©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - CHHAYA PUBLICATION MATHS (BENGALI ENGLISH)

QUESTION PAPER 2017

Unit 1

1. The value of $\sin \left(\cos ^{-1} x\right)-\cos \left(\sin ^{-1} x\right)$ is
A. 1
B. x
C. $\frac{1}{x}$
D. 0

(D) Watch Video Solution

2. Let R be the set of real numbers and the mappings $f: R \rightarrow R$ and $g: R \rightarrow R$ be defined by
$f(x)=5-x^{2}$ and $g(x)=3 x-5$, then the value of $(f \circ g)(-1)$ is
A. 8
B. -59
C. 54
D. 16

Answer: B

- Watch Video Solution

3. If R is a relation defined as $R=\{(x, y): x, y \in N$ and $x+3 y=12\}$, then find the domain and range of R.
4. Evaluate: $\sec ^{2}\left(\tan ^{-1} 2\right)+\operatorname{cosec}\left(\cot ^{-1} 3\right)$.

- Watch Video Solution

5. An operation '*' is defined on a set $A=\{1,2,3,4\}$ as follows: $a * b=a b(\bmod 5)$, all $a, b \in A$,Prepare the composition table for ${ }^{\text {' }}$ ' on A and from the table show that, '*' is a binary opration and '*' is commutative on A.

- Watch Video Solution

6. Solve: $\tan ^{-1}(x+1)+\tan ^{-1}(x-1)=\tan ^{-1} \frac{8}{31}$.

- Watch Video Solution

7. Let $f(x)=x^{13}+x^{11}+x^{9}+x^{7}+x^{5}+x^{3}+x+19$. Then $f(x)=0$ has
A. 13 real roots
B. only one positive and only two negative real roots
C. not more than one real root
D. has two positive and one negative real root

Answer: C

- Watch Video Solution

8. Let $d: R \rightarrow R$ be such that f is injective and $f(x) f(y)=f(x+y)$ for $\forall x, y \in R$. If $f(x), f(y), f(z)$ are in GP, then $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in
A. AP always
B. GP always
C. AP depending on the value of x, y, z
D. GP depending on the value of x, y, z
9. On the set R of real numbers we define xPy if and only if $x y \geq 0$. Then the relation P is
A. reflexive but not symmetric
B. symmetric but not reflexive
C. transitive but not reflexive
D. reflexive and symmetric but not transitive

Answer: D

- Watch Video Solution

10. On R, the relation p be defined by 'xpy holds if and only if $x-y$ is zero or irrational'. Then
A. p is reflexive and transitive but not symmetric
B. p is reflexive and symmetric but not transitive
C. p is symmetric and transitive but not reflexive
D. p is equivalence relation

Answer: B

- Watch Video Solution

11. The possible value of x, which satisfy the trigonometric equation $\tan ^{-1}\left(\frac{x-1}{x-2}\right)+\tan ^{-1}\left(\frac{x+1}{x+2}\right)=\frac{\pi}{4}$ are
A. $\pm \frac{1}{\sqrt{2}}$
B. $\pm \sqrt{2}$
C. $\pm \frac{1}{2}$
D. ± 2

Answer: A

12. On set $A=\{1,2,3\}$, relations R and S are given by $R=\{(1,1),(2,2),(3,3),(1,2)$, $(2,1)\}, \mathrm{S}=\{(1,1),(2,2),(3,3),(1,3),(3,1)\}$. Then
A. $R \cup S$ is an equivalence relation
B. $R \cup S$ is reflexive and transitive but not symmetric
C. $R \cup S$ is reflexive and symmetric but not transitive
D. $R \cup S$ is symmetric and transitive but not reflexive

Answer: C

- Watch Video Solution

13. On R, the set of real numbers, a relation p is defined as 'apb if and only if $1+a b>0$ '. Then
A. p is an equivalence relation
B. p is reflexive and transitive but not symmetric
C. p is reflexive and symmetric but not transitive
D. p is only symmetric

Answer: C

- Watch Video Solution

Unit 2

1. If the inverse of the matrix A exists, then the value of $\operatorname{det}\left(\mathrm{A}^{\wedge}-1\right)$
A. 0
B. 1
C. $\frac{1}{\operatorname{det} A}$
D. $\operatorname{det} A$

Answer: D

2. Show that $A=\frac{1}{3}\left[\begin{array}{lll}-1 & 2 & -2 \\ -2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$ is proper orthogonal matrix.

Watch Video Solution

3. Prove that, $\left|\begin{array}{lll}1 & \log _{x} y & \log _{x} z \\ \log _{x} z & 1 & \log _{y} z \\ \log _{z} x & \log _{z} y & 1\end{array}\right|=0$

- Watch Video Solution

4. If $A=\left(\begin{array}{ll}2 & -1 \\ 1 & 3\end{array}\right)$, then show that $A^{2}-5 A+7 I_{2}=0$: hence find A^{-1}.

- Watch Video Solution

5. Solve by Cramer's rule: $x+3 y=4, y+3 z=7,4 y+z=6$.
6. Prove that, $\left|\begin{array}{lll}2 a b & a^{2} & b^{2} \\ a^{2} & b^{2} & 2 a b \\ b^{2} & 2 a b & a^{2}\end{array}\right|=-\left(a^{3}+b^{3}\right)^{2}$.

- Watch Video Solution

7. Without expanding the determinant, show that the determinant $\left|\begin{array}{lll}a^{2}+10 & a b & a c \\ a b & b^{2}+10 & b c \\ a c & b c & c^{2}+10\end{array}\right|$ is divisible by 100 .

- Watch Video Solution

Unit 3

1. If $f(x)=|x|+|x-1|$, then $f(x)$ is
A. continuous at $\mathrm{x}=0$ and $\mathrm{x}=1$
B. continous at $\mathrm{x}=0$ but discotunous at $\mathrm{x}=1$
C. continous at $\mathrm{x}=1$ but discotunous at $\mathrm{x}=0$
D. None of these

Answer: A

- Watch Video Solution

2. The value of $\int_{-a}^{a} \frac{x e^{x^{4}}}{1+x^{2}} d x$ is
A. 0
B. 1
C. a
D. 2a

Answer: A

3. The degree of the differential equation $\frac{d^{3} y}{d x^{3}}+y=\sqrt[3]{1+\frac{d y}{d x}}$ is
A. 1
B. 2
C. 4
D. 3

Answer: D

D Watch Video Solution

4. If $x=\sqrt{a^{\sin ^{-1} t} \text { and } y=\sqrt{a^{\cos ^{-1} t}}}$ show that $\frac{d y}{d x}=-\frac{y}{x}$.

- Watch Video Solution

5. Varify Rolle's theorem for the function $f(x)=x^{2}-4 x+3$ in $1 \leq x \leq 3$.
6. Evalute: $\int \frac{\cos x-\cos 2 x}{1-\cos x} d x$.

- Watch Video Solution

7. A particle starts with the velocity u and moves in a straight line, its acceleration being always equl to its displacement. If v be the velocity when its desplacement is x , then show that $v^{2}=u^{2}+x^{2}$.

- Watch Video Solution

8. Find the interval where $f(x)=\frac{1}{1+x^{2}}$ decreases.

- Watch Video Solution

9. If $f(x)=f(a+x)$, then prove that the value of $\int_{a}^{a+t} f(x) d x$ is independent of a.

Watch Video Solution

10. If $f(x)=\left(\frac{a+x}{b+x}\right)^{a+b+2 x}$, then prove that
$f^{\prime}(0)=\left[2 \log \frac{a}{b}+\frac{b^{2}-a^{2}}{a b}\right]\left(\frac{a}{b}\right)^{a+b}$.

(Watch Video Solution

11. $\left[\begin{array}{ll}3 & -2 \\ 6 & -k\end{array}\right]=A$,also $\operatorname{det} A=0$ then find k .

- Watch Video Solution

12. $\int \cos ^{-1} \sqrt{\frac{x}{a+x}} d x$
13. Evalute $\int \frac{x d x}{x^{4}-x^{2}+1}$

- Watch Video Solution

14. Solve: $y d x-\left(x+2 y^{2}\right) d y=0$.

- Watch Video Solution

15. In a certain culture the rate of increment of bactreria at any instant is proportional to the cube root of the number of bacteria present at that instant. If the number of becteria becomes 8 times hours, in how much time that number becomes 64 times?

- Watch Video Solution

16. Evalute: $\int_{0}^{\frac{\pi}{4}} \log (1+\tan \theta) d \theta$.
17. From the definition of the definite integral, find the value of $\int_{1}^{2} 5 x^{2} d x$.

- Watch Video Solution

18. Using calculus, find the maximum value of the function $\left(\frac{x}{a}\right)^{x}$.

- Watch Video Solution

19. Using integration, prove that the area of the closed region bounded by the curves $y^{2}=4 x$ and $x^{2}=4 y$ is $\frac{16}{3}$ sq. unit.

- Watch Video Solution

20. If the staight line $\frac{x}{h}+\frac{y}{k}=1$ touches the curve $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=1$, then show that $\left(\frac{a}{h}\right)^{\frac{n}{n-1}}+\left(\frac{b}{k}\right)^{\frac{n}{n-1}}=1$.
21. Solve: $x d y-y d x=\sqrt{x^{2}+y^{2}} d x$.

- Watch Video Solution

Unit 4

1. If the direction ratios of a straight line are proportional to $0,1,-1$, then its inclination with z -axis is
A. $\frac{\pi}{2}$
B. π
C. $\frac{3 \pi}{2}$
D. $\frac{3 \pi}{4}$

Answer: D

2. If $\vec{\alpha}=2 \hat{i}+3 \hat{j}-6 \hat{k}$ and $\vec{\beta}=p \hat{i}-\hat{j}+2 \hat{k}$ are two parallel vectors, then the value of p is
A. $-\frac{1}{3}$
B. $\frac{2}{3}$
C. $-\frac{2}{3}$
D. $-\frac{3}{2}$

Answer: C

- Watch Video Solution

3. If $\vec{a}=3 \hat{i}+\hat{j}+9 \hat{k}$ and $\vec{b}=\hat{i}+\lambda \hat{j}+3 \hat{k}$ then the value of λ for which the vector $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ are perpendicular to each other.

- Watch Video Solution

4. Find the vector equation of a plane through the point $\hat{i}+\hat{j}+\hat{k}$ and parallel to the plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+2 \hat{k})=5$.

- Watch Video Solution

5. The position vectors of four points A, B, C and D are $4 \hat{i}+8 \hat{j}+12 \hat{k}, 2 \hat{i}+3 \hat{i}+4 \hat{j}+6 \hat{k}, 3 \hat{i}+5 \hat{j}+4 \hat{k}, \quad$ and $5 \hat{i}+8 \hat{j}+5 \hat{k}$ respectively. Using vector method prove that the four points A, B, C and D are coplaner.

- Watch Video Solution

6. Prove that $\left(\vec{\beta}-\frac{\vec{\alpha} \cdot \vec{\beta}}{|\vec{\alpha}|^{2}} \cdot \vec{\alpha}\right)$ is perpendicular to the vector $\vec{\alpha}$.

- Watch Video Solution

7. Find the shortest distance between the straight lines $\vec{r}=-4 \hat{i}+4 \hat{j}+\hat{k}+\lambda_{1}(\hat{i}+\hat{j}-\hat{k})$ and $\vec{r}=-3 \hat{i}-8 \hat{j}-3 \hat{k}+\lambda_{2}$

- Watch Video Solution

8. A variable plane is at a constant distance p from the origin and meets the coordinate axes in A, B and C. Show that the locus of the centroid of the tetrahedron $O A B C$ is $\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{16}{p^{2}}$.

- Watch Video Solution

Unit 5

1. Find solution of $\left|\begin{array}{cc}x+a & b \\ a & x+b\end{array}\right|=0$
2. Solve the following Linear programming problem in graphical method Subject to the constraints, $5 x+10 y \leq 50$.

- Watch Video Solution

Unit 6

1. If $f(X)$ is the probability distribution function of a random variable X and X can assume only two values x_{1} and x_{2}, then the value of $f\left(x_{1}\right)+f\left(x_{2}\right)$ is
A. >1
B. <1
C. $=\frac{1}{2}$
D. $=1$

Answer: D

Unit 7

1. An unbaised die is throwns 3 times. If the first thrown is a 5 , the conditional probability of getting 16 as a sum is
A. $\frac{1}{9}$
B. $\frac{1}{18}$
C. $\frac{1}{108}$
D. $\frac{5}{16}$

Answer: C

Unit 8

1. If $P(A)=\frac{2}{3}, P(B)=\frac{1}{2}$ and $P(A \cap B)=\frac{1}{2}$, then find the value of $P\left(A \cap B^{c}\right)$.

Watch Video Solution

Unit 9

1. If X is a discete random variable, then show that $E(X-\bar{X})=0$.

- Watch Video Solution

Unit 10

1. A man is known to speak the truth 3 out of 4 times. He throws an unbaised die and reports that it is a six. Find the probability that it is a actually six.

Unit 11

1. If the sum of the mean and variance of a binomial distribution for 5 random trials is 1.8 , then find the binomal distribution.

- Watch Video Solution

Unit 2

$$
8 x-3 y-5 z=0)
$$

1. The linear system of equations $5 x-8 y+3 z=0\}$ has $3 x+5 y-8 z=0\}$
A. only 'zero solution'
B. no non-zero solution
C. only finite number of non-zero solutions
D. infinitely many non-zero solutins

Answer: D

D Watch Video Solution

2. Let P be the set of all non-singular matrices of order 3 over R and Q be the set of all orthogonal matrices of order 3 over R. Then
A. P is proper subject of Q
B. Q is proper subset of P
C. Neither P is proper subset of Q nor Q is proper subset of P
D. $P \cap Q=\phi$, the void set

Answer: B

- Watch Video Solution

3. Let $A=\left(\begin{array}{ll}x+2 & 3 x \\ 3 & x+2\end{array}\right), B=\left(\begin{array}{ll}x & 0 \\ 5 & x+2\end{array}\right)$. Then all solutions of x of the equation $\operatorname{det}(A B)=0$ is
A. $1,-1,0,2$
B. $1,4,0,-2$
C. $1,-1,4,3$
D. $-1,4,0,3$

Answer: B

- Watch Video Solution

4. The value of $\operatorname{det} \mathrm{A}$, where $A=\left(\begin{array}{lll}1 & \cos \theta & 0 \\ -\cos \theta & 1 & \cos \theta \\ -1 & -\cos \theta & 1\end{array}\right)$ lies in
A. 1,2
B. 1,0
C. 0,
D. 2,1

Answer: C

5. Let $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$. Then for positive integer n, A^{n} is
A. $\left(\begin{array}{lll}1 & n & n^{2} \\ 0 & n^{2} & n \\ 0 & 0 & n\end{array}\right)$
B. $\left(\begin{array}{lll}1 & n & n\left(\frac{n+1}{2}\right) \\ 0 & 1 & n \\ 0 & 0 & 1\end{array}\right)$
C. $\left(\begin{array}{lll}1 & n^{2} & n \\ 0 & n & n^{2} \\ 0 & 0 & n^{2}\end{array}\right)$
D. $\left(\begin{array}{lll}1 & n & 2 n-1 \\ 0 & \frac{n+1}{2} & n^{2} \\ 0 & 0 & \frac{n+1}{2}\end{array}\right)$

Answer: B

- Watch Video Solution

6. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be such that $b(a+c) \neq=0$. If $\left|\begin{array}{lll}a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1\end{array}\right|+\left|\begin{array}{lll}a+1 & b+1 & c-1 \\ a-1 & b-1 & c+1 \\ (-1)^{n+2} a & (-1)^{n+1} b & (-1)^{n} c\end{array}\right|=0$, then the value of n is
A. any integer
B. zero
C. any even integer
D. any odd integer

Answer: D

- Watch Video Solution

Unit 3

1. Cosider the non-constant differentiable function f of one variable which obeys the relation $\frac{f(x)}{f(y)}=f(x-y)$. If $f^{\prime}(0)=p$ and $f^{\prime}(5)=q$, then
$f^{\prime}(-5)$ is
A. $\frac{p^{2}}{q}$
B. $\frac{q}{p}$
C. $\frac{p}{q}$
D. q

Answer: A

- Watch Video Solution

2. If $f(x)=\log _{5} \log _{3} x$, then $f^{\prime}(e)$ is equal to
A. $e \log _{e} 5$
B. $e \log _{e} 3$
C. $\frac{1}{e \log _{e} 5}$
D. $\frac{1}{e \log _{e} 3}$

Answer: C

3. Let $F(x)=e^{x}, G(x)=e^{-x}$ and $H(x)=G(F(x))$, where x is a real variable. Then $\frac{d H}{d x}$ at $\mathrm{x}=0$ is
A. 1
B. -1
C. $-\frac{1}{e}$
D. $-e$

Answer: C

- Watch Video Solution

4. If $f^{\prime}{ }^{\prime}(0)=k, k \neq 0$, then the value of
$\lim _{x \rightarrow 0} \frac{2 f(x)-3 f(2 x)+f(4 x)}{x^{2}}$ is
A. k
B. 2 k
C. 3k
D. 4 k

Answer: C

- Watch Video Solution

5. If $y=e^{m \sin ^{-1} x}(-1 \leq x \leq 1)$, Prove that, $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=m^{2} y$.
A. m^{2}
B. 2
C. -1
D. $-m^{2}$

Answer: A

6. The chord of the curve $y=x^{2}+2 a x+b$, joining the points where $x=\alpha$ and $x=\beta$, is parallel to the tangent to the curve at abscissa $\mathrm{x}=$
A. $\frac{a+b}{2}$
B. $\frac{2 a+b}{3}$
C. $\frac{2 \alpha+\beta}{3}$
D. $\frac{\alpha+\beta}{2}$

Answer: D

- Watch Video Solution

7. Let $f(x)= \begin{cases}\frac{x^{p}}{(\sin x) q^{\prime}} & \text { if } 0<x \leq \frac{\pi}{2},(p, q \in R) \quad \text { if } \quad \mathrm{x}=0 \text {. Then } \\ 0 & \end{cases}$

Lagrange's mean value theorem is applicable to $f(x)$ in closed interval $[0, x]$.
A. for all p, q
B. only when $p>q$
C. only when $p<q$
D. for no value of p, q

Answer: B

- Watch Video Solution

8. $\lim _{x \rightarrow 0}(\sin x)^{2 \tan x}=$
A. 2
B. 1
C. 0
D. does not exist

Answer: B::D

9. $\int \cos (\log x) d x=F(x)+c$, where c is an arbitaray constant. Here $\mathrm{F}(\mathrm{x})=$
A. $x[\cos (\log x)+\sin (\log x)]$
B. $x[\cos (\log x)-\sin (\log x)]$
C. $\frac{x}{2}[\cos (\log x)+\sin (\log x)]$
D. $\frac{x}{2}[\cos (\log x)-\sin (\log x)]$

Answer: C

D Watch Video Solution

10. Let $I=\int_{10}^{19} \frac{\sin x}{1+x^{8}} d x$. Then,
A. $|I|<10^{-9}$
B. $|I|<10^{-7}$
C. $|I|<10^{-5}$
D. $|I|>10^{-7}$

Answer: B

- Watch Video Solution

11. Let $I_{1}=\int_{0}^{n}[x] d x$ and $I_{2}=\int_{0}^{n}\{x\} d x$, where $[\mathrm{x}]$ and $\{\mathrm{x}\}$ are integral and fractional parts of x and $\cap e N-\{1\}$. Then $\frac{I_{1}}{I_{2}}$ is equal to
A. $\frac{1}{n-1}$
B. $\frac{1}{n}$
C. n
D. $n-1$

Answer: D

Watch Video Solution

12. Evalute : $\lim _{n \rightarrow \infty}\left[\frac{n}{n^{2}+1^{2}}+\frac{n}{n^{2}+2^{2}}+\ldots \ldots . .+\frac{1}{2 n}\right]$.
A. $\frac{n \pi}{4}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{4 n}$
D. $\frac{\pi}{2 n}$

Answer: B

- Watch Video Solution

13. The value of the integral $\int_{0}^{1} e^{x^{2}} d x$
A. <1
B. >1
C. ≤ 1
D. lies in the closed interval [1,e]

Answer: B

14. $\int_{0}^{100} e^{x-[x]} d x=$
A. $\frac{e^{100}-1}{100}$
B. $\frac{e^{100}-1}{e-1}$
C. $100(e-1)$
D. $\frac{e-1}{10}$

Answer: C

Watch Video Solution

15. Solution of $(x+y)^{2} \frac{d y}{d x}=a^{2}$ ('a' being a constant) is
A. $\frac{x+y}{a}=\tan \frac{y+c}{a}, \mathrm{c}$ is an arbitrary constant
B. $x y=a \tan c x, c$ is an arbitary constant
C. $\frac{x}{a}=\tan \frac{y}{c}, c$ is an arbitrary constant
D. $x y=\tan (x+c), c$ is an arbitrary constant

Answer: A

- Watch Video Solution

16. The integrating factor of the first order differential equation $x^{2}\left(x^{2}-1\right) \frac{d y}{d x}+x\left(x^{2}+1\right) y=x^{2}-1$ is
A. e^{x}
B. $x-\frac{1}{x}$
C. $x+\frac{1}{x}$
D. $\frac{1}{x^{2}}$

Answer: B

- Watch Video Solution

17. If $f(x)=\int_{-1}^{x}|t| d t$, then for any $x \geq 0, f(x)$ is equal to
A. $\frac{1}{2}\left(1-x^{2}\right)$
B. $1-x^{2}$
C. $\frac{1}{2}\left(1+x^{2}\right)$
D. $1+x^{2}$

Answer: C

- Watch Video Solution

18. Let for all $x>0, f(x)=\lim _{n \rightarrow \infty} n\left(x^{\frac{1}{n}}-1\right)$, then
A. $f(x y)+f\left(\frac{1}{x}\right)=1$
B. $f(x y)=f(x)+f(y)$
C. $f(x y)=x f(y)+y f(x)$
D. $f(x y)=x f(x)+y f(y)$

Answer: B

D Watch Video Solution

19. Let $I=\int_{0}^{100 \pi} \sqrt{1-\cos 2 x} d x$, then
A. $I=0$
B. $I=200 \sqrt{2}$
C. $I=\pi \sqrt{2}$
D. $I=100$

Answer: B

- Watch Video Solution

20. The area (sq. units) of the figure bounded by the parabolas
$x=-2 y^{2}$ and $x=1-3 y^{2}$ is
A. $\frac{4}{3}$
B. $\frac{2}{3}$
C. $\frac{3}{7}$
D. $\frac{6}{7}$

Answer: A

- Watch Video Solution

21. Tangents are drawn to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ at the ends of both latusrectum. The area of the quadrilateral so formed is
A. 27
B. $\frac{13}{2}$
C. $\frac{15}{4}$
D. 45

Watch Video Solution

22. The value of K in order that $f(x)=\sin x-\cos x-K x+5$ decreases for all positive real values of x given by
A. $K<1$
B. $K \geq 1$
C. $K>\sqrt{2}$
D. $K<\sqrt{2}$

Answer: C

Watch Video Solution

23. For real x , the greatest value of $\frac{x^{2}+2 x+4}{2 x^{2}+4 x+9}$ is
A. 1
B. -1
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: C

- Watch Video Solution

24. Find solution of
$y d x+x d y=x y(d y-d x)$

Watch Video Solution

25. If $f(x)=x^{n}, n$ being a non-negative integer, then the values of n for which $f^{\prime}(\alpha+\beta)=f^{\prime}(\alpha)+f^{\prime}(\beta)$ for all $\alpha, \beta>0$ is
A. 1
B. 2
C. 0
D. 5

Answer: B::C

- Watch Video Solution

26. Let f be a non-constant continuous function for all $x \geq 0$. Let f satisfy the relation $f(x) f(a-x)=1 \quad$ for \quad some $\quad a \in R^{+}$. Then $I=\int_{0}^{a} \frac{d x}{1+f(x)}$ isd equal to
A. a
B. $\frac{a}{4}$
C. $\frac{a}{2}$
D. $f(a)$

Answer: C

27. If the line $a x+b y+c=0, a b \neq 0$, is a tangent to the curve $x y=1-2 x$, then
A. $a>0, b<0$
B. $a>0, b>0$
C. $a<0, b>0$
D. $a<0, b<0$

Answer: B::D

- Watch Video Solution

28. Two particles move in the same straight line starting at the same moment from the same point in the same deirectin. The first moves with constant velocity u and the second starts from rest with constant acceletation f. Then
A. they will be at the gratest distance at the end of time $\frac{u}{2 f}$ from the
B. they will be at the gratest distance at the end of time $\frac{u}{f}$ from the start
C. their greatest distance is $\frac{u^{2}}{2 f}$
D. their greatest distance is $\frac{u^{2}}{f}$

Answer: B::C

- Watch Video Solution

29. If the tangents to $y^{2}=4 a x$ at the point $\left(a t^{2}, 2 a t\right)$ where $|t|>1$ is a normal $x^{2}-y^{2}=a^{2}$ at the point $(a \sec \theta, a \tan \theta)$, then $\mathrm{t}=$
A. $-\cos e x \theta$
B. $-\sec \theta$
C. $2 \tan \theta$
D. $2 \cos \theta$

Watch Video Solution

30. $\int \frac{x^{2}-1}{x^{4}+3 x^{2}+1} d x(x>0)$ is
A. $\tan ^{-1}\left(x+\frac{1}{x}\right)+c$
B. $\tan ^{-1}\left(x-\frac{1}{x}\right)+c$
C. $\log _{e}\left|\frac{x+\frac{1}{x}-1}{x+\frac{1}{x}+1}\right|+c$
D. $\log _{e}\left|\frac{x-\frac{1}{x}-1}{x-\frac{1}{x}+1}\right|+c$

Answer: A

Watch Video Solution

Unit 4

1. The equation of the plane through $(1,2,-3)$ and $(2,-2,1)$ and parallel to x axis is
A. $y-z+1=0$
B. $y-z-1=0$
C. $y+z-1=0$
D. $y+z+1=0$

Answer: D

- Watch Video Solution

2. Three lines are drawn from the origin O with direction ratio proportional to 1,-1,1,2,-3,0 and 1,0,3. The three lines are
A. coincident
B. coplanar
C. not coplanar
D. perpendicular to each other
3. For many vector \vec{x}, the value of $(\vec{x} \times \hat{i})^{2}+(\vec{x} \times \hat{j})^{2}+(\vec{x} \times \hat{k})^{2}$ is equal to
A. $|\vec{x}|^{2}$
B. $2|\vec{x}|^{2}$
C. $3|\vec{x}|^{2}$
D. $4|\vec{x}|^{2}$

Answer: B

- Watch Video Solution

4. If the sum of two unit vectors is a unit vector then show that the magnitude of their difference is $\sqrt{3}$
A. $\sqrt{2}$ units
B. 2 units
C. $\sqrt{3}$ units
D. $\sqrt{5}$ units

Answer: C

- Watch Video Solution

