# ©゙"doubtnut 

India's Number 1 Education App

## MATHS

# BOOKS - CHHAYA PUBLICATION MATHS (BENGALI <br> ENGLISH) 

## QUESTION PAPER -2018

## Hs 2018

1. Suppose R be the set of all real numbers and the mapping $f: R \rightarrow R$ is defined by $f(x)=2 x^{2}-5 x+6$. Find the value of $f^{-1}(3)$.

## - Watch Video Solution

2. If $\sin ^{-1} x=\tan ^{-1} y$, then show that, $\frac{1}{x^{2}}-\frac{1}{y^{2}}=1$.
3. Without expanding the determinant, prove that
$\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$.

## - Watch Video Solution

4. If $A$ is an ivertible matrix of order $3 \times 3$ and $|\mathrm{A}|=6$, then find the value of |adj.A|.

## - Watch Video Solution

5. If the function $f(x)=\left\{\begin{array}{ll}\frac{1-\cos (a x)}{x^{2}} & \text { when } x \neq 0 \\ 1 & \text { when } x=0\end{array}\right.$ be continuous at $x=0$, then find the value of $a$.

## - Watch Video Solution

6. If $y e^{y}=x$, prove that, $\frac{d y}{d x}=\frac{y}{x(1+y)}$.

## - Watch Video Solution

7. If $>0, y>0$ and $x y=25$, then find the minimum value of $x+y$.

## - Watch Video Solution

8. A particle moves along the parabola $y^{2}=4 x$. Find the coordinates of the point on the parabola, where the rate of increment of abscissa is twice the rate of increment of the ordinate.

## - Watch Video Solution

9. Varify Langrange's mean value theorem in the inteval $4 \leq x \leq 6$ for the function $f(x)=x^{2}+2 x+3$.
10. Evalute: $\int \frac{(x+1) e^{x}}{\cos ^{2}\left(x e^{x}\right)} d x$

## D Watch Video Solution

11. If the three vectors $\vec{a}, \vec{b}, \vec{c}$ are such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=5$, then show that $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=-25$.

## - Watch Video Solution

12. Find the equation of the plane passing through the intersection of the planes $2 x+y+2 z=9$ and $4 x-5 y-4 z=1$ and through the point (3,2,-1).

## (D) Watch Video Solution

13. If $P\left(\frac{A}{B}\right)=0.8, P\left(\frac{B}{A}\right)=0.6$ and $P\left(A^{c} \cup B^{c}\right)=0.7$, then find the value of $P(A \cup B)$.

## - Watch Video Solution

14. An unbiased coin is tossed 6 times. Using binomial distribution, find the probability of getting at least 5 heads.

## - Watch Video Solution

15. A relation $R$ is defined on the set of natural numbers $N$ as follows:
$R=\{(x, y) \mid x, y \in N$ and $2 x+y=41\}$. Show that R is neither reflexive nor symmetric nor transitive.

## - Watch Video Solution

16. Prove that, $\tan \left(\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \frac{a}{b}\right)+\tan \left(\frac{\pi}{4}=\frac{1}{2} \cos ^{-1} \frac{a}{b}\right)=\frac{2 b}{a}$.
17. Express the marix $A=\left|\begin{array}{lll}3 & 2 & 3 \\ 4 & 5 & 3 \\ 2 & 4 & 5\end{array}\right|$ as the sum of a symmetric matrix and a skew-symmetric matrix.

## - Watch Video Solution

18. Solve, by the inverse matrix method:
$2 x-3 y+3 z=1,2 x+2 y+3 z=2,3 x-2 y+2 z=3$.

## - Watch Video Solution

19. If $\left|\begin{array}{lll}x-1 & 1 & 1 \\ 1 & x+1 & 1 \\ -1 & 1 & x+1\end{array}\right|=0$, find the value of x .

## ( Watch Video Solution

20. Prove that , $\left|\begin{array}{lll}-b c & b^{2}+b c & c^{2}+b c \\ a^{2}+a c & -a c & c^{2}+a c \\ a^{2}+a b & b^{2}+a b & -a b\end{array}\right|=(a b+b c+c a)^{3}$.

## - Watch Video Solution

21. If $y=\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}$, then show that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}-y=0$.

## - Watch Video Solution

22. Find the derivative of $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$ with repect to $\tan ^{-1}\left(\frac{2 x \sqrt{1-x^{2}}}{1-2 x^{2}}\right)$ at $\mathrm{x}=0$.

## - Watch Video Solution

23. Evalute $\int \frac{x^{4}+1}{x^{6}+1} d x$.
24. Evalute: $\int \frac{d x}{\cos x+\sqrt{3} \sin x}$.

## - Watch Video Solution

25. Solve $x \frac{d y}{d x}=y+x \tan \left(\frac{y}{x}\right)$, given that $y=\frac{\pi}{2}$, when $\mathrm{x}=1$.

## - Watch Video Solution

26. Solve : $\left(1-x^{2}\right) \frac{d y}{d x}-x y=1$.

## - Watch Video Solution

27. If three vetors $\vec{a}, \vec{b}$ and $\vec{c}$ of magnitudes 3,4 and 5 respectively are such that each vectors is perpendicular to the sum of the orher two vectors, then prove that $|\vec{a}+\vec{b}+\vec{c}|=5 \sqrt{2}$.

## Watch Video Solution

28. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector $\vec{d}$ which is perpendicular to both the vectors $\vec{a}$ and $\vec{b}$ and $\vec{c} \cdot \vec{d}=18$.

## - Watch Video Solution

29. Evalute : $\lim _{n \rightarrow \infty}\left[\frac{1^{2}}{n^{3}+1^{3}}+\frac{2^{2}}{n^{3}+2^{3}}+\frac{3^{2}}{n^{3}+3^{3}}+\ldots \ldots \ldots .+\frac{1}{2 n}\right]$.

## - Watch Video Solution

30. Evalute: $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$.

## - Watch Video Solution

31. A bag contains 8 white and 7 black balls and another bag contains 5 white and 4 black balls. A ball is drawn at random from the first bag and
put it into second bag. Now if a ball is drawn at random from the second bag. Find the probability that the ball drawn is white.

## - Watch Video Solution

32. If $X$ and $Y$ are two independent variables, then prove that $\operatorname{var}(a X+b Y)=a^{2} \operatorname{var}(X)+b^{2} \operatorname{var}(Y)$, where a and b are constants.

## - Watch Video Solution

33. One kg of food $X$ contains 6 units of Vitamin $A$ and 7 units of Vitamin
B. One kg of food Y contains 8 units of Vitamin A and 12 units of Vitamin
B. Cost of each kg of food X and food Y are Rs. 12 and Rs. 20 respectively. The daily minimum requirement of Vitamin A and Vitamin B are 100 units and 120 units respectively. How much food $X$ and food $Y$ are to be mixed so that the cost will be minimum? Formulate the problem as a linear programming problem.
34. Solve the following linear programming problem by graphical method ans find the minimum value of $Z . Z=6 x+10 y$ subject to the constrains, $x+2 y \geq 10,2 x+2 y \geq 12,3 x+y \geq 8, x, y \geq 0$.

## - Watch Video Solution

35. A circular ink blot grows at the rate of $2 \frac{\mathrm{~cm}^{2}}{\mathrm{sec}}$. Find the rate at which the radius is increasing after $2 \frac{6}{11}$ seconds.

## - Watch Video Solution

36. Using definite integral, find the area bounded by the straight line $2 x+y=4$ and the curve $y=4-x^{2}$.

## - Watch Video Solution

37. If the straight line $l x+m y+n=0$ be a normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then by the application of calculus, prove that $\frac{a^{2}}{l^{2}}-\frac{b^{2}}{m^{2}}=\frac{\left(a^{2}+b^{2}\right)^{2}}{n^{2}}$.

## - Watch Video Solution

38. SOLVE :y $\frac{d y}{d x}=1$

## - Watch Video Solution

39. Find the vector equation of the plane at a distance $\frac{6}{\sqrt{29}}$ unit from the origin and perpendicular to the vector $\widehat{2 i}-\widehat{3 j}+\widehat{4 k}$. Also convert this equation in Cartesian form.

## - Watch Video Solution

40. Find the equation of the line which is perpendicular to both of the lines $\frac{x}{2}=\frac{y}{1}=\frac{z}{3}$ and $\frac{x-3}{-1}=\frac{y-2}{3}=\frac{z+5}{5} \quad$ and $\quad$ passing through the point $(1,2,3)$.

## - Watch Video Solution

41. If $X$ be the random variable of the number of points obtained in a single throw of an unbiased die, then the value of $\bar{X}$ will be
A. 7
B. 14
C. $\frac{7}{2}$
D. $\frac{1}{6}$

## Answer: C

42. If A and B are two independent events and $P(A)=\frac{3}{6}$ and $P(A \cap B)=\frac{4}{9}$ then the value of $\mathrm{P}(\mathrm{B})$ will be
A. $\frac{5}{9}$
B. $\frac{8}{9}$
C. $\frac{5}{27}$
D. $\frac{20}{27}$

## Answer: D

## - Watch Video Solution

43. The projection of the vector $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ on the vector $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$ will be
A. $\frac{5}{\sqrt{6}}$ unit
B. $\frac{2}{\sqrt{6}}$ unit
C. $\frac{3}{\sqrt{5}}$ unit
D. $\frac{4}{\sqrt{5}}$ unit

## Answer: A

## - Watch Video Solution

44. The straight line $\frac{x-3}{2}=\frac{y+4}{0}=\frac{z-2}{5}$ is perpendicular to
A. $x$-axis
B. $y$-axis
C. z-axis
D. both x -axis and z -axis

## Answer: B

45. If the straight line $y=m y+1$ be the tangent of the parabola $y^{2}=4 x$ at the point $(1,2)$, then the value of $m$ will be
A. 1
B. 2
C. -1
D. -2

## Answer: A

## - Watch Video Solution

46. The value of $\int e^{a \log e^{x}} d x$ will be
A. $\frac{1}{a} e^{a \log e^{x}}+c$
B. $\frac{1}{x}+c$
C. $a x^{a-1}+c$
D. $\frac{x^{a+1}}{a+1}+c$

## Answer: D

## - Watch Video Solution

47. If $f(x)=\frac{\sin x}{x}(x \neq 0)$ is continuous at $\mathrm{x}=0$, then the value of $\mathrm{f}(0)$ will be
A. 0
B. 1
C. $\pi$
D. $\frac{\pi}{2}$

## Answer: B

48. If A is a square matrix of order $3 \times 3$, then the value of $|K A|$ will be
A. $K|A|$
B. $K^{2}|A|$
C. $K^{3}|A|$
D. $3 K|A|$

## Answer: C

## - Watch Video Solution

49. Let $A=\{1,2,3\}$ and $R$ be a relation defined on $A$, such that, $R\{(1,2),(2,1)\}$, then the relation $R$ will be
A. reflexive
B. symmetric
C. transitive
D. None of these

## Answer: B

Watch Video Solution
50. The principal value of $\tan ^{-1}(-\sqrt{3})$ is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $-\frac{\pi}{4}$
D. $-\frac{\pi}{3}$

## Answer: D

## D Watch Video Solution

1. The approximate value of $\sin 31^{\circ}$ is
A. $>0.5$
B. $>0.6$
C. $<0.5$
D. $<0.4$

## Answer: A

## - Watch Video Solution

2. Let $f_{1}(x)=e^{x}, f_{2}(x)=e^{f_{1}(x)}, \ldots \ldots . ., f_{n+1}(x)=e^{f_{n}(x)}$ for all $n \geq 1$. Then for any fixed $n, \frac{d}{d x} f_{n}(x)$ is
A. $f_{n}(x)$
B. $f_{n}(x) f_{n-1}(x)$
C. $f_{n}(x) f_{n-1}(x) \ldots \ldots . . f_{1}(x)$
D. $f_{n}(x) \ldots \ldots \ldots f_{1}(x) e^{x}$

## D Watch Video Solution

3. $f(x)=|x|$ is increasing in
A. $(-\infty, \infty)$
B. $(-\infty, 0)$
C. $(0, \infty)$
D. $(-\infty,-1)$

## Answer: C

## - Watch Video Solution

4. Let $f(x)=3 x^{10}-7 x^{8}+5 x^{6}-21 x^{3}+3 x^{2}-7$. Then
$\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{h^{3}+3 h}$
A. does not exist
B. $\frac{50}{3}$
C. $\frac{53}{3}$
D. $\frac{22}{3}$

## Answer: C

## - Watch Video Solution

5. Let $f:[a, b] \rightarrow R$ be such that f is differentiable in $(\mathrm{a}, \mathrm{b}), \mathrm{f}$ is continuous at $x=a$ and $x=b$ and moreover $f(a)=O f(b)$. Then
A. there exists at least one point $c$ in $(a, b)$ such that $f^{\prime}(c)=f(c)$
B. $f^{\prime}(x)=f(x)$ does not hold at any point in $(a, b)$
C. at every point of $(\mathrm{a}, \mathrm{b}), f^{\prime}(x)>f(x)$
D. at every point of $(a, b), f^{\prime}(x)<f(x)$
6. Let $f: R \rightarrow R$ be a twice continuously differentiable function such that $f(0)=f(1)=f^{\prime}(0)=0$. Then
A. $f^{\prime \prime}(0)=0$
B. $f^{\prime \prime}(c)=0$ for some $c \neq R$
C. if $c \neq 0$, then $f^{\prime \prime}(c) \neq 0$
D. $f^{\prime}(x)>0$ for all $x \neq 0$

## Answer: B

## - Watch Video Solution

7. If $\int e^{\sin x}\left[\frac{x \cos ^{3} x-\sin x}{\cos ^{2} x}\right] d x=e^{\sin x} \cdot f(x)+c$, where c is constant of integration, then $f(x)=$
A. $\sec x-x$
B. $x-\sec x$
C. $\tan x-x$
D. $x-\tan x$

## Answer: B

## D Watch Video Solution

8. If $\int f(x) \sin x \cos x d x=\frac{1}{2\left(b^{2}-a^{2}\right)} \log f(x)+c$, where c is the constant of integration, then $f(x)=$
A. $\frac{2}{\left(b^{2}-a^{2}\right) \sin 2 x}$
B. $\frac{2}{|\in| 2 x}$
C. $\frac{2}{\left(b^{2}-a^{2}\right) \cos 2 x}$
D. $\frac{2}{a b \cos 2 x}$

## Answer: C

9. If $M=\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{x+2} d x, N=\int_{0}^{\frac{\pi}{4}} \frac{\sin x \cos x}{(x+1)^{2}} d x$, then the value of $M-\mathrm{N}$ is
A. $\pi$
B. $\frac{\pi}{4}$
C. $\frac{2}{\pi-4}$
D. $\frac{2}{\pi+4}$

## Answer: D

Watch Video Solution
10. The value of the integral $I=\int_{\frac{1}{2014}}^{2014} \frac{\tan ^{-1} x}{x} d x$ is
A. $\frac{\pi}{4} \log 2014$
B. $\frac{\pi}{2} \log 2014$
C. $\pi \log 2014$
D. $\frac{1}{2} \log 2014$

## Answer: B

## - Watch Video Solution

11. Let $I=\int_{\pi / 4}^{\pi / 3} \frac{\sin x}{x} d x$. Then
A. $\frac{1}{2} \leq I \leq 1$
B. $4 \leq I \leq 2 \sqrt{30}$
C. $\frac{\sqrt{3}}{8} \leq I \leq \frac{\sqrt{2}}{6}$
D. $1 \leq I \leq \frac{2 \sqrt{3}}{\sqrt{2}}$

## Answer: C


A. 1
B. $\pi$
C. e
D. $\frac{\pi}{2}$

## Answer: B

## - Watch Video Solution

13. The value of $\lim _{n \rightarrow \infty} \frac{1}{n}\left[\sec ^{2} \frac{\pi}{4 n}+\sec ^{2} \frac{2 \pi}{4 n}+\ldots .+\sec ^{2} \frac{n \pi}{4 n}\right]$ is
A. $\log e^{2}$
B. $\frac{\pi}{2}$
C. $\frac{4}{\pi}$
D. e

## Answer: C

## D Watch Video Solution

14. The differential equation representing the family of curves $y^{2}=2 c(x+\sqrt{c})$ where $c>0$ is a parameter, is of order and degree as follows: (A) order 1, degree 3 (B) order 2, degree 2 (C) order 1, degree 2
(D) order 1, degree 1
A. order 2
B. degree 2
C. degree 3
D. degree 4

## Answer: C

15. Let $y(x)$ be a solution of $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y-4 x^{2}=0$ and $y(0)=-1$. Then $y(1)$ is equal to
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{6}$
D. -1

## Answer: C

## - Watch Video Solution

16. The law or motion of a body moving along a straight line is $x=\frac{1}{2} v t, x$ being its distance from a fixed point on the line at time t and $v$ is its velocity there. Then
A. acceleration $f$ varies directly with $x$
B. acceleration f varies inversely with x
C. acceleration f is constant
D. acceleration $f$ varies directly with $t$

## Answer: A

## D Watch Video Solution

17. Number of common tangents of $y=x^{2}$ and $y=-x^{2}+4 x-4$ is
A. 1
B. 2
C. 3
D. 4

## Answer: B

18. If $\left|\begin{array}{lll}-1 & 7 & 0 \\ 2 & 1 & -3 \\ 3 & 4 & 1\end{array}\right|=A$ then $\left|\begin{array}{lll}13 & -11 & 5 \\ -7 & -1 & 25 \\ -21 & -3 & 15\end{array}\right|$ is
A. $A^{2}$
B. $A^{2}-A+I^{3}$
C. $A^{2}-3 A+I_{3}$
D. $3 A^{2}+5 A-4 I_{3}$

## Answer: A

## - View Text Solution

19. If $a_{r}=(\cos 2 r \pi+i \sin 2 r \pi)^{\frac{1}{9}}$, then the value of $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right|$.
A. 1
B. -1
C. 0

## D. 2

## Answer: C

## - Watch Video Solution

20. If $S_{r}=\left|\begin{array}{lll}2 r & x & n(n+1) \\ 6 r^{2}-1 & y & n^{2}(2 n+3) \\ 4 r^{3}-2 n r & z & n^{3}(n+1)\end{array}\right|$, then the value of $\sum_{r=1}^{n} S_{r}$ is independent of
A. x only
B. y only
C. n only
D. $x, y, z$ and $n$

## Answer: D

## - Watch Video Solution

21. If the following three linear equations have a non-trivial solution, then $x+4 a y+a z=0, x+3 b y+b z=0, x+2 c y+c z=0$
A. a,b,c are in AP
B. a,b,c are in GP
C. $a, b, c$ are in HP
D. $a+b+c=0$

## Answer: C

## - Watch Video Solution

22. On R, a relation $p$ is defined by xpy if and only if $x-y$ is zero or irrational. Then
A. $p$ is equivalence relation
B. p is reflexive but neither symmetric nor transitive
C. p is reflexive and symmetric but not transitive
D. p is symmetric and transitive but not reflexive

## Answer: C

## - Watch Video Solution

23. $\int \frac{d x}{\sec x+\cos x}$

## - Watch Video Solution

24. If $f: R \rightarrow R$ be defined by $f(x)=e^{x}$ and $g: R \rightarrow R$ be defined by $g(x)=x^{2}$. The mapping $g \circ f: R \rightarrow R$ be defined by $(g \circ f)(x)=g[f(x)]$ Aax $\neq R$, then
A. $g \circ f$ is bijective but $f$ is not injective
B. $g \circ f$ is injective and $g$ is injective
C. $g \circ f$ is injective nut $g$ is not bijective
D. $g \circ f$ is injective and $g$ is surjective

## Answer: C

## - Watch Video Solution

25. In order to get a head at least once with probility $\geq 0.9$, the minimum number of times a unbiased coin needs to be tossed is
A. 3
B. 4
C. 5
D. 6

## Answer: B

## - Watch Video Solution

26. A student appears for tests, I,II and III. The student is successful if he passes in tests I,II or I,III. The probabilities of the student passing in tests
$I, I I$ and III are respectively $p, q$ and $\frac{1}{2}$. If the probability of the student to be successful is $\frac{1}{2}$. Then
A. $p(1+q)=1$
B. $q(1+p)=1$
C. $p q=1$
D. $\frac{1}{p}+\frac{1}{q}=1$

## Answer: A

## - Watch Video Solution

27. 

$0 \leq A \leq \frac{\pi}{4}$, then $\tan ^{-1}\left(\frac{1}{2} \tan 2 A\right)+\tan ^{-1}(\cot A)+\tan ^{-1}\left(\cot ^{3} A\right)$ is equal to
A. $\frac{\pi}{4}$
B. $\pi$
C. 0
D. $\frac{\pi}{2}$

## Answer: B

## - Watch Video Solution

28. The angle between a pair of tangents drawn from a point $P$ to the circle $\quad x^{2}+y^{2}+4 x-6 y+9 \sin ^{2} \alpha+13 \cos ^{2} \alpha=0$ is $2 \alpha$. The equation of the locus of the point $P$ is
A. $x^{2}+y^{2}+4 x+6 y+9=0$
B. $x^{2}+y^{2}-4 x+6 y+9=0$
C. $x^{2}+y^{2}-4 x-6 y+9=0$
D. $x^{2}+y^{2}+4 x-6 y+9=0$

## Answer: D

29. A point $P$ lies on a line through $Q(1,-2,3)$ and is parallel to the line $\frac{x}{1}=\frac{y}{4}=\frac{z}{5}$. If P lies on the plane $2 x+3 y-4 z+22=0$, then segment PQ equal to
A. $\sqrt{42}$ units
B. $\sqrt{32}$ units
C. 4 units
D. 5 units

## Answer: A

## - Watch Video Solution

30. The foot of the perpendicular drawn from the point $(1,8,4)$ on the line joining the points ( $0,-11,4$ ) and ( $2,-3,1$ ) is
A. $(4,5,2)$
B. $(-4,5,2)$
C. $(4,-5,2)$
D. $(4,5,-2)$

## Answer: D

## - Watch Video Solution

31. A ladder 20 ft long leans against a vertical wall. The top end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is
A. $\frac{8}{3}$
B. $\frac{6}{5}$
C. $\frac{3}{2}$
D. $\frac{17}{4}$
32. For $0 \leq p \leq 1$ and for any positive $\mathrm{a}, \mathrm{b}$ let $I(p)=(a+b)^{p}, J(p)=a^{p}+b^{p}$ : then
A. $I(p)>J(p)$
B. $I(p) \leq J(p)$
C. $I(p)<J(p)$ in $\left[0, \frac{p}{2}\right]$ and $I(p)>J(p)$ in $\left[\frac{p}{2}, \infty\right]$
D. $I(p)<J(p)$ in $\left[\frac{p}{2}, \infty\right]$ and $J(p)>I(p)$ in $\left[0, \frac{p}{2}\right]$

## Answer: B

## - Watch Video Solution

33. Let $\vec{\alpha}=\hat{i}+\hat{j}+\hat{k}, \vec{\beta}=\hat{i}-\hat{j}-\hat{k}$ and $\vec{\gamma}=-\hat{i}+\hat{j}-\hat{k}$ be three vectors. A vector $\vec{\delta}$, in the plane of $\vec{\alpha}$ and $\vec{\beta}$, whose projection on $\vec{\gamma}$ is $\frac{1}{\sqrt{3}}$, is given by
A. $-\hat{i}-3 \hat{j}-3 \hat{k}$
B. $\hat{i}-3 \hat{j}-3 \hat{k}$
C. $-\hat{i}+3 \hat{j}+3 \hat{k}$
D. $\hat{i}+3 \hat{j}-3 \hat{k}$

## Answer: B

## - View Text Solution

34. Let $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ be three unit vectors such that $\vec{\alpha} \cdot \vec{\beta}=\vec{\alpha} \cdot \vec{\gamma}=0$ and the angle between $\vec{\beta}$ and $\vec{\gamma}$ is $30^{\circ}$. Then $\vec{\alpha}$ is
A. $2(\vec{\beta} \times \vec{\gamma})$
B. $-2(\vec{\beta} \times \vec{\gamma})$
C. $\pm 2(\vec{\beta} \times \vec{\gamma})$
D. $(\vec{\beta} \times \vec{\gamma})$

## Answer: C

35. The least positive integer $n$ such that $\left(\begin{array}{ll}\cos \left(\frac{\pi}{4}\right) & \sin \left(\frac{\pi}{4}\right) \\ -\sin \left(\frac{\pi}{4}\right) & \cos \left(\frac{\pi}{4}\right)\end{array}\right)^{n}$ is an identity matrix of order 2 is
A. 4
B. 8
C. 12
D. 16

## Answer: B

## - Watch Video Solution

36. Let p be a relation on N , the set of natural numbers, as $p=\{(x, y) \neq N \times N: 2 x+y=41\}$. Then
A. $p$ is an equivalence relation
B. $p$ is only reflexive relation
C. $p$ is only symmetric relation
D. $p$ is not transitive

## Answer: D

## - Watch Video Solution

37. If the polynomial $f(x)=\left|\begin{array}{lll}(1+x)^{a} & (2+x)^{b} & 1 \\ 1 & (1+x)^{a} & (2+x)^{b} \\ (2+x)^{b} & 1 & (1+x)^{a}\end{array}\right|$, then the constant term of $f(x)$ is
A. $2-3 \cdot 2^{b}+2^{3 b}$
B. $2+3 \cdot 2^{b}+2^{3 b}$
C. $2+3 \cdot 2^{b}-2^{3 b}$
D. $2-3 \cdot 2^{b}-2^{3 b}$

## D Watch Video Solution

38. Let $f(x)=\left\{\begin{array}{l}-2 \sin x \text { if } x \leq-\frac{\pi}{2} \\ A \sin x+B \text { if }-\frac{\pi}{2}<x<\frac{\pi}{2} \text {. Then } \\ \cos x \text { if } x \geq \frac{\pi}{2}\end{array}\right.$
A. $f$ is discontinuous for all $A$ and $B$
B. $f$ is continuous for all $A=-1$ and $B=-1$
C. $f$ is continuous for all $A=1$ and $B=-1$
D. $f$ is continuous for all real values of $A, B$

## Answer: B

## D Watch Video Solution

39. The normals to the curve $y=x^{2}+1$, drawn at the points with the abscissa $x_{1}=0, x_{2}=-1$ and $x_{3}=\frac{5}{2}$
A. are parallel to each other
B. are pairwise perpendicular
C. are concurrent
D. are not concurrent

## Answer: C

## - Watch Video Solution

40. The equation $x \log x=3-x$
A. has no root in $(1,3)$
B. has exactly one root in $(1,3)$
C. $x \log -(3-x)>0$ in $[1,3]$
D. $x \log -(3-x)<0$ in $[1,3]$

Answer: B
41. Let $I=\int_{0}^{1} \frac{x^{3} \cos 3 x}{2+x^{2}} d x$. Then
A. $-\frac{1}{2}<I<\frac{1}{2}$
B. $-\frac{1}{3}<I<\frac{1}{3}$
C. $-1<I<1$
D. $-\frac{3}{2}<I<\frac{3}{2}$

## Answer: A::B::C::D

## - View Text Solution

42. A particle is in motion along a curve $12 y=x^{3}$. The rate of change of its ordinate exceeds that of abscissa in
A. $-2<x<2$
B. $x= \pm 2$
C. $x<-2$
D. $x>2$

## Answer: C::D

## D Watch Video Solution

43. The area of the region lying above x-axis, and included between the circle $x^{2}+y^{2}=2 a x$ and the parabola $y^{2}=a x, a>0$ is
A. $8 \pi a^{2}$
B. $a^{2}\left(\frac{\pi}{4}-\frac{2}{3}\right)$
C. $\frac{16 \pi a^{2}}{9}$
D. $\pi\left(\frac{27}{8}+3 a^{2}\right)$

## Answer: B

44. In a third order matrix A, $a_{i j}$ denotes the element in the i-th row and

$$
a_{i j}=0 \text { for } i=j
$$

$j$-th column. If $=1$ for $i>j$ then the matrix is

$$
=-1 \text { for } i<j
$$

A. skew symmetric
B. symmetric
C. not invertible
D. non-singular

## Answer: A::C

## - Watch Video Solution

45. Let $f(x)=\cos \left(\frac{\pi}{x}\right), x \neq 0$ then assuming k as an integer,
A. $\mathrm{f}(\mathrm{x})$ increses in the interval $\left(\frac{1}{2 k+1}, \frac{1}{2 k}\right)$
B. $\mathrm{f}(\mathrm{x})$ decreses in the interval $\left(\frac{1}{2 k+1}, \frac{1}{2 k}\right)$
C. $\mathrm{f}(\mathrm{x})$ decreses in the interval $\left(\frac{1}{2 k+2}, \frac{1}{2 k+1}\right)$
D. $\mathrm{f}(\mathrm{x})$ increses in the interval $\left(\frac{1}{2 k+2}, \frac{1}{2 k+1}\right)$

## Answer: A::C

- Watch Video Solution

