

MATHS

BOOKS - CHHAYA PUBLICATION MATHS (BENGALI ENGLISH)

RELATION AND FUNCTIONS

Wbhs Archive

1. Fill in the blanks :

- If a function $f\!:\!R o R$ is defined by f(x)=2x+3 then
- $f^{-1}(19) =$ ____(R is the set real numbers).

2. State whether the statement is true or false?

If $A = \{a, b, c, d\}$ and $R = \{(a, c), (b, d), (b, c), (c, a), (d, b)\}$ then R

is a symmertric relation on A.

Watch Video Solution

3. Let $f(x + 3) = x^2 - 3x - 1$.then find f(x + 1)

Watch Video Solution

4. A realation ho is defined on set Z , a set of all integers , such that $ho=\{(x,y)\in Z imes Z\colon Y-x ext{ is divisible by 5}\}$. Discuss whether ho is an equialence relation .

IF $A=\{x\in Z\colon (2,x)\in
ho,\ -10\leq x\leq 10\}$ then mention the elements of A .

5. A function $f\!:\!R o R$ is defined by $f(x)=x^2$.Then show that f is

neither nor surfection .

6. Prove that,

$$an^{-1}x + an^{-1}y + an^{-1}z = an^{-1}rac{x+y+z-xyz}{1-xy-yz-zx}$$

Watch Video Solution

7. IF
$$an^{-1}x+ an^{-1}y+ an^{-1}z=rac{\pi}{2}, x+y+z=\sqrt{3}$$
 , prove that $x=y=z$

Watch Video Solution

8. Prove that
$$rac{1}{2} \cos^{-1}\left(rac{5\cos x+3}{5+3\cos x}
ight) = an^{-1}\left(rac{1}{2} anrac{x}{2}
ight)$$

9. Let R be the set of real numbers . If the function $f\colon R o R$ and $g\colon R o R$ be defined by f(x)=4x+1 and $g(x)=x^2+3,$ then find (gof) and (fog).

Watch Video Solution

10. Prove that
$$\sin\cos^{-1} \tan \sec^{-1} x = \sqrt{2-x^2}.$$

Watch Video Solution

11. The relation $R = \{(1, 1), (2, 2), (4, 4), (1, 2), (1, 3), (2, 3)\}$ on the set $A = \{1, 2, 3, 4\}$ is -

A. reflexive

B. symmetric

C. transitive

D. equivalence

Answer: C

12. The value of
$$\sin^{-1}\left(rac{\sqrt{3}}{2}
ight)+\cos^{-1}\left(-rac{\sqrt{3}}{2}
ight)$$
 is -

A.
$$\frac{7(\pi)}{6}$$

B. $-\frac{\pi}{6}$
C. $\frac{\Pi}{4}$
D. $-\frac{\pi}{4}$

Answer:

13. A binary openation * is defined on the set of all integers Z by $a^*b=a+b+5, a, b\in Z$. Find whether * is associative on Z .

14. Find the value of
$$an^{-1}\left\{2\cos\left(2\sin^{-1}\frac{1}{2}\right)\right\}$$
. (consider prinicipal

values only).

Watch Video Solution

15. Let the function $f: R \to R, g: R \to R, h: R \to R$ be defined by $f(x) = \cos x, g(x) = 2x + 1$ and $h(x) = x^3 - x - 6$, Find the mapping h o (go h), hence find the value of h o (go f), hence find the value of (h o (go f)) (x) when $x = \frac{\pi}{3}$ and $c = \frac{2\pi}{3}$.

Watch Video Solution

16. Prove that
$$an^{-1} rac{1}{x+y} + an^{-1} rac{y}{x^2+xy+1} = \cot^{-1} x.$$

17. Give an example of a relation defined on set of integers which is symmetric and transitive but not reflexive . Jusitfy your answer .

Watch Video Solution

18. If
$$\sec^{-1} x = \csc^{-1} y$$
, then the value of $\cos^{-1} \frac{1}{x} - \sin^{-1} \frac{1}{y}$ will be
A. 0
B. $\frac{2\pi}{3}$
C. $\frac{5\pi}{6}$
D. $\frac{\pi}{2}$

Answer: A

19. If
$$f(x) = rac{x^2}{1+x^2}, ext{ then the range of f is -}$$

A. $[1,\infty]$

B.[0,1)

 $\mathsf{C}.\,[\,-1,\,1]$

D.[0,1]

Answer: B

Watch Video Solution

20. $\mathbb R$ is a set of real numbers .If the relation R over a set A is defined such that $R=\{(a,b)\colon a-b<3,a,b\in\mathbb R\}.$ then relation R is -

A. Transitive

B. equivalence

C. reflexive

D. symmetric

Answer: C

21. Let $\mathbb R$ be the set of all real numbers and for all $x\in\mathbb R$, the mapping $f\colon R o R$ is dedined by f(x)=ax+2. if (fo f) $=T_{\mathbb R}$, then find the value of a.

Watch Video Solution

22. Evaluate :
$$4\left(2\tan^{-1}{\frac{1}{3}} + \tan^{-1}{\frac{1}{7}}\right)$$

Watch Video Solution

23. A relation R is defined on the set of all natural numbers \mathbb{N} by :

 $(x,y)\in R\Rightarrow (x-y)$ is divisible by 6 for all $x,y,\ \in \mathbb{N}$ prove that R is an equivalence relation on $\mathbb{N}.$

24. If
$$\sin^{-1}x + \sin^{-1}y + \sin^{-1} = \pi$$
 then prove that
 $x\sqrt{1-x^2} + y\sqrt{1-y^2} + z\sqrt{1-z^2} = 2xyz$
Watch Video Solution

25. The total number of injections (one -one into mappings) from $\{a_1, a_2, a_3, a_4\}$ to $\{b_1, b_2, b_3, b_4, b_5, b_6, b_7\}$ is -

A. 400

B. 420

C. 800

D. 840

Answer: D

26. Let \mathbb{R} be the set of real numbers and the functions $f:\mathbb{R} o\mathbb{R}$ and $g:\mathbb{R} o\mathbb{R}$ be defined by $f(x)=x^2+2x-3$ and g(x)=x+1, then the value of x for which f(g(x))=g(f(x)) is -

A. -1

 $\mathsf{B.}\,0$

C. 1

 $\mathsf{D.}\,2$

Answer: A

27. Let
$$f(x) = ax^2 + bx + c$$
, $g(x) = px^2 + qx + r$, such that $f(1) = g(1), f(2) = g(2)$ and $f(3) - g(3) = 2$. then $f(4) - g(4)$ is -

B.	5
	-

C. 6

D. 7

Answer: C

Watch Video Solution

28. IF
$$\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \frac{3\pi}{2}$$
, then the value of $x^9 + y^9 + z^9 - \frac{1}{x^9y^{-9}z^9}$ is equal to -

B. 1

C. 2

D. 3

Answer: C

29. Let $f(x) = 2^{100}x + 1, g(x) = 3^{100}x + 1)$

then the set of real numbers x such that f(g(x)) = x is -

A. empty

B. a singleton

C. a finite set with more than element

D. infinite

Answer: B

Watch Video Solution

30. Let $F \colon R \to R$ be such that f is injective and f(x)f(y) = f(x+y)

for all x,y $\,\in \mathbb{R}$ If $f(x),\,f(y),\,f(z)$ are in G.P ., then x,y,z are in -

A. A.P always

B. G.P always

C. A.P depending on the values of x, y, z

D. G.P depending on the values of x, y, z

Answer: A

31. Let
$$f(x - 1) = x^2 + 5x - 3$$
.then find $f(x + 1)$

Watch Video Solution

32. In the set all 3×3 real matric a relation a relation is defined as follows .A matrix A is related to a matric B if and only if there is a non - singular 3×3 matrix P such that $B = P^{-1}AP$. This relation is -

A. reflxice, symmetric but not Transitive

B. Reflexive ,Transitive but not symmetric

C. Symmetric ,Transitive but not Reflexive

D. an Equivalence relation

Answer: D

33. For any two real numbers a and b , we define aRb if and only if $\sin^2 a + \cos^2 b = 1$, the relation R is -

A. Reflexive but not symmetric

B. symmetric but not transitive

C. transitive but not reflexive

D. an equivalence relation

Answer: D

34. Which of the following real valued functions is / are not even functions ?

A.
$$f(x) = x^3 \sin x$$

B.
$$f(x) = x^2 \cos x$$

$$\mathsf{C}.\,f(x)=x^2\sin x$$

D. f(x) = x - [x] where [x] denotes the greatest integer less than or

equal to x

Answer: C::D

Watch Video Solution

35. Let $\mathbb R$ be the set of all real numbers and $f\colon R o R$ be given by $f(x)=3x^2+1$ then the set $f^{-1}(egin{array}{cc} 1 & 6 \end{array})$ is -

$$\mathsf{A}.\left\{-\sqrt{\frac{5}{3}},0,\sqrt{\frac{5}{3}}\right\}$$
$$\mathsf{B}.\left[-\sqrt{\frac{5}{3}},\sqrt{\frac{5}{3}}\right]$$

$$\mathsf{C}.\left[-\sqrt{\frac{1}{3}},\sqrt{\frac{1}{3}}\right]$$
$$\mathsf{D}.\left(-\sqrt{\frac{5}{3}},\sqrt{\frac{5}{3}}\right)$$

Answer:

Watch Video Solution

36. Let
$$f(x) = 2x^2 + 5x + 1$$
 .If we write f(x) as $f(x) = a(x+1)(x-2) + b(x-2)(x-1) + c(x-1)(x+1)$ for real numbers a , b,c then -

A. there are infinite number of chocies for a ,b,c

B. only one choice for a but infinte number of choices for b and c

C. Exactly one choice for each of a,b,c

D. More than one but finite number of choices for a,b,c

Answer: C

37. Let $f(x) = x + rac{1}{2}$ then the number of real values of x for which the three unequal terms $f(x), \, f(2x), \, f(4x)$ are in H.P is -

- B. 0
- C. 3

D. 2

Answer: A

Watch Video Solution

38. The function $f(x) = x^2 + bx + c$, where b and c are real constants ,

decribes -

A. one -to -one mapping

B. onto mapping

C. not one -to but onto mapping

D. neither one - to one nor onto mapping

Answer: D

39. If
$$\sin^{-1}\left(\frac{x}{13}\right) + \csc^{-1}\left(\frac{13}{12}\right) = \frac{\pi}{2}$$
 then the values of x is -
A. 5
B. 4
C. 12
D. 11

Answer:

40. We define a binary relation ~ on the set of all 3×3 real matrices as A ~B if and only if these exist invertible matrices P and Q such that $B = PAQ^{-1}$. The binary relation ~ is -

A. neither reflexive nor symmetric

B. reflexive and symmetric but not transitive

C. symmetric and transitive but not reflexive

D. an Equivalence relation

Answer:

41. For any two numbers heta and ϕ , we define $\theta R \phi$ if and only if $\sec^2 \theta - \tan^2 \phi = 1$ the relation R is -

A. Reflexive but not transitive

B. symmetric but not reflexive

C. Both reflexive and symmetric but not transitive

D. an Equivalence relation

Answer: D

42. IF
$$\sin^{-1}\left(x - \frac{x^2}{2} + \frac{x^3}{4} - \frac{x^4}{8} + \dots \right) = \frac{\pi}{6}$$
, when $|x| < 2$ then
x =
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $-\frac{2}{3}$
D. $-\frac{3}{2}$

Answer: A

43. A function $f:(0, \pi/2) \to R$ is defined as : $f(\theta) = \begin{vmatrix} 1 & \tan \theta & 1 \\ -\tan \theta & 1 & \tan \theta \\ -1 & -\tan \theta & 1 \end{vmatrix}$

then the range of f is -

A. $(2, \infty)$ B. $(-\infty, -2)$ C. $(2, \infty o)$ D. $(-\infty, 2)$

Answer: A

44. Value of
$$2 \cot^{-1} \frac{1}{2} - \cot^{-1} \frac{4}{3}$$
 is-
A. $-\frac{\pi}{6}$

B.
$$\frac{3\pi}{2}$$

C.
$$\frac{\pi}{4}$$

D. $\frac{\pi}{2}$

Answer: D

45. The equation
$$\sin^{-1}x = 2\sin^{-1}2a$$
 has real roots if

$$\begin{array}{l} \mathsf{A.} \left| a \right| < \frac{1}{\sqrt{2}} \\ \mathsf{B.} \, \frac{1}{2\sqrt{2}} < \left| a \right| < \frac{1}{\sqrt{2}} \\ \mathsf{C.} \left| a \right| > \frac{1}{2\sqrt{2}} \\ \mathsf{D.} \left| a \right| < \frac{1}{2\sqrt{2}} \end{array}$$

Answer: D

46. The function $f: N \to \mathbb{R}$ is such that f(1) = 1 and $g(1) + 2(f) + + 3f(3) + \dots + nf(n) = n(n+1)f(n)$ (N = set of natural number \mathbb{R} = set of real number) then f(500) =

A. 1000

B. 500

C. 1/500

D. 1/1000

Answer: D

Watch Video Solution

47. ρ is such a relation on the set real numbers $\mathbb R$ where $x\rho y$ if and

xy>0 . Then which of the following is / are true ?

A. ρ is reflexive and symmetric

B. ρ is symmetric and but not reflexive

C. ρ is symmetric and transitive

D. ρ is an equivalence relation .

Answer: A::B::D

Watch Video Solution

48. Let ${\mathbb R}$ be a relation defined on the set ${\mathbb Z}$ of all integers and xRy when

x+2y is divisible by 3, then

A. R is not transitive

B. R is symmetric only

C. R is an equivalence relation

D. R is not an equivalence relation

Answer: C

49. If the function $f\!:\!R o R$ is defined by $f(x)=\left(x^2+1
ight)^{35}$ for all

 $x\in\mathbb{R}$ then f is

A. One -one but not noto

B. onto but not one -one

C. neither one -one nor onto

D. both one-one and onto

Answer: C

Watch Video Solution

50. Let $F\colon X o X$ be such that f(f(x))=x for all $x\in X$ and $X\subseteq R$,

then

A. f is one to one

B.f is onto

C. f is one -to- one but not onto

D. f is onto but not one -to-one

Answer: A::B

Jee Main Aieee Archive

1. If x, y, z are in A.P and $\tan^{-1} x, \tan^{-1} y$ and $\tan^{-1} z$ are also in A.P

then-

A. x = y = z

B. x = 3y = 6z

C. 6x = 3y = 2z

D. 6x = 4y = 3z

Answer: A

2. Let $f_k=rac{1}{k}\Big(\sin^k x+\cos^k x\Big),$ where $x\in\mathbb{R}$ and k>1 then $f_4(x)-f_6(x)$ equals -

A.
$$\frac{1}{6}$$

B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{1}{12}$

Answer: D

Watch Video Solution

3. Let
$$\tan^{-1} y = \tan^{-1} x + \tan^{-1} \left(\frac{2x}{1-x^2} \right)$$

where $|x| < \frac{1}{\sqrt{3}}$. Then a value of y is -
A. $\frac{3x - x^3}{1 + 3x^3}$
B. $\frac{3x + x^3}{1 + 3x^2}$
 $3x - x^3$

$$\frac{1}{1-3x}$$

 $\mathbf{2}$

D.
$$rac{3x+x^3}{1-3x^2}$$

Answer: C

Jee Advanced Archive

1. The value of
$$\cot\left\{\sum_{n=1}^{23}\cot^{-1}\left(1+\sum_{k=1}^{n}2k
ight)
ight\}$$
 is

A.
$$\frac{23}{25}$$

B. $\frac{25}{23}$
C. $\frac{23}{24}$

D.
$$\frac{24}{23}$$

Answer: B

2. If
$$\alpha = 3\sin^{-1}\left(\frac{6}{11}\right)$$
 and $\beta = 3\cos^{-1}\left(\frac{4}{9}\right)$, where the inverse

trigonometric function take only the priencipal values , then the correct option (s) is are -

A. $\cos eta > 0$

 $B.\sin\beta < 0$

 $\mathsf{C.}\cos(lpha+eta)>0$

 $\mathrm{D.}\coslpha < 0$

Answer:

3. Let
$$f(x) = \sin\left(\frac{\pi}{6}\sin\left(\frac{\pi}{2}\sin x\right)\right)$$
 for all $x \in R$ and $g(x) = \frac{x}{2}\sin x$
for all $x \in \mathbb{R}$.Let (fo g) (x) denote f(g(x)) and (go f) (x) denote g(f(x)).
Then which of the following is (are) true ?

A. range of f is
$$\left[-\frac{1}{2},\frac{1}{2}\right]$$

B. Range of f o g is
$$\left[-rac{1}{2},rac{1}{2}
ight]$$

C. $\lim_{x
ightarrow 0}rac{f(x)}{g(x)}=rac{\pi}{6}$

D. there is an $x \in \mathbb{R}$ such that (g o f) (x) = 1

Answer: A::B::C