©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CHHAYA PUBLICATION MATHS (BENGALI
 ENGLISH)

QUESTIONS PAPER -2019

Hs 2019

1. Solve : $2 \sin ^{-1} x=\cos ^{-1} x, 0<x<1$

- Watch Video Solution

2. Let $A=\{1,2,3\}$. Define a relation which is reflexive and symmetric but not transitive.
3. $A=\left(\begin{array}{ll}8 & 0 \\ 4 & -2\end{array}\right)$ and $B=\left(\begin{array}{ll}2 & -2 \\ -5 & 1\end{array}\right)$, find another matrix X where $2 A+3 X=5 B$.

- Watch Video Solution

4. If $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{ll}x & 3 \\ 2 x & 5\end{array}\right|$, find the value of x .

- Watch Video Solution

5. If $y=\sin ^{-1} \frac{2 x}{1+x^{2}}$, find $\frac{d y}{d x}$.

- Watch Video Solution

6. $f(x)=5-|x-1|$. Find the maximum value of $f(x)$, also find the value of x for which $\mathrm{f}(\mathrm{x})$ is maximum.
7. If $x>0$, then show that $\log (1+x)>\frac{x}{1+x}$.

- Watch Video Solution

8. Find the differential equation of the circles which touch the x-axis at the origin.

- Watch Video Solution

9. If $f(2)=4, f^{\prime}(2)=4$, then evalute $\lim _{x \rightarrow 2} \frac{x f(2)-2 f(x)}{x-2}$.

- Watch Video Solution

10. Evalute: $\int_{1}^{2} \frac{x d x}{(x+1)(x+2)}$.

- Watch Video Solution

11. Show that $\mathrm{A}(2,3,-4), \mathrm{B}(1,-2,3)$ and $\mathrm{C}(3,8,-11)$ are collinear.

- Watch Video Solution

12. If $\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}$ and $\vec{b}=\hat{i}+3 \hat{j}-5 \hat{k}$, show that $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular to each other.

- Watch Video Solution

13. If $\mathrm{P}(\mathrm{A})=\mathrm{a}$ and $\mathrm{P}(\mathrm{B})=\mathrm{b}$, then show that $\mathrm{P}(\mathrm{A} / \mathrm{B}) \leq \frac{a}{b}$.

- Watch Video Solution

14. If a and b are constants, then show that $\operatorname{var}(a x+b)=a^{2} \operatorname{var}(x)$.

- Watch Video Solution

15. R_{1} and R_{2} are two equivalence relation defined on set $A(\neq \phi)$. Show that $R_{1} \cap R_{2}$ is an equivalence relation.

- Watch Video Solution

16. If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\frac{\pi}{2}$ and $x+y+z=\sqrt{3}$, then show that $\mathrm{x}=\mathrm{y}=\mathrm{z}$.

- Watch Video Solution

17. Show that, the matrix $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$ satisfies the equation $A^{2}-4 A-5 I_{3}=0$ and hence find A^{-1}.

- Watch Video Solution

18. If $A=\left(\begin{array}{ll}i & -i \\ -i & i\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & -1 \\ -1 & 1\end{array}\right)$, then show that $A^{8}=128 B$.

- Watch Video Solution

19.

Show
that
$\left|\begin{array}{lll}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right),(a b c \neq 0)$.

- Watch Video Solution

20. Using Cramer's rule solve the questins:
$3 x+y+z=10, x+y-z=0,5 x-9 y=1$.

- Watch Video Solution

21. If $\cos y=x \cos (a+y),(a \neq 0)$, then show that $\frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\sin a}$.
22. If $x=\sin t, y=\sin k t(k \neq 0$, constant $)$ then show that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+k^{2} y=0$.

Watch Video Solution
23. Evalute: $\int \sqrt{1+\sec x} d x$.

- Watch Video Solution

24. Evalute : $\int \frac{d x}{(x-1) \sqrt{x^{2}-1}}$.

(Watch Video Solution

25. $\left(e^{x}+1\right) y d y-\left(y^{2}+1\right) e^{x} d x=0$, given $\mathrm{y}=0$ when $\mathrm{x}=0^{`}$
26. Solve : $(x d y-y d x) y \sin \frac{y}{x}=(y d x+x d y) x \cos \frac{y}{x}$.

D Watch Video Solution

27. $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that
$\vec{a}+\vec{b}+\vec{c}=0$ and $|\vec{a}|=1,|\vec{b}|=4,|\vec{c}|=2 . \quad$ Evalute
$\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

Watch Video Solution

28. If sum of two unit vectors be a unit vector, then show that difference of those two vectors is $\sqrt{3}$.

- Watch Video Solution

29. Using integral calculus, find the area of $\frac{x^{2}}{2}+\frac{y^{2}}{1}=1$.
30. Prove that: $\int_{1}^{3} \frac{d x}{x^{2}(x+1)}=\frac{2}{3}+\frac{\log (2)}{3}$.

(Watch Video Solution

31. $A_{1}, A_{2}, \ldots \ldots . A_{n}$ are independent and
$P\left(A_{i}\right)=1-q_{i}(i=1,2, \ldots . n) . \quad$ Show that
$P\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)=1-q_{1} \cdot q_{2} \ldots . q_{n}$.

- Watch Video Solution

32. Eight unbiased coins tossed simultaneously. Find the probability of getting exactly five heads and at least five heads.

- Watch Video Solution

33. A manufacturer produces two models A and B of a product. Each piece of model A requires 9 labour hours for fabricating and 1 labour hour for finishing. Each piece of model B requires 12 Labour hours for fabricating and finishing the maximum labour hours available are 180 and 30 respectively. The company makes a profit of Rs 8000 on each piece of model A and Rs 12000 on each piece of model B. Formulate an L.P.P. So as to maximize his profit.

- Watch Video Solution

34. x^{x} decreases in the interval
A. $(0, e)$
B. $(0,1)$
C. $\left(0, \frac{1}{e}\right)$
D. none of these

Answer:

35. $a x^{2}+b y^{2}=1$ and $A x^{2}+B y^{2}=1$ meet each other orthogonally.
$(a \neq A, b \neq B, a B-b A \neq 0)$. Show that $\frac{1}{a}-\frac{1}{b}=\frac{1}{A}-\frac{1}{B}$.

- Watch Video Solution

36. Solve : $\left(1+x^{2}\right) d y-2 x y d x=\cot x d x$.

- Watch Video Solution

37. Find maximum and minimum values of $\frac{x^{2}-x+1}{x^{2}+x+1}$ using Calculus.

- Watch Video Solution

38. Evalute : $\lim _{n \rightarrow \infty}\left[\frac{n}{n^{2}+1^{2}}+\frac{n}{n^{2}+2^{2}}+\ldots \ldots . .+\frac{1}{2 n}\right]$.
39. Find the equation of the plane which passes through ($-2,1,3$) and also through the intersection of the planes
$2 x-7 y+4 z=0$ and $3 x-5 y+4 z+11=0$.

- Watch Video Solution

40. Find the point on the line $\frac{x+2}{2}=\frac{y+1}{2}=\frac{z-3}{2}$ at a $3 \sqrt{2}$ units from the point (1,2,3).

- Watch Video Solution

Hs 2019 Part B

1. The domain for which the functions
$f(x)=3 x^{2}-2 x$ and $g(x)=3(3 x-2)$ are equal, will be
A. $\left\{1, \frac{2}{3}\right\}$
B. $\{1,3\}$
C. $\left\{\frac{2}{3}, 3\right\}$
D. $\left\{\frac{2}{3}, 0\right\}$

Answer: C

- Watch Video Solution

2. The value of $\tan \left\{\frac{\pi}{2}-\tan ^{-1}\left(\frac{1}{3}\right)\right\}$ is equal to
A. $\frac{1}{3}$
B. 3
C. $\frac{2}{3}$
D. $\frac{3}{2}$

Answer: B

3. If two rows or two columns of a determinant are indentical then value of the determinant is
A. 0
B. 2
C. -1
D. 1

Answer: A

- Watch Video Solution

4. If $f(-x)=-f(x)$, then the value of $\int_{-a}^{a} f(x) d x$ is equal to
A. 2 a
B. a
C. $\frac{a}{2}$
D. 0

Answer: D

- Watch Video Solution

5. If $y=\tan ^{-1} \frac{5-x}{1+5 x}$, then value of $\frac{d y}{d x}$ is
A. $-\frac{1}{1+x^{2}}$
B. $\frac{1}{1+x^{2}}$
C. 5
D. $\frac{5}{1+x^{2}}$

Answer: A

- Watch Video Solution

6. The rate of increase of a side of a square is $1 \mathrm{~cm} / \mathrm{sec}$. The rate of increase of area of the square, when length of a side of the square is 2 cm , is
A. $4 \mathrm{~cm}^{2} / \mathrm{sec}$
B. $8 \mathrm{~cm}^{2} / \mathrm{sec}$
C. $1 \mathrm{~cm}^{2} / \mathrm{sec}$
D. $2 \mathrm{~cm}^{2} / \mathrm{sec}$

Answer: A

- Watch Video Solution

7. $\vec{a}=\hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=2 \hat{i}+6 \hat{j}+\lambda \hat{k}$. If \vec{a} and \vec{b} vectors are parallel, then the value of λ is
A. 3
B. -6
C. -3
D. -2

8.
 8. The angles between the two planes $x-y+2 z=9$ and $2 x+y+z=7$ is

A. 30°
B. 45°
C. 60°
D. 90°

Answer: C

- Watch Video Solution

9. If $P(A)=\frac{3}{7}, P(B)=\frac{4}{7}$ and $P(A \cap B)=\frac{2}{9}$, then the value of $P(A / B)$ is equal to
A. $\frac{7}{18}$
B. $\frac{14}{27}$
C. $\frac{5}{18}$
D. $\frac{4}{9}$

Answer: A

- Watch Video Solution

10. A coin is tossed 10 times. The probility of getting head 6 times is
A. ${ }^{10} C_{5} \cdot \frac{1}{2^{10}}$
B. ${ }^{10} C_{3} \cdot \frac{1}{2^{10}}$
C. ${ }^{10} C_{4} \cdot \frac{1}{2^{10}}$
D. ${ }^{10} C_{8} \cdot \frac{1}{2^{10}}$

Answer: C

1. $\lim _{x \rightarrow 0+}\left(x^{n} \ln x\right), n>0$
A. does not exist
B. exists and is zero
C. exists and is 1
D. exists and is e^{-1}

Answer: B

- Watch Video Solution

2. If $\int \cos x \log \left(\tan \frac{x}{2}\right)=\sin x \log \left(\tan \frac{x}{2}\right)+f(x)$ then $\mathrm{f}(\mathrm{x})$ is equal to
A. C
B. $c-x$
C. $c+x$
D. $2 x+c$

Answer: B

(Watch Video Solution

3. $y=\int \cos \left\{2 \tan ^{-1} \sqrt{\frac{1-x}{1+x}}\right\} d x$ is a equation of a family of
A. straight lines
B. circles
C. ellipses
D. parabolas

Answer: D

D Watch Video Solution

4. The value of integration $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left(\lambda|\sin x|+\frac{\mu \sin x}{1+\cos x}+\gamma\right) d x$
A. is independent of λ only
B. is independent of μ only
C. is independent of γ only
D. depends of λ, μ and γ

Answer: B

D Watch Video Solution

5. The value of $\lim _{x \rightarrow 0} \frac{1}{x}\left[\int_{y}^{a} e^{\sin ^{2} t} d t-\int_{x+y}^{a} e^{\sin ^{2} t} d t\right]$ is equal to
A. $e^{\sin ^{2} y}$
B. $e^{2 \sin y}$
C. $e^{|\sin y|}$
D. $e^{\cos e c^{2} y}$

Answer: A

6. If $\int 2^{2^{x}} \cdot 2^{x} d x=A \cdot 2^{2^{x}}+c$, then $\mathrm{A}=$
A. $\frac{1}{\log 2}$
B. $\log 2$
C. $(\log 2)^{2}$
D. $\frac{1}{(\log 2)^{2}}$

Answer: D

- Watch Video Solution

7. The value of the integral $\int_{-1}^{1}\left\{\frac{x^{2015}}{x^{2}+\cos x}\right\} d x$ is equal to
A. 0
B. $1-e^{-1}$
C. $2 e^{-1}$
D. $2\left(1-e^{-1}\right)$

Answer: A

- Watch Video Solution

8.

$\lim _{n \rightarrow \infty} \frac{3}{n}\left\{1+\sqrt{\frac{n}{n+3}}+\sqrt{\frac{n}{n+6}}+\sqrt{\frac{n}{n+9}}+\ldots \ldots \ldots+\sqrt{\frac{n}{n+3(n-}}\right.$
A. does not exist
B. 1
C. 2
D. 3

Answer: C

- Watch Video Solution

9. The general solution of the differential equation $\left(1+e^{\frac{x}{y}}\right) d x+\left(1-\frac{x}{y}\right) e^{\frac{x}{y}} d y=0$ is
A. $x-y e^{\frac{x}{y}}=c$
B. $y-x e^{y}=c$
C. $x+y e^{\frac{x}{y}}=c$
D. $y+x e^{y}=c$

Answer: C

- Watch Video Solution

10. General solution of $(x+y)^{2} \frac{d y}{d x}=a^{2}, a \neq 0$ is
A. $\frac{x}{a}=\tan \frac{y}{a}+c$
B. $\tan x y=c$
C. $\tan (x+y)=c$
D. $\tan \frac{y+c}{a}=\frac{x+y}{a}$

Answer: D

- Watch Video Solution

11. Let $\mathrm{P}(4,3)$ be a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If the normal at P intersects the x-axis at $(16,0)$, then the eccentriclty of the hyperbola is
A. $\frac{\sqrt{5}}{2}$
B. 2
C. $\sqrt{5}$
D. $\sqrt{3}$

Answer: B

12. If the radius of a spherical balloon increases by 0.1%, then its volume increases approximately by
A. 0.2%
B. 0.3%
C. 0.4%
D. 0.05%

Answer: B

- Watch Video Solution

13. Let A be a square matrix of order 3 whose all entries are 1 and let I_{3} be the identity matrix of order 3 . Then the matrix $A-3 I_{3}$ is
A. invertible
B. orthogonal
C. non-invertible
D. real skew symmetric matrix

Answer: C

- Watch Video Solution

14. If M is any square matrix of order 3 over R and if M ' be the transpose of M, then $\operatorname{adj}\left(M^{\prime}\right)-(a d j M)$ ' is equal to
A. M
B. M^{\prime}
C. null matrix
D. indentity matrix

Answer: C

15. If $A=\left(\begin{array}{lll}5 & 5 x & x \\ 0 & x & 5 x \\ 0 & 0 & 5\end{array}\right)$ and $\left|A^{2}\right|=25$, then $|x|$ is equal to
A. $\frac{1}{5}$
B. 5
C. 5^{2}
D. 1

Answer: A

- Watch Video Solution

16. Let A and B be two square matrices of order 3 and $A B=O_{3}$, wher O_{3} denotes the null matrix of order 3 . Then,
A. must be $A=O_{3}, B=O_{3}$
B. If $A \neq O_{3}$,must be $B \neq O_{3}$
C. If $A=O_{3}$, must be $B \neq O_{3}$
D. may be $A=\neq O_{3}, B=O_{3}$

Answer: D

- Watch Video Solution

17. Let: $R \rightarrow R$ be defined by $f(x)=x^{2}-\frac{x^{2}}{1+x^{2}}$ for all $x \in R$. Then
A. f is one-one but not onto mapping
B. f is onto but not one-one mapping
C. f is both one-one and onto.
D. f is neither one-one onto

Answer: D

- Watch Video Solution

18. Let the relation p be defined on R as apb iff $1+a b>0$. Then
A. p is reflexive only
B. p is equivalence relation
C. p is reflexive and transitive but not symmetric
D. p is reflexive and symmetric but not transitive

Answer: D

- Watch Video Solution

19. A problem in mathematics is given to 4 students whose chances of solving individually are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ and $\frac{1}{5}$. The probability that the problem will be solved at least by once students is
A. $\frac{2}{3}$
B. $\frac{3}{5}$
C. $\frac{4}{5}$
D. $\frac{3}{4}$

Answer: C

- Watch Video Solution

20. If X is a random variable such that $\sigma(X)=2.6$, then $\sigma(1-4 X)$ is equal to,
A. 7.8
B. -10.4
C. 13
D. 10.4

Answer: D

- Watch Video Solution

21. The direction ration of the normal to the plane passing through the points $(1,2,-3),(-1,-2,1)$ and parallel to $\frac{x-2}{2}=\frac{y+1}{3}=\frac{z}{4}$ is
A. $(2,3,4)$
B. $(14,-8,-1)$
C. $(-2,0,-3)$
D. $(1,-2,-3)$

Answer: B

- Watch Video Solution

22. The equation of the plane, which bisects the line joining the points $(1,2,3)$ and $(3,4,5)$ at right angles is
A. $x+y+z=0$
B. $x+y-z=9$
C. $x+y+z=9$
D. $x+y-z+9=0$

Answer: C

23. The limit of the interior angle of the regular polygon of n sides as $n \rightarrow \infty$ is
A. π
B. $\frac{\pi}{3}$
C. $\frac{3 \pi}{2}$
D. $\frac{2 \pi}{3}$

Answer: A

- Watch Video Solution

24. Let $f(x)>0$ for all \mathbf{x} and $f^{\prime}(x)$ exists for all \mathbf{x}. If f is the inverse function of h and $h^{\prime}(x)=\frac{1}{1+\log x}$. Then $f^{\prime}(x)$ will be A. $1+\log (f(x))$
B. $1+(f(x))$
C. $1-\log (f(x))$
D. $\log (f(x))$

Answer: A

- Watch Video Solution

25. Consider the function $f(x) \cos x^{2}$. Then
A. f is of period 2π
B. f is of period $\sqrt{2 \pi}$
C. f is not periodic
D. f is of period π

Answer: C

26. $\lim _{x \rightarrow 0+}\left(e^{x}+x\right)^{\frac{1}{x}}$
A. does not exist
B. 1
C. e^{2}
D. 2

Answer: C

- Watch Video Solution

27. Let $\mathrm{f}(\mathrm{x})$ be a derivable function $f^{\prime}(x)>f(x)$ and $f(0)=0$. Then
A. $f(x)>0$ for all $x>0$
B. $f(x)<0$ for all $x>0$
C. no sign of $f(x)$ can be ascertained
D. $f(x)$ is a constant function

D Watch Video Solution

28. Let $f:[1,3] \rightarrow R$ be a continuous function that is differentiable in $(1,3)$ and $f^{\prime}(x)=|(f(x))|^{2}+4$ for all $x \in(1,3)$. Then,
A. $f(3)-f(1)=5$ is true
B. $f(3)-f(1)=5$ is false
C. $f(3)-f(1)=7$ is false
D. $f(3)-f(1)<0$ only at one point $(1,3)$

Answer: B::C

- Watch Video Solution

29. Let $a=\min \left(x^{2}+2 x+3: x \in R\right)$ and $b=\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta^{2}}$. Then $\sum_{r=0}^{n} a^{r} b^{n-r}$ is
A. $\frac{2^{n+1}-1}{3 \cdot 2^{n}}$
B. $\frac{2^{n+1}+1}{3 \cdot 2^{n}}$
C. $\frac{4^{n+1}-1}{3 \cdot 2^{n}}$
D. $\frac{1}{2}\left(2^{n}-1\right)$

Answer: C

- Watch Video Solution

30. Let $a>b>0$ and $I(n)=a^{\frac{1}{n}}-b^{\frac{1}{n}}, J(n)=(a-b)^{\left(\frac{1}{n}\right)}$ for all $n \geq 2$. Then
A. $I(n)<J(n)$
B. $I(n)>J(n)$
C. $I(n)=J(n)$
D. $I(n)=J(n)=0$
31. If A and B are independent events, then $P\left(\frac{B}{A}\right)=$
A. $P(A)$
B. $\frac{P(B)}{P(A)}$
C. $P(B)$
D. $P(A) P(B)$

Answer: C

- Watch Video Solution

32. The position vectors of the points A, B, C and D are $3 \hat{i}-2 \hat{j}-\hat{k}, 2 \hat{i}-3 \hat{j}+2 \hat{k}, 5 \hat{i}-\hat{j}+2 \hat{k}$ and $4 \hat{i}-\hat{j}+\lambda \hat{k}$ respectively. If the points A, B, C and D lie on a plane, the value of λ is
A. 0
B. 1
C. 2
D. -4

Answer: D

- Watch Video Solution

33. Find value of $\sin ^{-1}\left(\cos \left(\frac{33 \pi}{5}\right)\right)$

- Watch Video Solution

34.

The
system
of
equations
$\lambda x+y+3 z=0,2 x+\mu y-z=0,5 x+7 y+z=0 \quad$ has infinitely many solutions in R. Then
A. $\lambda=2, \mu=3$
B. $\lambda=1, \mu=2$
C. $\lambda=1, \mu=3$
D. $\lambda=3, \mu=1$

Answer: C

- Watch Video Solution

35. Let $f: X \rightarrow Y$ and A, B are non-void subsets of Y , then
A. $f^{-1}(A)-f^{-1}(B) \supset f^{-1}(A-B)$ but the opposite does not hold
B. $f^{-1}(A)-f^{-1}(B) \subset f^{-1}(A-B)$ but the opposite does not hold
C. $f^{-1}(A-B)=f^{-1}(A)-f^{-1}(B)$
D. $f^{-1}(A-B)=f^{-1}(A) \cup f^{-1}(B)$

Answer: C

36. Let S,T,U be three non-void sets and $f: S \rightarrow T, g: T \rightarrow U$ be so that $g \circ f: S \rightarrow U$ is surjective. Then
A. g and f are both sujective
B. g is surjective, f may not be so
C. f is surjective, g may not be so
D. f and g both may not be surjective

Answer: A

- Watch Video Solution

37. Let $f(x)=x^{4}-4 x^{3}+4 x^{2}+c, c \in R$, Then
A. $f(x)$ has infinitely many zeroes in $(1,2)$ for all c
B. $f(x)$ has exactly one zero in (1,2) if $-1<c<0$
C. $f(x)$ has double zeroes in (1,2) if $-1<c<0$
D. whatever be the value ofc, $f(x)$ has non zero in $(1,2)$

Answer: B

- Watch Video Solution

38. The graphs of the polynomial $x^{2}-1$ and cosx intersect
A. at exactly two points
B. at exactly 3 points
C. at least 4 but at finitely many points
D. at infinitely many points

Answer: A

- Watch Video Solution

39. A point is in motion along a hyperbola $y=\frac{10}{x}$ so that its abscissa increases uniformly at a rate of 1 unit per second. Then, the rate of change of its ordinate, when the point passes through (5,2)
A. increases at the rate of $\frac{1}{2}$ unit per second
B. decreases at the rate of $\frac{1}{2}$ unit per second
C. decreases at the rate of $\frac{2}{5}$ unit per second
D. increases at the rate of $\frac{2}{5}$ unit per second

Answer: C

- Watch Video Solution

40.

$I_{n}=\int_{0}^{1} x^{n} \tan ^{-1} x d x$. Then prove that $(n+1) I_{n}+(n-1) I_{n-2}=\frac{\pi}{2}$
41. Two particles A and B move from rest along a straight line with constant accelerations f and h respectively. If A takes m seconds more than B and describes n units more than that of B acquiring the same speed, then
A. $(f+h) m^{2}=f h n$
B. $(f-h) m^{2}=f h n$
C. $(h-f) n=\frac{1}{2} f h m^{2}$
D. $\frac{1}{2}(f+h) n=f h m^{2}$

Answer: C

- View Text Solution

42. The area bounded by $y=x+1$ and $y=\cos x$ and the x -axis, is
A. 1 sq. unit
B. $3 / 2$ sq. unit
C. $1 / 4$ sq. unit
D. $1 / 8$ sq. unit

Answer: B

- Watch Video Solution

43. Let $A=\left(\begin{array}{lll}3 & 0 & 3 \\ 0 & 3 & 0 \\ 3 & 0 & 3\end{array}\right)$. Then the roots of the equation
$\operatorname{det}\left(A-\lambda I_{3}\right)=0$ are
A. $3,0,3$
B. $0,3,6$
C. $1,0,-6$
D. $3,3,6$

Answer: B

44. f and g be differentiable on the interval I and let $a, b \in I, a<b$. Then
A. If $f(a)=0=f(b)$, the equation $f^{\prime}(x)+f(x) g^{\prime}(x)=0$ is solvable in (a, b).
B. If $f(a)=0=f(b)$, the equation $f^{\prime}(x)+f(x) g^{\prime}(x)=0$ may not be solvable in (a,b).
C. If $g(a)=0=g(b)$, the equation $g^{\prime}(x)+k g(x)=0$ is solvable in $(\mathrm{a}, \mathrm{b}), k \in R$.
D. If $g(a)=0=g(b)$, the equation $g^{\prime}(x)+k g(x)=0$ may not be solvable in (a,b), $k \in R$.

Answer: A:C

- Watch Video Solution

45. Find the period of the function
$f(x)=\sin \left(\frac{\pi x}{3}\right)+\cos \left(\frac{\pi x}{2}\right)$.
