

MATHS

BOOKS - CHHAYA PUBLICATION MATHS (BENGALI ENGLISH)

QUESTIONS PAPER -2019

1. Solve : $2\sin^{-1}x = \cos^{-1}x, 0 < x < 1$

Watch Video Solution

2. Let A={1,2,3}. Define a relation which is reflexive and symmetric but not transitive.

3.
$$A = \begin{pmatrix} 8 & 0 \\ 4 & -2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & -2 \\ -5 & 1 \end{pmatrix}$, find another matrix X where

2A+3X=5B.

Watch Video Solution

4. If
$$\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = \begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}$$
, find the value of x.

Watch Video Solution

5. If
$$y = \sin^{-1} rac{2x}{1+x^2}$$
, find $rac{dy}{dx}$.

6. f(x) = 5 - |x - 1|. Find the maximum value of f(x), also find the

value of x for which f(x) is maximum.

11. Show that A(2,3,-4),B(1,-2,3) and C(3,8,-11) are collinear.

12. If
$$\overrightarrow{a} = 5\hat{i} - \hat{j} - 3\hat{k}$$
 and $\overrightarrow{b} = \hat{i} + 3\hat{j} - 5\hat{k}$, show that $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$ are perpendicular to each other.

Watch Video Solution

13. If P(A)=a and P(B)=b, then show that $P(A/B) \leq \frac{a}{b}$.

Watch Video Solution

14. If a and b are constants, then show that $var(ax + b) = a^2 var(x)$.

15. R_1 and R_2 are two equivalence relation defined on set $A(\neq \phi)$. Show

that $R_1 \cap R_2$ is an equivalence relation.

16. If
$$\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2}$$
 and $x + y + z = \sqrt{3}$, then

show that x=y=z.

Watch Video Solution

17. Show that, the matrix $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ satisfies the equation $A^2 - 4A - 5I_3 = 0$ and hence find A^{-1} .

18. If
$$A = \begin{pmatrix} i & -i \\ -i & i \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$, then show that $A^8 = 128B$.
Watch Video Solution

19.Showthat
$$\begin{vmatrix} 1+a & 1 & 1\\ 1 & 1+b & 1\\ 1 & 1 & 1+c \end{vmatrix} = abc\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right), (abc \neq 0).$$
Watch Video Solution20.UsingCramer's rule solve the questins: $3x + y + z = 10, x + y - z = 0, 5x - 9y = 1.$ **() Watch Video Solution**

21. If
$$\cos y = x \cos(a+y), \, (a
eq 0)$$
 , then show that $\displaystyle rac{dy}{dx} = \displaystyle rac{\cos^2(a+y)}{\sin a}.$

22. If
$$x=\sin t, y=\sin kt (k
eq 0$$
, constant) then show that $(1-x^2)rac{d^2y}{dx^2}-xrac{dy}{dx}+k^2y=0.$

Watch Video Solution

23. Evalute :
$$\int \sqrt{1 + \sec x} dx$$
.

Watch Video Solution

24. Evalute :
$$\int \!\! \frac{dx}{(x-1)\sqrt{x^2-1}}.$$

Watch Video Solution

25.
$$(e^x+1)ydy-ig(y^2+1ig)e^xdx=0$$
 , given y=0 when x=0`

26. Solve :
$$(xdy - ydx)y\sin{\frac{y}{x}} = (ydx + xdy)x\cos{\frac{y}{x}}.$$

Watch Video Solution

27.
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 be three vectors such that
 $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$ and $|\overrightarrow{a}| = 1, |\overrightarrow{b}| = 4, |\overrightarrow{c}| = 2.$ Evalute
 $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}.$

Watch Video Solution

28. If sum of two unit vectors be a unit vector, then show that difference

of those two vectors is $\sqrt{3}$.

29. Using integral calculus, find the area of $\frac{x^2}{2} + \frac{y^2}{1} = 1$.

30. Prove that :
$$\int_1^3 rac{dx}{x^2(x+1)} = rac{2}{3} + rac{\log(2)}{3}$$
 .

31.
$$A_1, A_2, \dots, A_n$$
 are independent and $P(A_i) = 1 - q_i (i = 1, 2, \dots, n).$ Show that

$$P(A_1\cup A_2\cup\ \cup A_n)=1-q_1\cdot q_2....\,q_n.$$

Watch Video Solution

32. Eight unbiased coins tossed simultaneously. Find the probability of getting exactly five heads and at least five heads.

33. A manufacturer produces two models A and B of a product. Each piece of model A requires 9 labour hours for fabricating and 1 labour hour for finishing. Each piece of model B requires 12 Labour hours for fabricating and finishing the maximum labour hours available are 180 and 30 respectively. The company makes a profit of Rs 8000 on each piece of model A and Rs 12000 on each piece of model B. Formulate an L.P.P. So as to maximize his profit.

Watch Video Solution

34.
$$x^x$$
 decreases in the interval

A.
$$(0,e)$$

B. (0, 1)

$$\mathsf{C}.\left(0,\frac{1}{e}\right)$$

D. none of these

Answer:

35. $ax^2 + by^2 = 1$ and $Ax^2 + By^2 = 1$ meet each other orthogonally. $(a \neq A, b \neq B, aB - bA \neq 0)$. Show that $\frac{1}{a} - \frac{1}{b} = \frac{1}{A} - \frac{1}{B}$.

Watch Video Solution

36. Solve :
$$ig(1+x^2ig)dy-2xydx=\cot xdx.$$

Watch Video Solution

37. Find maximum and minimum values of $rac{x^2-x+1}{x^2+x+1}$ using Calculus.

38. Evalute :
$$\lim_{n \to \infty} \left[\frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \dots + \frac{1}{2n} \right].$$

39. Find the equation of the plane which passes through (-2,1,3) and also

through the intersection of the planes 2x - 7y + 4z = 0 and 3x - 5y + 4z + 11 = 0.

Watch Video Solution

40. Find the point on the line
$$\frac{x+2}{2} = \frac{y+1}{2} = \frac{z-3}{2}$$
 at a $3\sqrt{2}$

units from the point (1,2,3).

Watch Video Solution

Hs 2019 Part B

1. The domain for which the functions
$$f(x) = 3x^2 - 2x$$
 and $g(x) = 3(3x - 2)$ are equal, will be A. $\left\{1, \frac{2}{3}\right\}$

B. $\{1, 3\}$

$$\mathsf{C}.\left\{\frac{2}{3},3\right\}$$
$$\mathsf{D}.\left\{\frac{2}{3},0\right\}$$

Answer: C

2. The value of
$$\tan\left\{\frac{\pi}{2} - \tan^{-1}\left(\frac{1}{3}\right)\right\}$$
 is equal to
A. $\frac{1}{3}$
B. 3
C. $\frac{2}{3}$
D. $\frac{3}{2}$

Answer: B

3. If two rows or two columns of a determinant are indentical then value

of the determinant is

A. O B. 2 C. -1

D. 1

Answer: A

Watch Video Solution

4. If
$$f(-x) = -f(x)$$
, then the value of $\int_{-a}^{a} f(x) dx$ is equal to

A. 2a

B.a

$$\mathsf{C}.\,\frac{a}{2}$$

D. 0

Answer: D

5. If
$$y = \tan^{-1} \frac{5-x}{1+5x}$$
, then value of $\frac{dy}{dx}$ is
A. $-\frac{1}{1+x^2}$
B. $\frac{1}{1+x^2}$
C. 5
D. $\frac{5}{1+x^2}$

Answer: A

6. The rate of increase of a side of a square is 1 cm/sec. The rate of increase of area of the square, when length of a side of the square is 2

cm, is

A. 4 cm^2/sec

B. 8 cm^2/sec

C. 1 cm^2 /sec

D. 2 cm^2/sec

Answer: A

Watch Video Solution

7.
$$\overrightarrow{a} = \hat{i} + 3\hat{j} - \hat{k}$$
 and $\overrightarrow{b} = 2\hat{i} + 6\hat{j} + \lambda\hat{k}$. If \overrightarrow{a} and \overrightarrow{b} vectors are

parallel, then the value of λ is

A. 3

B. -6

C. -3

D. -2

Answer: D

Answer: C

Watch Video Solution

9. If
$$P(A)=rac{3}{7}, P(B)=rac{4}{7} ext{ and } P(A\cap B)=rac{2}{9},$$
 then the value of

P(A/B) is equal to

A. $\frac{7}{18}$

B.
$$\frac{14}{27}$$

C. $\frac{5}{18}$
D. $\frac{4}{9}$

Answer: A

Watch Video Solution

10. A coin is tossed 10 times. The probility of getting head 6 times is

A.
$${}^{10}C_5 \cdot \frac{1}{2^{10}}$$

B. ${}^{10}C_3 \cdot \frac{1}{2^{10}}$
C. ${}^{10}C_4 \cdot \frac{1}{2^{10}}$
D. ${}^{10}C_8 \cdot \frac{1}{2^{10}}$

Answer: C

1. $\lim_{x
ightarrow 0+}~(x^n\ln x), n>0$

A. does not exist

B. exists and is zero

C. exists and is 1

D. exists and is e^{-1}

Answer: B

Watch Video Solution

2. If
$$\int \cos x \log \left(\tan rac{x}{2}
ight) = \sin x \log \left(\tan rac{x}{2}
ight) + f(x)$$
 then f(x) is equal to

A. c

B. c-x

C. c+x

D. 2x+c

Answer: B

Watch Video Solution

3.
$$y = \int \!\! \cos \left\{ 2 \tan^{-1} \sqrt{rac{1-x}{1+x}}
ight\} \! dx$$
 is a equation of a family of

A. straight lines

B. circles

C. ellipses

D. parabolas

Answer: D

4. The value of integration
$$\int_{-rac{\pi}{4}}^{rac{\pi}{4}}igg(\lambda|{\sin x}|+rac{\mu\sin x}{1+\cos x}+\gammaigg)dx$$

A. is independent of λ only

B. is independent of μ only

C. is independent of γ only

D. depends of λ, μ and γ

Answer: B

Watch Video Solution

5. The value of
$$\lim_{x o 0} \frac{1}{x} \left[\int_y^a e^{\sin^2 t} dt - \int_{x+y}^a e^{\sin^2 t} dt \right]$$
 is equal to

A. $e^{\sin^2 y}$

B. $e^{2\sin y}$

 $\mathsf{C.}\,e^{|\sin y|}$

D. $e^{\cos e c^2 y}$

Answer: A

6. If
$$\int 2^{2^x} \cdot 2^x dx = A \cdot 2^{2^x} + c$$
, then A=
A. $\frac{1}{\log 2}$
B. $\log 2$
C. $(\log 2)^2$
D. $\frac{1}{(\log 2)^2}$

Answer: D

Watch Video Solution

7. The value of the integral
$$\int_{-1}^{1} \left\{ \frac{x^{2015}}{x^2 + \cos x} \right\} dx$$
 is equal to

A. 0

 $\mathsf{B.1}-e^{-1}$

C. $2e^{-1}$

D.
$$2(1-e^{-1})$$

Answer: A

8.

$$\lim_{n \to \infty} \ \frac{3}{n} \Biggl\{ 1 + \sqrt{\frac{n}{n+3}} + \sqrt{\frac{n}{n+6}} + \sqrt{\frac{n}{n+9}} + + \sqrt{\frac{n}{n+3(n-3)}} \Biggr\} + + \sqrt{\frac{n}{n+3(n-3)}} \Biggr\}$$

A. does not exist

B. 1

C. 2

D. 3

Answer: C

9. The general solution of the differential equation

$$\left(1+e^{\frac{x}{y}}\right)dx + \left(1-\frac{x}{y}\right)e^{\frac{x}{y}}dy = 0$$
 is
A. $x - ye^{\frac{x}{y}} = c$
B. $y - xe^y = c$
C. $x + ye^{\frac{x}{y}} = c$
D. $y + xe^y = c$

Answer: C

Watch Video Solution

10. General solution of
$$(x+y)^2 rac{dy}{dx} = a^2, a
eq 0$$
 is

A.
$$rac{x}{a} = an rac{y}{a} + c$$

B. $\tan xy = c$

$$\mathsf{C}. an(x+y)=c$$

$$\mathsf{D}.\tan\frac{y+c}{a} = \frac{x+y}{a}$$

Answer: D

11. Let P(4,3) be a point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. If the normal at P intersects the x-axis at (16,0), then the eccentricity of the hyperbola is

A. $\frac{\sqrt{5}}{2}$ B. 2 C. $\sqrt{5}$

D. $\sqrt{3}$

Answer: B

12. If the radius of a spherical balloon increases by 0.1%, then its volume

increases approximately by

A. 0.2~%

 $\mathrm{B.}\,0.3\,\%$

 $\mathsf{C}.\,0.4\,\%$

D. 0.05~%

Answer: B

Watch Video Solution

13. Let A be a square matrix of order 3 whose all entries are 1 and let I_3 be

the identity matrix of order 3. Then the matrix $A-3I_3$ is

A. invertible

B. orthogonal

C. non-invertible

D. real skew symmetric matrix

Answer: C

14. If M is any square matrix of order 3 over R and if M' be the transpose of M, then adj(M')-(adjM)' is equal to

A. M

B. M'

C. null matrix

D. indentity matrix

Answer: C

15. If
$$A = \begin{pmatrix} 5 & 5x & x \\ 0 & x & 5x \\ 0 & 0 & 5 \end{pmatrix}$$
 and $|A^2| = 25$, then $|x|$ is equal to
A. $\frac{1}{5}$
B. 5
C. 5^2
D. 1

Answer: A

16. Let A and B be two square matrices of order 3 and $AB=O_3$, wher O_3 denotes the null matrix of order 3. Then,

- A. must be $A=O_3, B=O_3$
- B. If $A
 eq O_3$,must be $B
 eq O_3$
- C. If $A=O_3$,must be $B
 eq O_3$

D. may be $A= \neq O_3, B=O_3$

Answer: D

17. Let: R o R be defined by $f(x) = x^2 - rac{x^2}{1+x^2}$ for all $x \in R.$ Then

A. f is one-one but not onto mapping

B. f is onto but not one-one mapping

C. f is both one-one and onto.

D. f is neither one-one onto

Answer: D

18. Let the relation p be defined on R as apb iff 1+ab>0. Then

A. p is reflexive only

B. p is equivalence relation

C. p is reflexive and transitive but not symmetric

D. p is reflexive and symmetric but not transitive

Answer: D

Watch Video Solution

19. A problem in mathematics is given to 4 students whose chances of solving individually are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{1}{5}$. The probability that the problem will be solved at least by once students is

A.
$$\frac{2}{3}$$

B. $\frac{3}{5}$
C. $\frac{4}{5}$
D. $\frac{3}{4}$

Answer: C

20. If X is a random variable such that $\sigma(X)=2.6, \ \ ext{then} \ \ \sigma(1-4X)$ is

equal to,

A.7.8

 $\mathsf{B.}-10.4$

C. 13

 $\mathsf{D}.\,10.4$

Answer: D

Watch Video Solution

21. The direction ration of the normal to the plane passing through the

points (1,2,-3),(-1,-2,1) and parallel to
$$\displaystyle rac{x-2}{2} = \displaystyle rac{y+1}{3} = \displaystyle rac{z}{4}$$
 is

A. (2, 3, 4)

- B. (14, -8, -1)
- C.(-2,0,-3)
- D. (1, -2, -3)

Answer: B

22. The equation of the plane, which bisects the line joining the points (1,2,3) and (3,4,5) at right angles is

A. x + y + z = 0

B. x + y - z = 9

C. x + y + z = 9

D.
$$x+y-z+9=0$$

Answer: C

23. The limit of the interior angle of the regular polygon of n sides as

 $n
ightarrow \infty$ is

Α. π

B.
$$\frac{\pi}{3}$$

C. $\frac{3\pi}{2}$
D. $\frac{2\pi}{3}$

Answer: A

Watch Video Solution

24. Let f(x) > 0 for all x and f'(x) exists for all x. If f is the inverse function of h and $h'(x) = \frac{1}{1 + \log x}$. Then f'(x) will be

A. $1 + \log(f(x))$

B.1 + (f(x))

 $\mathsf{C.1} - \log(f(x))$

 $\mathsf{D}.\log(f(x))$

Answer: A

Watch Video Solution

25. Consider the function $f(x) \cos x^2$. Then

A. f is of period 2π

B. f is of period $\sqrt{2\pi}$

C. f is not periodic

D. f is of period π

Answer: C

View Text Solution

- **26.** $\lim_{x \to 0+} (e^x + x)^{\frac{1}{x}}$
 - A. does not exist

B. 1

 $\mathsf{C.}\,e^2$

D. 2

Answer: C

Watch Video Solution

27. Let f(x) be a derivable function f'(x) > f(x) and f(0) = 0. Then

 $\mathsf{A}_{\cdot} f(x) > 0 \ \text{ for all } \ x > 0$

 $\mathsf{B.}\,f(x)<0 \ \text{ for all } \ x>0$

C. no sign of f(x) can be ascertained

D. f(x) is a constant function

Answer: A

28. Let $f \colon [1,3] o R$ be a continuous function that is differentiable in

- $(1,3) \; \; ext{and} \; \; f'(x) = |(f(x))|^2 + 4 \; \; ext{for all} \; \; x \in (1,3).$ Then,
 - A. f(3) f(1) = 5 is true
 - B. f(3) f(1) = 5 is false
 - C. f(3) f(1) = 7 is false
 - D. f(3) f(1) < 0only at one point (1,3)

Answer: B::C

29. Let
$$a=\min\left(x^2+2x+3\colon x\in R
ight)$$
 and $b=\lim_{ heta
ightarrow 0}rac{1-\cos heta}{ heta^2}.$ Then $\sum_{r=0}^n a^r b^{n-r}$ is

A.
$$\frac{2^{n+1}-1}{3\cdot 2^n}$$

B. $\frac{2^{n+1}+1}{3\cdot 2^n}$
C. $\frac{4^{n+1}-1}{3\cdot 2^n}$
D. $\frac{1}{2}(2^n-1)$

Answer: C

Watch Video Solution

30. Let
$$a>b>0$$
 and $I(n)=a^{rac{1}{n}}-b^{rac{1}{n}},$ $J(n)=(a-b)^{\left(rac{1}{n}
ight)}$ for all $n\geq 2.$ Then

A. I(n) < J(n)

 $\mathsf{B}.\,I(n)>J(n)$

 $\mathsf{C}.\,I(n)=J(n)$

D.
$$I(n) = J(n) = 0$$

Answer: A

- A. P(A)
- $\mathsf{B.}\,\frac{P(B)}{P(A)}$
- $\mathsf{C}.P(B)$
- $\mathsf{D}.\, P(A)P(B)$

Answer: C

Watch Video Solution

32. The position vectors of the points A,B,C and D are $3\hat{i} - 2\hat{j} - \hat{k}, 2\hat{i} - 3\hat{j} + 2\hat{k}, 5\hat{i} - \hat{j} + 2\hat{k}$ and $4\hat{i} - \hat{j} + \lambda\hat{k}$ respectively. If the points A,B,C and D lie on a plane, the value of λ is B. 1

C. 2

D. -4

Answer: D

Watch Video Solution

33. Find value of
$$\sin^{-1}\left(\cos\left(\frac{33\pi}{5}\right)\right)$$

Watch Video Solution

34. The system of equations
$$\lambda x + y + 3z = 0, 2x + \mu y - z = 0, 5x + 7y + z = 0$$
 has infinitely many solutions in R. Then

A.
$$\lambda=2, \mu=3$$

B. $\lambda=1, \mu=2$

C. $\lambda = 1, \mu = 3$

D. $\lambda=3, \mu=1$

Answer: C

Watch Video Solution

35. Let $f \colon X o Y$ and A,B are non-void subsets of Y, then

A.
$$f^{-1}(A) - f^{-1}(B) \supset f^{-1}(A-B)$$
 but the opposite does not

hold

B.
$$f^{-1}(A) - f^{-1}(B) \subset f^{-1}(A-B)$$
 but the opposite does not

hold

C.
$$f^{-1}(A - B) = f^{-1}(A) - f^{-1}(B)$$

D.
$$f^{-1}(A-B) = f^{-1}(A) \cup f^{-1}(B)$$

Answer: C

36. Let S,T,U be three non-void sets and $f\colon S o T, g\colon T o U$ be so that

 $g\circ f\!:\!S
ightarrow U$ is surjective. Then

A. g and f are both sujective

B. g is surjective, f may not be so

C. f is surjective, g may not be so

D. f and g both may not be surjective

Answer: A

37. Let $f(x)=x^4-4x^3+4x^2+c, c\in R$, Then

A. f(x) has infinitely many zeroes in (1,2) for all c

B. f(x) has exactly one zero in (1,2) if -1 < c < 0

C. f(x) has double zeroes in (1,2) if -1 < c < 0

D. whatever be the value ofc,f(x) has non zero in (1,2)

Answer: B

B. at exactly 3 points

C. at least 4 but at finitely many points

D. at infinitely many points

Answer: A

39. A point is in motion along a hyperbola $y = \frac{10}{x}$ so that its abscissa increases uniformly at a rate of 1 unit per second. Then, the rate of change of its ordinate, when the point passes through (5,2)

A. increases at the rate of
$$\frac{1}{2}$$
 unit per second
B. decreases at the rate of $\frac{1}{2}$ unit per second
C. decreases at the rate of $\frac{2}{5}$ unit per second
D. increases at the rate of $\frac{2}{5}$ unit per second

Answer: C

Watch Video Solution

41. Two particles A and B move from rest along a straight line with constant accelerations f and h respectively. If A takes m seconds more than B and describes n units more than that of B acquiring the same speed, then

A.
$$(f+h)m^2 = fhn$$

B. $(f-h)m^2 = fhn$
C. $(h-f)n = \frac{1}{2}fhm^2$
D. $\frac{1}{2}(f+h)n = fhm^2$

Answer: C

View Text Solution

42. The area bounded by y = x + 1 and $y = \cos x$ and the x-axis, is

A.1 sq. unit

B. 3/2 sq. unit

C. 1/4 sq. unit

D. 1/8 sq. unit

Answer: B

Watch Video Solution

43. Let
$$A = \begin{pmatrix} 3 & 0 & 3 \\ 0 & 3 & 0 \\ 3 & 0 & 3 \end{pmatrix}$$
. Then the roots of the equation $det(A - \lambda I_3) = 0$ are
A. 3, 0, 3
B. 0, 3, 6
C. 1, 0, -6
D. 3, 3, 6

44. f and g be differentiable on the interval I and let $a, b \in I, a < b$. Then

- A. If f(a)=0=f(b), the equation $f^{\,\prime}(x)+f(x)g^{\,\prime}(x)=0$ is solvable in (a,b).
- B. If f(a)=0=f(b), the equation $f^{\,\prime}(x)+f(x)g^{\,\prime}(x)=0$ may not

be solvable in (a,b).

C. If g(a) = 0 = g(b), the equation g'(x) + kg(x) = 0 is solvable in

(a,b), $k \in R$.

D. If g(a) = 0 = g(b), the equation g'(x) + kg(x) = 0 may not be

solvable in (a,b), $k \in R$.

Answer: A::C

45. Find the period of the function

$$f(x) = \sin\left(\frac{\pi x}{3}\right) + \cos\left(\frac{\pi x}{2}\right).$$

