.

D Watch Video Solution

61. IF x is real, find the greatest and the least value of $\frac{6 x^{2}-22 x-21}{5 x^{2}-18 x+17}$, also find the corresponding values of x.
62. IF x is real and $0<m<1$, show that the expression $\frac{x^{2}+2 x+m}{x^{2}+4 x+3 m}$ is capable of assuming all real values.

- Watch Video Solution

63. IF x is real, find the real values of a which make $x^{2}-a x+1-2 a^{2}$ always positive.

- Watch Video Solution

64. Find the value of m for which the expressions
$6 x^{2}-7 x y+2 y^{2}-9 x+7 y+m$ can be resolved
into two linear factors.

- Watch Video Solution

65. IF $a x^{2}+b y^{2}+c z^{2}+2 a y z+2 b z x+2 c x y$ is resolvable into two linear factors, prove that either $a+b+c=0$ or, $a=b=c$.

- Watch Video Solution

66. Solve by expressing the quadratic as the difference of two squares:
$9 x^{2}+25=0$
67. Solve by expressing the quadratic as the difference of two squares:
$x^{2}-6 x+25=0$

- Watch Video Solution

68. Solve by expressing the quadratic as the difference of two squares:
$16 x^{2}+24 x+13=0$

- Watch Video Solution

69. Show that the roots of the equation $9 x^{2}-24 x+25=0$ are complex numbers, solving the equation show that the complex roots are conjugate complex numbers.

- Watch Video Solution

70. Solve the following quadratic equations using

Sridhar Acharya's formula:
$2 x^{2}+3=0$

- Watch Video Solution

71. Solve the following quadratic equations using Sridhar Acharya's formula:
$4 x^{2}+4 x+7=0$

- Watch Video Solution

72. Solve the following quadratic equations using

Sridhar Acharya's formula:
$\sqrt{3} x^{2}-4 x+2 \sqrt{3}=0$

D Watch Video Solution

73. Solve by factorization:
$x^{2}-i x+12=0$

- Watch Video Solution

74. Solve by factorization:
$4 x^{2}+4 x i-1=0$

- Watch Video Solution

75. Solve by factorization:
$x^{2}+2 \sqrt{2} x i+6=0$
76. Solve each of the following quadratic equations by comparing its roots with the roots of the general quadratic equation:
$x^{2}-(3 i-2 \sqrt{3}) x-6 \sqrt{3} i=0$

D Watch Video Solution

77. Solve each of the following quadratic quadratic equations by comparing its roots with the roots of the general quadratic equation:

$$
2 x^{2}-7 i x+4=0
$$

78. Solve each of the following quadratic quadratic equations by comparing its roots with the roots of the general quadratic equation:
$3 x^{2}-(2-i) x+10-4 i=0$

- Watch Video Solution

79. Solve each of the following quadratic quadratic equations by comparing its roots with the roots of the general quadratic equation:

$$
x^{2}+(2+i) x-2(1+7 i)=0
$$

80. Solve the following equation in the complex plane C:
$6 x^{2}-(18-5 i) x+18+i=0$

- Watch Video Solution

81.

One
root
of
the
equation
$(2+3 i) x^{2}-b x+(3+i)=0$ is 2 -i. Find the other root and the value of b.

- Watch Video Solution

Exercise 5 A Multiple Choice Type Question

1.
 One
 root
 of
 the
 equation
 $a x^{2}+b x+c=0(a \neq 0)$ is zero when-

A. $a=0$
B. $b=0$
C. $\mathrm{c}=0$
D. $x=0$

Answer: C
2. The roots of the equation $a x^{2}+b x+c=0$ are reciprocal to one another when-
A. $a=c$
B. $a=b$
C. $b=c$
D. $a=0$

Answer: A

- Watch Video Solution

3. IF the signs of a and c are opposite to that of b then both roots of the equation $a x^{2}+b x+c=0$ are-
A. zero
B. positive
C. negative
D. fraction

Answer: B
(D) Watch Video Solution
4.
The roots
of the equation $a x^{2}+b x+c=0(a \neq 0)$ are equal in magnitude and opposite in signs when-
A. $a=0$
B. $b=0$
C. $c=0$
D. $a=c$

Answer: B
5. IF $b=c=0$ then both roots of the equation $a x^{2}+b x+c=0(a \neq 0)$ are-
A. zero
B. positive
C. negative
D. imaginary

Answer: A
6. The maximum number of distinct roots in a quadratic equation is -
A. 1
B. 2
C. 3
D. infinite

Answer: B
7. IF $a=0, b \neq 0$ and c is real and rational then one root of the equation $a x^{2}+b x+c=0$ is real and rational and the other root is -
A. zero
B. real and rational
C. imaginary
D. not defined

Answer: D

8. IF $a=0$ and $b=0$ then both roots of the equation $a x^{2}+b x+c=0$ are-
A. zero
B. real and rational
C. imaginary
D. not defined

Answer: D
9. The roots of the equation $a x^{2}+b x+c=0$ are equal when-

$$
\begin{aligned}
& \text { A. } b^{2}-4 a c<0 \\
& \text { B. } b^{2}-4 a c>0 \\
& \text { C. } b^{2}-4 a c \geq 0 \\
& \text { D. } b^{2}-4 a c=0
\end{aligned}
$$

Answer: D

10. IF a, b, c are rational numbers and $b^{2}-4 a c$ is

 positive but not a perfect square then both roots of the equation $a x^{2}+b x+c=0$ are-A. real
B. rational
C. irrational
D. imaginary

Answer: C

- Watch Video Solution

11. The minimum value of $9 x^{2}-6 x+1$ is-
A. 0
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

12. The maximum value of $4 x-x^{2}-2$ is-
A. 0
B. 1
C. 2
D. 3

Answer: C

- Watch Video Solution

13. If 4 is a root of the equation $x^{2}+a x-12=0$, then which of the following is its other root?
A. -4
B. -2
C. 3
D. -3

Answer: D

- Watch Video Solution

14. State which of the following is the sum of the roots of the equation $3 x^{2}-5 x+7=0$?
A. 5
B. $-\frac{5}{3}$
C. -5
D. $\frac{5}{3}$

Answer: D

- Watch Video Solution

15. State which of the following is the product of the roots of the equation $2 x^{2}-3 x+7=0$?
A. $\frac{3}{2}$
B. $\frac{7}{2}$
C. $-\frac{7}{2}$
D. 7

Answer: B

- Watch Video Solution

16. State which of the following equation has the roots 2 and (-3)?
A. $x^{2}-x-6=0$
B. $x^{2}+x-6=0$
C. $x^{2}-x+6=0$
D. $x^{2}-x-6=0$

Answer: B

- Watch Video Solution

17. If the roots of the equation $5 x^{2}-7 x-k=0$ are reciprocal to one another, then which of the following is the value of k ?
A. -5
B. $-\frac{1}{5}$
C. 5
D. $\frac{1}{5}$

D Watch Video Solution

18. If the sum of the roots of the equation $2 x^{2}+a x+6=0$ be 5 , then which of the following is the value of a?
A. -10
B. 10
C. $\frac{5}{2}$
D. $-\frac{5}{2}$

- Watch Video Solution

19. If the product of the roots of the equation $2 x^{2}-7 x+b=0$ be (-3), then which of the following is the value of b ?
A. $-\frac{3}{2}$
B. $\frac{3}{2}$
C. -6
D. 6

Answer: C

- Watch Video Solution

20. The roots of the equation $3 x^{2}-5 x+p=0$ are equal, state which of the following is the value of p ?
A. $\frac{25}{6}$
B. $\frac{25}{12}$
C. $-\frac{25}{6}$
D. $-\frac{25}{12}$

Answer: B

Exercise 5 A Very Short Answer Type Question

1. Find the condition for which the roots of the equation $a x^{2}-(a+1) x+1=0$ are always real.

- Watch Video Solution

2. One root of the equation $3 x^{2}-5 x+c=0$ is 2 ,
find its other root.
3. The product of the roots of the equationn $3 x^{2}+m x-(2 m+3)=0$ is 5 , find m.

- Watch Video Solution

4. If one root of the equation $2 x^{2}-5 x+k=0$ be twice the other, find the value of k.

- Watch Video Solution

5. Find the condition so that the roots of the equation $l x^{2}+m x+n=0$ are
equal is magnitude and opposite in signs
6. Find the condition so that the roots of the equation $l x^{2}+m x+n=0$ are reciprocal to one another

- Watch Video Solution

7. If the ratio of the roots of the equation $x^{2}-p x+q=0$ be $1: 2$, find the relation between p and q.
8. If the roots of the equation $q x^{2}+p x+q=0$ be imaginary, where $p, q>0$, then show that , $0<p<2 q$.

- Watch Video Solution

9. Find the condition for which the quadratic equation $a x^{2}+b x+c=0$ has exactly one zero root.
10. IF the equation $4 x^{2}+2 b x+c=0, b=0$, find the relation between the roots of the equation.

D Watch Video Solution

11. IF α be a root of the equation $a x^{2}+b x+c=0$, show that $k \alpha(k \neq 0)$ is a root of the equation $a x^{2}+b k x+c k^{2}=0$.

- Watch Video Solution

12. Find the quadratic equation with real coefficients which has $2 \pm 3 \mathrm{i}$ as a root $(i=\sqrt{-1})$
13. Form a quadratic equation with rational coefficients whose one root is $4+\sqrt{7}$.

- Watch Video Solution

14. IF α and β are the roots of the equation $\mathrm{x}(\mathrm{x}-3)=4$, find the value of $\alpha^{2}+\beta^{2}$.
15. IF a,b,c are in G.P prove that the roots of the equation $a x^{2}+2 b x+c=0$ are equal.

- Watch Video Solution

16. Find m, given that the difference of the roots of the equation $2 x^{2}-12 x+m+2=0$ is 2 .

- Watch Video Solution

17. If α and β be the roots of the equation ($x-a)(x-b)=c$
($c \neq 0$), prove that a and b are the roots of the equation $(x-\alpha)(x-\beta)+c=0$.

- Watch Video Solution

18. IF $2+\sqrt{3} i$ is a root of the equation $x^{2}+p x+q=0$ where p and q are real, find p and q.

- Watch Video Solution

19. Find the value of p so that the roots of the
equation $\quad 3 x^{2}-2(7+9 p) x+(8-5 p)=0 \quad$ are reciprocal to one another.

Watch Video Solution

20. IF x is real, find the signs of the each of the following expressions:
$3 x^{2}-2 x+1$

- Watch Video Solution

21. IF x is real, find the signs of the each of the following expressions:
$3 x-2 x^{2}-2$
22. IF x is real, find the signs of the each of the following expressions:
$5 x^{2}-14 x+10$

- Watch Video Solution

23. IF x is real, find the signs of the each of the following expressions:

$$
10 x-3 x^{2}-9
$$

24. If x be real, find the maximum value of each of the following expressions and the corresponding values of x :
$1-2 x-x^{2}$

D Watch Video Solution

25. If x be real, find the maximum value of each of
the following expressions and the corresponding values of x :
$3-20 x-25 x^{2}$
26. If x be real, find the maximum value of each of the following expressions and the corresponding values of x :
$3+2 x-x^{2}$

D Watch Video Solution

27. If x be real, find the least values of each of the
following expressions and the corresponding values of x :
$4 x^{2}-4 x+1$
28. If x be real, find the least values of each of the following expressions and the corresponding values of x :
$3 x^{2}-6 x+8$

- Watch Video Solution

29. If x be real, find the least values of each of the following expressions and the corresponding values of x :
$3 x^{2}+6 x+7$
30. For what real values of x the expressions $x^{2}-2 x+3$ is negative?

D Watch Video Solution

Exercise 5 A Short Answer Type Question

1. If α and β are the roots of the equation $\mathrm{x}(2 \mathrm{x}-1)=1$,
find the value of $\alpha^{2}-\beta^{2}$ and form the equation whose roots are $2 \alpha-1$ and $2 \beta-1$

D Watch Video Solution

2. IF α and β be the roots of the equation $5 x^{2}+7 x+3=0$, find the value of $\frac{\alpha^{3}+\beta^{3}}{\alpha^{-1}+\beta^{-1}}$.

- Watch Video Solution

3. IF p and q are the roots of the equation

$$
\begin{aligned}
& a x^{2}+b x+c=0 \quad \text { find the value of } \\
& \frac{1}{\left(a p^{2}+c\right)^{2}}+\frac{1}{\left(a q^{2}+c\right)^{2}} .
\end{aligned}
$$

- Watch Video Solution

4. IF α, β and γ, δ are the roots of the equations
$x^{2}-b x+c=0$ and $x^{2}-p x+q=0$ respectively,

$$
(\alpha-\gamma)(\beta-\delta)-\alpha . \gamma-\beta . \delta=(c+q)-b p
$$

- Watch Video Solution

5. If the roots of the equation $a x^{2}-b x+a=0$ be α and β, show that the equation with roots $\alpha^{2}+1$ and $\beta^{2}+1$ will be $a^{2} x^{2}-b^{2} x+b^{2}=0$

- Watch Video Solution

6. IF α and β be the roots of the equation $2 x^{2}+x+1=0$ find the equation whose roots are
$\frac{\alpha^{2}}{\beta}$ and $\frac{\beta^{2}}{\alpha}$

D Watch Video Solution

7. IF α and β are the roots of the equation $x^{2}+\alpha x+\beta=0$ then find the numerical values of α and β. [Here $, \alpha \neq \beta, \alpha \neq 0, \beta \neq 0]$

- Watch Video Solution

8. If the roots of the equation $a x^{2}+b x+c=0$ be α and β, find the equation whose roots are $\alpha+\frac{\alpha^{2}}{\beta}$ and $\beta+\frac{\beta^{2}}{\alpha}$

D Watch Video Solution

9. IF α, β be the roots of the equation $x^{2}+p x+q=0$, show that $\frac{1}{\alpha+\beta}$ and $\frac{1}{\alpha}+\frac{1}{\beta}$ are the roots of $p q x^{2}+\left(p^{2}+q\right) x+p=0$

D Watch Video Solution

10. IF the roots of the equation $a x^{2}+b x+c=0$ be α and β, find the equation whose equals are $\frac{1}{\alpha}+1$ and $\frac{1}{\beta}+1$.
11. Form the quadratic equation whose roots α and β
satisfy the relations $\alpha \beta=768$ and $\alpha^{2}+\beta^{2}=1600$.

- Watch Video Solution

12. Form the quadratic equation whose roots are the squares of the roots of $x^{2}+3 x+2=0$.

- Watch Video Solution

13. Form the quadratic equation whose roots are reciprocals of the roots of $x^{2}+3 x+4=0$.
14. IF $3 a^{2}=4 a-5$ and $3 b^{2}=4 b-5$ where a $\neq \mathrm{b}$, find the value of $a^{2}+b^{2}$.

- Watch Video Solution

15. IF $3 p^{2}=5 p+2$ and $3 q^{2}=5 q+2$ where $\mathrm{p} \neq \mathrm{q}$, obtain the equation whose roots are (3p-2q)and (3q-
$2 p)$.

D Watch Video Solution

16. IF α and β be the roots of the equation $x^{2}-4 x+10=0$, find the equation whose roots are $\frac{\alpha}{1+\beta}$ and $\frac{\beta}{1+\alpha}$.

- Watch Video Solution

17. If p and q are the roots of the equation $3 x^{2}+6 x+2=0$, show that the equation whose roots are $\left(-\frac{p^{2}}{q}\right)$ and $\left(-\frac{q^{2}}{p}\right)$
$3 x^{2}-18 x+2=0$.
18. If the sum of the roots of a quadratic equation is

2 and the sum of their cubes is 27 , find the equation.

- Watch Video Solution

19. If the sum of the roots of the equation $x^{2}-p x+q=0$ be three times their difference show that, $2 p^{2}=9 q$.

- Watch Video Solution

20. If the roots of the equation $a x^{2}+b x+c=0$ are in the ratio $3: 4$ show that $12 b^{2}=49 a c$.
21. If one root of the equation $x^{2}+(5 a+2) x+5 a+2=0$ is five times the other root, then find the numerical value of a.

- Watch Video Solution

22. Find the quadratic equation whose roots are the
cubes of the roots of $x^{2}-4 x+3=0$.

- Watch Video Solution

23. The ratio of the roots of the equation $a x^{2}+b x+c=0$ is $\quad r: 1 \quad$ Prove that, $b^{2} r=a c(r+1)^{2}$ and hence find the condition so that the two roots may be equal to each other.

- Watch Video Solution

24. If the roots of the equation $p x^{2}+r x+r=0$ are in the ratio $a: b$, prove that,$p(a+b)^{2}=r a b$.
25. In a quadratic equation of the form $x^{2}+m x+n=0$ the constant term is misprinted 56 to 54 and the roots are, therefore, obtained as 7 and 8 . Find the roots of the equation correctly printed.

- Watch Video Solution

26. For what value of m the roots of the equation $(m+1) x^{2}+2(m+3) x+m+8=0$ are equal?
27. If one root of the equation $x^{2}+b x+8=0$ be 4 and the roots of the equation $x^{2}+b x+c=0$ are equal, find the value of c.

- Watch Video Solution

28. For what value of m the roots of the equation $\frac{3}{x+3+m}+\frac{5}{x+5+m}=1$ are equal in a magnitude and opposite in signs?

- Watch Video Solution

29. Find the condition so that the roots of the
equation $\frac{a}{x-a}+\frac{b}{x-b}=5$ may be equal in magnitude but oppsite in signs.

- Watch Video Solution

30. Show that the roots of each of the following equations are rational(a,b,c are rational):
$(b+c) x^{2}-(a+b+c) x+a=0$
31. Show that the roots of each of the following equations are rational(a,b,c are rational):

$$
(a-b+c) x^{2}+2 c x+(b+c-a)=0
$$

- Watch Video Solution

32. Show that the roots of the equation $\left(a^{2}-b c\right) x^{2}+2\left(b^{2}-c a\right) x+c^{2}-a b=0$ are equal if either $\mathrm{b}=0$ or,$a^{3}+b^{3}+c^{3}-3 a b c=0$

D Watch Video Solution

33. If one root of the equation $q x^{2}+p x+q=0$ (p, q are real) be imaginary, show that the roots of the equation $x^{2}-4 q x+p^{2}=0$ are real and unequal.

- Watch Video Solution

34. If the roots of the equation $q x^{2}+2 p x+2 q=0$ are real and unequal, prove that the roots of the equation

$$
(p+q) x^{2}+2 q x+(p-q)=0 \quad \text { are }
$$

imaginary.
35. If the roots of the equation $x^{2}-2(a+b) x+a(a+2 b+c)=0$ be equal , prove that a,b, c are in G.P,

- Watch Video Solution

36. If the equation $x^{2}+p x+q=0$ and $x^{2}+p^{\prime} x+q^{\prime}=0$ have a common root, prove that
, it is either $\frac{p q^{\prime}-p^{\prime} q}{q^{\prime}-q}$ or, $\frac{q^{\prime}-q}{p^{\prime}-p}$.
(D) Watch Video Solution
37. Prove that if the equations $x^{2}+p x+r=0$ and $x^{2}+r x+p=0$ have a common root then either $p=r$ or, $1+p+r=0$.

- Watch Video Solution

38. IF x is real and the expressions $3 x^{2}-17 x+20$ is
always positive, show that, x cannot lie between $\frac{5}{3}$ and 4.
39. Find the limits of real value of x so that the expressions $5 x^{2}+6 x-8$ is non-negative.

- Watch Video Solution

40. For any real positive value of x, show that
$3-x>\frac{7}{x+2}$.

- Watch Video Solution

41. If x is real can the value of $3+2 x-x^{2}$ be greater than 4,
42. If x is real can that of $x^{2}+3 x+1$ less than $\left(-\frac{5}{4}\right)$?

- Watch Video Solution

43. Show that if x is real and $x^{2}+5<6 x$, then x must lie between 1 and 5 .

- Watch Video Solution

44. If x is real, find the real values of p which make $4 x^{2}+p x+1$ always positive.

- Watch Video Solution

45. IF x is real, find the real values of m which make the expressions $m x-x^{2}-1$ always negative.

- Watch Video Solution

46. If $\frac{(x-5)\left(x^{2}-2 x+1\right)}{(x-7)\left(x^{2}+2 x+3\right)}$ is positive for all real
values of x, show that x has no value between 5 and

- Watch Video Solution

47. If the equation $y^{2}+x^{2}-10 x+21=0$ is satisfied by real values of x and y, prove that x lies between 3 and 7 and y lies between (-2) and 2 .

- Watch Video Solution

48. If x is real , show that $(x-2)(x-3)(x-4)(x-5)+2$ is always positive.

Exercise 5 A Long Answer Type Question

1. IF $\alpha \pm \sqrt{\beta}$ be the roots of the equation $x^{2}+p x+q=0$, prove that $\frac{1}{\alpha} \pm \frac{1}{\sqrt{\beta}}$ will be the roots of the equation $\left(p^{2}-4 q\right)\left(p^{2} x^{2}+4 p x\right)-16 q=0$.

- Watch Video Solution

2. IF α, β and γ, δ be the roots of the equation $x^{2}-b x+c=0$ and $x^{2}-c x+b=0$ respectively,
form the equation whose roots are $\left(\frac{1}{\alpha \gamma}+\frac{1}{\beta \delta}\right)$ and $\left(\frac{1}{\alpha \delta}+\frac{1}{\beta \gamma}\right)$.

- Watch Video Solution

3. If α, β be the roots of the equation $x^{2}+x+1=0$, form the equation whose roots are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$. Explain why you get the same equation as the given one.

- Watch Video Solution

4. If α, β be the roots of the quadratic equation $x^{2}-p x+q=0$, find the equation whose roots are $\frac{q}{p-\alpha}$ and $\frac{q}{p-\beta}$.Accound for the identity of the equation obtained with the given equation.

- Watch Video Solution

5. IF $\frac{p^{2}}{q}$ and $\frac{q^{2}}{p}$ are the roots of the equation $2 x^{2}+7 x-4=0$, find the equation whose roots are p and $\mathrm{q}(\mathrm{p}+\mathrm{q}$ real).
6. IF α, β be the roots of the equation $x^{2}+2 p x+2 q^{2}=0$ where p, q are rational $p^{2}+q^{2}$ is not a perfect square, form the quadratic equation whose one root is $\alpha+\beta+\sqrt{\alpha^{2}+\beta^{2}}$.

- Watch Video Solution

7. IF α, β be the roots of the equation $c x^{2}+2 b x+2 c=0$ where b, c are real and $c^{2}>b^{2}$,
find the quadratic equation whose one root is
$\alpha+\beta+\sqrt{\alpha^{2}+\beta^{2}}$.
8. Express the roots of the equation $q^{2} x^{2}-\left(p^{2}-2 q\right) x+1=0$ in terms of those of $x^{2}+p x+q=0$.

- Watch Video Solution

9. If the roots of the quadratics $x^{2}+2 p x+q=0$ and $x^{2}+2 q x+p=0(p \neq q)$ differ by a constant, show that $\mathrm{p}+\mathrm{q}+1=0$.

- Watch Video Solution

10. If one root of the equation $a x^{2}+b x+c=0$ is the square of the other, prove that , $b^{3}+a c^{2}+a^{2} c=3 a b c$.

- Watch Video Solution

11. If one root of the equation $a x^{2}+b x+c=0$ is the cube of the other, prove that $\left(b^{2}-2 c a\right)^{2}=c a(c+a)^{2}$
12. If the roots of the equation $a x^{2}+b x+c=0$ are two consecutive integers then prove that, $b^{2}-a^{2}=4 a c$.

- Watch Video Solution

13. IF α and β be the roots of $a x^{2}+2 b x+c=0$ and $\alpha+\delta, \beta+\delta$ be those of $A x^{2}+2 B x+C=0$,
prove that,$\frac{b^{2}-a c}{a^{2}}=\frac{B^{2}-A C}{A^{2}}$
14. If the ratio of the roots of the equation $x^{2}-2 p x+q^{2}=0$ be equal to the ratio of the roots of the equation $x^{2}-2 r x+s^{2}=0$, Prove that, $p^{2} s^{2}=q^{2} r^{2}$.

- Watch Video Solution

15. IF α and β be the roots of the equation $x^{2}+p x+q=0$ show that $\frac{\alpha}{\beta}$ is a root of the equation $q x^{2}-\left(p^{2}-2 q\right) x+q=0$.

- Watch Video Solution

16. IF $p^{3}-q(3 p-1)+q^{2}=0$, find the relation between the roots of the equation $x^{2}+p x+q=0$.

- Watch Video Solution

17. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be real numbers with $a \neq 0$ and let α, β be the roots of the equation $a x^{2}+b x+c=0$.

Express the roots of $a^{3} x^{2}+a b c x+c^{3}=0$ in terms of α, β.
18. IF α be a root of the quadratic equation $4 x^{2}+2 x-1=0$, Let prove that $4 \alpha^{3}-3 \alpha$ is the other root.

- Watch Video Solution

19. Let α, β be the roots of the equation $x^{2}-3 x+a=0$ and γ, δ the roots of the equation $x^{2}-12 x+b=0$. If α, β, γ and δ are in G.P. having positive common ratio, then find the values of a and b.
20. IF a, b, c are real, show that the roots of each of the following equations are real:

$$
(x-a)(x-b)=b^{2}
$$

- Watch Video Solution

21. IF a,b,c are real, show that the roots of each of the following equations are real:

$$
(b-c) x^{2}+2(c-a) x+a-b=0
$$

22. IF a,b, are real, show that the roots of each of the following equations are real:
$\frac{1}{x-a}+\frac{1}{x-b}=\frac{1}{a^{2}}$

D Watch Video Solution

23. IF a, b, c are real, show that the roots of each of the following equations are real:
$\frac{1}{x-a}+\frac{1}{x-b}+\frac{1}{x-c}=0$

D Watch Video Solution

24. If the roots of the equation
$p(q-r) x^{2}+q(r-p) x+r(p-q)=0$ be equal,
show that $\frac{1}{p}+\frac{1}{r}=\frac{2}{q}$.

- Watch Video Solution

25. Find the condition that the roots of the quadratic
equation $x^{2}+p x+q=0$ should be both postitive

- Watch Video Solution

26. Find the condition that the roots of the quadratic equation $x^{2}+p x+q=0$ should be both negative
27. Find the condition that the roots of the quadratic equation $x^{2}+p x+q=0$ should be one is positive and the other negative

- Watch Video Solution

28. Find the condition that the roots of the quadratic
equation $x^{2}+p x+q=0$ should be equal in magnitude and opposite in signs

Watch Video Solution

29. Find the condition that the roots of the quadratic equation $x^{2}+p x+q=0$ should be reciprocal to one another.

- Watch Video Solution

30. If the roots of the equation $x^{2}+x+a=0$ be real and unequal, then prove that the roots of the equation $\quad 2 x^{2}-4(1+a) x+2 a^{2}+3=0 \quad$ are imaginary (a is real).
31. Prove that, if the roots of the equation $\left(a^{2}+b^{2}\right) x^{2}+2(b c+a d) x+\left(c^{2}+d^{2}\right)=0 \quad$ be real, then they are equal.

- Watch Video Solution

32. Show that the roots of the equation $\left(a^{4}+b^{4}\right) x^{2}+4 a b c d x+\left(c^{4}+d^{4}\right)=0$ cannot be different, if real.
33. For what values of m the equations $3 x^{2}+4 m x+2=0$ and $2 x^{2}+3 x-2=0$ will have a common root?

- Watch Video Solution

34. Show that the equations $p x^{2}+q x+r=0$ and $q x^{2}+p x+r=0$ will have a common root if $p+q+r=0$ or, $p=q=r$.
35. If the two equations $x^{2}+a x+b=0$ and $x^{2}+b x+a=0(a \neq b)$ have a common root, show that the other roots are the roots of the equation $x^{2}+x+a b=0$.

- Watch Video Solution

36. IF c is real, show that the roots of the quadratic equation $c x^{2}+(c-1) x+1-2 c=0$ are real. If
the sum of the roots of the equation be equal to three times their difference, then find c.
37. IF α is a root of the equation $a x^{2}+b x+c=0$ then show that $m \alpha^{2}(m \neq 0)$ is a root of the equation $a^{2} x^{2}+\left(2 a c-b^{2}\right) m x+m^{2} c^{2}=0$.

- Watch Video Solution

38. If the quadratic equations $x^{2}+a x+b=0$ and $x^{2}+b x+a=0(a \neq b)$ have a common root, find the numerical value of $(a+b)$.

- Watch Video Solution

39. If the roots of the equation $x^{2}-p x+q=0$ be α, β and the roots of the equation $x^{2}-a x+b=0$ be $\alpha, \frac{1}{\beta}$ then prove that, $b q(a-p)^{2}=(q-b)^{2}$.

D Watch Video Solution

40. If α and β be the roots of the equation

$$
5 x^{2}+b x+c=0 \quad \text { Show }
$$ that

$5 x^{2}+b x+c=5(x-\alpha)(x-\beta)$
Show also that for all real values of x the expression
$5 x^{2}+b x+c$ cannot be negative if α and β are real and equal
41. If α and β be the roots of the equation $5 x^{2}+b x+c=0$ Show that
$5 x^{2}+b x+c=5(x-\alpha)(x-\beta)$
Show also that for all real values of x the expression $5 x^{2}+b x+c$ cannot be negative if α and β are conjugate complex.

- Watch Video Solution

42. IF x is real, find the greatest and the least value of :
$\frac{x^{2}+14 x+9}{x^{2}+2 x+3}$

- Watch Video Solution

43. IF x is real, find the greatest and the least value of:
$\frac{x^{2}-2 x+2}{x^{2}+3 x+9}$

- Watch Video Solution

44. Show that for all real values of x the value of $\frac{x^{2}-3 x+4}{x^{2}+3 x+4}$ always lie between $\frac{1}{7}$ and 7 .

- Watch Video Solution

45. If x is real, show that the value of $\frac{x}{x^{2}-5 x+9}$ always lie between 1 and $\left(-\frac{1}{11}\right)$

- Watch Video Solution

46. If x is real show that the expressions $x^{2}+34 x-71$
$x^{2}+2 x-7$ has no value between 5 and 9 .

- Watch Video Solution

47. If x is real show that the expressions $\frac{(x-1)(x+3)}{(x-2)(x+4)}$ has no value between $\frac{4}{9}$ and 1 .
48. If x is real then the expressions $\frac{x^{2}+2 x-11}{x-3}$ assumes those values which do not lie between a and b , find a and b .

- Watch Video Solution

49. If x is real , show that the expressions $\frac{x^{2}-a b}{2 x-a-b}$ has no real value between a and b.
50. If x is real show that the expressions $\frac{3 x-5}{x^{2}-1}$ has no value between $\frac{1}{2}$ and $\frac{9}{2}$.

- Watch Video Solution

51. IF x is real, find the maximum and minimum values of $\frac{x^{2}-x+1}{x^{2}+x+1}$ also find the corresponding values of x.

- Watch Video Solution

52. If x be real , find the greatest value of $\frac{x+2}{2 x^{2}+3 x+6}$.
53. If x is real, show that each of the following expressions is capable of assuming all real values:
$2 x^{2}+4 x+1$
$x^{2}+4 x+2$

D Watch Video Solution

54. If x is real, show that each of the following expressions is capable of assuming all real values:
$\frac{2 x^{2}+5 x+2}{x^{2}+6 x+7}$

- Watch Video Solution

55. If x is real, show that each of the following expressions is capable of assuming all real values:
$\frac{p^{2}}{1-x}-\frac{q^{2}}{1+x}$

D Watch Video Solution

56. IF $3 x^{2}+2(p+q+r) x+p q+q r+r p$ be a perfect square, prove that $\mathrm{p}=\mathrm{q}=\mathrm{r}$.

- Watch Video Solution

1. The least value of m which makes the roots of the equation $x^{2}+5 x+m=0$ imginary is-
A. 4
B. 5
C. 6
D. 7

Answer: C

- Watch Video Solution

2. The equation of the smallest degree with real coefficients having $1+\mathrm{i}$ as one of the roots is-
A. $x^{2}+x+1=0$
B. $x^{2}-2 x+2=0$
C. $x^{2}+2 x+2=0$
D. $x^{2}+2 x-2=0$

Answer: B

Watch Video Solution

3. If the discriminant of a quadratic equation is less

than zero then the roots of this equation are-
A. both real
B. both imaginary
C. one real and another imaginary
D. none of these

Answer: B

- Watch Video Solution

4. If $2+3 i$ be a root of a quadratic equation, then the equation will be-
A. $x^{2}+4 x+13=0$
B. $x^{2}-4 x+13=0$

$$
\text { C. } x^{2}+4 x-13=0
$$

D. $x^{2}-4 x-13=0$

Answer: B

- Watch Video Solution

5. IF -iy-x be a root of the equation $a p^{2}+b p+c=0$ then its another root will be-
A. $\mathrm{i} y+\mathrm{x}$
B. $-i t+x$
C. $i y-x$

D. none of these

Answer: C

- Watch Video Solution

Exercise 5 B Very Short Answer Type Question

1. Express each of the following quadratic equations

 as the difference of two squares and solve$x^{2}+1=0$

Watch Video Solution

2. Express each of the following quadratic equations as the difference of two squares and solve $9 x^{2}+16=0$

- Watch Video Solution

3. Express each of the following quadratic equations as the difference of two squares and solve
$x^{2}+x+1=0$

- Watch Video Solution

4. Express each of the following quadratic equations

 as the difference of two squares and solve$$
2 x^{2}+2 x+5=0
$$

- Watch Video Solution

5. Express each of the following quadratic equations
as the difference of two squares and solve
$3 x^{2}-2 x+2=0$

- Watch Video Solution

6. Express each of the following quadratic equations

 as the difference of two squares and solve $8 x^{2}+4 x+13=0$
- Watch Video Solution

7. Express each of the following quadratic equations
as the difference of two squares and solve
$9 x^{2}+12 x+10=0$

- Watch Video Solution

8. Express each of the following quadratic equations

 as the difference of two squares and solve$5 x^{2}-6 x+5=0$

D Watch Video Solution

9. Express each of the following quadratic equation as two squares and solve $a^{2} x^{2}-2 a x+10=0(a \neq 0)$
10. Express each of the following quadratic equations
as two squares and solve
$4 x^{2}-12 x p+25 p^{2}=0$

- Watch Video Solution

11. State the fundamental theorem of algebra.

- Watch Video Solution

Exercise 5 B Short Answer Type Question

1. Show that the roots of each of the following quadratic equations are complex numbers. Find the solutions in each case.
$x^{2}+2 x+2=0$

D Watch Video Solution

2. Show that the roots of each of the following quadratic equations are complex numbers. Find the solutions in each case. $x^{2}+4 x+8=0$
3. Show that the roots of each of the following quadratic equations are complex numbers. Find the solutions in each case.
$2 x^{2}-3 x+4=0$

- Watch Video Solution

4. Show that the roots of each of the following quadratic equations are complex numbers. Find the solutions in each case.
$3 x^{2}-7 x+5=0$
5. Show that the roots of each of the following quadratic equations are complex numbers. Find the solutions in each case.
$\frac{2 x-1}{x-2}=\frac{x}{x-1}$

- Watch Video Solution

6. Show that the roots of each of the following quadratic equations are complex numbers. Find the solutions in each case.
$\sqrt{3} x^{2}+x+\sqrt{3}=0$
7. Show that the roots of each of the following equations are conjugate complex numbers:
$3 x^{2}-4 x+3=0$

- Watch Video Solution

8. Show that the roots of each of the following
equations are conjugate complex numbers:
$\frac{1}{x-3}+\frac{x}{5}=0$

D Watch Video Solution

9. Show that the roots of each of the following equations are conjugate complex numbers:
$\frac{1}{x-1}+\frac{1}{x-2}=\frac{2}{2 x-3}$

D Watch Video Solution

10. Solve by factorization:
$3 x^{2}+8 i x+3=0$

- Watch Video Solution

11. Solve by factorization:
$i x^{2}+x+6 i=0$
12. Solve by factorization:
$x^{2}+(i-3 \sqrt{2}) x-3 \sqrt{2} i=0$

- Watch Video Solution

13. Solve by factorization:
$2 x^{2}-i x+6=0$

- Watch Video Solution

14. Solve by factorization:
$x^{2}+3 \sqrt{2} x i+8=0$

- Watch Video Solution

15. Solve by factorization:
$12 i x^{2}-x+6 i=0$

- Watch Video Solution

16. Solving the
equation
$x^{2}+(i-7) x-(i-18)=0$, prove that the roots
of the equation are not complex conjugate numbers.
17. Solve the following quadratic equations using Sridhar Acharya's formula:

$$
2 x^{2}+(4 i-5) x+8+i=0
$$

- Watch Video Solution

18. Solve the following quadratic equations using

Sridhar Acharya's formula:
$y^{2}-(1-2 i) y+1+5 i=0$

Watch Video Solution

19. Solve the following quadratic equations using

Sridhar Acharya's formula:
$2 y^{2}+3 y+8-6 i=0$

- Watch Video Solution

20. Solve the following quadratic equations using

Sridhar Acharya's formula:
$6 x^{2}-(5+3 i) x+11 i-3=0$

- Watch Video Solution

21. Solve the following quadratic equations using Sridhar Acharya's formula:
$i x^{2}-6 x-9 i=0$

- Watch Video Solution

22. Solve the following quadratic equations using

Sridhar Acharya's formula:
$3 x^{2}+(11 i-2) x+4-8 i=0$
23. Solve:
$(2+i) x^{2}+(i+5) x-2(i-1)=0$

D Watch Video Solution

24. Solve:
$2 x^{2}-(3+7 i) x-3+9 i=0$

- Watch Video Solution

Sample Question For Competitive Exams Multiple Correct Answer Type

1. If $x^{2}-k x+k+2=0$ has equal roots, then the value of k will be -
A. $2+\sqrt{20}$
B. $2-\sqrt{20}$
C. $2+\sqrt{12}$
D. $2-\sqrt{12}$

Answer: C::D

- Watch Video Solution

2. Let the quadratic equation $a x^{2}+b x+c=0$ has two purely complex roots. IF $a p=b$ and $a q=c$, then-
A. p is purely imaginary and q is purely real
B. $\left|\frac{1-p}{1+p}\right|=1$
C. $\left|q+\sqrt{q^{2}+1}\right|=\left|q-\sqrt{q^{2}+1}\right|$
D. $|q+\bar{p}|=|\bar{q}+p|$

Answer: B::C
3. The roots of $2(1+i) x^{2}-4(2-i) x-5-3 i=0$ are-

$$
\begin{aligned}
& \text { A. } \frac{3-5 i}{2} \\
& \text { B. } \frac{3+5 i}{2} \\
& \text { C. } \frac{-1+i}{2} \\
& \text { D. } \frac{-1-i}{2}
\end{aligned}
$$

Answer: A::D

4. The values of x satisfying the equation $|x-2|^{2}+|x-2|-6=0$, are-
A. 4
B. 2
C. 3
D. 0

Answer: A::D

- Watch Video Solution

5. If the equaiton $a x^{2}+b x+c=0$ where $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$ have non-real roots then-
A. $c(a-b+c)>0$
B. $c(a+b+c)>0$
C. $c(4 a-2 b+c)>0$
D. $b^{2}-4 a c=0$

Answer: A::B::C

- Watch Video Solution

Sample Question For Competitive Exams Integer Answer Type
1.
If
the
equation
$\left(K^{2}-5 K+6\right) x^{2}+\left(K^{2}-3 k+2\right) x+\left(K^{2}-4\right)=0$
has more than two roots, then the value of K is-

- Watch Video Solution

> 2. If $x^{2}+x+1+2 K\left(x^{2}-x-1\right)=0$ be expressed as
a perfect square, then the value of K will be-

- Watch Video Solution

3. If the roots of $x^{2}-b x+c=0$ be two consecutive integers, then the value of $b^{2}-4 c$ will be-

- Watch Video Solution

4. IF x be real, then the maximum value of $5+4 x-4 x^{2}$ will be-

- Watch Video Solution

5. IF $-2+i \sqrt{3}$ be a root of $x^{2}+p x+q=0$, then the value of $p+q$ will be-

Sample
 Question
 For Competitive
 Exams

Comprehension Type

1. Let $\mathrm{f}(x)=x^{2}+b_{1} x+c_{1} \quad$ and
$g(x)=x^{2}+b_{2} x+c_{2}$. When $\mathrm{f}(\mathrm{x})=0$ then the real roots of $\mathrm{f}(\mathrm{x})$ are α, β and when $\mathrm{g}(\mathrm{x})=0$ then the real
roots of $\mathrm{g}(\mathrm{x})$ are $\alpha+h, \beta+h$. Minimum value of $\mathrm{f}(\mathrm{x})$
is $-\frac{1}{4}$ and when $x=\frac{7}{2}$ then value of $g(x)$ will be minimum.

Minimum value of $g(x)$ is-

$$
\text { A. }-\frac{1}{4}
$$

B. -1

$$
\begin{aligned}
& \text { C. }-\frac{1}{3} \\
& \text { D. }-\frac{1}{2}
\end{aligned}
$$

Answer: A

D Watch Video Solution

2. Let $f(x)=x^{2}+b_{1} x+c_{1} \quad$ and
$g(x)=x^{2}+b_{2} x+c_{2}$. When $\mathrm{f}(\mathrm{x})=0$ then the real roots of $\mathrm{f}(\mathrm{x})$ are α, β and when $\mathrm{g}(\mathrm{x})=0$ then the real roots of $\mathrm{g}(\mathrm{x})$ are $\alpha+h, \beta+h$. Minimum value of $\mathrm{f}(\mathrm{x})$ is $\frac{1}{4}$ and when $x=\frac{7}{2}$ then value of $g(x)$ will be
minimum.

Value of b_{2} is-
A. -5
B. 9
C. -8
D. -7

Answer: D

- Watch Video Solution

3. Let $\mathrm{f}(x)=x^{2}+b_{1} x+c_{1} \quad$ and
$g(x)=x^{2}+b_{2} x+c_{2}$. When $\mathrm{f}(\mathrm{x})=0$ then the real
roots of $\mathrm{f}(\mathrm{x})$ are α, β and when $\mathrm{g}(\mathrm{x})=0$ then the real roots of $\mathrm{g}(\mathrm{x})$ are $\alpha+h, \beta+h$. Minimum value of $\mathrm{f}(\mathrm{x})$ is $-\frac{1}{4}$ and when $x=\frac{7}{2}$ then value of $g(x)$ will be minimum.

Roots of $g(x)=0$ are-
A. 3,-4
B. $-3,4$
C. 3,4
D. $-3,-4$

Answer: C
4. Consider an unknown polynomial which when divided by ($x-3$) and ($x-4$) leaves 2 and 1 as remainders, respectively, Let $R(x)$ be the remainder when the polynomial is divided by $(x-3)(x-4)$.

If the equation $\mathrm{R}(\mathrm{x})=x^{2}+a x+1$ has two distinct real roots then values of 'a' are-
A. $(-2,2)$

$$
\begin{aligned}
& \text { B. }(-\infty,-2) \cup(2, \infty) \\
& \text { C. }(-2, \infty)
\end{aligned}
$$

D. all real numbers

Answer: D
5. Consider an unknown polynomial which when divided by ($x-3$) and ($x-4$) leaves 2 and 1 as remainders, respectively, Let $R(x)$ be the remainder when the polynomial is divided by $(x-3)(x-4)$.

If $\mathrm{R}(\mathrm{x})=p x^{2}+(q-1) x+6$ has no distinct real roots and $p>0$, then least value of $3 \mathrm{p}+\mathrm{q}$ is-
A. -2
B. $\frac{2}{3}$
C. $-\frac{1}{3}$
D. $-\frac{4}{3}$

Answer: C

D View Text Solution

6. Consider an unknown polynomial which when divided by $(x-3)$ and ($x-4$) leaves 2 and 1 as remainders, respectively, Let $R(x)$ be the remainder when the polynomial is divided by $(x-3)(x-4)$.

Range of $\mathrm{f}(\mathrm{x})==\frac{[R(x)]}{x^{2}-3 x+2}$ is-
A. $[-2,2]$
B. $[-\infty-2 \sqrt{3}] \cup[-2+\sqrt{3}, \infty]$
C. $[-\infty-7-4 \sqrt{3}] \cup[-7+4 \sqrt{3}, \infty]$

D. none of these

Answer: C

D Watch Video Solution

Sample Question For Competitive Exams Assertion Reason Type

1. Let $a x^{2}+b x+c=0, a \neq 0(\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R})$ has no real roots and $a+b+2 c=2$

Statement-I: $a x^{2}+b x+c>0 \forall x \in R$

Statement II: $\mathrm{a}+\mathrm{b}$ is positive.
A. Statement-I is true, Statement-II is true and

Statement -II is a correct explanation for

Statement -I.
B. Statement-I is true, Statement -II is true but

Statement-li is not a correct explanation of

Statement-I.
C. Statement-I is true, Statement-II is false
D. Statement-I is false, Statement-II Is true.

Answer: C

2. Statement I: If $a>0$ and $b^{2}-a c<0$, then domain of the function $\mathrm{f}(\mathrm{x})=\sqrt{a x^{2}+2 b x+c}$ is R .

Statement II: If $b^{2}-a c<0$ then $a x^{2}+2 b x+c=0$ has imaginary roots.
A. Statement-I is true, Statement-II is true and

Statement -II is a correct explanation for

Statement -I.
B. Statement-I is true, Statement $-I I$ is true but

Statement-li is not a correct explanation of

Statement-I.
C. Statement-I is true, Statement-II is false
D. Statement-I is false, Statement-II Is true.

Answer: B

- Watch Video Solution

