©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CHHAYA PUBLICATION MATHS (BENGALI
 ENGLISH)

RELATION AND FUNCTIONS

Wbhs Archive

1. Fill in the blanks :

If a function $f: R \rightarrow R$ is defined by $f(x)=2 x+3$ then $f^{-1}(19)=\ldots \quad(\mathrm{R}$ is the set real numbers $)$.

- Watch Video Solution

2. State whether the statement is true or false ?

If $A=\{a, b, c, d\}$ and $R=\{(a, c),(b, d),(b, c),(c, a),(d, b)\}$ then R is a symmertric relation on A .

- Watch Video Solution

3. Let $f(x+3)=x^{2}-3 x-1$.then find $f(x+1)$

- Watch Video Solution

4. A realation ρ is defined on set Z, a set of all integers, such that $\rho=\{(x, y) \in Z \times Z: Y-x$ is divisible by 5$\}$. Discuss whether ρ is an equialence relation.

IF $A=\{x \in Z:(2, x) \in \rho,-10 \leq x \leq 10\}$ then mention the elements of A.

- Watch Video Solution

5. A function $f: R \rightarrow R$ is defined by $f(x)=x^{2}$. Then show that f is neither nor surfection .

- Watch Video Solution

6. Prove that,
$\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\tan ^{-1} \frac{x+y+z-x y z}{1-x y-y z-z x}$

D Watch Video Solution

7. IF $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\frac{\pi}{2}, x+y+z=\sqrt{3}$, prove that $x=y=z$

- Watch Video Solution

8. Prove that $\frac{1}{2} \cos ^{-1}\left(\frac{5 \cos x+3}{5+3 \cos x}\right)=\tan ^{-1}\left(\frac{1}{2} \tan \frac{x}{2}\right)$
9. Let R be the set of real numbers. If the function $f: R \rightarrow R$ and $g: R \rightarrow R \quad$ be defined by $f(x)=4 x+1 \quad$ and $g(x)=x^{2}+3$, then find (go f) and (fo g) .

- Watch Video Solution

10. Prove that $\sin \cos ^{-1} \tan \sec ^{-1} x=\sqrt{2-x^{2}}$.

- Watch Video Solution

11. The relation $R=\{(1,1),(2,2),(4,4),(1,2),(1,3),(2,3)\}$ on the set $A=\{1,2,3,4\}$ is -
A. reflexive
B. symmetric
C. transitive
D. equivalence

- Watch Video Solution

12. The value of $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)+\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ is -
A. $\frac{7(\pi)}{6}$
B. $-\frac{\pi}{6}$
C. $\frac{\Pi}{4}$
D. $-\frac{\pi}{4}$

Answer:

D Watch Video Solution

13. A binary openation * is defined on the set of all integers Z by $a^{*} b=a+b+5, a, b \in Z$. Find whether * is associative on Z.
14. Find the value of $\tan ^{-1}\left\{2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right\}$. (consider prinicipal values only).

- Watch Video Solution

15. Let the function $f: R \rightarrow R, g: R \rightarrow R, h: R \rightarrow R$ be defined by $f(x)=\cos x, g(x)=2 x+1$ and $h(x)=x^{3}-x-6, \quad$ Find the mapping $h \circ$ (goh), hence find the value of $h \circ$ (gof), hence find the value of (h o (go f)) (x) when $x=\frac{\pi}{3}$ and $c=\frac{2 \pi}{3}$.

- Watch Video Solution

16. Prove that $\tan ^{-1} \frac{1}{x+y}+\tan ^{-1} \frac{y}{x^{2}+x y+1}=\cot ^{-1} x$.

- Watch Video Solution

17. Give an example of a relation defined on set of integers which is symmetric and transitive but not reflexive . Jusitfy your answer .

- Watch Video Solution

18. If $\sec ^{-1} x=\operatorname{cosec}^{-1} y$, then the valuw of $\cos ^{-1} \frac{1}{x}-\sin ^{-1} \frac{1}{y}$ will be
A. 0
B. $\frac{2 \pi}{3}$
C. $\frac{5 \pi}{6}$
D. $\frac{\pi}{2}$

Answer: A

- Watch Video Solution

19. If $f(x)=\frac{x^{2}}{1+x^{2}}$, then the range of f is -
A. $[1, \infty]$
B. $[0,1)$
C. $[-1,1]$
D. $[0,1]$

Answer: B

- Watch Video Solution

20. \mathbb{R} is a set of real numbers. If the relation R over a set A is defined such that $R=\{(a, b): a-b<3, a, b \in \mathbb{R}\}$. then relation R is -
A. Transitive
B. equivalence
C. reflexive
D. symmetric

Answer: C

21. Let \mathbb{R} be the set of all real numbers and for all $x \in \mathbb{R}$, the mapping $f: R \rightarrow R$ is dedined by $f(x)=a x+2$. if (fo f$)=T_{\mathbb{R}}$, then find the value of a.

- Watch Video Solution

22. Evaluate : $4\left(2 \tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}\right)$

- Watch Video Solution

23. A relation R is defined on the set of all natural numbers \mathbb{N} by :
$(x, y) \in R \Rightarrow(x-y)$ is divisible by 6 for all $x, y, \in \mathbb{N}$ prove that R is an equivalence relation on \mathbb{N}.

- Watch Video Solution

24. If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1}=\pi \quad$ then prove that $x \sqrt{1-x^{2}}+y \sqrt{1-y^{2}}+z \sqrt{1-z^{2}}=2 x y z$

- Watch Video Solution

25. The total number of injections (one -one into mappings) from $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \operatorname{to}\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}\right\}$ is -
A. 400
B. 420
C. 800
D. 840

Answer: D

- Watch Video Solution

26. Let \mathbb{R} be the set of real numbers and the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}+2 x-3$ and $g(x)=x+1$, then the value of x for which $f(g(x))=g(f(x))$ is -
A. -1
B. 0
C. 1
D. 2

Answer: A

Watch Video Solution

27. Let $f(x)=a x^{2}+b x+c, g(x)=p x^{2}+q x+r$, such that $f(1)=g(1), f(2)=g(2)$ and $f(3)-g(3)=2$. then $f(4)-g(4)$ is -
A. 4
B. 5
C. 6
D. 7

Answer: C

- Watch Video Solution

28. IF $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2}$, then the value of $x^{9}+y^{9}+z^{9}-\frac{1}{x^{9} y^{-9} z^{9}}$ is equal to -
A. 0
B. 1
C. 2
D. 3

Answer: C

29. Let $\left.f(x)=2^{100} x+1, g(x)=3^{100} x+1\right)$
then the set of real numbers x such that $f(g(x))=x$ is -
A. empty
B. a singleton
C. a finite set with more than element
D. infinite

Answer: B

- Watch Video Solution

30. Let $F: R \rightarrow R$ be such that f is injective and $f(x) f(y)=f(x+y)$ for all $\mathrm{x}, \mathrm{y} \in \mathbb{R}$ If $f(x), f(y), f(z)$ are in G.P ., then $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in -
A. A.P always
B. G.P always
C. A.P depending on the values of x, y, z
D. G.P depending on the values of x, y, z

Answer: A

- Watch Video Solution

31. Let $f(x-1)=x^{2}+5 x-3$.then find $f(x+1)$

- Watch Video Solution

32. In the set all 3×3 real matric a relation a relation is defined as follows .A matrix A is related to a matric B if and only if there is a non singular 3×3 matrix P such that $B=P^{-1} A P$. This relation is -
A. reflxice, symmetric but not Transitive
B. Reflexive ,Transitive but not symmetric
C. Symmetric ,Transitive but not Reflexive
D. an Equivalence relation

Answer: D

- Watch Video Solution

33. For any two real numbers a and b, we define $a R b$ if and only if $\sin ^{2} a+\cos ^{2} b=1$, the relation R is -
A. Reflexive but not symmetric
B. symmetric but not transitive
C. transitive but not reflexive
D. an equivalence relation

Answer: D

- Watch Video Solution

34. Which of the following real valued functions is / are not even functions?
A. $f(x)=x^{3} \sin x$
B. $f(x)=x^{2} \cos x$
C. $f(x)=x^{2} \sin x$
D. $f(x)=x-[x]$ where [$x]$ denotes the greatest integer less than or equal to x

Answer: C::D

- Watch Video Solution

35. Let \mathbb{R} be the set of all real numbers and $f: R \rightarrow R$ be given by $f(x)=3 x^{2}+1$ then the set $f^{-1}\left(\begin{array}{ll}1 & 6\end{array}\right)$ is -
A. $\left\{-\sqrt{\frac{5}{3}}, 0, \sqrt{\frac{5}{3}}\right\}$
B. $\left[-\sqrt{\frac{5}{3}}, \sqrt{\frac{5}{3}}\right]$
C. $\left[-\sqrt{\frac{1}{3}}, \sqrt{\frac{1}{3}}\right]$
D. $\left(-\sqrt{\frac{5}{3}}, \sqrt{\frac{5}{3}}\right)$

Answer:

- Watch Video Solution

36. Let $f(x)=2 x^{2}+5 x+1$.If we write $\mathrm{f}(\mathrm{x})$ as $f(x)=a(x+1)(x-2)+b(x-2)(x-1)+c(x-1)(x+1)$ for real numbers a, b, c then -
A. there are infinite number of chocies for a ,b,c
B. only one choice for a but infinte number of choices for b and c
C. Exactly one choice for each of a,b,c
D. More than one but finite number of choices for $\mathrm{a}, \mathrm{b}, \mathrm{c}$

Answer: C

37. Let $f(x)=x+\frac{1}{2}$ then the number of real values of x for which the three unequal terms $f(x), f(2 x), f(4 x)$ are in H.P is -
A. 1
B. 0
C. 3
D. 2

Answer: A

- Watch Video Solution

38. The function $f(x)=x^{2}+b x+c$, where b and c are real constants, decribes -
A. one -to -one mapping
B. onto mapping
C. not one -to but onto mapping
D. neither one - to one nor onto mapping

Answer: D

- Watch Video Solution

39. If $\sin ^{-1}\left(\frac{x}{13}\right)+\operatorname{cosec}^{-1}\left(\frac{13}{12}\right)=\frac{\pi}{2}$ then the values of x is -
A. 5
B. 4
C. 12
D. 11

Answer:

40. We define a binary relation \sim on the set of all 3×3 real matrices as A $\sim B$ if and only if these exist invertible matrices P and Q such that $B=P A Q^{-1}$. The binary relation \sim is -
A. neither reflexive nor symmetric
B. reflexive and symmetric but not transitive
C. symmetric and transitive but not reflexive
D. an Equivalence relation

Answer:

- Watch Video Solution

41. For any two numbers θ and ϕ, we define $\theta R \phi$ if and only if $\sec ^{2} \theta-\tan ^{2} \phi=1$ the relation R is -
A. Reflexive but not transitive
B. symmetric but not reflexive
C. Both reflexive and symmetric but not transitive
D. an Equivalence relation

Answer: D

D Watch Video Solution

42. IF $\sin ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4}-\frac{x^{4}}{8}+\ldots \ldots ..\right)=\frac{\pi}{6}$, when $|x|<2$ then $x=$
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $-\frac{2}{3}$
D. $-\frac{3}{2}$

Answer: A

43. A function $f:(0, \pi / 2) \rightarrow R$ is defined as :
$f(\theta)=\left|\begin{array}{ccc}1 & \tan \theta & 1 \\ -\tan \theta & 1 & \tan \theta \\ -1 & -\tan \theta & 1\end{array}\right|$
then the range of f is -
A. $(2, \infty)$
B. $(-\infty,-2)$
C. $(2, \infty o)$
D. $(-\infty, 2)$

Answer: A

- Watch Video Solution

44. Value of $2 \cot ^{-1} \frac{1}{2}-\cot ^{-1} \frac{4}{3}$ is-
A. $-\frac{\pi}{6}$
B. $\frac{3 \pi}{2}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

45. The equation $\sin ^{-1} x=2 \sin ^{-1} 2 a$ has real roots if
A. $|a|<\frac{1}{\sqrt{2}}$
B. $\frac{1}{2 \sqrt{2}}<|a|<\frac{1}{\sqrt{2}}$
C. $|a|>\frac{1}{2 \sqrt{2}}$
D. $|a|<\frac{1}{2 \sqrt{2}}$

Answer: D

- Watch Video Solution

46. The function $f: N \rightarrow \mathbb{R}$ is such that
$f(1)=1$ and $g(1)+2(f)++3 f(3)+\ldots \ldots \ldots+n f(n)=n(n+1) f(n$
($\mathrm{N}=$ set of natural number $\mathbb{R}=$ set of real number $)$ then $f(500)=$
A. 1000
B. 500
C. $1 / 500$
D. $1 / 1000$

Answer: D

- Watch Video Solution

47. ρ is such a relation on the set real numbers \mathbb{R} where $x \rho y$ if and $x y>0$. Then which of the following is / are true?
A. ρ is reflexive and symmetric
B. ρ is symmetric and but not reflexive
C. ρ is symmetric and transitive
D. ρ is an equivalence relation .

Answer: A::B::D

- Watch Video Solution

48. Let \mathbb{R} be a relation defined on the set \mathbb{Z} of all integers and $x R y$ when
$x+2 y$ is divisible by 3 , then
A. R is not transitive
B. R is symmetric only
C. R is an equivalence relation
D. R is not an equivalence relation

Answer: C

49. If the function $f: R \rightarrow R$ is defined by $f(x)=\left(x^{2}+1\right)^{35}$ for all $x \in \mathbb{R}$ then f is
A. One -one but not noto
B. onto but not one -one
C. neither one -one nor onto
D. both one-one and onto

Answer: C

- Watch Video Solution

50. Let $F: X \rightarrow X$ be such that $f(f(x))=x$ for all $x \in X$ and $X \subseteq R$, then
A. f is one to one
B. f is onto
C. f is one -to- one but not onto
D. f is onto but not one -to-one

Answer: A::B

- Watch Video Solution

Jee Main Aieee Archive

1. If x, y, z are in A.P and $\tan ^{-1} x, \tan ^{-1} y$ and $\tan ^{-1} z$ are also in A.P then-
A. $x=y=z$
B. $x=3 y=6 z$
C. $6 x=3 y=2 z$
D. $6 x=4 y=3 z$

Answer: A

2. Let $f_{k}=\frac{1}{k}\left(\sin ^{k} x+\cos ^{k} x\right)$, where $x \in \mathbb{R}$ and $k>1$ then $f_{4}(x)-f_{6}(x)$ equals -
A. $\frac{1}{6}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{1}{12}$

Answer: D

- Watch Video Solution

3. Let $\tan ^{-1} y=\tan ^{-1} x+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$
where $|x|<\frac{1}{\sqrt{3}}$. Then a value of y is -
A. $\frac{3 x-x^{3}}{1+3 x^{3}}$
B. $\frac{3 x+x^{3}}{1+3 x^{2}}$
c. $\frac{3 x-x^{3}}{1-3 x^{2}}$
D. $\frac{3 x+x^{3}}{1-3 x^{2}}$

Answer: C

- Watch Video Solution

Jee Advanced Archive

1. The value of $\cot \left\{\sum_{n=1}^{23} \cot ^{-1}\left(1+\sum_{k-1}^{n} 2 k\right)\right\}$ is
A. $\frac{23}{25}$
B. $\frac{25}{23}$
C. $\frac{23}{24}$
D. $\frac{24}{23}$

Answer: B
2. If $\alpha=3 \sin ^{-1}\left(\frac{6}{11}\right)$ and $\beta=3 \cos ^{-1}\left(\frac{4}{9}\right)$, where the inverse trigonometric function take only the priencipal values, then the correct option (s) is are -
A. $\cos \beta>0$
B. $\sin \beta<0$
C. $\cos (\alpha+\beta)>0$
D. $\cos \alpha<0$

Answer:

- Watch Video Solution

3. Let $f(x)=\sin \left(\frac{\pi}{6} \sin \left(\frac{\pi}{2} \sin x\right)\right)$ for all $x \in R$ and $g(x)=\frac{x}{2} \sin x$ for all $x \in \mathbb{R}$.Let (fo g) (x) denote $\mathrm{f}(\mathrm{g}(\mathrm{x})$) and (gof f$)(\mathrm{x}$) denote $\mathrm{g}(\mathrm{f}(\mathrm{x})$). Then which of the following is (are) true ?
A. range of f is $\left[-\frac{1}{2}, \frac{1}{2}\right]$
B. Range of $f \circ \mathrm{~g}$ is $\left[-\frac{1}{2}, \frac{1}{2}\right]$
C. $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\frac{\pi}{6}$
D. there is an $x \in \mathbb{R}$ such that $(\mathrm{g} \circ \mathrm{f})(\mathrm{x})=1$

Answer: A::B::C

- Watch Video Solution

